WO2013190970A1 - 射出装置 - Google Patents

射出装置 Download PDF

Info

Publication number
WO2013190970A1
WO2013190970A1 PCT/JP2013/065008 JP2013065008W WO2013190970A1 WO 2013190970 A1 WO2013190970 A1 WO 2013190970A1 JP 2013065008 W JP2013065008 W JP 2013065008W WO 2013190970 A1 WO2013190970 A1 WO 2013190970A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
injection
hydraulic oil
end side
piston
Prior art date
Application number
PCT/JP2013/065008
Other languages
English (en)
French (fr)
Inventor
和幸 山口
一起 舟橋
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to EP13806501.6A priority Critical patent/EP2865461B1/en
Priority to BR112014031800A priority patent/BR112014031800A2/pt
Priority to US14/408,613 priority patent/US9505054B2/en
Priority to CN201380032686.6A priority patent/CN104395018B/zh
Publication of WO2013190970A1 publication Critical patent/WO2013190970A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/001With multiple inputs, e.g. for dual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • B29C45/531Drive means therefor

Definitions

  • This invention relates to an injection apparatus.
  • An injection device is known as a device for molding a desired product by injecting a molding material into a mold and filling it.
  • an operating force is applied to an injection cylinder using an electric motor.
  • the injection device of Patent Document 1 includes an injection cylinder device that operates an injection plunger that injects a molding material into a mold, and a conversion cylinder device that supplies hydraulic oil to the injection cylinder device.
  • an electric motor is used as a drive source of a conversion piston of a conversion cylinder device.
  • the conversion piston of the conversion cylinder device is operated by the driving force of the electric motor to supply the hydraulic oil to the injection cylinder device, and the injection piston of the injection cylinder device is supplied by the supplied hydraulic oil. Operates in the injection direction of the molding material.
  • the injection device is generally operated by three processes of a low speed process, a high speed process, and a pressure increasing process, and in each of these processes, the injection piston is set at a desired speed and at a desired pressure with a molding material in the cavity. It is actuated to give. For this reason, like the injection device of patent document 1, operating the operating cylinder by the driving force of the electric motor is compared with operating the operating cylinder only by the flow rate control of the operating oil by a hydraulic pump or the like. It is possible to control the operation amount of the injection cylinder more precisely. When the desired product is molded from the molding material, the injection device retracts the injection piston. The reverse operation of the injection piston does not require precise control.
  • a hydraulic pump has been used for the backward movement.
  • An injection device that uses a hydraulic pump for the backward movement of the injection piston requires a hydraulic unit including a hydraulic pump and a hydraulic oil tank. For this reason, the number of parts increases and the structure of the injection apparatus becomes complicated and large.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an injection device that does not use a hydraulic unit for the backward movement of the injection piston.
  • the present invention includes an injection cylinder that drives an injection plunger to inject a molding material, a first cylinder that is connected to the injection cylinder and that supplies and discharges hydraulic oil to and from the injection cylinder.
  • a second cylinder connected to the injection cylinder in parallel with the first cylinder, for supplying and discharging hydraulic oil to and from the injection cylinder, and a driving means for driving the piston of the first cylinder and the piston of the second cylinder so as to freely advance and retract. And between one end side of the injection cylinder and one end side of the first cylinder, allowing a flow of hydraulic oil from the first cylinder toward the injection cylinder, and from the injection cylinder to the first cylinder.
  • a directional control valve that blocks a flow of hydraulic oil that flows to the directional control valve, and provided between the directional control valve and the first cylinder.
  • First flow rate adjusting means for adjusting the flow rate of hydraulic oil between one end side of the cylinder, the other end side of the injection cylinder and the other end side of the first cylinder, and the other end side of the injection cylinder; Provided between the other end of the second cylinder and adjust the flow rate of hydraulic oil between the other end of the first cylinder and the other end of the second cylinder and the other end of the injection cylinder.
  • a second flow rate adjusting means is provided between the other end of the second cylinder and adjust the flow rate of hydraulic oil between the other end of the first cylinder and the other end of the second cylinder and the other end of the injection cylinder.
  • the present invention can provide an injection device that does not use a hydraulic unit for the backward movement of the injection piston.
  • a die casting machine 100 as an injection apparatus shown in FIG. 1 injects a molten metal material (for example, aluminum) as a molding material into a cavity formed by a fixed mold and a movable mold constituting the mold, It is a device for filling.
  • the molding material injected into the mold is taken out after solidification, thereby obtaining a desired molded product.
  • the die casting machine 100 includes an injection cylinder 1 that drives and injects an injection plunger that pushes a metal material supplied into an injection sleeve communicating with the cavity into the cavity.
  • the injection plunger is connected to the tip of the piston rod 1Pa of the piston 1P of the injection cylinder 1.
  • a speed increasing cylinder 2 as a first cylinder and a pressure increasing cylinder 3 as a second cylinder are connected to the injection cylinder 1 via a pipe, which supplies and discharges hydraulic oil as an incompressible fluid (fluid).
  • a bottom chamber 2B of the speed increasing cylinder 2 is connected to the bottom chamber 1B of the injection cylinder 1.
  • the bottom chamber 3B of the pressure increasing cylinder 3 is connected in parallel with the bottom chamber 2B of the speed increasing cylinder 2 to the bottom chamber 1B of the injection cylinder 1.
  • the stroke of the piston 2P in the speed increasing cylinder 2 and the stroke of the piston 3P in the pressure increasing cylinder 3 are set to the same length.
  • the diameter D2 of the speed increasing cylinder 2 is set larger than the diameter D3 of the pressure increasing cylinder 3.
  • the rod chamber 2R of the acceleration cylinder 2 is connected to the rod chamber 1R of the injection cylinder 1 via a pipe.
  • the rod chamber 3R of the pressure increasing cylinder 3 is also connected to the rod chamber 1R of the injection cylinder 1 via a pipe.
  • the rod chamber 2R of the speed increasing cylinder 2 and the rod chamber 3R of the pressure increasing cylinder 3 are parallel to the rod chamber 1R of the injection cylinder 1.
  • the piston 2P of the acceleration cylinder 2 is connected to the nut 12 from the rod chamber 2R side.
  • the piston 3P of the pressure increasing cylinder 3 is coupled to the nut 12 from the rod chamber 3R side.
  • the nut 12 is fitted to the ball screw 11.
  • the ball screw 11 is freely rotatable by the motor 10.
  • the ball screw 11 and the nut 12 constitute a ball screw mechanism.
  • the nut 12 is configured to move in the left-right direction in FIG. 1 as the ball screw 11 rotates.
  • the piston 2 ⁇ / b> P and the piston 3 ⁇ / b> P can move forward and backward within the speed increasing cylinder 2 and the pressure increasing cylinder 3 by a nut 12.
  • the piston 2P and the piston 3P are connected to the nut 12 so as to move by the same distance synchronously.
  • the motor 10, the ball screw 11, and the nut 12 constitute drive means.
  • the drive means of this embodiment is single.
  • a pilot operation check valve 4 is provided as a direction control valve in a pipe between the bottom chamber 1B which is one end side of the injection cylinder 1 and the bottom chamber 2B which is one end side of the speed increasing cylinder 2.
  • the pilot operation check valve 4 allows the flow of hydraulic oil from the bottom chamber 2B of the speed increasing cylinder 2 toward the bottom chamber 1B of the injection cylinder 1.
  • the pilot operation check valve 4 blocks the flow from the bottom chamber 1B to the bottom chamber 2B.
  • the pilot operation check valve 4 is connected to a pilot line 4P that guides the pilot pressure.
  • the pilot line 4P is connected to a pipe between the rod chamber 1R of the injection cylinder 1, the rod chamber 2R of the speed increasing cylinder 2, and the rod chamber 3R of the pressure increasing cylinder 3.
  • a flow rate adjusting circuit 5 is provided as a first flow rate adjusting means in the pipe between the pilot operation check valve 4 and the bottom chamber 2 ⁇ / b> B of the speed increasing cylinder 2.
  • the flow rate adjustment circuit 5 is provided with a buffer tank 15, a pilot switching valve 16, and a check valve 6.
  • the buffer tank 15 is capable of temporarily storing hydraulic oil to the extent that the shortage of hydraulic oil in the speed increasing cylinder 2 is replenished.
  • the check valve 6 is provided in a pipe extending from the buffer tank 15 to a pipe between the pilot operation check valve 4 and the bottom chamber 2 ⁇ / b> B of the speed increasing cylinder 2.
  • the check valve 6 blocks the flow of hydraulic oil from the pipe between the pilot operation check valve 4 and the bottom chamber 2 ⁇ / b> B of the speed increasing cylinder 2 to the buffer tank 15.
  • the check valve 6 permits the flow of hydraulic oil from the buffer tank 15 to the pipe between the pilot operation check valve 4 and the bottom chamber 2B of the speed increasing cylinder 2.
  • the check valve 6 is a control valve for refilling hydraulic oil, and supplies hydraulic oil as appropriate when the hydraulic oil in the bottom chamber 2B of the speed increasing cylinder 2 is insufficient.
  • the pilot switching valve 16 is provided in a pipe extending from the pipe between the pilot operation check valve 4 and the bottom chamber 2 ⁇ / b> B of the speed increasing cylinder 2 to the buffer tank 15.
  • the pilot switching valve 16 switches communication or blocking of the flow of hydraulic oil from the pipe between the pilot operation check valve 4 and the bottom chamber 2B of the speed increasing cylinder 2 to the buffer tank 15.
  • the pilot switching valve 16 is normally biased to a cutoff position by a spring.
  • a pilot pipe line 16 ⁇ / b> P is connected to the pilot switching valve 16.
  • the pilot line 16P guides the pressure of the piping between the bottom chamber 1B of the injection cylinder 1 and the pilot operation check valve 4 and the bottom chamber 3B of the pressure increasing cylinder 3 to the pilot switching valve 16.
  • the pilot switching valve 16 is switched when the pilot pressure from the pilot line 16P becomes larger than the biasing force of the spring.
  • the pilot switching valve 16 discharges hydraulic oil to the buffer tank 15 when switched to the communication state.
  • the pilot pressure in the pilot line 16P for switching the pilot switching valve 16 is set to a value smaller than the maximum pressure that can be pressurized by the speed increasing cylinder 2 and the pressure increasing cylinder 3.
  • the pipe between the rod chamber 1R which is the other end side of the injection cylinder 1 and the rod chamber 2R which is the other end side of the speed increasing cylinder 2 is provided with a flow rate adjusting circuit 7 as a second flow rate adjusting means.
  • the position where the flow rate adjusting circuit 7 is provided is also a pipe between the rod chamber 1R of the injection cylinder 1 and the rod chamber 3R which is the other end side of the pressure increasing cylinder 3.
  • the flow rate adjusting circuit 7 is provided with a buffer tank 15, a pilot switching valve 17, and a check valve 8.
  • the buffer tank 15 stores hydraulic oil to the extent that the shortage of hydraulic oil in the speed increasing cylinder 2 and the pressure increasing cylinder 3 and the rod chambers 1R, 2R, and 3R is replenished.
  • the check valve 8 is provided in a pipe extending from the buffer tank 15 to a pipe between the rod chamber 1R of the injection cylinder 1, the rod chamber 2R of the speed increasing cylinder 2, and the rod chamber 3R of the pressure increasing cylinder 3.
  • the check valve 8 is a control valve for replenishing hydraulic oil, and is connected to the buffer tank 15 from a pipe between the rod chamber 1R of the injection cylinder 1, the rod chamber 2R of the speed increasing cylinder 2, and the rod chamber 3R of the pressure increasing cylinder 3. The flow of the hydraulic oil is cut off. Further, the check valve 8 allows the flow of hydraulic oil from the buffer tank 15 to the piping between the rod chamber 1R of the injection cylinder 1, the rod chamber 2R of the speed increasing cylinder 2, and the rod chamber 3R of the pressure increasing cylinder 3.
  • the check valve 8 appropriately supplies hydraulic oil when the hydraulic oil in the speed increasing cylinder 2 and the pressure increasing cylinder 3 and the rod chambers 1R, 2R, and 3R is insufficient.
  • the pilot switching valve 17 is provided in a pipe extending from the pipe between the rod chamber 1R of the injection cylinder 1, the rod chamber 2R of the speed increasing cylinder 2 and the rod chamber 3R of the pressure increasing cylinder 3 to the buffer tank 15.
  • the pilot switching valve 17 communicates or blocks the flow of hydraulic oil from the pipe between the rod chamber 1R of the injection cylinder 1 and the rod chamber 2R of the speed increasing cylinder 2 and the rod chamber 3R of the pressure increasing cylinder 3 to the buffer tank 15. Are switched.
  • the pilot switching valve 17 is normally biased to a cutoff position by a spring.
  • a pilot pipe line 17P is connected to the pilot switching valve 17.
  • the pilot line 17 ⁇ / b> P guides the pressure of the piping between the rod chamber 1 ⁇ / b> R of the injection cylinder 1, the rod chamber 2 ⁇ / b> R of the speed increasing cylinder 2, and the rod chamber 3 ⁇ / b> R of the pressure increasing cylinder 3 to the pilot switching valve 17.
  • the pilot switching valve 17 is switched when the pilot pressure from the pilot pipe line 17P becomes larger than the biasing force of the spring.
  • the pilot switching valve 17 discharges hydraulic oil to the buffer tank 15 when switched to the communication state.
  • the injection device 100 drives the injection cylinder 1 to inject molding material with an injection plunger.
  • the injection device 100 supplies hydraulic oil to the bottom chamber 1B in order to expand the bottom chamber 1B of the injection cylinder 1 and move the piston 1P to the injection plunger side.
  • the injection device 100 first drives the motor 10 to rotate the ball screw 11.
  • the nut 12 fitted to the ball screw 11 moves in a direction approaching the speed increasing cylinder 2 and the pressure increasing cylinder 3.
  • the piston 2P and the piston 3P connected to the nut 12 move in the speed increasing cylinder 2 and the pressure increasing cylinder 3, respectively.
  • the piston 2P and the piston 3P are driven in synchronization with each other and move by the same distance.
  • the piston 1 ⁇ / b> P moves at a high speed by the hydraulic oil supplied from both the speed increasing cylinder 2 and the pressure increasing cylinder 3 to the bottom chamber 1 ⁇ / b> B.
  • the injection plunger injects the molding material at a high speed.
  • the rod chamber 1R contracts.
  • the hydraulic oil in the rod chamber 1R is discharged from the rod chamber 1R and flows to the rod chamber 2R of the speed increasing cylinder 2 and the rod chamber 3R of the pressure increasing cylinder 3.
  • the pilot switching valve 17 is switched to the communication position. Then, the hydraulic oil is discharged to the buffer tank 15. Further, when the flow rate of the hydraulic oil in each of the rod chambers 1R, 2R, 3R is insufficient, the hydraulic oil is appropriately supplied from the buffer tank 15 via the check valve 8.
  • the injection plunger injects the molding material at a high speed by the injection cylinder 1
  • the molding material is filled into the cavity.
  • a resistance is generated in the injection plunger and the injection cylinder 1 in the moving direction of the piston 1P.
  • the hydraulic oil pressure is increased by the hydraulic oil supplied from the speed increasing cylinder 2 and the pressure increasing cylinder 3.
  • the injection device 100 continues to drive the motor 10 and continues to supply hydraulic oil from the speed increasing cylinder 2 and the pressure increasing cylinder 3 to the injection cylinder 1.
  • the pressure in the pilot pipe line 16P also increases.
  • the pilot switching valve 16 When the pressure in the pilot pipe line 16P exceeds a predetermined value, the pilot switching valve 16 is switched from the cutoff position to the communication position. Then, the hydraulic oil discharged from the bottom chamber 2B of the speed increasing cylinder 2 has a higher hydraulic oil pressure between the bottom chamber 1B of the injection cylinder 1 and the pilot operation check valve 4, so that the pilot switching valve 16 is turned on. Through the buffer tank 15 and discharged. On the other hand, the hydraulic oil supplied from the bottom chamber 3 ⁇ / b> B of the pressure increasing cylinder 3 pressurizes the hydraulic oil in the bottom chamber 1 ⁇ / b> B of the injection cylinder 1. Then, the molding material in the cavity is continuously pressurized.
  • the hydraulic fluid supplied from the bottom chamber 3B does not flow to the buffer tank 15 by the pilot operation check valve 4.
  • the injection cylinder 1 when the pressure in the bottom chamber 1B becomes equal to or higher than the pilot pressure of the pilot switching valve 16, only the hydraulic oil from the pressure increasing cylinder 3 is supplied to the bottom chamber 1B. Then, the amount of hydraulic oil supplied is lower than when hydraulic fluid is supplied from the speed increasing cylinder 2 and the pressure increasing cylinder 3.
  • a high pressure is applied to the piston 1 ⁇ / b> P by the hydraulic oil in the pressure increasing cylinder 3.
  • pressure is applied to the cavity by the injection cylinder 1 and the injection plunger. As a result, the pressure in the cavity is increased. By this pressure increasing process, the molding material is pressed and formed in the cavity.
  • the resistance from the cavity to the injection plunger and the injection cylinder 1 increases. Then, resistance is transmitted from the bottom chamber 1 ⁇ / b> B of the injection cylinder 1 to the pressure increasing cylinder 3, and becomes load resistance of the motor 10 from the nut 12 and the ball screw 11.
  • the load torque of the motor 10 is monitored. And if the load torque of the motor 10 becomes more than predetermined value, it will be judged that filling of the molding material was completed. Further, the injection device 100 continues to drive the motor 10 and pressurizes the molding material with a predetermined torque in the cavity. Thereafter, the injection device 100 stops the motor 10 when the molding material is solidified.
  • the injection apparatus 100 determines that the molding is completed by the solidification of the molding material. Then, the injection device 100 takes out the molded product.
  • the injection apparatus 100 drives the motor 10 to apply a load to a part of the molded article in order to push out the molded article from the fixed mold. Thereby, the molded product is removed from the fixed mold.
  • the injection device 100 drives the motor 10 to rotate in the reverse direction. Then, the injection plunger and the injection cylinder 1 are retracted.
  • the motor 10 is rotated in the reverse direction
  • the piston 2P of the speed increasing cylinder 2 and the piston 3P of the pressure increasing cylinder 3 are moved in the reverse direction by the ball screw 11 and the nut 12.
  • the rod chamber 3R is contracted and the bottom chamber 3B is expanded.
  • the piston 2P moves and the rod chamber 2R shrinks. And the bottom chamber 2B of the acceleration cylinder 2 expands.
  • the hydraulic oil in the bottom chamber 1B flows into the bottom chamber 2B of the speed increasing cylinder 2 and the bottom chamber 3B of the pressure increasing cylinder 3.
  • the hydraulic oil in the rod chamber 1R of the injection cylinder 1 increases, the hydraulic oil in the bottom chamber 1B decreases, and the piston 1P moves.
  • the injection cylinder 1 and the injection plunger are retracted.
  • the hydraulic oil does not flow out from the bottom chamber 1B of the injection cylinder 1.
  • the piston 2P of the speed increasing cylinder 2 and the piston 3P of the pressure increasing cylinder 3 do not return to the predetermined positions, and continue to return to the predetermined positions.
  • the hydraulic oil that is deficient with the expansion of the bottom chamber 2B and the bottom chamber 3B is replenished from the buffer tank 15 via the check valve 6.
  • the injection device 100 of this embodiment has the following effects. (1) In the injection device 100 of this embodiment, the speed increasing cylinder 2 and the pressure increasing cylinder 3 are arranged in parallel to the injection cylinder 1. Then, the speed-increasing cylinder 2 and the pressure-increasing cylinder 3 are driven synchronously by the motor 10, the ball screw 11 and the nut 12. Therefore, a high injection speed and injection pressure can be realized by the driving means using the single motor 10, the ball screw 11 and the nut 12. (2) The drive unit of the injection apparatus 100 has a single configuration including the motor 10, the ball screw 11, and the nut 12.
  • the injection cylinder 1 of the injection device 100 includes a speed increasing cylinder 2, a pressure increasing cylinder 3, a flow rate adjusting circuit 5, and a flow rate adjusting circuit 7, and is driven by a motor 10. Therefore, the backward movement of the injection cylinder 1 is easy, and there is no need to provide a hydraulic pump or the like for the backward movement.
  • the injection device 100 is provided with a flow rate adjustment circuit 5 and a flow rate adjustment circuit 7. Therefore, even if the hydraulic oil amount changes due to leakage or the like from the seals of the respective parts of the injection device 100, the hydraulic oil amount can be returned to the original, and the injection device 100 can obtain a stable operation.
  • the injection device 100 is provided with a flow rate adjusting circuit 5.
  • the flow rate adjustment circuit 5 can easily switch the flow of hydraulic oil in the speed increasing cylinder 2.
  • the flow rate adjustment circuit 5 includes a buffer tank 15, a check valve 6, and a pilot switching valve 16. The pilot switching valve 16 can be switched by the pilot pressure.
  • the flow rate adjustment circuit 5 can have a simple structure.
  • the flow rate adjusting circuit 7 is the same as the flow rate adjusting circuit 5 and can be configured simply and does not require a new driving means. (7)
  • the diameter D2 of the speed increasing cylinder 2 is set larger than the diameter D3 of the pressure increasing cylinder 3. Therefore, when the injection cylinder 1 is driven, more hydraulic fluid can be supplied by the piston 2P having the large diameter D2 of the speed increasing cylinder 2 to achieve high speed driving of the injection cylinder 1.
  • the present invention is not limited to the above embodiment.
  • modified examples of the present invention will be described.
  • the speed increasing cylinder 2 and the pressure increasing cylinder 3 in the embodiment employ the same stroke with different diameters, but are not limited thereto.
  • the dimensions of both cylinders can be changed as appropriate.
  • the diameter D2 of the speed increasing cylinder 2 and the diameter D3 of the pressure increasing cylinder 3 may be the same.
  • the diameter D2 may be smaller than the diameter D3.
  • the diameters of the pistons 2P and 3P may be appropriately set according to the diameter D1 of the piston 1P of the injection cylinder 1.
  • the stroke of the piston 2P and the stroke of the piston 3P may not be the same.
  • the flow rate adjustment circuit 5 is not limited to the configuration of the embodiment.
  • an electromagnetic switching valve may be used instead of the flow rate adjustment circuit 5.
  • the position of the injection cylinder 1 may be detected by a limit switch or the like, and the switching valve may be switched at a predetermined position.
  • an encoder or the like may be provided in the motor 10 so that the switching valve is switched according to the driving amount of the motor 10 or the like.
  • a switching valve may be used instead of the check valve 6.
  • the driving means in the embodiment is not limited to the ball screw structure. If the motor 10 can drive the piston 2P of the speed increasing cylinder 2 and the piston 3P of the pressure increasing cylinder 3, the configuration may be appropriately changed. A plurality of sets of ball screws 11 and nuts 12 may be provided. -The drive means of the injection apparatus 100 may not be single.
  • the speed increasing cylinder 2 and the pressure increasing cylinder 3 may be driven by separate driving means.
  • the speed increasing cylinder 2 and the pressure increasing cylinder 3 may be driven individually as long as the flow rate is balanced.
  • the pilot operation check valve 4 is used as the direction control valve, it is not limited to this.
  • An electromagnetic switching valve may be used.

Abstract

 射出装置100は、射出プランジャに連結された射出シリンダ1を駆動する増速シリンダ2および増圧シリンダ3が射出シリンダ1に並列に連結されている。増速シリンダ2のピストン2Pおよび増圧シリンダ3のピストン3Pは、モータ10、ボールねじ11およびナット12により同期して駆動される。射出シリンダ1のボトム室1Bと増速シリンダ2のボトム室2Bとの間には、パイロット操作チェックバルブ4および流量調整回路5が設けられている。また、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間に、流量調整回路7が設けられている。射出装置100は、モータ10の駆動力で、射出シリンダ1を増速シリンダ2および増圧シリンダ3の両方によって高速で駆動させ、射出シリンダ1を増圧シリンダ3のみによって高圧状態で駆動させる。

Description

射出装置
 この発明は、射出装置に関する。
 型内に成形材料を射出し、充填することによって所望の製品を成形する装置として射出装置が知られている。そして、近時の射出装置では、例えば、特許文献1の射出装置のように、電動機を用いて射出シリンダに作動力を付与することが行われている。特許文献1の射出装置は、成形材料を型内に射出する射出プランジャを作動させる射出シリンダ装置と、射出シリンダ装置に作動油を供給する変換シリンダ装置とを、備えている。そして、特許文献1の射出装置では、射出シリンダに作動油を供給する際に、変換シリンダ装置の変換ピストンの駆動源として電動機を用いている。これにより、特許文献1の射出装置では、電動機の駆動力によって変換シリンダ装置の変換ピストンが作動して作動油を射出シリンダ装置に供給するとともに、その供給された作動油によって射出シリンダ装置の射出ピストンが、成形材料の射出方向へ作動する。
特開2010-115683号公報
 ところで、射出装置は、一般的に、低速工程、高速工程及び増圧工程の3工程によって作動させ、これらの各工程において射出ピストンを、所望の速度で、かつ所望の圧力をキャビティ内の成形材料に付与するように作動させている。このため、特許文献1の射出装置のように、電動機の駆動力によって作動用シリンダを作動させることは、当該作動用シリンダを油圧ポンプなどによる作動油の流量制御のみによって作動させる場合に比して、射出シリンダの動作量をより緻密に制御することが可能である。射出装置は、成形材料から所望の製品を成形したら、射出ピストンを後退させている。射出ピストンの後退動作は、緻密制御が不要である。そのため、従来は後退動作に油圧ポンプが用いられていた。射出ピストンの後退動作に油圧ポンプを用いる射出装置は、油圧ポンプおよび作動油タンクからなる油圧ユニットが必要である。そのため、部品点数が増加するとともに射出装置の構造が複雑化し、大型化していた。
 本発明は上記の問題点を鑑みてなされたもので、本発明の目的は、射出ピストンの後退動作に油圧ユニットを用いない射出装置を提供することである。
 上記の課題を解決するために、本発明は、射出プランジャを駆動して成形材料を射出させる射出シリンダと、前記射出シリンダに連結され、前記射出シリンダに作動油を給排する第一シリンダと、前記射出シリンダに前記第一シリンダと並列に連結され、前記射出シリンダに作動油を給排する第二シリンダと、前記第一シリンダのピストンおよび前記第二シリンダのピストンを進退自在に駆動する駆動手段と、前記射出シリンダの一端側と前記第一シリンダの一端側との間に設けられ、前記第一シリンダから前記射出シリンダに向かう作動油の流れを許容し、前記射出シリンダから前記第一シリンダに向かう作動油の流れを遮断する方向制御弁と、前記方向制御弁と前記第一シリンダとの間に設けられ、前記第一シリンダの一端側と前記射出シリンダの一端側との間の作動油の流量を調整する第一流量調整手段と、前記射出シリンダの他端側と前記第一シリンダの他端側との間および前記射出シリンダの他端側と前記第二シリンダの他端側との間に設けられ、前記第一シリンダの他端側および前記第二シリンダの他端側と前記射出シリンダの他端側との間の作動油の流量を調整する第二流量調整手段と、を備えることを特徴とする。
 本発明により、射出ピストンの後退動作に油圧ユニットを用いない射出装置を提供できる。
本発明の射出装置の回路図。
 以下、本発明の実施形態における射出装置を説明する。
 図1に示す射出装置としてのダイカストマシン100は、型を構成する固定金型と可動金型とによって形成されるキャビティ内に、溶融した成形材料としての金属材料(例えば、アルミニウム)を射出し、充填する装置である。型内に射出された成形材料は、凝固後に取り出されることにより、所望の成形品となる。ダイカストマシン100は、キャビティに連通する射出スリーブ内に供給された金属材料をキャビティに押し出す射出プランジャを射出駆動する射出シリンダ1を備えている。射出プランジャは、射出シリンダ1のピストン1Pのピストンロッド1Paの先端に連結されている。射出シリンダ1には、非圧縮性流体(流体)としての作動油を給排する第一シリンダとしての増速シリンダ2および第二シリンダとしての増圧シリンダ3が配管を介して連結されている。射出シリンダ1のボトム室1Bには、増速シリンダ2のボトム室2Bが連結されている。また、射出シリンダ1のボトム室1Bに増圧シリンダ3のボトム室3Bが、増速シリンダ2のボトム室2Bと並列に接続されている。本実施形態では、増速シリンダ2におけるピストン2Pのストロークと増圧シリンダ3におけるピストン3Pのストロークとは、同じ長さに設定されている。また、増速シリンダ2の直径D2は、増圧シリンダ3の直径D3よりも大きく設定されている。増速シリンダ2のロッド室2Rは、射出シリンダ1のロッド室1Rに配管を介して連結されている。また、増圧シリンダ3のロッド室3Rも、射出シリンダ1のロッド室1Rに配管を介して連結されている。射出シリンダ1のロッド室1Rに対し、増速シリンダ2のロッド室2Rと増圧シリンダ3のロッド室3Rは並列である。増速シリンダ2のピストン2Pは、ロッド室2R側からナット12に連結されている。また、増圧シリンダ3のピストン3Pは、ロッド室3R側からナット12に連結されている。ナット12は、ボールねじ11に嵌合されている。ボールねじ11は、モータ10により回転自在である。ボールねじ11とナット12とは、ボールねじ機構を構成している。ナット12は、ボールねじ11の回転に伴い、図1の左右方向に移動する構成である。ピストン2Pおよびピストン3Pは、ナット12により増速シリンダ2および増圧シリンダ3内を進退自在である。なお、本実施形態では、ナット12が移動すると、ピストン2Pおよびピストン3Pは、同期して同じ距離だけ移動するようにナット12に連結されている。また、本実施形態では、モータ10、ボールねじ11およびナット12により駆動手段が構成されている。また、本実施形態の駆動手段は、単一である。
 射出シリンダ1の一端側であるボトム室1Bと増速シリンダ2の一端側であるボトム室2Bとの間の配管には、方向制御弁としてパイロット操作チェックバルブ4が設けられている。パイロット操作チェックバルブ4は、増速シリンダ2のボトム室2Bから射出シリンダ1のボトム室1Bに向かう作動油の流れを許容するものである。また、パイロット操作チェックバルブ4は、ボトム室1Bからボトム室2Bへの流れを遮断するものである。パイロット操作チェックバルブ4には、パイロット圧を導くパイロット管路4Pが接続されている。パイロット管路4Pは、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管に接続されている。パイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管には、第一流量調整手段として流量調整回路5が設けられている。流量調整回路5には、バッファタンク15とパイロット切替弁16とチェックバルブ6とが設けられている。バッファタンク15は、増速シリンダ2における作動油の不足分を補充する程度の作動油が一時的に貯留できるものである。チェックバルブ6は、バッファタンク15からパイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管に延びる配管に設けられている。チェックバルブ6は、パイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管からバッファタンク15への作動油の流れを遮断するものである。また、チェックバルブ6は、バッファタンク15からパイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管への作動油の流れを許容するものである。チェックバルブ6は、作動油の補充用制御弁であり、増速シリンダ2のボトム室2Bにおける作動油が不足したときに、適宜作動油を供給するものである。パイロット切替弁16は、パイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管からバッファタンク15に延びる配管に設けられている。パイロット切替弁16は、パイロット操作チェックバルブ4と増速シリンダ2のボトム室2Bとの間の配管からバッファタンク15への作動油の流れの連通もしくは遮断を切替えるものである。パイロット切替弁16は、バネにより通常は遮断位置に付勢されている。パイロット切替弁16には、パイロット管路16Pが連結されている。パイロット管路16Pは、射出シリンダ1のボトム室1Bとパイロット操作チェックバルブ4および増圧シリンダ3のボトム室3Bとの間の配管の圧力をパイロット切替弁16に導くものである。パイロット切替弁16の切替えは、パイロット管路16Pからのパイロット圧がバネの付勢力よりも大きくなったときに切替えられるものである。パイロット切替弁16は、連通状態に切替えられたときに、作動油をバッファタンク15へ排出するものである。本実施形態では、パイロット切替弁16を切り替えるパイロット管路16Pのパイロット圧は、増速シリンダ2および増圧シリンダ3により加圧可能な最大圧力よりも小さい値に設定されている。
 射出シリンダ1の他端側であるロッド室1Rと増速シリンダ2の他端側であるロッド室2Rとの間の配管には、第二流量調整手段として流量調整回路7が設けられている。流量調整回路7が設けられている位置は、射出シリンダ1のロッド室1Rと増圧シリンダ3の他端側であるロッド室3Rとの間の配管でもある。流量調整回路7には、バッファタンク15とパイロット切替弁17とチェックバルブ8が設けられている。バッファタンク15には、増速シリンダ2および増圧シリンダ3、さらに各ロッド室1R、2R、3Rにおける作動油の不足分を補充する程度の作動油が貯留されている。チェックバルブ8は、バッファタンク15から射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管に延びる配管に設けられている。チェックバルブ8は、作動油の補充用制御弁であり、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管からバッファタンク15への作動油の流れを遮断するものである。また、チェックバルブ8は、バッファタンク15から射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管への作動油の流れを許容するものである。チェックバルブ8は、増速シリンダ2および増圧シリンダ3、さらに各ロッド室1R、2R、3Rにおける作動油が不足したときに、適宜作動油を供給するものである。パイロット切替弁17は、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管からバッファタンク15に延びる配管に設けられている。パイロット切替弁17は、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管からバッファタンク15への作動油の流れの連通もしくは遮断を切替えるものである。パイロット切替弁17は、バネにより通常は遮断位置に付勢されている。パイロット切替弁17には、パイロット管路17Pが連結されている。パイロット管路17Pは、射出シリンダ1のロッド室1Rと増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rとの間の配管の圧力をパイロット切替弁17に導くものである。パイロット切替弁17の切替えは、パイロット管路17Pからのパイロット圧がバネの付勢力よりも大きくなったときに切替えられるものである。パイロット切替弁17は、連通状態に切替えられたときに、作動油をバッファタンク15へ排出するものである。
 次に本実施形態における作用を説明する。
 射出装置100は、射出プランジャで成形材料を射出するため射出シリンダ1を駆動する。そのために、射出装置100は、射出シリンダ1のボトム室1Bを広げてピストン1Pを射出プランジャ側へ移動させるため、ボトム室1Bに作動油を供給する。射出装置100は、まず、モータ10を駆動させてボールねじ11を回転させる。すると、ボールねじ11に嵌合したナット12が増速シリンダ2および増圧シリンダ3に接近する方向に移動する。ナット12が移動すると、ナット12に連結されたピストン2Pおよびピストン3Pがそれぞれ増速シリンダ2および増圧シリンダ3内を移動する。ピストン2Pおよびピストン3Pは、それぞれ同期して駆動され、同じ距離だけ移動する。増速シリンダ2では、ピストン2Pが移動すると、ボトム室2B内の作動油が射出シリンダ1に向けて供給される。ボトム室2Bから排出された作動油は、パイロット操作チェックバルブ4を通過して射出シリンダ1のボトム室1Bへと流れていく。なお、このときボトム室2Bから排出される作動油は、流量調整回路5には流れない。流量調整回路5では、パイロット切替弁16がバネにより遮断位置に付勢された状態である。また、チェックバルブ6は、ボトム室2Bからバッファタンク15への作動油の流れを遮断している。増圧シリンダ3では、ピストン3Pが移動すると、ボトム室3B内の作動油が射出シリンダ1に向けて供給される。ボトム室3Bから排出された作動油は、増速シリンダ2のボトム室2Bから排出された作動油とともに射出シリンダ1のボトム室1Bへと流れていく。
 射出シリンダ1は、ボトム室1Bに増速シリンダ2および増圧シリンダ3の両方から供給される作動油により、ピストン1Pが高速で移動する。これにより射出プランジャは成形材料を高速で射出する。なお、射出シリンダ1において、ピストン1Pが高速で移動すると、ロッド室1Rは縮小する。ロッド室1Rが縮小すると、ロッド室1R内の作動油はロッド室1Rから排出され、増速シリンダ2のロッド室2Rおよび増圧シリンダ3のロッド室3Rへと流れていく。このとき、流量調整回路7では、各ロッド室1R、2R、3R内の作動油圧力が上昇した場合には、パイロット切替弁17が連通位置へ切り替わる。そして、作動油がバッファタンク15へと排出される。また、各ロッド室1R、2R、3R内の作動油の流量が不足した場合には、バッファタンク15からチェックバルブ8を介して適宜作動油が供給される。
 射出シリンダ1により射出プランジャが成形材料を高速で射出していくと、キャビティ内に成形材料が充填される。充填が完了すると、射出プランジャおよび射出シリンダ1にはピストン1Pの移動方向に対し抵抗が発生する。すると、射出シリンダ1のボトム室1B内は、増速シリンダ2および増圧シリンダ3から供給される作動油により作動油圧力が上昇していく。射出装置100は、モータ10を駆動し続けて、増速シリンダ2および増圧シリンダ3から作動油を射出シリンダ1に供給し続ける。ボトム室1B内の圧力が上昇していくと、パイロット管路16P内の圧力も上昇していく。そして、パイロット管路16P内の圧力が所定値を超えると、パイロット切替弁16は、遮断位置から連通位置へと切り替わる。すると、増速シリンダ2のボトム室2Bから排出される作動油は、射出シリンダ1のボトム室1Bとパイロット操作チェックバルブ4との間の作動油圧力の方が高くなるため、パイロット切替弁16を介してバッファタンク15へと流れて排出されていく。一方、増圧シリンダ3のボトム室3Bから供給される作動油は、射出シリンダ1のボトム室1B内の作動油を加圧する。そして、キャビティ内の成形材料を加圧し続ける。
 ボトム室3Bから供給される作動油は、パイロット操作チェックバルブ4によりバッファタンク15に流れることはない。射出シリンダ1では、ボトム室1B内の圧力がパイロット切替弁16のパイロット圧以上になると、ボトム室1Bには増圧シリンダ3からの作動油のみが供給される。すると、増速シリンダ2および増圧シリンダ3から作動油が供給されていたときよりも作動油の供給量は低下する。射出シリンダ1では、増圧シリンダ3の作動油により、高い圧力がピストン1Pに加わる。そして、射出シリンダ1および射出プランジャによりキャビティ内に圧力を加えていく。これにより、キャビティ内を増圧する。この増圧工程により、成形材料がキャビティ内で加圧され形成されていく。
 射出プランジャおよび射出シリンダ1が増圧シリンダ3からの作動油によりキャビティ内を増圧していくと、キャビティから射出プランジャおよび射出シリンダ1への抵抗が増加していく。すると、射出シリンダ1のボトム室1Bから増圧シリンダ3へと抵抗が伝わり、ナット12およびボールねじ11からモータ10の負荷抵抗となる。射出装置100では、モータ10の負荷トルクを監視している。そして、モータ10の負荷トルクが所定値以上になったら、成形材料の充填が完了したと判断する。さらに、射出装置100は、モータ10を駆動し続けて、キャビティ内で成形材料を所定トルクで加圧し続ける。その後、射出装置100は、成形材料が凝固したらモータ10を停止する。射出装置100は、成形材料の凝固により成形が完了したと判断する。そして、射出装置100は、成形された成形品を取り出す。ここで、可動金型を固定金型から離すときに、射出装置100は、成形品を固定金型から押し出すために、モータ10を駆動して成形品の一部へ負荷を与える。これにより、成形品が固定金型から取り外される。
 次に、射出装置100は、モータ10を逆回転するように駆動する。そして、射出プランジャおよび射出シリンダ1を後退させる。モータ10を逆回転させると、ボールねじ11およびナット12により増速シリンダ2のピストン2Pおよび増圧シリンダ3のピストン3Pが逆方向へ移動する。すると、増圧シリンダ3では、ロッド室3Rが縮小してボトム室3Bが拡大する。これと同時に、増速シリンダ2では、ピストン2Pが移動してロッド室2Rが縮小する。そして、増速シリンダ2のボトム室2Bは、拡大する。ロッド室2Rおよびロッド室3Rが縮小すると、ロッド室2Rおよびロッド室3Rから排出された作動油は、射出シリンダ1のロッド室1Rへと流れていく。射出シリンダ1のロッド室1Rに作動油が流れ込むと、射出シリンダ1のピストン1Pに圧力が加わる。すると、ロッド室1Rとロッド室2Rおよびロッド室3Rとを繋ぐ管路内の圧力が上昇して、パイロット管路4Pからパイロット操作チェックバルブ4を開くようにパイロット圧がパイロット操作チェックバルブ4に作用する。射出シリンダ1のピストン1Pは、ロッド室1Rに作動油が流れ込むことにより、ボトム室1Bを縮小させるように移動する。すると、ボトム室1Bの縮小にともない、ボトム室1B内の作動油が増速シリンダ2のボトム室2Bおよび増圧シリンダ3のボトム室3Bへと流れていく。これにより、射出シリンダ1のロッド室1R内の作動油が増加するとともに、ボトム室1B内の作動油が減少してピストン1Pが移動する。そして、射出シリンダ1および射出プランジャが後退する。射出プランジャおよび射出シリンダ1が所定位置まで後退したら、射出シリンダ1のボトム室1Bから作動油は流れ出なくなる。このとき、増速シリンダ2のピストン2Pおよび増圧シリンダ3のピストン3Pは、所定位置まで戻っておらず、さらに所定まで戻り続ける。ボトム室2Bおよびボトム室3Bの拡大に伴い不足する作動油は、バッファタンク15よりチェックバルブ6を介して補充される。増速シリンダ2のピストン2Pおよび増圧シリンダ3のピストン3Pが所定位置まで後退したら、射出成形の1サイクルが終了する。
 本実施形態の射出装置100は、以下の効果を奏する。
(1)本実施形態の射出装置100では、増速シリンダ2および増圧シリンダ3を射出シリンダ1に並列で配置した。そして、増速シリンダ2および増圧シリンダ3をモータ10、ボールねじ11およびナット12により同期して駆動させる。そのため、単一のモータ10、ボールねじ11およびナット12による駆動手段で高い射出速度と射出圧とを実現し得る。
(2)射出装置100の駆動手段は、モータ10、ボールねじ11およびナット12による単一の構成とした。そのため、増速シリンダ2および増圧シリンダ3を複数の駆動手段で駆動する場合に比べ、部品点数を低減し射出装置100を低コスト化できる。また、単一の駆動手段を設けるだけで済むため、射出装置100を省スペース化、小型化できる。
(3)射出装置100の射出シリンダ1は、増速シリンダ2、増圧シリンダ3、流量調整回路5および流量調整回路7で構成され、モータ10により駆動されている。そのため、射出シリンダ1の後退動作も容易であり、後退動作用に油圧ポンプなどを設ける必要がない。また、油圧ポンプを設ける場合に比べ、射出装置100の低コスト化および小型化が可能である。
(4)射出装置100には、流量調整回路5および流量調整回路7を設けた。そのため、射出装置100の各部のシールからリーク等により作動油量が変化したとしても、作動油量を元に戻すことができ、射出装置100は、安定した動作を得ることができる。
(5)射出装置100には、流量調整回路5を設けている。流量調整回路5により増速シリンダ2の作動油の流れを容易に切り替えられる。
(6)流量調整回路5は、バッファタンク15、チェックバルブ6およびパイロット切替弁16により構成されている。パイロット切替弁16は、パイロット圧により切り替え自在である。そのため、流量調整回路5に新たな駆動手段などを設ける必要がなく、流量調整回路5を簡単な構造にできる。また、流量調整回路7も流量調整回路5と同様であり、簡単な構成とすることができ、新たな駆動手段を必要としない。
(7)増速シリンダ2の直径D2は、増圧シリンダ3の直径D3よりも大きく設定している。そのため、射出シリンダ1を駆動させるときに、増速シリンダ2の大きな直径D2のピストン2Pでより多くの作動油を供給して射出シリンダ1の高速駆動を達成できる。
 本発明は、上記の実施形態に限定されるものではない。以下に本発明の変更例を記載する。
○実施形態における増速シリンダ2と増圧シリンダ3は、異径の同ストロークを採用しているが、これに限定されない。両シリンダの寸法は適宜変更可能である。例えば、増速シリンダ2の直径D2と増圧シリンダ3の直径D3とは同じでも良い。また、直径D2が直径D3よりも小さくても良い。ピストン2P、3Pの直径は、射出シリンダ1のピストン1Pの直径D1に合わせて適宜設定すると良い。さらに、ピストン2Pのストロークとピストン3Pのストロークは同じでなくても良い。
○流量調整回路5は、実施形態の構成に限定されない。例えば、流量調整回路5の代わりに電磁切替弁を用いても良い。さらに、射出シリンダ1の位置をリミットスイッチなどで検出し、所定位置で切替弁を切替える構成としても良い。さらに、モータ10にエンコーダなどを設けて、モータ10の駆動量などにより切替弁を切替える構成としても良い。また、チェックバルブ6の代わりに切替弁を用いても良い。
○実施形態における駆動手段は、ボールねじ構造に限定されない。モータ10により、増速シリンダ2のピストン2Pおよび増圧シリンダ3のピストン3Pを駆動できれば構成は適宜変更して良い。また、ボールねじ11およびナット12は、複数組設けても良い。
○射出装置100の駆動手段は単一でなくても良い。例えば、増速シリンダ2および増圧シリンダ3を別々の駆動手段で駆動しても良い。増速シリンダ2および増圧シリンダ3は、流量のバランスさえ取れば個別に駆動させても良い。
○方向制御弁としてパイロット操作チェックバルブ4を用いたが、これに限定されない。電磁切替弁を使用しても良い。
 1 射出シリンダ、1B ボトム室、1P ピストン、1Pa ピストンロッド、1R ロッド室、2 増速シリンダ、2B ボトム室、2P ピストン、2R ロッド室、3 増圧シリンダ、3B ボトム室、3P ピストン、3R ロッド室、4 パイロット操作チェックバルブ、4P パイロット管路、5 流量調整回路、6 チェックバルブ、7 流量調整回路、8 チェックバルブ、10 モータ、11 ボールねじ、12 ナット、15 バッファタンク、16 パイロット切替弁、16P パイロット管路、17 パイロット切替弁、17P パイロット管路、100 ダイカストマシン(射出装置)。

Claims (3)

  1.  射出プランジャを駆動して成形材料を射出させる射出シリンダと、
     前記射出シリンダに連結され、前記射出シリンダに作動油を給排する第一シリンダと、
     前記射出シリンダに前記第一シリンダと並列に連結され、前記射出シリンダに作動油を給排する第二シリンダと、
     前記第一シリンダのピストンおよび前記第二シリンダのピストンを進退自在に駆動する駆動手段と、
     前記射出シリンダの一端側と前記第一シリンダの一端側との間に設けられ、前記第一シリンダから前記射出シリンダに向かう作動油の流れを許容し、前記射出シリンダから前記第一シリンダに向かう作動油の流れを遮断する方向制御弁と、
     前記方向制御弁と前記第一シリンダとの間に設けられ、前記第一シリンダの一端側と前記射出シリンダの一端側との間の作動油の流量を調整する第一流量調整手段と、
     前記射出シリンダの他端側と前記第一シリンダの他端側との間および前記射出シリンダの他端側と前記第二シリンダの他端側との間に設けられ、前記第一シリンダの他端側および前記第二シリンダの他端側と前記射出シリンダの他端側との間の作動油の流量を調整する第二流量調整手段と、を備える射出装置。
  2.  前記第一流量調整手段は、
     作動油を一時的に貯留できるバッファタンクと、
     前記方向制御弁と前記第一シリンダの一端側との間の作動油を前記バッファタンクに排出可能であるパイロット切替弁と、
     前記方向制御弁と前記第一シリンダの一端側との間に前記バッファタンクの作動油を供給可能である補充用制御弁と、を備える請求項1に記載の射出装置。
  3.  前記第二流量調整手段は、
     作動油を一時的に貯留できるバッファタンクと、
     前記射出シリンダの他端側と前記第一シリンダの他端側との間および前記射出シリンダの他端側と前記第二シリンダの他端側との間の作動油を前記バッファタンクに排出可能であるパイロット切替弁と、
     前記射出シリンダの他端側と前記第一シリンダの他端側との間および前記射出シリンダの他端側と前記第二シリンダの他端側との間に作動油を供給可能である補充用制御弁と、を備える請求項1または請求項2に記載の射出装置。
PCT/JP2013/065008 2012-06-21 2013-05-30 射出装置 WO2013190970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13806501.6A EP2865461B1 (en) 2012-06-21 2013-05-30 Injection device
BR112014031800A BR112014031800A2 (pt) 2012-06-21 2013-05-30 aparelho de injeção
US14/408,613 US9505054B2 (en) 2012-06-21 2013-05-30 Injection apparatus
CN201380032686.6A CN104395018B (zh) 2012-06-21 2013-05-30 注射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012139270A JP5870857B2 (ja) 2012-06-21 2012-06-21 射出装置
JP2012-139270 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190970A1 true WO2013190970A1 (ja) 2013-12-27

Family

ID=49768573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065008 WO2013190970A1 (ja) 2012-06-21 2013-05-30 射出装置

Country Status (6)

Country Link
US (1) US9505054B2 (ja)
EP (1) EP2865461B1 (ja)
JP (1) JP5870857B2 (ja)
CN (1) CN104395018B (ja)
BR (1) BR112014031800A2 (ja)
WO (1) WO2013190970A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853876B2 (ja) * 2012-06-21 2016-02-09 株式会社豊田自動織機 射出装置
JP2016055330A (ja) * 2014-09-11 2016-04-21 株式会社豊田自動織機 射出装置
JP2018196887A (ja) * 2017-05-22 2018-12-13 東洋機械金属株式会社 スクイズ装置およびそれを備えたダイカストマシン
CN114289699B (zh) * 2021-12-22 2023-09-12 广州小鹏汽车科技有限公司 压铸机的控制方法、控制装置、压铸机及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146721A (ja) * 1987-12-03 1989-06-08 Sumitomo Heavy Ind Ltd 射出成形機の型締め装置
JPH02148766U (ja) * 1990-05-22 1990-12-18
JPH0871725A (ja) * 1994-09-06 1996-03-19 Ube Ind Ltd ダイカストマシンの射出装置
JP2006240087A (ja) * 2005-03-03 2006-09-14 Meiki Co Ltd 射出装置
JP2010115683A (ja) 2008-11-12 2010-05-27 Toshiba Mach Co Ltd 成形機の射出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011970A1 (de) * 2000-08-08 2002-02-14 Bosch Rexroth Ag Antriebsvorrichtung, insbesondere für die schliesseinheit, die einspritzeinheit oder die auswerfer einer kunststoffspritzgiessmaschine
JP2005021976A (ja) * 2003-07-03 2005-01-27 Sanko Shoji Co Ltd ダイカスト鋳造機
US20090242161A1 (en) * 2006-09-20 2009-10-01 Masashi Uchida Injection device for die casting machine
WO2010113745A1 (ja) * 2009-03-31 2010-10-07 宇部興産機械株式会社 ダイカストマシンの射出装置及びその制御方法
CN201659279U (zh) * 2010-02-08 2010-12-01 东莞亿东机器有限公司 一种压铸机压射油缸的回油控制回路
JP5760769B2 (ja) * 2011-07-06 2015-08-12 株式会社豊田自動織機 射出装置
JP5853876B2 (ja) * 2012-06-21 2016-02-09 株式会社豊田自動織機 射出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146721A (ja) * 1987-12-03 1989-06-08 Sumitomo Heavy Ind Ltd 射出成形機の型締め装置
JPH02148766U (ja) * 1990-05-22 1990-12-18
JPH0871725A (ja) * 1994-09-06 1996-03-19 Ube Ind Ltd ダイカストマシンの射出装置
JP2006240087A (ja) * 2005-03-03 2006-09-14 Meiki Co Ltd 射出装置
JP2010115683A (ja) 2008-11-12 2010-05-27 Toshiba Mach Co Ltd 成形機の射出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2865461A4 *

Also Published As

Publication number Publication date
JP2014000597A (ja) 2014-01-09
EP2865461B1 (en) 2016-12-07
BR112014031800A2 (pt) 2017-06-27
US20150196953A1 (en) 2015-07-16
CN104395018A (zh) 2015-03-04
CN104395018B (zh) 2016-03-30
EP2865461A4 (en) 2016-03-02
JP5870857B2 (ja) 2016-03-01
US9505054B2 (en) 2016-11-29
EP2865461A1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5426833B2 (ja) 成形機
JP5177394B2 (ja) 成形機
WO2013190970A1 (ja) 射出装置
JP5672179B2 (ja) 射出装置
US20160001357A1 (en) Molding apparatus
WO2013005598A1 (ja) 射出装置
JP5853876B2 (ja) 射出装置
JP5673481B2 (ja) 射出装置
JP5644735B2 (ja) 射出装置
JP2010264468A (ja) 成形機及び成形機の制御装置
JP2018001252A (ja) 射出装置及び成形機
JP7057707B2 (ja) 射出装置及び成形機
JP4782250B1 (ja) 成形機の射出装置
JP2015167996A (ja) 油圧プレス
JP7301192B2 (ja) 射出装置及び成形機
WO2023210700A1 (ja) 局部加圧装置及び成形機
JP2016055330A (ja) 射出装置
JP6080046B2 (ja) 成形機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380032686.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408613

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013806501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013806501

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500265

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031800

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014031800

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141218