WO2013187537A1 - 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 - Google Patents
銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 Download PDFInfo
- Publication number
- WO2013187537A1 WO2013187537A1 PCT/JP2013/067365 JP2013067365W WO2013187537A1 WO 2013187537 A1 WO2013187537 A1 WO 2013187537A1 JP 2013067365 W JP2013067365 W JP 2013067365W WO 2013187537 A1 WO2013187537 A1 WO 2013187537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microetching agent
- polymer
- copper layer
- copper
- manufacturing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/18—Acidic compositions for etching copper or alloys thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/067—Etchants
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/383—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0307—Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0779—Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
- H05K2203/0786—Using an aqueous solution, e.g. for cleaning or during drilling of holes
- H05K2203/0789—Aqueous acid solution, e.g. for cleaning or etching
Definitions
- the present invention relates to a copper microetching agent, a replenisher thereof, and a method for manufacturing a wiring board.
- patterning is widely performed by forming a plating resist or an etching resist using a photosensitive resin (photoresist) on the surface of a copper layer.
- a copper layer called a “seed layer” is formed on an insulating substrate by electroless plating, a plating resist is formed on the seed layer, and then a resist on the seed layer is formed by electrolytic copper plating.
- Pattern plating is performed on the opening to form a patterned metal wiring.
- the surface of the copper layer is roughened.
- the roughening treatment also has the purpose of improving the adhesion with the resist by an anchoring action by roughening the surface of the copper layer.
- the surface of the copper layer is roughened with a microetching agent containing a specific polymer compound described in Patent Document 1 below or a microetching agent containing a specific organic acid described in Patent Document 2 below.
- a microetching agent containing a specific polymer compound described in Patent Document 1 below or a microetching agent containing a specific organic acid described in Patent Document 2 below There is a known method to make it. According to these roughening methods, since deep irregularities are formed on the surface of the copper layer, the adhesion between the copper layer surface and the resist can be improved.
- the copper layer (seed layer) is preferably as thin as possible.
- the photosensitive resin layer formed on the copper layer surface is developed with a developer such as an aqueous sodium carbonate solution after exposure, and the developed pattern is used as a plating resist or an etching resist in the next step. If the adhesion of the resist cannot be ensured in the plating process or the etching process, a desired wiring pattern shape cannot be obtained.
- the microetching agent described in Patent Document 1 and Patent Document 2 improves adhesion by forming deep irregularities on the surface of the copper layer, to maintain adhesion with a resin such as a resist.
- a certain amount of etching (for example, 1.5 ⁇ m or more) is required. Therefore, as a pretreatment for forming a plating resist in the semi-additive method, for example, when the microetching agent is applied to roughen an electroless plating film (seed layer) having a thickness of 1 ⁇ m or less, the electroless plating film is used under normal conditions. The whole may be removed. In addition, if the etching amount is reduced to prevent the entire electroless plating film from being removed, roughening unevenness is likely to occur.
- etching amount refers to an average etching amount (dissolution amount) in the depth direction, and is a value calculated from the weight and specific gravity of copper dissolved by the microetching agent and the front projected area of the copper surface. The same applies to the following “etching amount”.
- the present invention has been made in view of the above-described problems of the prior art, and is added to a microetching agent capable of maintaining uniform adhesion with a resin or the like even with a low etching amount, and to the microetching agent.
- a replenisher and a method for manufacturing a wiring board using the microetching agent are provided.
- the copper microetching agent of the present invention comprises an aqueous solution containing cupric ion, organic acid, halide ion, polymer and nonionic surfactant.
- the polymer is a water-soluble polymer having a polyamine chain and / or a cationic group and having a weight average molecular weight of 1000 or more.
- the microetching agent of the present invention has an A / B ratio when the halide ion concentration is A wt%, the polymer concentration is B wt%, and the nonionic surfactant concentration is D wt%.
- the value of is preferably 2000 to 9000 and the value of A / D is preferably 500 to 9000.
- the method for manufacturing a wiring board according to the present invention is a method for manufacturing a wiring board including a copper layer, and the surface of the copper layer is brought into contact with the microetching agent of the present invention to roughen the surface. A roughening treatment step.
- the replenisher of the present invention is a replenisher that is added to the microetching agent in the production method of the present invention, and consists of an aqueous solution containing an organic acid, a halide ion, a polymer, and a nonionic surfactant.
- the polymer is a water-soluble polymer having a polyamine chain and / or a cationic group and having a weight average molecular weight of 1000 or more.
- the “copper” in the present invention may be made of copper or a copper alloy.
- “copper” refers to copper or a copper alloy.
- the “copper layer” in the present invention also includes a copper wiring pattern layer.
- the adhesion between the copper layer surface and the resin or the like can be maintained uniformly even with a low etching amount.
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of one Example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of one Example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of one Example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of one Example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of one Example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of the comparative example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of the comparative example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of the comparative example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of the comparative example (photographing angle 45 degrees, magnification 5000 times).
- the scanning electron micrograph of the copper layer surface roughened with the microetching agent of the comparative example (photographing angle 45 degrees, magnification 5000 times).
- the copper microetching agent of the present invention comprises an aqueous solution containing cupric ion, organic acid, halide ion, polymer and nonionic surfactant.
- aqueous solution containing cupric ion, organic acid, halide ion, polymer and nonionic surfactant.
- cupric ion acts as an oxidizing agent for oxidizing copper.
- cupric ions can be contained in the microetching agent.
- the cupric ion source include organic acid copper salts, cupric chloride, cupric bromide, cupric hydroxide, cupric oxide, and the like.
- the organic acid which forms the said copper salt is not specifically limited, From a viewpoint of maintaining an etching rate appropriately, the organic acid whose pKa mentioned later is 5 or less is preferable. Two or more of the cupric ion sources may be used in combination.
- the concentration of cupric ions is preferably 0.01 to 20% by weight, more preferably 0.1 to 20% by weight, and still more preferably 0.1 to 10% by weight, from the viewpoint of maintaining the etching rate appropriately.
- Organic acid has a function of dissolving copper oxidized by cupric ions and also has a pH adjusting function. From the viewpoint of the solubility of oxidized copper, it is preferable to use an organic acid having a pKa of 5 or less.
- Organic acids having a pKa of 5 or less include saturated fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and caproic acid; unsaturated fatty acids such as acrylic acid, crotonic acid and isocrotonic acid; oxalic acid, malonic acid and succinic acid Aliphatic saturated dicarboxylic acids such as acid, glutaric acid, adipic acid and pimelic acid; aliphatic unsaturated dicarboxylic acids such as maleic acid; aromatic carboxylic acids such as benzoic acid, phthalic acid and cinnamic acid; glycolic acid, lactic acid and apple Oxycarboxylic acids such as acid and citric acid, sulfamic acid, ⁇ -chloropropionic acid, nicotinic acid, ascorbic acid, hydroxypivalic acid, carboxylic acid having a substituent such as levulinic acid; and derivatives thereof. Two or more organic acids may be
- the concentration of the organic acid in the microetching agent is preferably 0.1 to 30% by weight, more preferably 0.5 to 25% by weight, from the viewpoint of the solubility of oxidized copper.
- Halide ion assist the dissolution of copper and have a function of forming a copper layer surface with excellent adhesion.
- halide ion source examples include ion sources such as chloride ions and bromide ions.
- ion sources such as chloride ions and bromide ions.
- hydrochloric acid, hydrobromic acid, sodium chloride, calcium chloride, potassium chloride, ammonium chloride, potassium bromide, sodium bromide, copper chloride, copper bromide, zinc chloride, iron chloride, tin bromide, etc. Can be mentioned.
- examples of the halide ion source include compounds capable of dissociating halide ions in a solution. Two or more halide ions may be used in combination. Especially, a chloride ion is preferable from a viewpoint of forming the copper layer surface excellent in adhesiveness uniformly.
- cupric chloride can be used as having both functions of a halide ion source and a cupric ion source.
- the concentration of halide ions in the microetching agent is preferably 0.01 to 20% by weight, more preferably 0.1 to 10% by weight, from the viewpoint of forming a copper layer surface with excellent adhesion. More preferred is ⁇ 5% by weight.
- the polymer used in the present invention is a water-soluble polymer having a polyamine chain and / or a cationic group and having a weight average molecular weight of 1000 or more.
- the said polymer is mix
- a polymer having a weight average molecular weight of 1000 to 5 million is preferred.
- the “weight average molecular weight” is a value obtained in terms of polyethylene glycol by gel permeation chromatography analysis.
- the polymer examples include a quaternary ammonium salt type styrene polymer, a quaternary ammonium salt type aminoalkyl (meth) acrylate polymer, a quaternary ammonium salt type diallylamine polymer, and a quaternary ammonium salt type diallylamine.
- -Quaternary ammonium salt type polymer such as acrylamide copolymer, polyethyleneimine, polyalkylenepolyamine, aminoalkylacrylamide salt polymer, cationic cellulose derivative and the like.
- the salt include hydrochloride and the like. Two or more kinds of the polymers may be used in combination.
- a quaternary ammonium salt polymer polyethyleneimine, and polyalkylenepolyamine are used from the viewpoint of maintaining uniform adhesion between the copper layer surface and the resin, etc. even at a low etching amount. 1 type or more chosen from these is preferable, and a quaternary ammonium salt type polymer is more preferable.
- a quaternary ammonium salt type polymer is more preferable.
- the concentration of the polymer in the microetching agent is preferably 0.00001 to 1% by weight, more preferably 0.0001 to 0.1% by weight, from the viewpoint of forming a copper layer surface having excellent adhesion. More preferred is 0002 to 0.1% by weight.
- Nonionic surfactant A nonionic surfactant is blended with the microetching agent of the present invention from the viewpoint of uniformly roughening the surface of the copper layer.
- concentration of the nonionic surfactant in the microetching agent is preferably 0.00001 to 0.1% by weight from the viewpoint of uniformly roughening the surface of the copper layer and suppressing foaming during processing. Is more preferably 0.1 to 0.1% by weight, still more preferably 0.0001 to 0.01% by weight.
- the nonionic surfactant that can be used in the present invention does not have a polyamine chain.
- nonionic surfactant examples include polyhydric alcohol ester polyoxyethylene adduct, higher alcohol polyoxyethylene adduct, alkylphenol polyoxyethylene adduct, polyoxyalkylene alkyl ether, acetylene glycol polyoxyethylene adduct, and the like.
- the polyoxyalkylene adduct can be mentioned.
- Two or more of the nonionic surfactants may be used in combination.
- acetylene glycol polyoxyethylene adduct is preferred from the viewpoint of uniformly roughening the copper layer surface.
- Nonionic surfactant HLB Hydrophile-Lipophile Balance
- HLB Hydrophile-Lipophile
- the halide ion concentration is A wt%
- the polymer concentration is B wt%
- the cupric ion concentration is C wt%
- the nonionic surfactant concentration is D wt%. It is preferable to blend each component so that the A / B value is 2000 to 9000 and the A / D value is 500 to 9000.
- the value of A / B is preferably 2100 to 9000, more preferably 2200 to 9000, and further preferably 2400 to 9000. From the same viewpoint, the A / D value is preferably 1000 to 9000, more preferably 1000 to 8500.
- a / C is preferably 0.30 to 1.40, more preferably 0.30 to 1.00, still more preferably 0.35 to 1.00, and particularly preferably 0.35 to 0.95. preferable. If the value of A / C is within the above range, the roughened shape of the copper layer surface tends to become more uniform.
- the microetching agent of the present invention may contain components other than those described above.
- the micro-etching agent of the present invention includes a salt such as a sodium salt, potassium salt or ammonium salt of an organic acid in order to reduce pH fluctuation during the roughening treatment, or to improve the dissolution stability of copper.
- Complexing agents such as ethylenediamine, pyridine, aniline, ammonia, monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine may be added, and various other additives may be added as necessary. . When these additives are added, the concentration of the additive in the microetching agent is about 0.0001 to 20% by weight.
- microetching agent of the present invention can be easily prepared by dissolving each of the above components in ion exchange water or the like.
- a method for manufacturing a wiring board according to the present invention is a method for manufacturing a wiring board including a copper layer, wherein the surface of the copper layer is roughened by bringing the microetching agent of the present invention into contact with the surface of the copper layer. And a roughening treatment step.
- a wiring board including a plurality of copper layers only one of the plurality of copper layers may be treated with the microetching agent of the present invention, and two or more copper layers may be treated with the microetching of the present invention. You may process with an agent.
- the method of bringing the microetching agent into contact with the surface of the copper layer is not particularly limited.
- the method of spraying the microetching agent on the surface of the copper layer to be treated or the microetching of the copper layer to be treated examples include a method of immersing in the agent.
- spraying it is preferable to perform etching under conditions of a microetching agent temperature of 15 to 35 ° C. and a spray pressure of 0.03 to 0.3 MPa for 30 to 60 seconds.
- the temperature of the microetching agent is 15 to 35 ° C. and etching is performed for 30 to 90 seconds.
- the microetching agent of the present invention can be easily treated after use, and can be treated by a general and simple method using, for example, neutralization or a polymer flocculant.
- the etching amount when roughening the surface of the copper layer is preferably 0.03 ⁇ m or more, more preferably 0.05 ⁇ m or more. preferable.
- the etching amount is reduced to prevent the entire copper layer from being removed.
- the etching amount is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
- the acidic aqueous solution used for washing hydrochloric acid, sulfuric acid aqueous solution, nitric acid aqueous solution and the like can be used, but hydrochloric acid is preferable because it has little influence on the roughened shape and has high smut removability.
- the acid concentration of the acidic aqueous solution is preferably 0.3 to 35% by weight, and more preferably 1 to 10% by weight.
- the cleaning method is not particularly limited, and examples thereof include a method of spraying an acidic aqueous solution on the roughened copper layer surface, a method of immersing the roughened copper layer in the acidic aqueous solution, and the like.
- spraying it is preferable to wash the acidic aqueous solution at a temperature of 15 to 35 ° C. under a spray pressure of 0.03 to 0.3 MPa for 3 to 30 seconds.
- immersion it is preferable that the temperature of the acidic aqueous solution is 15 to 35 ° C. and the cleaning is performed for 3 to 30 seconds.
- the roughening treatment step is a step of roughening the surface of the copper layer while adding a replenisher comprising an aqueous solution containing an organic acid, halide ion, polymer and nonionic surfactant to the microetching agent. It is preferable. Thereby, the density
- the concentration of each component in the replenisher is appropriately adjusted according to the initial concentration of the microetching agent used in the treatment.
- the organic acid is 0.5 to 30% by weight
- the halide ion is 0.01 to 20% by weight.
- Polymer 0.0001 to 1% by weight and nonionic surfactant 0.0001 to 1% by weight, the concentration of each component in the microetching agent during processing can be easily maintained. it can.
- the replenisher can be easily prepared by dissolving the above components in ion exchange water or the like.
- the microetching agent of the present invention can be widely used for roughening the copper layer surface and the like.
- unevenness is uniformly formed on the surface of the treated copper layer, and adhesion to a resin such as a prepreg, a plating resist, an etching resist, a solder resist, or an electrodeposition resist is good.
- a resin such as a prepreg, a plating resist, an etching resist, a solder resist, or an electrodeposition resist is good.
- PGA pin grid arrays
- BGA ball grid arrays
- a thin copper layer for example, a copper layer having a thickness of 5 ⁇ m or less, particularly a copper layer having a thickness of 1 ⁇ m or less, such as a copper sputtered film, a copper deposited film, a copper plating film, etc. Since the crystallization process is difficult, the effect of the present invention is effectively exhibited.
- the thickness of the copper layer included in the wiring board is usually 0.3 ⁇ m or more.
- the microetching agent of the present invention is suitably used for surface roughening of a seed layer when a wiring board is manufactured by a semi-additive method. That is, according to the present invention, since the copper layer (seed layer) surface is uniformly roughened even with a low etching amount, the entire seed layer is removed even when the thickness of the seed layer is as small as 1 ⁇ m or less, for example. The surface can be roughened without causing defects, and the adhesion to the resist can be enhanced.
- a resist is formed on the copper layer.
- metal wiring generally copper wiring
- metal wiring is formed in the resist opening on the copper layer by electrolytic plating, and after the resist is removed (peeled off), the copper layer in the metal wiring non-forming portion is removed by etching.
- a substrate having an electroless copper plating film having a thickness of 1.0 ⁇ m was prepared as a test substrate.
- spraying was performed on the electroless copper plating film of the test substrate under the condition of a spray pressure of 0.1 MPa.
- Etching was performed by adjusting the etching time so that the etching amount became 0.1 ⁇ m.
- the substrate was washed with water, and the etched surface was immersed in hydrochloric acid (hydrogen chloride concentration: 3.5 wt%) at a temperature of 25 ° C. for 15 seconds, followed by washing with water and drying.
- the balance of the components of each microetching agent shown in Table 1-1 to Table 1-6 is ion exchange water.
- FIGS. 10 are SEM photographs taken at the time of SEM observation (shooting angle 45 °, magnification 5000 times). ). From the comparison between FIGS. 1 to 5 (Example) and FIGS. 6 to 10 (Comparative Example), the A / B value is in the range of 2000 to 9000 and the A / D value is in the range of 500 to 9000. It can be seen that the copper layer surface can be uniformly roughened even with a low etching amount. In addition, when there is roughening unevenness, there is usually a possibility of unevenness in adhesion, which may cause poor adhesion.
- a cellophane tape (product name: cello tape, product number CT405AP-18, manufactured by Nichiban Co., Ltd.) is pressed onto the developed resist pattern with a finger, and then the cellophane tape is peeled off to check whether the resist pattern has been peeled off. did.
- the results are shown in Table 1-1 to Table 1-6.
- Example 1 (FIG. 1), Example 2 (FIG. 2) and Example 6 (FIG. 3), Comparative Example 2 (FIG. 6) and Comparative Example 3
- a uniform roughened shape can be obtained on the entire surface of the copper layer by using a microetching agent having an A / B value within a predetermined range.
- Example 9 (FIG. 4) and Example 10 (FIG. 5) and Comparative Example 4 (FIG. 8) and Comparative Example 5 (FIG. 9)
- the value of A / D needs to be within a predetermined range.
- the concentration ratio of the three components of halide ion (A), polymer (B), and nonionic surfactant (C) in the microetching agent is within a predetermined range.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
Description
本発明の銅のマイクロエッチング剤は、第二銅イオン、有機酸、ハロゲン化物イオン、ポリマー及びノニオン性界面活性剤を含む水溶液からなる。以下、本発明の銅のマイクロエッチング剤に含まれる各成分について説明する。
第二銅イオンは、銅を酸化するための酸化剤として作用するものである。第二銅イオン源を配合することによって、マイクロエッチング剤中に第二銅イオンを含有させることができる。第二銅イオン源としては、例えば有機酸の銅塩や、塩化第二銅、臭化第二銅、水酸化第二銅、酸化第二銅等があげられる。前記銅塩を形成する有機酸は特に限定されないが、エッチング速度を適正に維持する観点から、後述するpKaが5以下の有機酸が好ましい。前記第二銅イオン源は2種以上を併用してもよい。
有機酸は、第二銅イオンによって酸化された銅を溶解させる機能を有すると共に、pH調整の機能も有する。酸化された銅の溶解性の観点から、pKaが5以下の有機酸を使用することが好ましい。pKaが5以下の有機酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸等の飽和脂肪酸;アクリル酸、クロトン酸、イソクロトン酸等の不飽和脂肪酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸等の脂肪族飽和ジカルボン酸;マレイン酸等の脂肪族不飽和ジカルボン酸;安息香酸、フタル酸、桂皮酸等の芳香族カルボン酸;グリコール酸、乳酸、リンゴ酸、クエン酸等のオキシカルボン酸、スルファミン酸、β-クロロプロピオン酸、ニコチン酸、アスコルビン酸、ヒドロキシピバリン酸、レブリン酸等の置換基を有するカルボン酸;及びそれらの誘導体等があげられる。前記有機酸は2種以上を併用してもよい。
ハロゲン化物イオンは、銅の溶解を補助し、密着性に優れた銅層表面を形成する機能を有する。ハロゲン化物イオン源を配合することによって、マイクロエッチング剤中にハロゲン化物イオンを含有させることができる。ハロゲン化物イオン源としては、例えば塩化物イオン、臭化物イオン等のイオン源が例示できる。具体的には、塩酸、臭化水素酸、塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、臭化カリウム、臭化ナトリウム、塩化銅、臭化銅、塩化亜鉛、塩化鉄、臭化錫等が挙げられる。ハロゲン化物イオン源としては、これらの他、溶液中でハロゲン化物イオンを解離しうる化合物が挙げられる。前記ハロゲン化物イオンは2種以上を併用してもよい。なかでも、密着性に優れた銅層表面を均一に形成する観点から、塩化物イオンが好ましい。なお、例えば塩化第二銅は、ハロゲン化物イオン源と第二銅イオン源の両方の作用を有するものとして使用することができる。
本発明で用いられるポリマーは、ポリアミン鎖及び/又はカチオン性基を有し、かつ重量平均分子量が1000以上の水溶性ポリマーである。前記ポリマーは、上述したハロゲン化物イオンと共に、密着性に優れた銅層表面を形成するために配合される。水溶性の観点から、重量平均分子量が1000から五百万のポリマーが好ましい。なお、上記「重量平均分子量」は、ゲル浸透クロマトグラフ分析によりポリエチレングリコール換算で得られる値である。
本発明のマイクロエッチング剤には、銅層表面を均一に粗化する観点から、ノニオン性界面活性剤が配合される。マイクロエッチング剤中のノニオン性界面活性剤の濃度は、銅層表面を均一に粗化する観点、及び処理中の泡立ちを抑制する観点から0.00001~0.1重量%が好ましく、0.0001~0.1重量%がより好ましく、0.0001~0.01重量%がさらに好ましい。なお、本発明で使用できるノニオン性界面活性剤は、ポリアミン鎖を有していないものである。
Balance)は、銅層表面を均一に粗化する観点から、6~10が好ましい。HLBが6~10のノニオン性界面活性剤の市販品としては、例えば、サーフィノール440(アセチレングリコールポリオキシエチレン付加物、日信化学社製、HLB=8)、エマルゲン404(ポリオキシエチレンオレイルエーテル、花王社製、HLB=8.8)、ニューコール2303-Y(ポリオキシアルキレンアルキルエーテル、日本乳化剤社製、HLB=9.1)などが挙げられる。
本発明のマイクロエッチング剤には、上記以外の成分が含まれていてもよい。例えば、本発明のマイクロエッチング剤には、粗化処理中のpHの変動を少なくするために有機酸のナトリウム塩やカリウム塩やアンモニウム塩等の塩や、銅の溶解安定性を向上させるためにエチレンジアミン、ピリジン、アニリン、アンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン等の錯化剤を添加してもよく、必要に応じてその他の種々の添加剤を添加してもよい。これらの添加剤を添加する場合、マイクロエッチング剤中の添加剤の濃度は、0.0001~20重量%程度である。
本発明の配線基板の製造方法は、銅層を含む配線基板を製造する配線基板の製造方法であって、前記銅層の表面に上述した本発明のマイクロエッチング剤を接触させて前記表面を粗化する粗化処理工程を有する。なお、銅層を複数層含む配線基板を製造する場合は、複数の銅層のうち一層だけを本発明のマイクロエッチング剤で処理してもよく、二層以上の銅層を本発明のマイクロエッチング剤で処理してもよい。
試験基板として、1.0μmの膜厚の無電解銅めっき膜を有する基材を用意した。次に、表1-1~表1-6に示す各マイクロエッチング剤(25℃)を用いて、スプレー圧0.1MPaの条件で上記試験基板の無電解銅めっき膜上にスプレーし、銅のエッチング量が0.1μmとなるようにエッチング時間を調整してエッチングした。次いで、水洗を行い、温度25℃の塩酸(塩化水素濃度:3.5重量%)にエッチング処理面を15秒間浸漬した後、水洗を行い、乾燥させた。なお、表1-1~表1-6に示す各マイクロエッチング剤の配合成分の残部はイオン交換水である。
上記処理後の試験基板のうち、実施例1,2,6,9,10及び比較例2,3~5,7のマイクロエッチング剤で処理した基板の無電解銅めっき膜表面を走査型電子顕微鏡(SEM)(型式JSM-7000F、日本電子社製)で観察した。図1(実施例1)、図2(実施例2)、図3(実施例6)、図4(実施例9)、図5(実施例10)、図6(比較例2)、図7(比較例3)、図8(比較例4)、図9(比較例5)、及び図10(比較例7)は、SEM観察の際に撮影したSEM写真(撮影角度45°、倍率5000倍)である。図1~5(実施例)と図6~10(比較例)の比較から、A/Bの値を2000~9000の範囲とし、かつA/Dの値を500~9000の範囲とすることによって、低エッチング量であっても銅層表面を均一に粗化できることが分かる。なお、粗化ムラがある場合は、通常、密着性にもムラができ、密着不良をおこすおそれがある。
上記処理後の試験基板の無電解銅めっき膜表面に日立化成工業社製ドライフィルム(品番RY-3325、厚み25μm)を貼り合わせ、露光パターンとしてライン/スペース=0.3mm/0.7mmのフォトマスクを用いて、80mJ/cm2の露光条件で露光した。次いで、1重量%炭酸ナトリウム水溶液(25℃)を用いて、スプレー処理(スプレー圧0.08MPa、スプレー時間30秒)にて現像した。次いで、現像後のレジストパターンの上にセロハンテープ(商品名セロテープ、品番CT405AP-18、ニチバン社製)を指で押して密着させた後、当該セロハンテープを引き剥がしてレジストパターンの剥がれの有無を確認した。結果を表1-1~表1-6に示す。
上記処理後の試験基板の無電解銅めっき膜表面に旭化成社製ドライフィルム(サンフォートSPG-102、厚み10μm)を貼り合わせ、露光パターンとしてドット/スペース=20μmφ/40μm(ドット数:255ドット)のフォトマスクを用いて、150mJ/cm2の露光条件で露光した。次いで、1重量%炭酸ナトリウム水溶液(25℃)を用いて、スプレー処理(スプレー圧0.05MPa、スプレー時間60秒)にて現像した。次いで、現像後のドット残存数を計数し、下式によりドット残存率を算出した。結果を表1-1~表1-6に示す。なお、ドット残存率が高いほど、銅表面とレジストとの密着性が均一に維持されていると評価できる。
ドット残存率(%)=ドット残存数/255ドット×100
Claims (10)
- 第二銅イオン、有機酸、ハロゲン化物イオン、ポリマー及びノニオン性界面活性剤を含む水溶液からなる銅のマイクロエッチング剤であって、
前記ポリマーは、ポリアミン鎖及び/又はカチオン性基を有し、かつ重量平均分子量が1000以上の水溶性ポリマーであり、
前記ハロゲン化物イオンの濃度をA重量%とし、前記ポリマーの濃度をB重量%とし、前記ノニオン性界面活性剤の濃度をD重量%としたときに、A/Bの値が2000~9000であり、かつA/Dの値が500~9000である、マイクロエッチング剤。 - 前記ハロゲン化物イオンの濃度が0.01~20重量%である請求項1に記載のマイクロエッチング剤。
- 前記ポリマーは、第4級アンモニウム塩型ポリマー、ポリエチレンイミン及びポリアルキレンポリアミンから選ばれる1種以上である請求項1又は2に記載のマイクロエッチング剤。
- 前記ノニオン性界面活性剤は、ポリオキシアルキレン付加物である請求項1~3のいずれか1項に記載のマイクロエッチング剤。
- 銅層を含む配線基板を製造する配線基板の製造方法であって、
前記銅層の表面に請求項1~4のいずれか1項に記載のマイクロエッチング剤を接触させて前記表面を粗化する粗化処理工程を有する、配線基板の製造方法。 - 前記マイクロエッチング剤に接触させる前の前記銅層の厚みが、1μm以下である請求項5に記載の配線基板の製造方法。
- 前記銅層の表面を粗化する際の深さ方向の平均エッチング量が、0.5μm以下である請求項5又は6に記載の配線基板の製造方法。
- 前記粗化処理工程後、粗化した銅層の表面を酸性水溶液で洗浄する請求項5~7のいずれか1項に記載の配線基板の製造方法。
- 前記粗化処理工程は、前記マイクロエッチング剤に、有機酸、ハロゲン化物イオン、ポリマー及びノニオン性界面活性剤を含む水溶液からなる補給液を添加しながら前記銅層の表面を粗化する工程であり、
前記補給液中の前記ポリマーは、ポリアミン鎖及び/又はカチオン性基を有し、かつ重量平均分子量が1000以上の水溶性ポリマーである請求項5~8のいずれか1項に記載の配線基板の製造方法。 - 請求項9に記載の配線基板の製造方法において前記マイクロエッチング剤に添加される補給液であって、
有機酸、ハロゲン化物イオン、ポリマー及びノニオン性界面活性剤を含む水溶液からなり、
前記補給液中の前記ポリマーは、ポリアミン鎖及び/又はカチオン性基を有し、かつ重量平均分子量が1000以上の水溶性ポリマーである、補給液。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147013763A KR101485873B1 (ko) | 2012-09-28 | 2013-06-25 | 구리의 마이크로 에칭제 및 그 보급액, 및 배선 기판의 제조 방법 |
US14/360,783 US9011712B2 (en) | 2012-09-28 | 2013-06-25 | Microetching solution for copper, replenishment solution therefor and method for production of wiring board |
JP2013536347A JP5404978B1 (ja) | 2012-09-28 | 2013-06-25 | 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 |
EP13804745.1A EP2878706B1 (en) | 2012-09-28 | 2013-06-25 | Microetching agent for copper, supplementary liquid for same, and manufacturing method for circuit board |
CN201380003526.9A CN103890233B (zh) | 2012-09-28 | 2013-06-25 | 铜微蚀刻剂及其补充液、以及电路板的制造方法 |
SG11201408660QA SG11201408660QA (en) | 2012-09-28 | 2013-06-25 | Microetching agent for copper, supplementary liquid for same, and manufacturing method for circuit board |
TW102128256A TWI467053B (zh) | 2012-09-28 | 2013-08-07 | 銅微蝕刻劑及其補充液、以及配線基板之製造方法 |
HK14109789.0A HK1196405A1 (zh) | 2012-09-28 | 2014-09-29 | 銅微蝕刻劑及其補充液、以及電路板的製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012216235 | 2012-09-28 | ||
JP2012-216235 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013187537A1 true WO2013187537A1 (ja) | 2013-12-19 |
Family
ID=49758346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067365 WO2013187537A1 (ja) | 2012-09-28 | 2013-06-25 | 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9011712B2 (ja) |
EP (1) | EP2878706B1 (ja) |
JP (1) | JP5404978B1 (ja) |
KR (1) | KR101485873B1 (ja) |
CN (1) | CN103890233B (ja) |
HK (1) | HK1196405A1 (ja) |
SG (1) | SG11201408660QA (ja) |
TW (1) | TWI467053B (ja) |
WO (1) | WO2013187537A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6333455B1 (ja) * | 2017-08-23 | 2018-05-30 | メック株式会社 | 銅のマイクロエッチング剤および配線基板の製造方法 |
JP6338232B1 (ja) * | 2017-09-22 | 2018-06-06 | メック株式会社 | 銅表面の粗化方法および配線基板の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104599950B (zh) * | 2014-12-31 | 2017-09-26 | 通富微电子股份有限公司 | 一种osp基板的蚀刻清洗设备及方法 |
JP6218000B2 (ja) * | 2016-02-19 | 2017-10-25 | メック株式会社 | 銅のマイクロエッチング剤および配線基板の製造方法 |
CN105887092B (zh) * | 2016-04-28 | 2019-01-15 | 华南理工大学 | 一种适用于臭氧回收法的pcb酸性蚀刻液 |
CN111020584B (zh) * | 2019-12-23 | 2022-05-31 | 昆山市板明电子科技有限公司 | 铜表面微蚀粗化液及其制备方法 |
CN114672807A (zh) * | 2022-05-26 | 2022-06-28 | 深圳市板明科技股份有限公司 | 一种高铜含量的有机酸超粗化微蚀液及其应用 |
CN115449794A (zh) * | 2022-09-15 | 2022-12-09 | 昆山市板明电子科技有限公司 | 低微蚀量粗化微蚀液、其制备方法及铜面粗化方法 |
CN116288350B (zh) * | 2023-02-23 | 2024-04-19 | 湖北兴福电子材料股份有限公司 | 一种长寿命的铜蚀刻液及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3645772A (en) | 1970-06-30 | 1972-02-29 | Du Pont | Process for improving bonding of a photoresist to copper |
JPH0941162A (ja) | 1995-08-01 | 1997-02-10 | Mec Kk | 銅および銅合金のマイクロエッチング剤 |
JPH0941163A (ja) | 1995-08-01 | 1997-02-10 | Mec Kk | 銅および銅合金のマイクロエッチング剤 |
JP2001234367A (ja) * | 2000-02-23 | 2001-08-31 | Mec Kk | 銅または銅合金の表面処理剤および表面処理法 |
JP2006111953A (ja) * | 2004-10-18 | 2006-04-27 | Mec Kk | 銅又は銅合金のエッチング剤、その製造法、補給液及び配線基板の製造法 |
JP2008285720A (ja) * | 2007-05-17 | 2008-11-27 | Toppan Printing Co Ltd | 銅溶解液およびそれを用いた銅または銅合金のエッチング方法 |
JP2009215592A (ja) * | 2008-03-10 | 2009-09-24 | Mitsubishi Paper Mills Ltd | 銅および銅合金のスプレーエッチング用エッチング液 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW363090B (en) * | 1995-08-01 | 1999-07-01 | Mec Co Ltd | Microetching composition for copper or copper alloy |
CN1195895C (zh) * | 1997-01-29 | 2005-04-06 | 美克株式会社 | 铜和铜合金的微浸蚀剂 |
JP4063475B2 (ja) | 1999-11-10 | 2008-03-19 | メック株式会社 | 銅または銅合金のエッチング剤 |
JP4090951B2 (ja) * | 2003-06-26 | 2008-05-28 | 株式会社荏原電産 | 銅及び銅合金の鏡面仕上げエッチング液 |
DE102008045306A1 (de) * | 2007-09-04 | 2009-03-05 | MEC COMPANY LTD., Amagasaki | Ätzlösung und Verfahren zur Bildung eines Leiterbildes |
JP5443863B2 (ja) | 2009-07-09 | 2014-03-19 | 株式会社Adeka | 銅含有材料用エッチング剤組成物及び銅含有材料のエッチング方法 |
-
2013
- 2013-06-25 SG SG11201408660QA patent/SG11201408660QA/en unknown
- 2013-06-25 WO PCT/JP2013/067365 patent/WO2013187537A1/ja active Application Filing
- 2013-06-25 CN CN201380003526.9A patent/CN103890233B/zh active Active
- 2013-06-25 EP EP13804745.1A patent/EP2878706B1/en active Active
- 2013-06-25 US US14/360,783 patent/US9011712B2/en active Active
- 2013-06-25 JP JP2013536347A patent/JP5404978B1/ja active Active
- 2013-06-25 KR KR1020147013763A patent/KR101485873B1/ko active IP Right Grant
- 2013-08-07 TW TW102128256A patent/TWI467053B/zh active
-
2014
- 2014-09-29 HK HK14109789.0A patent/HK1196405A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3645772A (en) | 1970-06-30 | 1972-02-29 | Du Pont | Process for improving bonding of a photoresist to copper |
JPH0941162A (ja) | 1995-08-01 | 1997-02-10 | Mec Kk | 銅および銅合金のマイクロエッチング剤 |
JPH0941163A (ja) | 1995-08-01 | 1997-02-10 | Mec Kk | 銅および銅合金のマイクロエッチング剤 |
JP2001234367A (ja) * | 2000-02-23 | 2001-08-31 | Mec Kk | 銅または銅合金の表面処理剤および表面処理法 |
JP2006111953A (ja) * | 2004-10-18 | 2006-04-27 | Mec Kk | 銅又は銅合金のエッチング剤、その製造法、補給液及び配線基板の製造法 |
JP2008285720A (ja) * | 2007-05-17 | 2008-11-27 | Toppan Printing Co Ltd | 銅溶解液およびそれを用いた銅または銅合金のエッチング方法 |
JP2009215592A (ja) * | 2008-03-10 | 2009-09-24 | Mitsubishi Paper Mills Ltd | 銅および銅合金のスプレーエッチング用エッチング液 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2878706A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6333455B1 (ja) * | 2017-08-23 | 2018-05-30 | メック株式会社 | 銅のマイクロエッチング剤および配線基板の製造方法 |
JP2019039027A (ja) * | 2017-08-23 | 2019-03-14 | メック株式会社 | 銅のマイクロエッチング剤および配線基板の製造方法 |
JP6338232B1 (ja) * | 2017-09-22 | 2018-06-06 | メック株式会社 | 銅表面の粗化方法および配線基板の製造方法 |
WO2019058835A1 (ja) * | 2017-09-22 | 2019-03-28 | メック株式会社 | 銅のマイクロエッチング剤、銅表面の粗化方法および配線基板の製造方法 |
US11208726B2 (en) | 2017-09-22 | 2021-12-28 | Mec Company Ltd. | Microetching agent for copper, copper surface roughening method and wiring board production method |
Also Published As
Publication number | Publication date |
---|---|
HK1196405A1 (zh) | 2014-12-12 |
SG11201408660QA (en) | 2015-01-29 |
EP2878706A4 (en) | 2015-12-09 |
US9011712B2 (en) | 2015-04-21 |
CN103890233A (zh) | 2014-06-25 |
EP2878706B1 (en) | 2016-11-09 |
KR20140068271A (ko) | 2014-06-05 |
CN103890233B (zh) | 2016-01-20 |
KR101485873B1 (ko) | 2015-01-26 |
TWI467053B (zh) | 2015-01-01 |
JPWO2013187537A1 (ja) | 2016-02-08 |
US20140326696A1 (en) | 2014-11-06 |
TW201413056A (zh) | 2014-04-01 |
JP5404978B1 (ja) | 2014-02-05 |
EP2878706A1 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5404978B1 (ja) | 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 | |
JP5219008B1 (ja) | 銅のマイクロエッチング剤及びその補給液、並びに配線基板の製造方法 | |
EP0757118B1 (en) | Method for microetching copper or copper alloy | |
JP4063475B2 (ja) | 銅または銅合金のエッチング剤 | |
JP2781954B2 (ja) | 銅および銅合金の表面処理剤 | |
CN111094628B (zh) | 微蚀刻剂、铜表面的粗化方法以及配线基板的制造方法 | |
TWI627308B (zh) | 銅的微蝕刻劑及配線基板的製造方法 | |
JP6333455B1 (ja) | 銅のマイクロエッチング剤および配線基板の製造方法 | |
CN114231985A (zh) | 铜表面粗化微蚀液及其使用方法 | |
JP6598917B2 (ja) | 銅のマイクロエッチング剤 | |
WO2017141799A1 (ja) | 銅のマイクロエッチング剤および配線基板の製造方法 | |
TWI732727B (zh) | 微蝕刻劑及配線基板之製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013536347 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013804745 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013804745 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13804745 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147013763 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14360783 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |