WO2013191033A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2013191033A1
WO2013191033A1 PCT/JP2013/066056 JP2013066056W WO2013191033A1 WO 2013191033 A1 WO2013191033 A1 WO 2013191033A1 JP 2013066056 W JP2013066056 W JP 2013066056W WO 2013191033 A1 WO2013191033 A1 WO 2013191033A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
insulating layer
connection layer
transparent
Prior art date
Application number
PCT/JP2013/066056
Other languages
English (en)
French (fr)
Inventor
誠一 内田
宮本 忠芳
小川 康行
泰 高丸
一篤 伊東
拓哉 松尾
森 重恭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380032605.2A priority Critical patent/CN104396019B/zh
Priority to US14/408,628 priority patent/US9276127B2/en
Publication of WO2013191033A1 publication Critical patent/WO2013191033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/425Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/443Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a semiconductor device formed using an oxide semiconductor and a manufacturing method thereof, and more particularly to an active matrix substrate of a liquid crystal display device or an organic EL display device and a manufacturing method thereof.
  • the semiconductor device includes an active matrix substrate and a display device including the active matrix substrate.
  • An active matrix substrate used in a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter referred to as “TFT”) for each pixel.
  • TFT thin film transistor
  • An active matrix substrate including TFTs as switching elements is called a TFT substrate.
  • amorphous silicon TFT amorphous silicon film as an active layer
  • polycrystalline silicon TFT amorphous silicon film as an active layer
  • oxide semiconductor TFT in place of amorphous silicon or polycrystalline silicon as a material for the active layer of a TFT.
  • a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor film can be formed by a simpler process than the polycrystalline silicon film.
  • Patent Document 1 discloses a method for manufacturing a TFT substrate including an oxide semiconductor TFT. According to the manufacturing method described in Patent Document 1, the number of manufacturing steps of the TFT substrate can be reduced by forming the pixel electrode by reducing the resistance of a part of the oxide semiconductor layer.
  • the pixel aperture ratio refers to an area ratio of pixels occupying the display region (for example, a region that transmits light contributing to display in a transmissive liquid crystal display device), and is simply referred to as “aperture ratio” below.
  • a small-sized transmissive liquid crystal display device for mobile use has a small display area. Therefore, the area of each pixel is naturally small, and the aperture ratio is significantly reduced due to high definition. Moreover, when the aperture ratio of a liquid crystal display device for mobile use decreases, it is necessary to increase the luminance of the backlight in order to obtain a desired luminance, which causes a problem of increasing power consumption.
  • the area occupied by an element formed of an opaque material such as a TFT and an auxiliary capacitor provided for each pixel may be reduced, but the TFT and the auxiliary capacitor naturally have their functions.
  • the TFT can be reduced in size as compared with the case where an amorphous silicon TFT is used.
  • the auxiliary capacitor is a capacitor provided in parallel with the liquid crystal capacitor in order to hold a voltage applied to the liquid crystal layer of the pixel (electrically referred to as “liquid crystal capacitor”). In general, at least a part of the auxiliary capacitor is formed so as to overlap with the pixel.
  • an embodiment of the present invention mainly provides a TFT substrate that can be manufactured by a simple process and can realize a display device with higher definition and a higher aperture ratio than the conventional one, and a manufacturing method thereof. With a purpose.
  • a semiconductor device includes a substrate, a thin film transistor formed on the substrate, and a first transparent electrode, wherein the thin film transistor includes a gate electrode formed on the substrate, A first insulating layer formed on the gate electrode; an oxide semiconductor layer formed on the first insulating layer; and a source electrode and a drain electrode electrically connected to the oxide semiconductor layer
  • the semiconductor device has a gate connection layer formed on the substrate and formed from the same conductive film as the gate electrode, or a transparent formed from the same conductive film as the first transparent electrode.
  • the conductor region has impurities at a higher concentration than the oxide semiconductor layer.
  • the above-described semiconductor device further includes a second transparent electrode formed so as to overlap a part of the first transparent electrode with the first insulating layer interposed therebetween, and the oxide semiconductor layer The oxide layer and the second transparent electrode are formed from the same oxide film.
  • the oxide film contains In, Ga, and Zn.
  • the drain electrode is formed on the second transparent electrode, and the second transparent electrode is in direct contact with the drain electrode.
  • the above-described semiconductor device further includes a second insulating layer formed between the gate electrode and the substrate, and the second insulating layer is formed on the first transparent electrode. Has been.
  • the above-described semiconductor device further includes a second insulating layer formed on the gate electrode, and the first transparent electrode is formed on the second insulating layer.
  • a method of manufacturing a semiconductor device includes a step (a) of preparing a substrate, a gate electrode and a gate connection layer from the same first conductive film, and a first transparent conductive film on the substrate.
  • the oxide layer including the conductor region And forming an oxide semiconductor layer including a portion of the first oxide semiconductor film that has not been reduced in resistance by the resistance reduction process, wherein the source connection layer includes the conductor region.
  • the step (f) is a step of forming a second transparent electrode by performing the resistance reduction treatment on a part of the first oxide semiconductor film, wherein the second transparent electrode Includes a step (f1) of overlapping with the first transparent electrode via the first insulating layer.
  • the step (f) includes a step of injecting impurities into the first and second oxide semiconductor films.
  • the step (b) includes forming the first transparent electrode on the substrate, forming a second insulating layer on the first transparent electrode, and on the second insulating layer. Forming the gate electrode.
  • the step (b) includes forming the gate electrode on the substrate and forming a second insulating layer on the gate electrode, and the first insulating layer on the second insulating layer. Forming a transparent electrode.
  • a TFT substrate that can be manufactured by a simple process and can realize a display device with higher definition and a higher aperture ratio than the conventional one and a manufacturing method thereof are provided.
  • FIG. 1 is a schematic plan view of the TFT substrate 100A in the embodiment of the present invention, and (b) is a schematic plan view of the TFT substrate 100A along the line AA ′ of (a).
  • (A) is a schematic plan view for explaining a connection structure between the gate connection layer 3a or the transparent connection layer 2a and the source connection layer 6a, and (b) is a schematic view taken along the line BB ′ of (a).
  • (A) is a schematic plan view for explaining another connection structure between the gate connection layer 3a or the transparent connection layer 2a and the source connection layer 6a, and (b) is along the BB ′ line in (a). It is a typical sectional view.
  • FIG. 2 is a schematic cross-sectional view of a terminal portion 20A taken along line C-C ′ of FIG.
  • (A1) to (c1), (a2) to (c2), and (a3) to (c3) are schematic cross-sectional views illustrating a method for manufacturing the TFT substrate 100A in the embodiment of the present invention.
  • (A1) to (c1), (a2) to (c2), and (a3) to (c3) are schematic cross-sectional views illustrating a method for manufacturing the TFT substrate 100A, respectively.
  • (A1), (b1), (a2), (b2), (a3), and (b3) are schematic cross-sectional views illustrating a method for manufacturing the TFT substrate 100A. It is typical sectional drawing of TFT substrate 100B in other embodiment of this invention.
  • (A)-(c) is typical sectional drawing explaining the manufacturing method of TFT substrate 100B, respectively.
  • the semiconductor device of this embodiment includes a thin film transistor (oxide semiconductor TFT) having an active layer made of an oxide semiconductor.
  • the semiconductor device of this embodiment should just be provided with the oxide semiconductor TFT, and includes an active matrix substrate, various display apparatuses, an electronic device, etc. widely.
  • a semiconductor device will be described by taking an oxide semiconductor TFT used for a liquid crystal display device as an example. Since the TFT substrate described below has a common part with the TFT substrate disclosed in the international application PCT / 2013/051417, all the contents disclosed in the international application PCT / 2013/051417 are included for reference. This is incorporated herein by reference.
  • FIGS. 1A and 3 are schematic plan views of the semiconductor device (TFT substrate) 100A according to the present embodiment, and FIG. 1B shows a TFT along the line AA ′ in FIG. It is a typical sectional view of substrate 100A.
  • FIG. 2A is a schematic plan view for explaining electrical connection between the transparent connection layer 2a or the gate connection layer 3a and the source connection layer 6a
  • FIG. 2B is a plan view of FIG.
  • FIG. 6 is a schematic cross-sectional view along the line BB ′.
  • a TFT substrate 100A is a semiconductor device having a substrate 1, a thin film transistor (TFT) 10A formed on the substrate 1, and a transparent electrode 2.
  • the TFT 10A includes a gate electrode 3 formed on the substrate 1, an insulating layer (gate insulating layer) 4 formed on the gate electrode 3, an oxide semiconductor layer 5 formed on the insulating layer 4, and an oxide.
  • a source electrode 6s and a drain electrode 6d that are electrically connected to the semiconductor layer 5 are provided.
  • the TFT substrate 100A includes a gate connection layer 3a or a transparent electrode 2 formed on the substrate 1 and formed of the same conductive film as the gate electrode 3.
  • a transparent connection layer 2a formed of the same conductive film, an oxide layer 5z including at least one conductor region 5a formed on the insulating layer 4, and an oxide layer 5z.
  • It further has a source connection layer 6a formed of the same conductive film as the source electrode 6s. The source connection layer 6a is electrically connected to the gate connection layer 3a or the transparent connection layer 2a through the at least one conductor region 5a.
  • the TFT substrate 100A is manufactured by a simple manufacturing method, and the source connection layer 6a and the gate connection layer 3a or the transparent connection layer 2a are electrically connected through the conductor region 5a.
  • the TFT 10A is formed in the display region 110 contributing to display in the substrate 1, and the source connection layer 6a, the gate connection layer 3a or the driving connection region 120 located around the display region 110 is formed.
  • the transparent connection layer 2a By forming the transparent connection layer 2a, a pixel circuit contributing to display and a drive circuit for driving the pixel circuit can be integrally formed on the same substrate 1, and a high-definition display device can be realized.
  • an insulating layer 4 is formed on the gate connection layer 3a or the transparent connection layer 2a, and a conductor is formed in the contact hole CH formed in the insulating layer 4.
  • the region 5a is electrically connected to the gate connection layer 3a or the transparent connection layer 2a.
  • a source connection layer 6a is formed on the conductor region 5a, and the conductor region 5a is electrically connected to the source connection layer 6a.
  • the source connection layer 6a is not formed in the contact hole CH.
  • a protective layer 8 is formed on the source connection layer 6a.
  • the insulating layer formed on the gate connection layer 3 a or the transparent connection layer 2 a may have an insulating layer other than the insulating layer 4.
  • region 5a can have an impurity (for example, B (boron)) with a density
  • connection structure instead of the connection structure between the gate connection layer 3a or the transparent connection layer 2a and the source connection layer 6a shown in FIGS. 2 (a) and 2 (b), a connection structure as shown in FIG. 4 is adopted. May be.
  • FIG. 4A is a schematic plan view for explaining electrical connection between the transparent connection layer 2a or the gate connection layer 3a and the source connection layer 6a
  • FIG. 4B is a diagram illustrating FIG. FIG. 6 is a schematic cross-sectional view along the line BB ′.
  • connection structure of the transparent connection layer 2a or the gate connection layer 3a and the source connection layer 6a shown in FIG. 4 the conductor region 5a and a part of the source connection layer 6a are electrically connected in the contact hole CH. This is different from the connection structure shown in FIG.
  • a part of the source connection layer 6a is formed in the contact hole CH, and the conductor region 5a formed in the contact hole CH is electrically connected to a part of the source connection layer 6a.
  • the TFT substrate 100A further includes a transparent electrode 7 formed so as to overlap a part of the transparent electrode 2 with the insulating layer 4 interposed therebetween as shown in FIGS. 1 (a) and 1 (b).
  • the oxide semiconductor layer 5, the oxide layer 5z, and the transparent electrode 7 are the same oxide film (for example, an In—Ga—Zn—O based semiconductor film containing In (indium), Ga (gallium), and Zn (zinc)). Formed from.
  • the TFT substrate 100A In the TFT substrate 100A, at least a part of the transparent electrode 2 overlaps the transparent electrode 7 with the insulating layer 4 interposed therebetween, thereby forming an auxiliary capacitor. Therefore, since the auxiliary capacitance of the TFT substrate 100A is transparent (transmits visible light), the aperture ratio is not lowered. Therefore, the TFT substrate 100A can have a higher aperture ratio than a TFT substrate including an auxiliary capacitor having an opaque electrode formed using a metal film (gate metal layer or source metal layer) as in the prior art. Further, since the aperture ratio is not lowered by the auxiliary capacitor, there is an advantage that the capacity value of the auxiliary capacitor (the area of the auxiliary capacitor) can be increased as necessary.
  • the drain electrode 6d is formed on the transparent electrode 7, and the transparent electrode 7 is in direct contact with the drain electrode 6d. If such a structure is adopted, the transparent electrode 7 can be formed up to substantially the end of the drain electrode 6d, so the TFT substrate 100A has a higher aperture ratio than the TFT substrate described in Patent Document 1. obtain.
  • a protective layer 8 is formed on the source electrode 6s and the drain electrode 6d.
  • the transparent electrode 2 is formed on the substrate 1
  • the insulating layer 4a is formed on the transparent electrode 2
  • the gate electrode 3 is formed on the insulating layer 4a. Is formed.
  • FIG. 5 is a schematic cross-sectional view of the terminal portion 20A along the line C-C ′ of FIG.
  • the TFT substrate 100A has a plurality of terminal portions 20A.
  • the external circuit and the TFT 10A are electrically connected by electrically connecting the terminal portion 20A and, for example, a terminal (for example, a flexible terminal) of the external circuit.
  • the terminal portion 20A includes a gate connection layer 3b, an oxide layer 5z including at least one conductor region 5b formed on the gate connection layer 3b, and a source connection layer 6b formed on the oxide layer 5z.
  • the source connection layer 6b is electrically connected to the gate connection layer 3b through the conductor region 5b.
  • the terminal portion 20A having such a configuration can increase the electrical contact area between the flexible terminal and the source connection layer 6b, for example, by the amount of the conductor region 5b formed, and can decrease the contact resistance. Furthermore, since the oxide layer 5z is formed so as to cover the gate connection layer 3b, the gate connection layer 3b can be prevented from corroding.
  • the terminal portion 20A has an insulating layer 4 formed on the gate connection layer 3b.
  • An opening 4 u is formed in the insulating layer 4.
  • the conductor region 5b is electrically connected to the gate connection layer 3b.
  • the source connection layer 6b is electrically connected to the conductor region 5b, and as a result, the source connection layer 6b is electrically connected to the gate connection layer 3b via the conductor region 5b.
  • the conductor region 5 b can also have impurities (for example, B (boron)) at a higher concentration than the oxide semiconductor layer 5.
  • a protective layer 8 is formed on the source connection layer 6b.
  • the substrate 1 is typically a transparent substrate, for example, a glass substrate.
  • a plastic substrate can also be used.
  • the plastic substrate includes a substrate formed of a thermosetting resin or a thermoplastic resin, and a composite substrate of these resins and inorganic fibers (for example, glass fibers or glass fiber nonwoven fabrics).
  • the heat-resistant resin material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, and polyimide resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • acrylic resin acrylic resin
  • polyimide resin polyimide resin
  • the transparent electrode 2 and the transparent connection layer 2a are formed of a transparent conductive film (for example, ITO (Indium Tin Oxide) or IZO film).
  • the thicknesses of the transparent electrode 2 and the transparent connection layer 2a are preferably about 20 nm or more and about 200 nm or less, respectively.
  • the thicknesses of the transparent electrode 2 and the transparent connection layer 2a are each about 100 nm, for example.
  • the gate electrode 3 is electrically connected to the gate wiring 3 '.
  • the gate electrode 3, the gate connection layers 3a and 3b, and the gate wiring 3 ' have, for example, a stacked structure in which an upper layer is a W (tungsten) layer and a lower layer is a TaN (tantalum nitride) layer.
  • the gate electrode 3, the gate connection layers 3a and 3b, and the gate wiring 3 ′ may have a laminated structure formed of Mo (molybdenum) / Al (aluminum) / Mo.
  • the structure may have a laminated structure of four or more layers.
  • the gate electrode 3, the gate connection layers 3a and 3b, and the gate wiring 3 ′ were selected from Cu (copper), Al, Cr (chromium), Ta (tantalum), Ti (titanium), Mo, and W, respectively. It may be formed from an element, or an alloy or metal nitride containing these elements as components.
  • the thicknesses of the gate electrode 3, the gate connection layer 3a, and the gate wiring 3 ' are each preferably about 50 nm to 600 nm.
  • the thicknesses of the gate electrode 3, the gate connection layers 3a and 3b, and the gate wiring 3 ' are about 420 nm, for example.
  • the insulating layer (gate insulating layer) 4 includes an insulating layer 4b and an insulating layer 4c.
  • the insulating layer 4 c preferably includes an oxide insulating layer, and the oxide insulating layer is preferably in direct contact with the oxide semiconductor layer 5.
  • oxygen contained in the oxide insulating layer is supplied to the oxide semiconductor layer 5, thereby preventing deterioration of semiconductor characteristics due to oxygen vacancies in the oxide semiconductor layer 5. it can.
  • the insulating layer 4c is, for example, a SiO 2 (silicon oxide) layer.
  • the insulating layer 4a and the insulating layer 4b are, for example, SiN x (silicon nitride) layers.
  • the insulating layer 4a has a thickness of about 100 nm.
  • the thickness of the insulating layer 4b is about 325 nm, the thickness of the insulating layer 4c is about 50 nm, and the thickness of the gate insulating layer 4 is about 375 nm.
  • the insulating layer 4a and the gate insulating layer 4 for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x > Y), a single layer or a stack formed of Al 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used.
  • the thickness of the gate insulating layer 4 is, for example, about 50 nm to 600 nm.
  • the insulating layer 4a and the insulating layer 4b are preferably formed of SiN x or SiN x O y (silicon nitride oxide, x> y).
  • the insulating layer 4c is preferably formed of SiO 2 or SiO x N y (silicon oxynitride, x> y) from the viewpoint of preventing deterioration of the semiconductor characteristics of the oxide semiconductor layer 5.
  • the gate insulating layer 4 is preferably formed using a rare gas such as Ar (argon).
  • the oxide semiconductor layer 5 and the oxide layer 5z include an In—Ga—Zn—O-based oxide layer containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1, for example.
  • In—Ga—Zn—O-based oxide layer containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1, for example.
  • In—Ga—Zn—O-based oxide layer The ratio of In, Ga, and Zn can be selected as appropriate.
  • an In—Ga—Zn—O-based oxide that exhibits semiconductor characteristics is abbreviated as an In—Ga—Zn—O-based semiconductor.
  • the oxide semiconductor layer 5 may be an In—Ga—Zn—O based semiconductor layer.
  • the oxide semiconductor layer 5 may be formed using another oxide semiconductor film instead of the In—Ga—Zn—O-based semiconductor film.
  • a Zn—O based semiconductor (ZnO) film, an In—Zn—O based semiconductor (IZO (registered trademark)) film, a Zn—Ti—O based semiconductor (ZTO) film, a Cd—Ge—O based semiconductor film, a Cd— A Pb—O based semiconductor film, CdO (cadmium oxide), Mg—Zn—O based semiconductor film, or the like may be used.
  • ZnO is amorphous (amorphous) to which one or more impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element and Group 17 element are added.
  • State a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added.
  • the thicknesses of the oxide semiconductor layer 5 and the oxide layer 5z are preferably, for example, about 30 nm or more and about 100 nm or less. The thicknesses of the oxide semiconductor layer 5 and the oxide layer 5z are each about 50 nm, for example.
  • the source electrode 6 s is electrically connected to the source wiring 6.
  • the source connection layer 6a is formed in an island shape.
  • the source electrode 6s, the drain electrode 6d, the source wiring 6 and the source connection layer 6a have a laminated structure made of, for example, Ti / Al / Ti.
  • the source electrode 6s, the drain electrode 6d, the source wiring 6 and the source connection layer 6a may have a laminated structure formed of Mo / Al / Mo, and have a single-layer structure, a two-layer structure, or four or more layers. You may have the laminated structure of.
  • the source electrode 6s, the drain electrode 6d, the source wiring 6 and the source connection layer 6a are made of an element selected from Al, Cr, Ta, Ti, Mo and W, or an alloy or metal nitride containing these elements as components. Etc. may be formed.
  • the thicknesses of the source electrode 6s, the drain electrode 6d, the source wiring 6 and the source connection layer 6a are each preferably about 50 nm or more and 600 nm or less.
  • Each of the source electrode 6s, the drain electrode 6d, the source wiring 6 and the source connection layer 6a has a thickness of about 350 nm, for example.
  • the protective layer 8 is formed so as to be in contact with the channel region of the oxide semiconductor layer 5.
  • the protective layer 8 is preferably formed from an oxide (for example, SiO 2 ).
  • the protective layer 8 can be formed of, for example, SiON (silicon oxynitride, silicon nitride oxide), Al 2 O 3, or Ta 2 O 5 .
  • the thickness of the protective layer 8 is preferably about 50 nm to 300 nm, for example.
  • the thickness of the protective layer 8 is about 150 nm, for example.
  • the transparent electrode 7 is formed of, for example, an In—Ga—Zn—O layer. Although details will be described later, the transparent electrode 7, the oxide semiconductor layer 5, and the oxide layer 5z are formed of the same transparent oxide film (for example, an In—Ga—Zn—O film). When the transparent electrode 7, the oxide semiconductor layer 5, and the oxide layer 5z are formed from the same oxide film, the manufacturing process can be simplified and the manufacturing cost can be reduced.
  • the thickness of the transparent electrode 7 is preferably about 20 nm or more and about 200 nm or less, for example. The thickness of the transparent electrode 7 is about 50 nm, for example.
  • the transparent electrode 7 contains p-type impurities (for example, B (boron)) or n-type impurities (for example, P (phosphorus)) at a higher concentration than the oxide semiconductor layer 5.
  • p-type impurities for example, B (boron)
  • n-type impurities for example, P (phosphorus)
  • the TFT substrate 100A is used, for example, in a fringe field switching (FFS) mode liquid crystal display device.
  • FFS fringe field switching
  • the transparent electrode (common electrode) 2 is closer to the substrate 1 than the transparent electrode (pixel electrode) 7. Accordingly, the TFT substrate 100A can be used not only in the above-described FFS mode liquid crystal display device but also in various liquid crystal mode (for example, TN (TwistedistNematic) mode and VA (Vertical Alignment) mode liquid crystal display devices).
  • TN TransmissionistNematic
  • VA Very Alignment
  • the step (a) of preparing the substrate 1 and the gate electrode 3 and the gate connection layer 3a from the same conductive film on the substrate 1 are the same.
  • the step (d) of forming the oxide semiconductor film on the insulating layer 4 and the formation of the conductive film on the oxide semiconductor film are separated from the oxide semiconductor film.
  • the step (e) of forming the first and second oxide semiconductor films 5i and 5ii and forming the source electrode 6s, the drain electrode 6d, and the source connection layer 6a from the conductive film Furthermore, in the manufacturing method of the TFT substrate 100A, the oxide layer 5z including the conductor region 5a is formed by performing the resistance reduction process L for reducing the resistance of a part of the second oxide semiconductor film 5ii. 1 is a step of forming an oxide semiconductor layer 5 comprising a portion of the oxide semiconductor film 5i that has not been reduced in resistance by the low resistance treatment L, and the source connection layer 6a is connected to the gate via the conductor region 5a. A step (f) of being electrically connected to the layer 3a or the transparent connection layer 2a.
  • the step (f) is a step of forming the transparent electrode 7 by performing the low resistance treatment L on a part of the oxide semiconductor film 5 i, and at least a part of the transparent electrode 7 is interposed via the insulating layer 4. It is preferable that the process (f1) which overlaps with the transparent electrode 2 is included.
  • Step (f) may include a step of implanting impurities into the first and second oxide semiconductor films 5i and 5ii.
  • FIGS. 6 to 8 are schematic cross-sectional views illustrating a method for manufacturing the TFT substrate 100A in the embodiment of the present invention.
  • FIGS. 6 to 8 are schematic cross-sectional views illustrating a method for manufacturing the TFT substrate 100A in the embodiment of the present invention. 6 to 8, the diagrams shown in (a1) to (c1) correspond to FIG. 1 (b), and are shown in (a2) to (c2) and (a3) to (c3). The figure made corresponds to FIG. 2B.
  • a transparent electrode 2 and a transparent connection layer 2a are formed on a substrate 1 from the same transparent conductive film.
  • the transparent electrode 2 and the transparent connection layer 2a are formed separately and are not electrically connected.
  • the substrate 1 for example, a transparent insulating substrate such as a glass substrate can be used.
  • the transparent electrode 2 and the transparent connection layer 2a are formed by a known method such as a sputtering method.
  • the transparent electrode 2 and the transparent connection layer 2a are made of, for example, ITO and have a thickness of about 100 nm. In the region shown in FIG. 6 (a2), the substrate 1 remains exposed.
  • an insulating layer 4a is formed on the transparent electrode 2, the transparent connection layer 2a, and the substrate 1 by a CVD (Chemical Vapor deposition) method or the like.
  • the insulating layer 4a is made of, for example, SiN x .
  • the thickness of the insulating layer 4a is about 100 nm.
  • the gate electrode 3 and the gate connection layer 3a are formed on the insulating layer 4a.
  • the gate electrode 3 and the gate connection layer 3a are formed by forming a conductive film on the insulating layer 4a by sputtering and then patterning the conductive film by photolithography. When viewed from the normal direction of the substrate 1, the gate electrode 3 and the transparent electrode 2 do not overlap.
  • the gate electrode 3 and the gate connection layer 3a are formed separately.
  • a laminated film having a two-layer structure having a TaN film (thickness: about 50 nm) and a W film (thickness: about 370 nm) in this order from the substrate 1 side is used as the conductive film.
  • the conductive film for example, a single layer film such as Ti, Mo, Ta, W, Cu, Al, or Cr, a laminated film including them, an alloy film, or a metal nitride film thereof may be used. In the region shown in FIG. 6C3, the gate electrode 3 and the gate connection layer 3a are not formed.
  • the insulating layer 4b and the insulating layer 4c are formed by the CVD method so as to cover the gate electrode 3 and the gate connection layer 3a.
  • the insulating layer 4b is formed from a SiN x film (thickness: about 325 nm)
  • the insulating layer 4c is formed from a SiO 2 film (thickness: about 50 nm).
  • the insulating layer 4b and 4c for example SiO 2, SiN x, SiO x N y ( silicon oxynitride, x> y), SiN x O y ( silicon nitride oxide, x> y), Al 2 O 3 or Ta 2 It may be formed from O 5.
  • contact holes CH1 and CH2 are formed in the insulating layer 4b and the insulating layer 4c by a known method.
  • the gate connection layer 3a is exposed through the contact hole CH1, and the transparent connection layer 2a is exposed through the contact hole CH2.
  • an oxide semiconductor film is formed over the insulating layer 4c by a sputtering method or the like.
  • An In—Ga—Zn—O-based semiconductor film may be used as the oxide semiconductor film.
  • the thickness of the oxide semiconductor film is about 50 nm, for example. Part of the oxide semiconductor film is in contact with the gate connection layer 3a and the transparent connection layer 2a in the contact holes CH1 and CH2, respectively.
  • a conductive film (not shown) for forming a source electrode 6s, a drain electrode 6d, a source connection layer 6a, and the like, which will be described later, is formed on the oxide semiconductor film by a sputtering method.
  • the conductive film and the oxide semiconductor film are simultaneously patterned by a photolithography method using a halftone mask, a dry etching method, and an ashing method. Then, the first oxide semiconductor film 5i and the second oxide semiconductor film 5ii separated from the oxide semiconductor film are formed, and the source electrode 6s, the drain electrode 6d, and the source connection layer 6a are formed from the conductive film. In this manner, since the source electrode 6s and the oxide semiconductor film can be patterned into a desired shape with a single photomask, the manufacturing process can be simplified and the manufacturing cost can be reduced. In the source connection layer 6a, an opening 6au that exposes a part of the second oxide semiconductor film 5ii is formed.
  • the source electrode 6s, the drain electrode 6d, and the source connection layer 6a have, for example, a laminated structure of Ti / Al / Ti.
  • the thickness of the lower Ti layer is about 50 nm
  • the thickness of the Al layer is about 200 nm
  • the thickness of the upper Ti layer is about 100 nm.
  • a protective layer 8 is formed by a CVD method and a photolithography method so as to cover the channel region of the first oxide semiconductor film 5i.
  • the protective layer 8 is made of, for example, an oxide (for example, SiO 2 ) and has a thickness of about 150 nm, for example.
  • the end portion of the protective layer 8 overlaps the drain electrode 6 d. Thereby, it becomes possible to perform the resistance reduction process L described later also on the portion of the first oxide semiconductor film 5i located at the end of the drain electrode 6d.
  • the protective layer 8 is also formed on the source connection layer 6a, and the end of the protective layer 8 is formed on the source connection layer 6a. It is preferable.
  • the first and second oxide semiconductor films 5i and 5ii are subjected to a resistance reduction process L.
  • the portion of the first and second oxide semiconductor films 5i and 5ii covered with the source electrode 6s, the drain electrode 6d, the source connection layer 6a, and the protective layer 8 is not subjected to the resistance reduction process L.
  • the transparent electrode 7 is formed in the portion of the first oxide semiconductor film 5i that has been subjected to the low resistance treatment L, thereby reducing the resistance.
  • An oxide semiconductor layer 5 is formed in a portion where the treatment L is not performed.
  • a portion of the oxide layer 5z formed of the second oxide semiconductor film 5ii that has been subjected to the low resistance treatment L has a conductor. A portion where the region 5a is formed and the resistance reduction process L is not performed remains as a semiconductor region.
  • the source connection layer 6a is electrically connected to the transparent connection layer 2a or the gate connection layer 3a through the conductor region 5a.
  • the electrical resistance of the portion subjected to the low-resistance treatment L is smaller than the electrical resistance of the portion not subjected to the low-resistance treatment L.
  • the low resistance treatment L include plasma treatment and doping with a p-type impurity (for example, B (boron)) or an n-type impurity (for example, P (phosphorus)).
  • a p-type impurity for example, B (boron)
  • P phosphorus
  • examples of the low resistance treatment L include a hydrogen plasma treatment using a CVD device, an argon plasma treatment using an etching device, and an annealing treatment in a reducing atmosphere.
  • FIG. 9 is a schematic cross-sectional view of the TFT substrate 100B, and corresponds to the cross-sectional view of the TFT substrate 100A in FIG. Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
  • the TFT substrate 100B also has the connection portion between the source connection layer 6a and the transparent connection layer 2a or the gate connection layer 3a shown in FIGS. 2A and 2B, but is common to the TFT substrate 100A. Therefore, explanation and illustration are omitted.
  • the gate electrode 3 is on the substrate 1 side with respect to the transparent electrode 2.
  • the TFT substrate 100B includes a gate electrode 3 formed on the substrate 1, an insulating layer 4a formed on the gate electrode 3, and a transparent electrode 2 formed on the insulating layer 4a.
  • the insulating layers 4a to 4c function as the gate insulating layer 4.
  • FIG. 10A to FIG. 10C are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100B.
  • the gate electrode 3 is formed on the substrate 1 by the method described above.
  • a gate connection layer 3a is also formed on the substrate 1 at the same time.
  • an insulating layer 4a is formed on the gate electrode 3 by the method described above.
  • the transparent electrode 2 is formed by the method described above.
  • the gate electrode 3 and the transparent electrode 2 do not overlap.
  • the insulating layers 4b and 4c, the oxide semiconductor layer 5, the conductor region 5a, the source electrode 6s, the drain electrode 6d, the source connection layer 6a, the transparent electrode 7, and the protective layer 8 are formed by the method described above (see FIG. 7 and FIG. 8).
  • the TFT substrate 100B shown in FIG. 9 is manufactured.
  • a TFT substrate that can be manufactured by a simple process and can realize a display device with higher definition and higher aperture ratio than the conventional one and a manufacturing method thereof are provided.
  • Embodiments of the present invention include a circuit board such as an active matrix substrate, a liquid crystal display device, a display device such as an organic electroluminescence (EL) display device and an inorganic electroluminescence display device, an imaging device such as an image sensor device, and an image input
  • a circuit board such as an active matrix substrate, a liquid crystal display device, a display device such as an organic electroluminescence (EL) display device and an inorganic electroluminescence display device, an imaging device such as an image sensor device, and an image input
  • EL organic electroluminescence
  • an imaging device such as an image sensor device
  • image input an image input
  • the present invention can be widely applied to devices including thin film transistors, such as electronic devices such as devices and fingerprint readers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)

Abstract

 TFT基板(100A)は、基板(1)の上に形成された、ゲート電極(3)と同一の導電膜から形成されたゲート接続層(3a)または第1透明電極(2)と同一の導電膜から形成された透明接続層(2a)と、絶縁層(4)の上に形成された、少なくとも1つの導体領域(5a)を含む酸化物層(5z)と、酸化物層(5z)の上に形成された、ソース電極(6s)と同一の導電膜から形成されたソース接続層(6a)とをさらに有し、ソース接続層(6a)は、少なくとも1つの導体領域(5a)を介してゲート接続層(3a)または透明接続層(2a)と電気的に接続されている。

Description

半導体装置およびその製造方法
 本発明は、酸化物半導体を用いて形成された半導体装置およびその製造方法に関し、特に、液晶表示装置や有機EL表示装置のアクティブマトリクス基板およびその製造方法に関する。ここで、半導体装置は、アクティブマトリクス基板やそれを備える表示装置を含む。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。スイッチング素子としてTFTを備えるアクティブマトリクス基板はTFT基板と呼ばれる。
 TFTとしては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。
 近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成できる。
 特許文献1には、酸化物半導体TFTを備えるTFT基板の製造方法が開示されている。特許文献1に記載の製造方法によると、酸化物半導体層の一部を低抵抗化して画素電極を形成することにより、TFT基板の製造工程数を削減することができる。
 近年、液晶表示装置等の高精細化が進むに連れて、画素開口率の低下が問題となっている。なお、画素開口率とは、表示領域に占める画素(例えば、透過型液晶表示装置において、表示に寄与する光を透過する領域)の面積比率をいい、以下では、単に、「開口率」という。
 特に、モバイル用途の中小型の透過型液晶表示装置は、表示領域の面積が小さいので、当然に個々の画素の面積も小さく、高精細化による開口率の低下が顕著になる。また、モバイル用途の液晶表示装置の開口率が低下すると、所望の輝度を得るために、バックライトの輝度を増大させる必要があり、消費電力の増大を招くという問題も起こる。
 高い開口率を得るためには、画素毎に設けられるTFTや補助容量などの不透明な材料で形成される素子の占める面積を小さくすればよいが、TFTや補助容量は、当然に、その機能を果たすために最低限必要なサイズがある。TFTとして酸化物半導体TFTを用いると、アモルファスシリコンTFTを用いる場合よりも、TFTを小型化できるという利点が得られる。なお、補助容量は、画素の液晶層(電気的には、「液晶容量」と呼ばれる)に印加された電圧を保持するために、液晶容量に対して電気的に並列に設けられる容量であり、一般に、補助容量の少なくとも一部は画素と重なるように形成される。
特開2011-91279号公報
 しかしながら、高開口率化に対する要求は強く、酸化物半導体TFTを用いるだけでは、その要求に応えられない。また、表示装置の低価格化も進んでおり、高精細化で、高開口率の表示装置を安価に製造する技術の開発も求められている。
 そこで、本発明の実施形態は、簡便なプロセスで製造することができ、従来よりも高精細で高開口率の表示装置を実現することが可能なTFT基板およびその製造方法を提供することを主な目的とする。
 本発明の実施形態による半導体装置は、基板と、前記基板上に形成された薄膜トランジスタおよび第1透明電極とを有する半導体装置であって、前記薄膜トランジスタは、前記基板上に形成されたゲート電極と、前記ゲート電極上に形成された第1の絶縁層と、前記第1の絶縁層の上に形成された酸化物半導体層と、前記酸化物半導体層に電気的に接続されたソース電極およびドレイン電極とを有し、前記半導体装置は、前記基板の上に形成された、前記ゲート電極と同一の導電膜から形成されたゲート接続層または前記第1透明電極と同一の導電膜から形成された透明接続層と、前記第1の絶縁層の上に形成された、少なくとも1つの導体領域を含む酸化物層と、前記酸化物層の上に形成された、前記ソース電極と同一の導電膜から形成されたソース接続層とをさらに有し、前記ソース接続層は、前記少なくとも1つの導体領域を介して前記ゲート接続層または前記透明接続層と電気的に接続されている。
 ある実施形態において、前記導体領域は、前記酸化物半導体層よりも高い濃度で不純物を有する。
 ある実施形態において、上述の半導体装置は、前記第1の絶縁層を介して、前記第1透明電極の一部と重なるように形成された第2透明電極をさらに有し、前記酸化物半導体層、前記酸化物層および前記第2透明電極は、同一の酸化物膜から形成されている。
 ある実施形態において、前記酸化物膜は、In、GaおよびZnを含む。
 ある実施形態において、前記第2透明電極の上に前記ドレイン電極が形成され、前記第2透明電極は前記ドレイン電極に直接接している。
 ある実施形態において、上述の半導体装置は、前記ゲート電極と前記基板との間に形成された第2の絶縁層をさらに有し、前記第2の絶縁層は、前記第1透明電極上に形成されている。
 ある実施形態において、上述の半導体装置は、前記ゲート電極上に形成された第2の絶縁層をさらに有し、前記第1透明電極は、前記第2の絶縁層の上に形成されている。
 本発明の実施形態による半導体装置の製造方法は、基板を用意する工程(a)と、前記基板上に、同一の第1導電膜からゲート電極およびゲート接続層と、同一の透明導電膜から第1透明電極および透明接続層とを形成する工程(b)と、前記ゲート電極および前記第1透明電極の上に第1の絶縁層を形成する工程(c)と、前記第1の絶縁層の上に酸化物半導体膜を形成する工程(d)と、前記酸化物半導体膜の上に第2導電膜を形成し、前記酸化物半導体膜から互いに分離された第1および第2酸化物半導体膜を形成するとともに、前記第2導電膜からソース電極、ドレイン電極およびソース接続層を形成する工程(e)と、前記第2酸化物半導体膜の一部を低抵抗化させる低抵抗化処理を行うことによって、導体領域を含む酸化物層を形成するとともに、前記第1酸化物半導体膜のうち前記低抵抗化処理によって低抵抗化されなかった部分からなる酸化物半導体層を形成する工程であって、前記ソース接続層は、前記導体領域を介して前記ゲート接続層または前記透明接続層と電気的に接続される工程(f)とを包含する。
 ある実施形態において、前記工程(f)は、前記第1酸化物半導体膜の一部に前記低抵抗化処理を行うことによって、第2透明電極を形成する工程であって、前記第2透明電極の少なくとも一部は、第1の絶縁層を介して前記第1透明電極と重なる工程(f1)を含む。
 ある実施形態において、前記工程(f)は、前記第1および第2酸化物半導体膜に不純物を注入する工程を含む。
 ある実施形態において、前記工程(b)は、前記基板上に前記第1透明電極を形成し、前記第1透明電極上に第2の絶縁層を形成する工程と、前記第2の絶縁層上に前記ゲート電極を形成する工程とを包含する。
 ある実施形態において、前記工程(b)は、前記基板上に前記ゲート電極を形成し、前記ゲート電極上に第2の絶縁層を形成する工程と、前記第2の絶縁層上に前記第1透明電極を形成する工程とを包含する。
 本発明の実施形態によると、簡便なプロセスで製造することができ、従来よりも高精細で高開口率の表示装置を実現することが可能なTFT基板およびその製造方法が提供される。
(a)は、本発明の実施形態におけるTFT基板100Aの模式的な平面図であり、(b)は(a)のA-A’線に沿ったTFT基板100Aの模式的な平面図である。 (a)はゲート接続層3aまたは透明接続層2aとソース接続層6aとの接続構造を説明する模式的な平面図であり、(b)は(a)のB-B’線に沿った模式的な断面図である。 TFT基板100Aの模式的な平面図である。 (a)はゲート接続層3aまたは透明接続層2aとソース接続層6aとの他の接続構造を説明する模式的な平面図であり、(b)は(a)のB-B’線に沿った模式的な断面図である。 図1(a)のC-C’線に沿った端子部20Aの模式的な断面図である。 (a1)~(c1)、(a2)~(c2)および(a3)~(c3)は、それぞれ本発明の実施形態におけるTFT基板100Aの製造方法を説明する模式的な断面図である。 (a1)~(c1)、(a2)~(c2)および(a3)~(c3)は、それぞれTFT基板100Aの製造方法を説明する模式的な断面図である。 (a1)、(b1)、(a2)、(b2)、(a3)および(b3)は、それぞれTFT基板100Aの製造方法を説明する模式的な断面図である。 本発明の他の実施形態におけるTFT基板100Bの模式的な断面図である。 (a)~(c)は、それぞれTFT基板100Bの製造方法を説明する模式的な断面図である。
 以下、図面を参照しながら、本発明による実施形態の半導体装置を説明する。本実施形態の半導体装置は、酸化物半導体からなる活性層を有する薄膜トランジスタ(酸化物半導体TFT)を備える。なお、本実施形態の半導体装置は、酸化物半導体TFTを備えていればよく、アクティブマトリクス基板、各種表示装置、電子機器などを広く含む。
 ここでは、液晶表示装置に用いられる酸化物半導体TFTを例に本発明による実施形態の半導体装置を説明する。なお、以下に説明するTFT基板は、国際出願PCT/2013/051417に開示されているTFT基板と共通する部分があるので、参考のために、国際出願PCT/2013/051417の開示内容のすべてを本願の明細書に援用する。
 図1(a)および図3は本実施形態による半導体装置(TFT基板)100Aの模式的な平面図であり、図1(b)は図1(a)のA-A’線に沿ったTFT基板100Aの模式的な断面図である。図2(a)は、透明接続層2aまたはゲート接続層3aとソース接続層6aとの電気的な接続について説明する模式的な平面図であり、図2(b)は、図2(a)のB-B’線に沿った模式的な断面図である。
 図1(a)および図1(b)に示すように、TFT基板100Aは、基板1と、基板1上に形成された薄膜トランジスタ(TFT)10Aおよび透明電極2とを有する半導体装置である。TFT10Aは、基板1上に形成されたゲート電極3と、ゲート電極3上に形成された絶縁層(ゲート絶縁層)4と、絶縁層4の上に形成された酸化物半導体層5と酸化物半導体層5に電気的に接続されたソース電極6sおよびドレイン電極6dとを有する。
 図2(a)および図2(b)に示すように、TFT基板100Aは、基板1の上に形成された、ゲート電極3と同一の導電膜から形成されたゲート接続層3aまたは透明電極2と同一の導電膜から形成された透明接続層2aと、絶縁層4の上に形成された、少なくとも1つの導体領域5aを含む酸化物層5zと、酸化物層5zの上に形成された、ソース電極6sと同一の導電膜から形成されたソース接続層6aとをさらに有する。ソース接続層6aは、前記少なくとも1つの導体領域5aを介してゲート接続層3aまたは透明接続層2aと電気的に接続されている。
 詳細は後述するが、TFT基板100Aは簡便な製造方法で製造され、ソース接続層6aとゲート接続層3aまたは透明接続層2aとを導体領域5aを介して電気的に接続させている。これにより、図3に示すように、基板1のうち表示に寄与する表示領域110にTFT10Aを形成し、表示領域110の周辺に位置する駆動回路領域120にソース接続層6a、ゲート接続層3aまたは透明接続層2aを形成して、同一基板1上に、表示に寄与する画素回路と画素回路を駆動させる駆動回路とを一体的に形成でき、高精細な表示装置を実現し得る。
 図2(a)および図2(b)に示したように、ゲート接続層3aまたは透明接続層2aの上に絶縁層4が形成され、絶縁層4に形成されたコンタクトホールCH内で、導体領域5aはゲート接続層3aまたは透明接続層2aと電気的に接続されている。さらに、導体領域5aの上にはソース接続層6aが形成されて、導体領域5aがソース接続層6aと電気的に接続されている。ソース接続層6aはコンタクトホールCH内には形成されていない。ソース接続層6aの上には保護層8が形成されている。また、ゲート接続層3aまたは透明接続層2aの上に形成される絶縁層は、絶縁層4以外の絶縁層を有する場合もある。さらに、詳細は後述するが、導体領域5aは、酸化物半導体層5よりも高い濃度で不純物(例えば、B(ボロン))を有し得る。
 また、図2(a)および図2(b)に示した、ゲート接続層3aまたは透明接続層2aとソース接続層6aとの接続構造の代わりに、図4に示すような接続構造を採用してもよい。
 図4(a)は、透明接続層2aまたはゲート接続層3aとソース接続層6aとの電気的な接続について説明する模式的な平面図であり、図4(b)は、図4(a)のB-B’線に沿った模式的な断面図である。
 図4に示す透明接続層2aまたはゲート接続層3aとソース接続層6aとの接続構造は、コンタクトホールCH内で、導体領域5aとソース接続層6aの一部とが電気的に接続されている点で、図3に示した接続構造と異なる。
 より具体的には、コンタクトホールCH内にソース接続層6aの一部が形成され、コンタクトホールCH内に形成された導体領域5aは、ソース接続層6aの一部と電気的に接続されている。
 TFT基板100Aは、図1(a)および図1(b)に示したように、絶縁層4を介して、透明電極2の一部と重なるように形成された透明電極7をさらに有する。酸化物半導体層5、酸化物層5zおよび透明電極7は、同一の酸化物膜(例えば、In(インジウム)、Ga(ガリウム)およびZn(亜鉛)を含むIn-Ga-Zn-O系半導体膜から形成されている。
 TFT基板100Aでは、透明電極2の少なくとも一部が絶縁層4を介して透明電極7と重なっていることにより補助容量を形成している。従って、TFT基板100Aが有する補助容量は透明なので(可視光を透過するので)、開口率を低下させることがない。従って、TFT基板100Aは、従来のように金属膜(ゲートメタル層またはソースメタル層)を用いて形成された不透明な電極を有する補助容量を備えるTFT基板よりも、高い開口率を有し得る。また、補助容量によって開口率が低下することがないので、補助容量の容量値(補助容量の面積)を必要に応じて、大きくできるという利点も得られる。
 さらに、透明電極7の上にドレイン電極6dが形成され、透明電極7はドレイン電極6dに直接接していることが好ましい。このような構造を採用すると、透明電極7をドレイン電極6dの略端部まで形成することができるので、TFT基板100Aは、特許文献1に記載されているTFT基板よりも高い開口率を有し得る。
 ソース電極6sおよびドレイン電極6dの上には保護層8が形成されている。
 TFT基板100Aにおいては、図1(b)に示したように、基板1上に透明電極2が形成され、透明電極2上に絶縁層4aが形成され、絶縁層4aの上にゲート電極3が形成されている。
 次に、図5を参照しながら、TFT基板100Aが有する端子部20Aを説明する。図5は図1(a)のC-C’線に沿った端子部20Aの模式的な断面図である。
 TFT基板100Aは複数の端子部20Aを有する。端子部20Aと例えば外部回路の端子(例えば、フレキ端子)とを電気的に接続させることにより、外部回路とTFT10Aとを電気的に接続させる。
 端子部20Aは、ゲート接続層3bと、ゲート接続層3b上に形成された、少なくとも1つの導体領域5bを含む酸化物層5zと、酸化物層5zの上に形成されたソース接続層6bとを有し、ソース接続層6bは導体領域5bを介してゲート接続層3bと電気的に接続されている。
 このような構成を有する端子部20Aは、導体領域5bを形成した分、例えばフレキ端子とソース接続層6bとの電気的な接触面積が増大し、コンタクト抵抗を低下し得る。さらに、ゲート接続層3bを覆うように酸化物層5zが形成されているので、ゲート接続層3bが腐食するのを防ぎ得る。
 端子部20Aは、ゲート接続層3b上に形成された絶縁層4を有する。絶縁層4には開口部4uが形成されている。開口部4u内で、導体領域5bはゲート接続層3bと電気的に接続されている。さらに、ソース接続層6bは導体領域5bと電気的に接続されており、その結果、ソース接続層6bは導体領域5bを介してゲート接続層3bと電気的に接続されている。導体領域5bも、酸化物半導体層5よりも高い濃度で不純物(例えば、B(ボロン))を有し得る。ソース接続層6bの上には、保護層8が形成されている。
 次に、TFT基板100Aの各構成要素を詳細に説明する。
 基板1は、典型的には透明基板であり、例えばガラス基板である。ガラス基板の他、プラスチック基板を用いることもできる。プラスチック基板は、熱硬化性樹脂または熱可塑性樹脂で形成された基板、さらには、これらの樹脂と無機繊維(例えば、ガラス繊維、ガラス繊維の不織布)との複合基板を含む。耐熱性を有する樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル樹脂、ポリイミド樹脂を例示することがきる。また、反射型液晶表示装置に用いる場合には、基板1として、シリコン基板を用いることもできる。
 透明電極2および透明接続層2aは、透明導電膜(例えばITO(Indium Tin Oxide)、またはIZO膜)から形成されている。透明電極2および透明接続層2aの厚さは、それぞれ例えば約20nm以上約200nm以下が好ましい。透明電極2および透明接続層2aの厚さはそれぞれ例えば約100nmである。
 ゲート電極3は、ゲート配線3’に電気的に接続されている。ゲート電極3、ゲート接続層3aおよび3bならびにゲート配線3’は、例えば、上層がW(タングステン)層であり、下層がTaN(窒化タンタル)層である積層構造を有する。このほか、ゲート電極3、ゲート接続層3aおよび3bならびにゲート配線3’は、Mo(モリブデン)/Al(アルミニウム)/Moから形成された積層構造を有してもよく、単層構造、2層構造、4層以上の積層構造を有してもよい。さらに、ゲート電極3、ゲート接続層3aおよび3bならびにゲート配線3’は、それぞれ、Cu(銅)、Al、Cr(クロム)、Ta(タンタル)、Ti(チタン)、MoおよびWから選ばれた元素、またはこれらの元素を成分とする合金もしくは金属窒化物などから形成されてもよい。ゲート電極3、ゲート接続層3aおよびゲート配線3’の厚さはそれぞれ約50nm以上600nm以下が好ましい。ゲート電極3、ゲート接続層3aおよび3bならびにゲート配線3’の厚さはそれぞれ例えば約420nmである。
 絶縁層(ゲート絶縁層)4は、絶縁層4bと絶縁層4cとを有する。絶縁層4cは酸化物絶縁層を含むことが好ましく、酸化物絶縁層は酸化物半導体層5と直接接触していることが好ましい。酸化物絶縁層が酸化物半導体層5と直接接触すると、酸化物絶縁層に含まれる酸素が酸化物半導体層5に供給され、酸化物半導体層5の酸素欠損による半導体特性の劣化を防ぐことができる。絶縁層4cは例えばSiO2(酸化シリコン)層である。絶縁層4aおよび絶縁層4bは例えばSiNx(窒化シリコン)層である。本実施形態にお
いて、絶縁層4aの厚さは約100nmである。絶縁層4bの厚さは約325nmであり、絶縁層4cの厚さは約50nmであり、ゲート絶縁層4の厚さは約375nmである。絶縁層4aおよびゲート絶縁層4としては、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成された単層または積層を用いることができる。ゲート絶縁層4の厚さは、例えば約50nm以上600nm以下である。なお、基板1からの不純物などの拡散防止のため、絶縁層4aおよび絶縁層4bはSiNx、またはSiNxy(窒化酸化シリコン、x>y)から形成されることが好ましい。絶縁層4cは酸化物半導体層5の半導体特性の劣化防止の観点から、SiO2またはSiOxy(酸化窒化シリコン、x>y)から形成されることが好ましい。さらに、低い温度でゲートリーク電流の少ない緻密なゲート絶縁層4を形成させるには、Ar(アルゴン)などの希ガスを用いながらゲート絶縁層4を形成するとよい。
 酸化物半導体層5および酸化物層5zは、In(インジウム)、Ga(ガリウム)およびZn(亜鉛)を例えば1:1:1の割合で含むIn-Ga-Zn-O系の酸化物層(以下、「In-Ga-Zn-O系酸化物層」と略する。)である。In、GaおよびZnの割合は適宜選択され得る。なお、本明細書では、In-Ga-Zn-O系酸化物のうち半導体特性を示すものをIn-Ga-Zn-O系半導体と略する。
 酸化物半導体層5は、In-Ga-Zn-O系半導体層であってもよい。あるいは、In-Ga-Zn-O系半導体膜の代わりに、他の酸化物半導体膜を用いて酸化物半導体層5を形成してもよい。例えばZn-O系半導体(ZnO)膜、In-Zn-O系半導体(IZO(登録商標))膜、Zn-Ti-O系半導体(ZTO)膜、Cd-Ge-O系半導体膜、Cd-Pb-O系半導体膜、CdO(酸化カドニウム)、Mg-Zn-O系半導体膜などを用いてもよい。さらに、酸化物半導体層5として、1族元素、13族元素、14族元素、15族元素および17族元素等のうち一種、又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態、多結晶状態又は非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。酸化物半導体層5および酸化物層5zの厚さは、それぞれ例えば約30nm以上約100nm以下が好ましい。酸化物半導体層5および酸化物層5zの厚さはそれぞれ例えば約50nmである。
 ソース電極6sはソース配線6に電気的に接続されている。ソース接続層6aは島状に形成されている。ソース電極6s、ドレイン電極6d、ソース配線6およびソース接続層6aは、例えば、Ti/Al/Tiから形成された積層構造を有する。このほか、ソース電極6s、ドレイン電極6d、ソース配線6およびソース接続層6aは、Mo/Al/Moから形成された積層構造を有してもよく、単層構造、2層構造または4層以上の積層構造を有してもよい。さらに、ソース電極6s、ドレイン電極6d、ソース配線6およびソース接続層6aは、Al、Cr、Ta、Ti、MoおよびWから選ばれた元素、またはこれらの元素を成分とする合金もしくは金属窒化物などから形成されてもよい。ソース電極6s、ドレイン電極6d、ソース配線6およびソース接続層6aの厚さは、それぞれ約50nm以上600nm以下が好ましい。ソース電極6s、ドレイン電極6d、ソース配線6およびソース接続層6aの厚さはそれぞれ例えば約350nmである。
 保護層8は、酸化物半導体層5のチャネル領域と接するように形成されている。保護層8は酸化物(例えばSiO2)から形成されることが好ましい。保護層8が酸化物から形成されると、上述したように酸化物半導体層5の酸素欠損による半導体特性の劣化を防ぐことができる。このほか保護層8は、例えばSiON(酸化窒化シリコン、窒化酸化シリコン)、Al23またはTa25から形成され得る。保護層8の厚さは、例えば約50nm以上300nm以下が好ましい。保護層8の厚さは例えば約150nmである。
 透明電極7は、例えばIn-Ga-Zn-O層から形成されている。詳細は後述するが、透明電極7、酸化物半導体層5および酸化物層5zは同じ透明な酸化物膜(例えばIn-Ga-Zn-O膜)から形成されている。透明電極7、酸化物半導体層5および酸化物層5zを同一の酸化物膜から形成すると、製造プロセスを簡略化でき製造コストを削減し得る。透明電極7の厚さは、例えば約20nm以上約200nm以下が好ましい。透明電極7の厚さは例えば約50nmである。
 詳細は後述するが、透明電極7は、酸化物半導体層5よりも高い濃度でp型不純物(例えば、B(ボロン))またはn型不純物(例えば、P(リン))を含む。
 TFT基板100Aは、例えば、Fringe Field Switching(FFS)モードの液晶表示装置に用いられる。
 TFT基板100Aでは、透明電極(共通電極)2が透明電極(画素電極)7よりも基板1側にある。これにより、上述したFFSモードの液晶表示装置だけでなく、様々な液晶モード(例えば、TN(Twisted Nematic)モード、VA(Vertical Alignment)モードの液晶表示装置にTFT基板100Aを用いることができる。
 次に、TFT基板100Aの製造方法の一例を説明する。
 本発明の実施形態における半導体装置(TFT基板)100Aの製造方法は、基板1を用意する工程(a)と、基板1上に、同一の導電膜からゲート電極3およびゲート接続層3aと、同一の透明導電膜から透明電極2および透明接続層2aとを形成する工程(b)と、ゲート電極3および透明電極2の上に絶縁層4を形成する工程(c)とを包含する。さらに、TFT基板100Aの製造方法は、絶縁層4の上に酸化物半導体膜を形成する工程(d)と、酸化物半導体膜の上に導電膜を形成し、酸化物半導体膜から互いに分離された第1および第2酸化物半導体膜5iおよび5iiを形成するとともに、導電膜からソース電極6s、ドレイン電極6dおよびソース接続層6aを形成する工程(e)とを包含する。さらに、TFT基板100Aの製造方法は、第2酸化物半導体膜5iiの一部を低抵抗化させる低抵抗化処理Lを行うことによって、導体領域5aを含む酸化物層5zを形成するとともに、第1酸化物半導体膜5iのうち低抵抗化処理Lによって低抵抗化されなかった部分からなる酸化物半導体層5を形成する工程であって、ソース接続層6aは、導体領域5aを介してゲート接続層3aまたは透明接続層2aと電気的に接続される工程(f)とを包含する。
 工程(f)は、酸化物半導体膜5iの一部に低抵抗化処理Lを行うことによって、透明電極7を形成する工程であって、透明電極7の少なくとも一部は、絶縁層4を介して透明電極2と重なる工程(f1)を含むことが好ましい。
 工程(f)は、第1および第2酸化物半導体膜5iおよび5iiに不純物を注入する工程を含み得る。
 このような半導体装置の製造方法は、簡略化された半導体装置の製造方法であるので、製造コストを削減し得る。
 次に、図6~図8を参照しながら、TFT基板100Aの製造方法の一例を詳細に説明する。図6~図8は、それぞれ本発明の実施形態におけるTFT基板100Aの製造方法を説明する模式的な断面図である。図6~図8のうち、(a1)~(c1)に示された図は図1(b)に対応する図であり、(a2)~(c2)および(a3)~(c3)に示された図は図2(b)に対応する図である。
 まず、図6(a1)および図6(a3)に示すように、基板1上に同一の透明導電膜から透明電極2および透明接続層2aを形成する。透明電極2および透明接続層2aは、分離して形成され、電気的に接続されていない。基板1としては、例えばガラス基板などの透明絶縁性の基板を用いることができる。透明電極2および透明接続層2aはスパッタ法などの公知の方法で形成される。透明電極2および透明接続層2aは例えばITOから形成され、その厚さは約100nmである。図6(a2)に示された領域は、基板1が露出したままである。
 次に、図6(b1)~図6(b3)に示すように、透明電極2および透明接続層2aならびに基板1の上に、絶縁層4aをCVD(Chemical Vapor deposition)法などにより形成する。絶縁層4aは、例えばSiNxから形成される。絶縁層4aの厚さは、約100nmである。
 次に、図6(c1)および図6(c2)に示すように、絶縁層4a上にゲート電極3およびゲート接続層3aを形成する。ゲート電極3およびゲート接続層3aは、スパッタ法で絶縁層4aの上に導電膜を形成した後、フォトリソグラフィ法により導電膜のパターニングを行うことによって形成される。なお、基板1の法線方向から見たとき、ゲート電極3と透明電極2とは重なっていない。ゲート電極3およびゲート接続層3aは分離して形成されている。ここでは、導電膜として、基板1側からTaN膜(厚さ:約50nm)およびW膜(厚さ:約370nm)をこの順で有する2層構造の積層膜を用いる。なお、導電膜として、例えば、Ti、Mo、Ta、W、Cu、AlまたはCrなどの単層膜、それらを含む積層膜、合金膜またはこれらの窒化金属膜などを用いてもよい。図6(c3)に示された領域には、ゲート電極3およびゲート接続層3aは形成されない。
 次に、図7(a1)~図7(a3)に示すように、CVD法により、ゲート電極3およびゲート接続層3aを覆うように絶縁層4bおよび絶縁層4cを形成する。ここでは、絶縁層4bはSiNx膜(厚さ:約325nm)から形成され、絶縁層4cはSiO2膜(厚さ:約50nm)から形成される。絶縁層4bおよび4cとしては、例えばSiO2、SiNx、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23またはTa25から形成され得る。
 次に、図7(b2)および図7(b3)に示すように、公知の方法で、絶縁層4bおよび絶縁層4cにコンタクトホールCH1およびCH2を形成する。コンタクトホールCH1によりゲート接続層3aが露出し、コンタクトホールCH2により透明接続層2aが露出する。
 次に、図7(c1)~図7(C3)に示すように、絶縁層4c上に、スパッタ法などで酸化物半導体膜を形成する。酸化物半導体膜としてIn-Ga-Zn-O系半導体膜を用いてもよい。酸化物半導体膜の厚さは例えば約50nmである。酸化物半導体膜の一部はコンタクトホールCH1およびCH2内でそれぞれゲート接続層3aおよび透明接続層2aと接している。
 次に、酸化物半導体膜の上に、後述するソース電極6s、ドレイン電極6dおよびソース接続層6a等を形成するための導電膜(不図示)をスパッタ法で形成する。
 次に、図7(c1)~図7(c3)に示したように、ハーフトーンマスクを用いたフォトグラフィリソグラフィ法、ドライエッチング法およびアッシング法によりこの導電膜および酸化物半導体膜を同時にパターニングして、酸化物半導体膜から互いに分離した第1酸化物半導体膜5iと第2酸化物半導体膜5iiとを形成するとともに、導電膜からソース電極6s、ドレイン電極6dおよびソース接続層6aを形成する。このように一枚のフォトマスクで、ソース電極6s等および酸化物半導体膜を所望の形状にパターニングできるので、製造プロセスを簡略化でき、製造コストを削減し得る。また、ソース接続層6aには、第2酸化物半導体膜5iiの一部を露出する開口部6auが形成される。
 ソース電極6s、ドレイン電極6dおよびソース接続層6aは、例えばTi/Al/Tiの積層構造を有する。下層のTi層の厚さは約50nmであり、Al層の厚さは約200nmであり、上層のTi層の厚さは約100nmである。
 続いて、図8(a1)に示すように、第1酸化物半導体膜5iのチャネル領域を覆うように保護層8をCVD法およびフォトリソグラフィ法で形成する。保護層8は例えば酸化物(例えばSiO2)から形成され、その厚さは例えば約150nmである。また、基板1の法線方向から見たとき、保護層8の端部はドレイン電極6dと重なることが好ましい。これにより、第1酸化物半導体膜5iのうちドレイン電極6dの端部に位置する部分にも後述する低抵抗化処理Lを行うことが可能になる。
 さらに、図8(a2)および図8(a3)に示すように、保護層8はソース接続層6aの上にも形成され、保護層8の端部はソース接続層6aの上に形成されることが好ましい。
 次に、図8(a1)~図8(a3)に示すように、第1および第2酸化物半導体膜5iおよび5iiの一部に低抵抗化処理Lを施す。第1および第2酸化物半導体膜5iおよび5iiのうちソース電極6s、ドレイン電極6d、ソース接続層6aおよび保護層8で覆われた部分には、低抵抗化処理Lは行われない。
 上記低抵抗化処理Lにより、図8(b1)に示すように、第1酸化物半導体膜5iのうち、低抵抗化処理Lが施された部分には透明電極7が形成され、低抵抗化処理Lが施されていない部分には酸化物半導体層5が形成される。同様に、図8(b2)および図8(b3)に示すように、第2酸化物半導体膜5iiから形成された酸化物層5zのうち、低抵抗化処理Lが施された部分には導体領域5aが形成され、低抵抗化処理Lが行われなかった部分は半導体領域として残る。導体領域5aの形成により、ソース接続層6aは導体領域5aを介して、透明接続層2aまたはゲート接続層3aと電気的に接続される。当然ながら、低抵抗化処理Lが施された部分の電気抵抗は、低抵抗化処理Lが施されていない部分の電気抵抗よりも小さい。低抵抗化処理Lには、例えばプラズマ処理や、p型不純物(例えば、B(ボロン))またはn型不純物(例えば、P(リン))のドーピングなどが挙げられる。低抵抗化処理Lとして、不純物のドーピングを用いた場合、透明電極7(または、導体領域5a)の不純物の濃度は酸化物半導体層5の不純物の濃度よりも大きくなる。また、不純物の拡散により、ドレイン電極6dの下にある第1酸化物半導体膜5iの一部も低抵抗化され、透明電極7の一部となる場合がある。その他、低抵抗化処理Lとして、例えば、CVD装置を用いた水素プラズマ処理、エッチング装置を用いたアルゴンプラズマ処理、および還元雰囲気下でのアニール処理などがあげられる。
 次に、図9を参照しながら本発明による実施形態におけるTFT基板100Bを説明する。図9は、TFT基板100Bの模式的な断面図であり、図1(b)のTFT基板100Aの断面図に対応している。TFT基板100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。なお、TFT基板100Bも図2(a)および図2(b)に示した、ソース接続層6aと透明接続層2aまたはゲート接続層3aとの接続部分とを有するが、TFT基板100Aと共通するので説明および図示を省略する。
 図9に示すTFT基板100Bでは、ゲート電極3が透明電極2よりも基板1側にある。具体的には、TFT基板100Bは、基板1上に形成されたゲート電極3と、ゲート電極3の上に形成された絶縁層4aと、絶縁層4a上に形成された透明電極2とを有する。TFT基板100Bにおいては、絶縁層4a~4cがゲート絶縁層4として機能する。
 次に、図10を参照しながらTFT基板100Bの製造方法の一例を説明する。図10(a)~図10(c)はTFT基板100Bの製造方法を説明する模式的な断面図である。
 まず、図10(a)に示すように、基板1上に、上述した方法でゲート電極3を形成する。なお、基板1上にゲート接続層3aも同時に形成される。
 次に、図10(b)に示すように、上述した方法でゲート電極3の上に絶縁層4aを形成する。
 次に、図10(c)に示すように、上述した方法で透明電極2を形成する。なお、基板1の法線方向から見たとき、ゲート電極3と透明電極2とは重なっていない。
 続いて、上述した方法により、絶縁層4bおよび4c、酸化物半導体層5、導体領域5a、ソース電極6s、ドレイン電極6d、ソース接続層6a、透明電極7、ならびに保護層8を形成する(図7および図8参照)。これにより、図9に示したTFT基板100Bが製造される。
 以上、本発明の実施形態によると、簡便なプロセスで製造することができ、従来よりも高精細で高開口率の表示装置を実現することが可能なTFT基板およびその製造方法が提供される。
 本発明の実施形態は、アクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置や指紋読み取り装置等の電子装置などの薄膜トランジスタを備えた装置に広く適用できる。
 1   基板
 2   透明電極
 3   ゲート電極
 3a   ゲート接続層
 3’   ゲート配線
 4、4a、4b、4c   絶縁層
 5   酸化物半導体層
 5b   導体領域
 6   ソース配線
 6a、6b   ソース接続層
 6d  ドレイン電極
 6s   ソース電極
 7   透明電極
 8   保護層
 10A   薄膜トランジスタ
 20A   端子部
 100A   TFT基板

Claims (12)

  1.  基板と、前記基板上に形成された薄膜トランジスタおよび第1透明電極とを有する半導体装置であって、
     前記薄膜トランジスタは、
      前記基板上に形成されたゲート電極と、
      前記ゲート電極上に形成された第1の絶縁層と、
      前記第1の絶縁層の上に形成された酸化物半導体層と、
      前記酸化物半導体層に電気的に接続されたソース電極およびドレイン電極とを有し、
     前記半導体装置は、
      前記基板の上に形成された、前記ゲート電極と同一の導電膜から形成されたゲート接続層または前記第1透明電極と同一の導電膜から形成された透明接続層と、
      前記第1の絶縁層の上に形成された、少なくとも1つの導体領域を含む酸化物層と、
      前記酸化物層の上に形成された、前記ソース電極と同一の導電膜から形成されたソース接続層とをさらに有し、
     前記ソース接続層は、前記少なくとも1つの導体領域を介して前記ゲート接続層または前記透明接続層と電気的に接続されている、半導体装置。
  2.  前記導体領域は、前記酸化物半導体層よりも高い濃度で不純物を有する、請求項1に記載の半導体装置。
  3.  前記第1の絶縁層を介して、前記第1透明電極の一部と重なるように形成された第2透明電極をさらに有し、
     前記酸化物半導体層、前記酸化物層および前記第2透明電極は、同一の酸化物膜から形成されている、請求項1または2に記載の半導体装置。
  4.  前記酸化物膜は、In、GaおよびZnを含む、請求項3に記載の半導体装置。
  5.  前記第2透明電極の上に前記ドレイン電極が形成され、
     前記第2透明電極は前記ドレイン電極に直接接している、請求項3または4に記載の半導体装置。
  6.  前記ゲート電極と前記基板との間に形成された第2の絶縁層をさらに有し、
     前記第2の絶縁層は、前記第1透明電極上に形成されている、請求項1から5のいずれかに記載の半導体装置。
  7.  前記ゲート電極上に形成された第2の絶縁層をさらに有し、
     前記第1透明電極は、前記第2の絶縁層の上に形成されている、請求項1から5のいずれかに記載の半導体装置。
  8.  基板を用意する工程(a)と、
     前記基板上に、同一の第1導電膜からゲート電極およびゲート接続層と、同一の透明導電膜から第1透明電極および透明接続層とを形成する工程(b)と、
     前記ゲート電極および前記第1透明電極の上に第1の絶縁層を形成する工程(c)と、
     前記第1の絶縁層の上に酸化物半導体膜を形成する工程(d)と、
     前記酸化物半導体膜の上に第2導電膜を形成し、前記酸化物半導体膜から互いに分離された第1および第2酸化物半導体膜を形成するとともに、前記第2導電膜からソース電極、ドレイン電極およびソース接続層を形成する工程(e)と、
     前記第2酸化物半導体膜の一部を低抵抗化させる低抵抗化処理を行うことによって、導体領域を含む酸化物層を形成するとともに、前記第1酸化物半導体膜のうち前記低抵抗化処理によって低抵抗化されなかった部分からなる酸化物半導体層を形成する工程であって、前記ソース接続層は、前記導体領域を介して前記ゲート接続層または前記透明接続層と電気的に接続される工程(f)とを包含する、半導体装置の製造方法。
  9.  前記工程(f)は、前記第1酸化物半導体膜の一部に前記低抵抗化処理を行うことによって、第2透明電極を形成する工程であって、前記第2透明電極の少なくとも一部は、第1の絶縁層を介して前記第1透明電極と重なる工程(f1)を含む、請求項8に記載の半導体装置の製造方法。
  10.  前記工程(f)は、前記第1および第2酸化物半導体膜に不純物を注入する工程を含む、請求項8または9に記載の半導体装置の製造方法。
  11.  前記工程(b)は、前記基板上に前記第1透明電極を形成し、前記第1透明電極上に第2の絶縁層を形成する工程と、前記第2の絶縁層上に前記ゲート電極を形成する工程とを包含する、請求項8から10のいずれかに記載の半導体装置の製造方法。
  12.  前記工程(b)は、前記基板上に前記ゲート電極を形成し、前記ゲート電極上に第2の絶縁層を形成する工程と、前記第2の絶縁層上に前記第1透明電極を形成する工程とを包含する、請求項8から10のいずれかに記載の半導体装置の製造方法。
PCT/JP2013/066056 2012-06-19 2013-06-11 半導体装置およびその製造方法 WO2013191033A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380032605.2A CN104396019B (zh) 2012-06-19 2013-06-11 半导体装置及其制造方法
US14/408,628 US9276127B2 (en) 2012-06-19 2013-06-11 Semiconductor device and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012137699 2012-06-19
JP2012-137699 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013191033A1 true WO2013191033A1 (ja) 2013-12-27

Family

ID=49768633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066056 WO2013191033A1 (ja) 2012-06-19 2013-06-11 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US9276127B2 (ja)
CN (1) CN104396019B (ja)
TW (1) TWI532188B (ja)
WO (1) WO2013191033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111438A (ja) * 2015-12-11 2017-06-22 株式会社半導体エネルギー研究所 表示装置及び分離方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010415A1 (ja) * 2009-07-24 2011-01-27 シャープ株式会社 薄膜トランジスタ基板の製造方法
JP2011091279A (ja) * 2009-10-23 2011-05-06 Canon Inc 薄膜トランジスタの製造方法
WO2011155125A1 (ja) * 2010-06-08 2011-12-15 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法
WO2012023226A1 (ja) * 2010-08-18 2012-02-23 シャープ株式会社 表示装置用基板及びその製造方法、表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720095B1 (ko) * 2000-11-07 2007-05-18 삼성전자주식회사 박막 트랜지스터 어레이 기판 및 그 제조 방법
WO2010116585A1 (ja) * 2009-04-10 2010-10-14 シャープ株式会社 アクティブマトリクス基板及びそれを備えた液晶表示装置並びにアクティブマトリクス基板の製造方法
KR101627136B1 (ko) * 2010-02-19 2016-06-07 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이의 제조 방법 및 이를 포함하는 표시 장치
TWI453516B (zh) * 2011-07-13 2014-09-21 Au Optronics Corp 畫素結構及其製作方法
CN104094409B (zh) 2012-01-31 2016-11-16 夏普株式会社 半导体装置及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010415A1 (ja) * 2009-07-24 2011-01-27 シャープ株式会社 薄膜トランジスタ基板の製造方法
JP2011091279A (ja) * 2009-10-23 2011-05-06 Canon Inc 薄膜トランジスタの製造方法
WO2011155125A1 (ja) * 2010-06-08 2011-12-15 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法
WO2012023226A1 (ja) * 2010-08-18 2012-02-23 シャープ株式会社 表示装置用基板及びその製造方法、表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111438A (ja) * 2015-12-11 2017-06-22 株式会社半導体エネルギー研究所 表示装置及び分離方法

Also Published As

Publication number Publication date
TW201413976A (zh) 2014-04-01
TWI532188B (zh) 2016-05-01
CN104396019A (zh) 2015-03-04
CN104396019B (zh) 2017-04-12
US9276127B2 (en) 2016-03-01
US20150243790A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5824536B2 (ja) 半導体装置およびその製造方法
WO2013137045A1 (ja) 半導体装置およびその製造方法
JP5824534B2 (ja) 半導体装置およびその製造方法
WO2013150981A1 (ja) 半導体装置およびその製造方法
WO2013172185A1 (ja) 半導体装置およびその製造方法
JP5824535B2 (ja) 半導体装置およびその製造方法
WO2014042125A1 (ja) 半導体装置およびその製造方法
WO2014038482A1 (ja) 半導体装置およびその製造方法
WO2013161738A1 (ja) 半導体装置およびその製造方法
WO2013183495A1 (ja) 半導体装置およびその製造方法
CN103872073A (zh) 基板、包括该基板的显示装置以及该显示装置的制造方法
WO2013191044A1 (ja) 半導体装置およびその製造方法
WO2013151002A1 (ja) 半導体装置およびその製造方法
WO2013191033A1 (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP