WO2013187101A1 - エンジン始動装置およびエンジン始動方法 - Google Patents

エンジン始動装置およびエンジン始動方法 Download PDF

Info

Publication number
WO2013187101A1
WO2013187101A1 PCT/JP2013/057785 JP2013057785W WO2013187101A1 WO 2013187101 A1 WO2013187101 A1 WO 2013187101A1 JP 2013057785 W JP2013057785 W JP 2013057785W WO 2013187101 A1 WO2013187101 A1 WO 2013187101A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
pinion gear
fuel injection
starter
satisfied
Prior art date
Application number
PCT/JP2013/057785
Other languages
English (en)
French (fr)
Inventor
弘明 北野
水野 大輔
石川 修
健 岡部
亀井 光一郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380031149.XA priority Critical patent/CN104350260B/zh
Priority to JP2014520975A priority patent/JP5901763B2/ja
Priority to US14/396,819 priority patent/US9631596B2/en
Priority to DE112013003078.0T priority patent/DE112013003078B4/de
Publication of WO2013187101A1 publication Critical patent/WO2013187101A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • F02P5/1558Analogue data processing with special measures for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N2019/002Aiding engine start by acting on fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is used in an engine automatic stop / restart system in which fuel injection to the engine is stopped when a predetermined engine automatic stop condition is satisfied, the engine is automatically stopped, and then the engine is restarted when the engine restart condition is satisfied.
  • the present invention relates to an engine starter and an engine start method.
  • an engine automatic stop / restart system that automatically stops the engine when a predetermined condition is satisfied has been developed for the purpose of improving the fuel consumption of an automobile and reducing the environmental load.
  • the conventional engine automatic stop / restart system since it takes time until the engine rotation is completely stopped by the frictional force, the conventional engine automatic stop / restart system has a problem that the engine cannot be restarted during this period.
  • Patent Document 1 discloses that the starter is driven before the engine is stopped and fuel injection to the engine is restarted at the same time. However, the timing for restarting the starter and fuel injection is not shown.
  • Patent Document 2 shows that an engine rotation descent trajectory is predicted based on an energy change, and based on the engine rotation descent trajectory, the starter pinion gear meshes with the ring gear to restart the engine. The restart timing of fuel injection is not shown.
  • Patent Document 3 describes the operation of the pinion gear driving means and the starter motor when the engine restart condition is satisfied and the fuel injection to the engine is restarted and the engine cannot self-recovery only by restarting the fuel injection. Although control is shown, the restart timing of fuel injection when the starter motor is rotated after the movement of the pinion gear is started is not shown.
  • Patent Documents 1 to 3 do not show the restart timing of fuel injection after the engine restart condition is satisfied and the movement of the pinion gear is started, so it takes a long time for the engine to restart combustion. At the same time, there is a problem that noise is generated due to poor meshing of the gears.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an engine starter and an engine start method that can quickly and silently restart the engine during inertial rotation.
  • An engine starter is an engine starter that stops fuel injection to an engine when an automatic engine stop condition is satisfied, automatically stops the engine, and then restarts the engine when the engine restart condition is satisfied.
  • a ring gear connected to the crankshaft of the engine, a starter motor that rotates by energization, a pinion gear that transmits rotation of the starter motor to the ring gear, and a pinion that meshes by moving the pinion gear in the ring gear direction by energization
  • a gear moving unit, and a fuel injection control unit that restarts fuel injection so that combustion occurs in a predetermined compression cylinder after the engine restart condition is satisfied and after the pinion gear moving unit starts moving the pinion gear. It is a thing.
  • the engine starting method includes a ring gear coupled to an engine crankshaft, a starter motor that rotates when energized, a pinion gear that transmits rotation of the starter motor to the ring gear, and a pinion gear that is energized.
  • a pinion gear moving section that moves in the ring gear direction and meshes, and stops the fuel injection to the engine when the engine automatic stop condition is satisfied and automatically stops the engine, and then the engine is restarted when the engine restart condition is satisfied.
  • An engine start method executed by an engine start device to be restarted, wherein fuel is generated so that combustion occurs in a predetermined compression cylinder after the engine restart condition is satisfied and after the movement of the pinion gear by the pinion gear moving unit is started.
  • a fuel injection control step for restarting the injection.
  • the fuel injection control unit (fuel injection control step) performs a predetermined operation after the engine restart condition is satisfied and after the pinion gear moving unit starts moving the pinion gear. Fuel injection is restarted so that combustion occurs in the compression cylinder. Therefore, it is possible to obtain an engine starter and an engine start method that can shorten the time until the engine restarts combustion, and can quickly and silently restart the engine during inertial rotation.
  • FIG. 1 It is a block block diagram which shows schematic structure of the engine starting apparatus which concerns on Embodiment 1 of this invention. It is a partially broken front view of the starter of the engine starter according to Embodiment 1 of the present invention. It is a flowchart which shows a series of processes in the engine starting apparatus which concerns on Embodiment 1 of this invention. It is a flowchart which shows a series of processes when the engine restart conditions are satisfied in the engine starter according to Embodiment 1 of the present invention. 6 is a timing chart showing an operation when fuel injection is resumed in a state where the engine rotation speed is higher than the starter-driven post-combustion rotation speed in the engine starter according to Embodiment 1 of the present invention.
  • (A), (b) is explanatory drawing which shows the fuel-injection control in the engine starting apparatus which concerns on Embodiment 1 of this invention compared with a prior art. It is a timing chart which shows operation
  • FIG. 1 is a block configuration diagram showing a schematic configuration of an engine starting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially cutaway front view of the starter of the engine starting device according to Embodiment 1 of the present invention.
  • the engine starter 10 includes a ring gear 11, a crank angle sensor 12, a controller 13, a starter 14, an injector 15, and an ignition coil 16.
  • the starter 14 includes a solenoid 141, a plunger 142, a lever 143, a pinion gear 144, a starter motor 145, and a one-way clutch 146.
  • the ring gear 11 is connected to an engine crankshaft (not shown) and meshes with the pinion gear 144 to transmit driving force to the engine.
  • the crank angle sensor 12 detects the crank angle of the engine for determining the fuel injection timing and the ignition timing, and outputs a signal corresponding to the detected value to the controller 13.
  • the controller 13 is constituted by, for example, an engine ECU (not shown) or the like. Based on a signal from the crank angle sensor 12, the controller 13 energizes the solenoid 141 of the starter 14, fuel injection to each cylinder by the injector 15, and ignition. Ignition by energizing the coil 16 is controlled.
  • the plunger 142 When the solenoid 141 is energized, the plunger 142 is attracted and the pinion gear 144 is moved via the lever 143, whereby the pinion gear 144 is engaged with the ring gear 11. Further, the contact is closed by the movement of the plunger 142, the starter motor 145 is energized, the pinion gear 144 is rotated, and the driving force is transmitted to the engine while the ring gear 11 is engaged with the pinion gear 144.
  • the one-way clutch 146 is connected to the output shaft of the starter motor 145, and rotates idly when torque is input from the ring gear 11.
  • the controller 13 calculates a crank angle based on a signal from the crank angle sensor 12 and the like, and performs fuel injection by the injector 15 according to the crank angle. Further, the controller 13 charges the ignition coil 16 in accordance with the calculated crank angle, generates a spark with an ignition plug (not shown), and ignites the fuel.
  • the controller 13 calculates the engine speed NE based on the cycle of the crankshaft rotation pulse output from the crank angle sensor 12. Instead of calculating the engine speed NE by the controller 13, a pulse generator or the like capable of detecting a pulse based on the teeth of the rotary encoder and the ring gear 11 is provided, and FV (frequency-voltage) conversion of signals from these is provided.
  • the engine speed NE may be calculated.
  • the rotation speed of the starter motor 145 may be reduced by the gear ratio between the pinion gear 144 and the ring gear 11 or a planetary gear (not shown). And In the first embodiment, the rotational speed is indicated, but the control by the peripheral speed may be performed using the gear radius.
  • an engine automatic stop condition for example, a vehicle speed of 15 km / h or less and a driver is stepping on a brake
  • the controller 13 performs fuel injection to the engine. Stop and let the engine rotate inertially.
  • FIG. 3 is a flowchart showing a series of processes in the engine starting device according to Embodiment 1 of the present invention.
  • the controller 13 determines whether or not an engine automatic stop condition is satisfied (step S101).
  • step S101 when it is determined in step S101 that the engine automatic stop condition is satisfied (that is, Yes), the controller 13 starts engine stop control (step S102). Specifically, the controller 13 stops fuel injection to the engine and reduces the engine speed NE by inertia rotation.
  • the controller 13 determines that the engine is automatically stopped, and sets the engine automatic stop flag F1 to “1” (step S103).
  • the controller 13 determines whether or not the engine is coasting (step S104).
  • whether or not the engine is rotating by inertia can be determined, for example, by determining whether or not a crank angle pulse has been detected during a predetermined time (for example, 300 ms).
  • step S104 if the crank angle pulse is not detected within a predetermined time and it is determined that the engine is not coasting (ie, No), the controller 13 determines that the engine is completely stopped. Then, the process of FIG. 3 is terminated and the process proceeds to the next control cycle.
  • step S104 determines whether or not the engine is inertially rotating (that is, Yes).
  • step S105 If it is determined in step S105 that the engine restart condition is satisfied (that is, Yes), the controller 13 performs engine restart control (step S106).
  • step S105 determines whether the engine restart condition is not satisfied (that is, No) or not satisfied (that is, No). If it is determined in step S105 that the engine restart condition is not satisfied (that is, No), the controller 13 ends the process of FIG. 3 and proceeds to the next control cycle.
  • step S101 determines whether or not the engine automatic stop flag F1 is “1”.
  • step S107 If it is determined in step S107 that the engine automatic stop flag F1 is “1” (that is, Yes), the controller 13 determines that the engine is automatically stopped, and the process proceeds to step S106. Perform restart control (continue).
  • step S107 if it is determined in step S107 that the engine automatic stop flag F1 is “0” (that is, No), the controller 13 determines that the engine is not automatically stopped and ends the process of FIG. Then, it proceeds to the next control cycle.
  • FIG. 4 is a flowchart showing a series of processes related to starter control and fuel injection when the engine restart condition is satisfied in the engine start device according to Embodiment 1 of the present invention.
  • the controller 13 determines whether or not the engine rotational speed NE is equal to or lower than the startable combustible rotational speed Nr1 (for example, 400 rpm) (step S201).
  • “combustible after starter driving” means that the engine speed NE decreases and combustion occurs after the controller 13 has engaged the pinion gear 144 and the ring gear 11 by energizing the solenoid 141.
  • FIG. 5 is a timing chart showing an operation when fuel injection is resumed in a state where the engine rotation speed is higher than the combustible rotation speed after starter driving in the engine starter according to Embodiment 1 of the present invention.
  • the pinion gear 144 is repelled by the gear end surface of the ring gear 11, which may cause noise and gear wear.
  • the meshing completion means that the difference between the engine rotational speed NE and the starter motor rotational speed is within a predetermined meshing range (for example, 100 rpm), and the pinion gear 144 moves deeper than the end face of the ring gear 11. In other words, the torque can be transmitted to each other.
  • step S201 when it is determined in step S201 that the engine rotational speed NE is higher than the starter-driven post-combustion combustible rotational speed Nr1 (ie, No), the controller 13 ends the process of FIG. To the next control cycle.
  • step S201 if it is determined in step S201 that the engine rotational speed NE is equal to or less than the combustible rotational speed Nr1 after starter driving (that is, Yes), the controller 13 resumes fuel injection (step S202).
  • the controller 13 determines whether or not the engine rotational speed NE is equal to or less than the starter drive permission rotational speed Nr2 (for example, 200 rpm) (step S203).
  • the starter drive permission is to start the movement of the pinion gear 144 by starting energization of the solenoid 141.
  • step S203 If it is determined in step S203 that the engine rotational speed NE is greater than the starter drive permission rotational speed Nr2 (that is, No), the controller 13 ends the processing of FIG. 4 and proceeds to the next control cycle. move on.
  • step S203 if it is determined in step S203 that the engine rotational speed NE is equal to or lower than the starter drive permission rotational speed Nr2 (that is, Yes), the controller 13 starts energizing the solenoid 141 (step S204).
  • step S205 determines whether or not the engine restart has been completed.
  • whether or not the engine restart has been completed can be determined based on, for example, whether or not the engine rotational speed NE has become equal to or higher than a predetermined rotational speed (for example, 700 rpm).
  • step S205 If it is determined in step S205 that the engine restart has not been completed (ie, No), the controller 13 ends the process of FIG. 4 and proceeds to the next control cycle.
  • step S205 if it is determined in step S205 that the engine restart has been completed (that is, Yes), the controller 13 stops energization of the solenoid 141 and releases the meshing between the pinion gear 144 and the ring gear 11. At the same time, energization of the starter motor 145 is stopped (step S206).
  • controller 13 sets the engine automatic stop flag F1 to “0” (step S207), ends the processing of FIG. 3, and proceeds to the next control cycle.
  • FIG. 6 (a) and 6 (b) are explanatory views showing fuel injection control in the engine starting device according to Embodiment 1 of the present invention in comparison with the prior art.
  • FIG. 6 (a) shows the resumption of fuel injection in conjunction with the starter drive in Patent Document 1
  • FIG. 6 (b) shows the resumption of fuel injection in the engine starting device according to Embodiment 1 of the present invention. Yes.
  • FIG. 6 shows the case of a three-cylinder engine.
  • the arrows in the figure indicate the ignition timing.
  • the ignition timing is interrupted during automatic engine stop, and ignition is resumed at a predetermined timing (here, every crank angle BTDC05 deg during the compression stroke) after the engine restart condition is satisfied.
  • a predetermined timing here, every crank angle BTDC05 deg during the compression stroke
  • “explosion” indicates an explosion stroke
  • “exhaust” indicates an exhaust stroke
  • suction indicates an intake stroke
  • pressure indicates a compression stroke.
  • the fuel injected at timing A1 is sucked into the cylinder, ignited at timing B1, and the first explosion occurs.
  • fuel is injected into the cylinders in the intake stroke and the exhaust stroke, but the fuel injected into the cylinders in the intake stroke (cylinder # 3 in FIG. 6 (a)) is compressed immediately thereafter. Therefore, there is a case where the fuel does not sufficiently enter the cylinder and does not burn in the first compression after the fuel injection (timing B2). Therefore, the first combustion occurs in the compression of the cylinder (# 2 cylinder in FIG. 6A) injected with fuel in the exhaust stroke at timing A1 (timing B1).
  • the fuel injection is performed at normal sequential injection, for example, every crank angle BTDC05deg during the exhaust stroke (timing indicated by the shaded portion in FIG. 6A). The engine can be restarted.
  • a predetermined plurality of cylinders for example, a cylinder in the intake stroke and a cylinder in the exhaust stroke
  • fuel injection is performed (timing A2 in FIG. 6B).
  • the fuel injected at timing A2 is sucked into the cylinder, ignited at timing B2, and the first explosion occurs. Further, after the fuel injection is performed at the timing A2, the engine can be restarted by shifting to the sequential injection described above.
  • the restart of the fuel injection in the engine starter according to Embodiment 1 of the present invention is earlier than the restart of the engine due to the restart of the fuel injection in conjunction with the starter drive (T1 shown in FIG. 6B).
  • the first explosion can be reached in the period of time), and as a result, the time required for the engine to restart is shortened.
  • FIG. 7 is a timing chart showing the operation of the engine starter according to Embodiment 1 of the present invention.
  • the engine automatic stop condition is satisfied while the vehicle is running, and the fuel injection is stopped. Thereafter, at the time t3 when the engine restart condition (for example, the driver removes his / her foot from the brake pedal) is established, the engine speed NE is higher than the combustible speed Nr1 after the starter is driven, so the fuel injection is not resumed. (No in step S201 in FIG. 4).
  • the engine restart condition for example, the driver removes his / her foot from the brake pedal
  • the fuel injection is restarted at time t4 when the engine rotational speed NE further decreases and becomes equal to or lower than the combustible rotational speed Nr1 after the starter is driven (Yes in step S201 in FIG. 4).
  • the fuel injection is restarted at time t5 when the engine rotational speed NE becomes equal to or less than the starter drive permission rotational speed Nr2, energization of the solenoid 141 is started to drive the starter motor 145.
  • the fuel injected at time t4 burns in the compression stroke, and an initial explosion occurs at time t6.
  • the engine rotation behavior when the fuel injection is restarted in conjunction with the starter drive is indicated by a dotted line in FIG. 7, but the fuel injection is restarted not at time t4 but at time t5 or later.
  • the fuel is not in time for the compression stroke at time t6, and an initial explosion occurs at time t7 at the earliest.
  • the controller 13 resumes fuel injection before the start of the movement of the pinion gear 144 after the engine speed NE becomes equal to or lower than the combustible speed Nr1 after the starter is driven after the engine restart condition during inertial rotation is satisfied.
  • combustion is generated in the first compression cylinder after the gear meshing.
  • the engine can be restarted promptly and silently, without giving the driver a sense of incongruity, and further by shortening the energization time of the starter, thereby achieving power saving and longer component life. it can.
  • engine start is performed in which fuel injection to the engine is stopped and the engine is automatically stopped when the engine automatic stop condition is satisfied, and then the engine is restarted when the engine restart condition is satisfied.
  • a ring gear connected to the crankshaft of the engine, a starter motor that rotates when energized, a pinion gear that transmits rotation of the starter motor to the ring gear, and a pinion gear that moves when energized moves in the ring gear direction.
  • a pinion gear moving unit that meshes with each other, and a fuel injection control unit that restarts fuel injection so that combustion occurs in a predetermined compression cylinder after the engine restart condition is established and after the pinion gear moving unit starts moving the pinion gear And.
  • the predetermined compression cylinder is the first compression cylinder after completion of meshing of the pinion gear and the ring gear. Therefore, the restart of the engine can be accelerated by performing fuel injection so that combustion occurs in the first compression cylinder after the starter motor is driven.
  • the fuel injection control unit resumes fuel injection after the engine restart condition is satisfied and before the pinion gear moving unit starts moving the pinion gear.
  • the pinion gear moving unit starts moving the pinion gear based on at least the engine rotation speed, and then starts the starter. Therefore, the engine restart can be accelerated by performing fuel injection so that combustion occurs at the first ignition timing after the starter motor is driven.
  • Embodiment 2 FIG. In the first embodiment, it has been described that the fuel injection is restarted by comparing the engine speed NE with the starter-driven combustible speed Nr1, and combustion is generated in the first compression cylinder after the gear meshing.
  • the fuel injection may be restarted so that combustion occurs in the first compression cylinder that becomes equal to or higher than the combustion permission engine rotation speed (for example, 200 rpm) after the gear engagement.
  • the controller 13 restarts fuel injection so that combustion occurs in the first compression cylinder in which the engine speed NE is equal to or higher than the combustion permission engine speed Nr3.
  • the configuration of the engine starter according to Embodiment 2 of the present invention is the same as that of Embodiment 1 described above, and a description thereof will be omitted.
  • FIG. 8 is a flowchart showing a series of processes in the engine starter according to Embodiment 2 of the present invention.
  • step S304 determines whether the engine is inertially rotated (ie, Yes)
  • step S308 determines whether the engine automatic stop flag F1 is “1” (that is, Yes)
  • the controller 13 further performs fuel injection permission determination (step S305 or step S309).
  • FIG. 9 is a flowchart showing a series of processes for determining fuel injection permission in the engine starting apparatus according to Embodiment 2 of the present invention.
  • the controller 13 determines whether or not the crank angle CA at the current processing timing is an angle CA1 (for example, BTDC 90 deg) that is the intake limit (step S401).
  • an angle CA1 for example, BTDC 90 deg
  • step S401 If it is determined in step S401 that the crank angle CA at the current processing timing is not the angle CA1 that is the intake limit (that is, No), the controller 13 determines the crank angle CA at the current processing timing in advance. It is determined whether or not the determined combustible determination angle CA2 (for example, BTDC 30 deg) (step S402).
  • the determined combustible determination angle CA2 for example, BTDC 30 deg
  • the combustible determination angle CA2 is an angle retroactive from the ignition timing (BTDC05deg) in the compression cylinder by the rotation angle necessary until the engine speed NE becomes equal to or higher than the combustion permission engine speed Nr3 by the starter motor 145. is there.
  • the combustion possible determination angle CA2 is BTDC 30 deg, which is 25 deg backward from BTDC05 deg. Become.
  • step S402 If it is determined in step S402 that the crank angle CA at the current processing timing is the combustible determination angle CA2 (that is, Yes), the controller 13 sets the engine speed NE at the current processing timing to NECA3.
  • step S403 Store the engine speed at the combustible determination angle CA2 in the current stroke, and end the fuel injection permission determination processing at the current processing timing shown in FIG.
  • step S402 determines whether the crank angle CA at the current processing timing is not the combustible determination angle CA2 (that is, No).
  • the controller 13 continues at the current processing timing shown in FIG. The fuel injection permission determination process is terminated.
  • step S401 determines whether the crank angle CA at the current processing timing is the angle CA1 that is the intake limit (ie, Yes).
  • the controller 13 stores NECA1 in NECA2 (step S401).
  • step S404 the engine speed at the angle CA1 that is the intake limit in the previous stroke is stored.
  • the controller 13 stores the engine rotation speed NE at the current processing timing in NECA 1 (step S405), and stores the engine rotation speed at the angle CA1 that is the intake limit in the current stroke.
  • the controller 13 determines whether or not the engine rotation speed NEb at the combustion timing of the first compression cylinder after the gear meshing is equal to or higher than the combustion permission engine rotation speed Nr3, that is, whether or not fuel injection is permitted (Ste S406).
  • step S406 When it is determined in step S406 that the engine speed NEb is equal to or higher than the combustion permission engine speed Nr3 (that is, Yes), the controller 13 sets the fuel injection permission flag F2 to “1” (Ste S407) and the process proceeds to Step S402.
  • step S406 determines whether the engine rotation speed NEb is lower than the combustion permission engine rotation speed Nr3 (ie, No). If it is determined in step S406 that the engine rotation speed NEb is lower than the combustion permission engine rotation speed Nr3 (ie, No), the controller 13 proceeds to step S402 as it is.
  • step S406 specifically, determination is performed based on the following equation (1).
  • the rotational energy change ELoss1 during one stroke at the angle CA1 that is the intake limit can be expressed by the following equation (2), where J is the rotational inertia of the engine.
  • the left side of equation (1) is obtained by dividing equation (4) by J and doubling it.
  • the left side of the equation (1) is smaller than 0, that is, when the rotational energy at the combustible determination angle CA2 in the next stroke is smaller than 0, only the inertial rotation of the engine does not rotate to the angle, and the pinion gear 144 and the ring gear 11 means that the angle reaches the angle during rotation by the starter motor 145 after meshing with the motor 11.
  • the combustion timing of the compression cylinder is reached after the engine rotation speed NE becomes equal to or higher than the combustion permission engine rotation speed Nr3. The engine can be restarted smoothly.
  • FIG. 10 is a flowchart showing a series of processes relating to starter control and fuel injection when the engine restart condition is satisfied in the engine start device according to Embodiment 2 of the present invention.
  • the controller 13 determines whether or not the fuel injection permission flag F2 is “1” (step S501).
  • step S501 when it is determined that the fuel injection permission flag F2 is “1” (that is, Yes), the process proceeds to step S502, and fuel injection is resumed.
  • the processing after step S502 is the same as step S202 to step S207 shown in FIG.
  • step S501 determines that the fuel injection permission flag F2 is “0” (that is, No)
  • the controller 13 determines that the engine speed NE at the current processing timing is the starter drive permission rotation speed. It is determined whether or not Nr2 or more (step S508).
  • step S508 If it is determined in step S508 that the engine rotational speed NE at the current processing timing is equal to or higher than the starter drive permission rotational speed Nr2 (that is, Yes), the controller 13 resumes fuel injection (step S509). Then, the process proceeds to step S504, and energization of the solenoid 141 is started.
  • step S508 if it is determined in step S508 that the engine rotational speed NE at the current processing timing is smaller than the starter drive permission rotational speed Nr2 (that is, No), the controller 13 performs the current processing shown in FIG. The engine restart control process at the process timing is terminated, and the process proceeds to the next control cycle.
  • the controller 13 determines whether or not the engine rotation speed NEb at the combustion timing in the compression cylinder is equal to or higher than the combustion permission engine rotation speed Nr3 depending on whether or not the engine rotation energy at the combustible determination angle CA2 is smaller than 0. Determine whether. Further, based on this determination, the controller 13 resumes fuel injection before the movement of the pinion gear 144, and causes combustion in the first compression cylinder that is equal to or higher than the combustion permission engine rotational speed Nr3.
  • the engine can be restarted promptly and silently, without giving the driver a sense of incongruity, and further by shortening the energization time of the starter, thereby achieving power saving and longer component life. it can.
  • engine start is performed in which fuel injection to the engine is stopped and the engine is automatically stopped when the engine automatic stop condition is satisfied, and then the engine is restarted when the engine restart condition is satisfied.
  • a ring gear connected to the crankshaft of the engine, a starter motor that rotates when energized, a pinion gear that transmits rotation of the starter motor to the ring gear, and a pinion gear that moves when energized moves in the ring gear direction.
  • a pinion gear moving unit that meshes with each other, and a fuel injection control unit that restarts fuel injection so that combustion occurs in a predetermined compression cylinder after the engine restart condition is established and after the pinion gear moving unit starts moving the pinion gear And.
  • the engine further includes a rotation speed prediction unit that predicts an engine rotation speed in a predetermined compression cylinder, and the predetermined compression cylinder has a first compression at which the engine rotation speed predicted by the rotation speed prediction unit is equal to or higher than the predetermined rotation speed. Cylinder. Therefore, the restart of the engine can be accelerated by performing fuel injection so that combustion occurs in the first compression cylinder after the starter motor is driven.
  • the rotational speed prediction unit predicts the engine rotational speed before the intake limit in each cylinder of the engine. Therefore, the restart of the engine can be accelerated by performing fuel injection so that combustion occurs at the first ignition timing after the starter motor is driven.
  • Embodiment 3 FIG.
  • the combustion timing is described as BTDC05 deg.
  • ignition may be performed by starting voltage charging to the ignition coil 16 after top dead center (for example, ATDC05 deg).
  • combustion possible determination angle CA2 can be set to an angle closer to the top dead center.
  • the ignition coil and the ignition timing control unit that controls the ignition timing by the ignition coil are further provided, and the ignition timing control unit increases ignition to a predetermined compression cylinder. After dead point.
  • the ignition preparation unit further includes an ignition coil and an ignition preparation unit that charges the ignition coil with a voltage, and the ignition preparation unit starts charging the ignition coil after top dead center. Therefore, the restart of the engine can be accelerated by performing fuel injection so that combustion occurs at the first ignition timing after the starter motor is driven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

 エンジンの慣性回転中の再始動を速やか、かつ静粛に行うことができるエンジン始動装置およびエンジン始動方法を得る。 エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン始動装置であって、エンジンのクランク軸に連結されたリングギア11と、通電により回転するスタータモータ145と、スタータモータ145の回転をリングギア11に伝達するピニオンギア144と、通電によりピニオンギア144をリングギア11方向に移動させて噛み合わせるピニオンギア移動部と、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギア144の移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御部とを備えたものである。

Description

エンジン始動装置およびエンジン始動方法
 この発明は、所定のエンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン自動停止再始動システムに用いられるエンジン始動装置およびエンジン始動方法に関する。
 従来、自動車の燃費改善や環境負荷低減等を目的として、所定の条件が満たされるとエンジンを自動で停止するエンジン自動停止再始動システムが開発されてきた。しかしながら、エンジン回転が摩擦力によって完全に停止するまでには時間がかかるので、従来のエンジン自動停止再始動システムでは、この期間におけるエンジンの再始動が不可能であるという問題があった。
 そこで、この問題を解決するために、エンジン回転速度が、回転駆動機構をエンジンに係合させることのできる回転速度に低下したと判定された場合に、回転駆動機構をエンジンに係合させてエンジンを回転駆動するエンジンの始動制御装置が提案されている(例えば、特許文献1参照)。
 また、エンジンを自動停止させる際のエンジン回転速度が降下する軌道を予測し、エンジン回転降下軌道の予測データに基づいて、スタータのピニオンギアを押し出してエンジンのクランク軸に連結されたリングギアと噛み合わせるタイミングを決定するエンジン自動停止始動制御装置が提案されている(例えば、特許文献2参照)。
 また、エンジン停止条件が成立してエンジンへの燃料噴射を停止した後、エンジンが停止する前にエンジン再始動条件が成立した場合に、燃料噴射の再開のみでエンジンが再始動する自己復帰が可能であると判定されたときには、エンジンへの燃料噴射を再開してエンジンを自己復帰させ、エンジンの自己復帰ができないと判定されたときには、エンジンへの燃料噴射を再開するとともに、エンジン回転速度およびピニオンギア回転速度に基づいて、ピニオンギアを軸方向に移動させてリングギアと噛み合わせるピニオンギア駆動手段、およびピニオンギアを回転駆動させるスタータモータの動作を制御するエンジン自動停止再始動装置が提案されている(例えば、特許文献3参照)。
特開2003-65191号公報 特開2011-140938号公報 特開2011-169225号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1には、エンジンの停止前にスタータを駆動し、それに併せてエンジンへの燃料噴射を再開することが示されているが、スタータ駆動および燃料噴射の再開タイミングについては示されていない。
 また、特許文献2には、エネルギ変化によりエンジン回転降下軌道を予測し、エンジン回転降下軌道に基づいて、スタータのピニオンギアをリングギアと噛み合わせてエンジンを再始動することが示されているが、燃料噴射の再開タイミングについては示されていない。
 また、特許文献3には、エンジン再始動条件が成立したと同時にエンジンへの燃料噴射を再開し、エンジンが燃料噴射の再開のみで自己復帰できない場合において、ピニオンギア駆動手段およびスタータモータの動作を制御することが示されているが、ピニオンギアの移動を開始した後にスタータモータを回転させる際の燃料噴射の再開タイミングについては示されていない。
 すなわち、特許文献1~3では、エンジン再始動条件が成立し、ピニオンギアの移動を開始した後における燃料噴射の再開タイミングが示されていないので、エンジンが燃焼を再開するまでに長時間を要するとともに、ギアの噛み合い不良により騒音が発生するという問題がある。
 この発明は、上記のような課題を解決するためになされたものであり、エンジンの慣性回転中の再始動を速やか、かつ静粛に行うことができるエンジン始動装置およびエンジン始動方法を得ることを目的とする。
 この発明に係るエンジン始動装置は、エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン始動装置であって、エンジンのクランク軸に連結されたリングギアと、通電により回転するスタータモータと、スタータモータの回転をリングギアに伝達するピニオンギアと、通電によりピニオンギアをリングギア方向に移動させて噛み合わせるピニオンギア移動部と、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御部と、を備えたものである。
 また、この発明に係るエンジン始動方法は、エンジンのクランク軸に連結されたリングギアと、通電により回転するスタータモータと、スタータモータの回転をリングギアに伝達するピニオンギアと、通電によりピニオンギアをリングギア方向に移動させて噛み合わせるピニオンギア移動部と、を備え、エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン始動装置によって実行されるエンジン始動方法であって、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御ステップ、を備えたものである。
 この発明に係るエンジン始動装置およびエンジン始動方法によれば、燃料噴射制御部(燃料噴射制御ステップ)は、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する。
 そのため、エンジンが燃焼を再開するまでの時間を短縮し、エンジンの慣性回転中の再始動を速やか、かつ静粛に行うことができるエンジン始動装置およびエンジン始動方法を得ることができる。
この発明の実施の形態1に係るエンジン始動装置の概略構成を示すブロック構成図である。 この発明の実施の形態1に係るエンジン始動装置のスタータの一部破断正面図である。 この発明の実施の形態1に係るエンジン始動装置における一連の処理を示すフローチャートである。 この発明の実施の形態1に係るエンジン始動装置におけるエンジン再始動条件成立時の一連の処理を示すフローチャートである。 この発明の実施の形態1に係るエンジン始動装置において、エンジン回転速度がスタータ駆動後燃焼可能回転速度よりも高い状態で燃料噴射が再開された場合の動作を示すタイミングチャートである。 (a)、(b)は、この発明の実施の形態1に係るエンジン始動装置における燃料噴射制御を、従来技術と比較して示す説明図である。 この発明の実施の形態1に係るエンジン始動装置の動作を示すタイミングチャートである。 この発明の実施の形態2に係るエンジン始動装置における一連の処理を示すフローチャートである。 この発明の実施の形態2に係るエンジン始動装置における燃料噴射許可判定の一連の処理を示すフローチャートである。 この発明の実施の形態2に係るエンジン始動装置におけるエンジン再始動条件成立時の一連の処理を示すフローチャートである。
 以下、この発明に係るエンジン始動装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。なお、以下の実施の形態では、ポート噴射式の3気筒エンジンを例に挙げて説明する。
 実施の形態1.
 図1は、この発明の実施の形態1に係るエンジン始動装置の概略構成を示すブロック構成図である。また、図2は、この発明の実施の形態1に係るエンジン始動装置のスタータの一部破断正面図である。
 図1、2において、エンジン始動装置10は、リングギア11、クランク角センサ12、コントローラ13、スタータ14、インジェクタ15およびイグニッションコイル16を備えている。また、スタータ14は、ソレノイド141、プランジャ142、レバー143、ピニオンギア144、スタータモータ145およびワンウェイクラッチ146を有している。
 リングギア11は、エンジンのクランク軸(図示せず)に連結され、ピニオンギア144と噛み合って駆動力をエンジンに伝達する。クランク角センサ12は、燃料噴射タイミングおよび点火タイミングを決定するためのエンジンのクランク角を検出して、その検出値に応じた信号をコントローラ13に出力する。
 コントローラ13は、例えばエンジンECU(図示せず)等によって構成され、クランク角センサ12からの信号等に基づいて、スタータ14のソレノイド141への通電、インジェクタ15による各気筒への燃料噴射、およびイグニッションコイル16への通電による点火を制御する。
 ソレノイド141への通電により、プランジャ142が吸引され、レバー143を介してピニオンギア144が移動されることで、ピニオンギア144がリングギア11と噛み合わされる。また、プランジャ142の移動により接点が閉じられ、スタータモータ145へと通電され、ピニオンギア144が回転されて、リングギア11がピニオンギア144と噛み合った状態で、駆動力がエンジンに伝達される。また、ワンウェイクラッチ146は、スタータモータ145の出力軸に連結され、リングギア11からトルクが入力された場合には空転する。
 また、コントローラ13は、クランク角センサ12からの信号等に基づいて、クランク角を算出し、このクランク角に応じて、インジェクタ15により燃料噴射を行う。さらに、コントローラ13は、算出したクランク角に応じて、イグニッションコイル16への電圧チャージを行い、点火プラグ(図示せず)により火花を発生させて、燃料への着火を行う。
 また、コントローラ13は、クランク角センサ12から出力されるクランク軸の回転パルスの周期に基づいて、エンジン回転速度NEを算出する。なお、コントローラ13によってエンジン回転速度NEを算出する代わりに、回転エンコーダやリングギア11の歯に基づくパルスを検出できるパルス発生器等を設け、これらからの信号のFV(周波数-電圧)変換等によって、エンジン回転速度NEを算出してもよい。
 また、スタータモータ145の回転速度は、ピニオンギア144とリングギア11との歯数比や遊星ギア(図示せず)により減速される場合があるが、便宜上すべてエンジンのクランク軸上に換算した値とする。また、この実施の形態1では、回転速度と表記しているが、ギア半径を用いて周速度による制御を行ってもよい。
 ここで、車両の走行中にエンジン自動停止条件(例えば、車速15km/h以下、かつドライバがブレーキを踏んでいる等の条件)が成立した場合には、コントローラ13は、エンジンへの燃料噴射を停止して、エンジンを惰性回転させる。
 以下、図3を参照しながら、この発明の実施の形態1に係るエンジン始動装置の具体的な動作について説明する。図3は、この発明の実施の形態1に係るエンジン始動装置における一連の処理を示すフローチャートである。
 まず、コントローラ13は、エンジン自動停止条件が成立しているか否かを判定する(ステップS101)。
 一方、ステップS101において、エンジン自動停止条件が成立している(すなわち、Yes)と判定された場合には、コントローラ13は、エンジン停止制御を開始する(ステップS102)。具体的には、コントローラ13は、エンジンへの燃料噴射を停止し、慣性回転によりエンジン回転速度NEを低下させる。
 続いて、コントローラ13は、エンジンが自動停止中であると判断し、エンジン自動停止中フラグF1を「1」にセットする(ステップS103)。
 次に、コントローラ13は、エンジンが惰性回転しているか否かを判定する(ステップS104)。ここで、エンジンが惰性回転しているか否かは、例えば、クランク角のパルスが所定時間(例えば、300ms)の間に検出されたか否かで判断することができる。
 ステップS104において、クランク角のパルスが所定時間内に検出されず、エンジンが惰性回転していない(すなわち、No)と判定された場合には、コントローラ13は、エンジンが完全停止していると判断し、図3の処理を終了して、次の制御周期へと進む。
 一方、ステップS104において、エンジンが惰性回転している(すなわち、Yes)と判定された場合には、コントローラ13は、エンジン再始動条件が成立しているか否かを判定する(ステップS105)。
 ステップS105において、エンジン再始動条件が成立している(すなわち、Yes)と判定された場合には、コントローラ13は、エンジン再始動制御を行う(ステップS106)。
 一方、ステップS105において、エンジン再始動条件が成立していない(すなわち、No)と判定された場合には、コントローラ13は、図3の処理を終了して、次の制御周期へと進む。
 また一方、ステップS101において、エンジン自動停止条件が成立していない(すなわち、No)と判定された場合には、コントローラ13は、エンジン自動停止中フラグF1が「1」であるか否かを判定する(ステップS107)。
 ステップS107において、エンジン自動停止中フラグF1が「1」である(すなわち、Yes)と判定された場合には、コントローラ13は、エンジン自動停止中であると判断し、ステップS106に移行してエンジン再始動制御を行う(継続する)。
 一方、ステップS107において、エンジン自動停止中フラグF1が「0」である(すなわち、No)と判定された場合には、コントローラ13は、エンジン自動停止中でないと判断し、図3の処理を終了して、次の制御周期に進む。
 次に、図4を参照しながら、図3のステップS106に示したエンジン再始動制御について詳細に説明する。図4は、この発明の実施の形態1に係るエンジン始動装置におけるエンジン再始動条件成立時のスタータ制御および燃料噴射に関する一連の処理を示すフローチャートである。
 まず、コントローラ13は、エンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1(例えば、400rpm)以下であるか否かを判定する(ステップS201)。なお、スタータ駆動後燃焼可能とは、エンジン回転速度NEが低下し、コントローラ13がソレノイド141への通電によってピニオンギア144とリングギア11とを噛み合わせた後に燃焼が発生することである。
 ここで、図5を参照しながら、エンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1よりも高い状態で燃料噴射を再開した場合の動作について説明する。図5は、この発明の実施の形態1に係るエンジン始動装置において、エンジン回転速度がスタータ駆動後燃焼可能回転速度よりも高い状態で燃料噴射が再開された場合の動作を示すタイミングチャートである。
 図5において、エンジン自動停止条件が成立して燃料噴射を停止した後、時刻t0において、エンジン再始動条件が成立する。その後、エンジン回転速度NEが、スタータ駆動後燃焼可能回転速度Nr1まで低下する前の時刻t1において、燃料噴射を再開する。続いて、エンジン回転速度NEが低下し、ソレノイド141への通電を開始してピニオンギア144が移動を開始する。
 しかしながら、ソレノイド141への通電開始後、ピニオンギア144がリングギア11に到達するまでに時間遅れが発生する。そのため、ソレノイド141への通電を開始してピニオンギア144を移動させた後、燃料を噴射した気筒の圧縮行程において、ピニオンギア144とリングギア11との噛み合い前に燃焼が再開してしまい、噛み合いが完了しない場合がある。
 この場合には、ピニオンギア144がリングギア11のギア端面で弾かれ、騒音やギアの損耗が発生する恐れがあるので好ましくない。なお、噛み合い完了とは、エンジン回転速度NEとスタータモータ回転速度との差が、噛み合い可能な所定範囲内(例えば、100rpm)になり、ピニオンギア144がリングギア11の端面よりも奥に移動し、互いにトルク伝達が可能な状態になることである。
 そこで、この発明の実施の形態1に係るエンジン始動装置では、エンジン再始動条件成立時に、図4に示した処理を実行する。
 図4に戻って、ステップS201において、エンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1よりも大きい(すなわち、No)と判定された場合には、コントローラ13は、図4の処理を終了して、次の制御周期へと進む。
 一方、ステップS201において、エンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1以下である(すなわち、Yes)と判定された場合には、コントローラ13は、燃料噴射を再開する(ステップS202)。
 続いて、コントローラ13は、エンジン回転速度NEがスタータ駆動許可回転速度Nr2(例えば、200rpm)以下であるか否かを判定する(ステップS203)。なお、スタータ駆動許可とは、ソレノイド141への通電を開始することによって、ピニオンギア144の移動を開始することである。
 ステップS203において、エンジン回転速度NEがスタータ駆動許可回転速度Nr2よりも大きい(すなわち、No)と判定された場合には、コントローラ13は、図4の処理を終了して、次の制御周期へと進む。
 一方、ステップS203において、エンジン回転速度NEがスタータ駆動許可回転速度Nr2以下である(すなわち、Yes)と判定された場合には、コントローラ13は、ソレノイド141への通電を開始する(ステップS204)。
 このとき、ソレノイド141への通電に伴い、ピニオンギア144の移動が開始され、ピニオンギア144とリングギア11とが噛み合う。また、プランジャ142の移動により接点が閉じられ、スタータモータ145へと通電され、スタータモータ145の回転が開始される。
 次に、コントローラ13は、エンジン再始動が完了したか否かを判定する(ステップS205)。ここで、エンジン再始動が完了したか否かは、例えばエンジン回転速度NEが所定の回転速度(例えば、700rpm)以上になったか否かで判断することができる。
 ステップS205において、エンジン再始動が完了していない(すなわち、No)と判定された場合には、コントローラ13は、図4の処理を終了して、次の制御周期へと進む。
 一方、ステップS205において、エンジン再始動が完了した(すなわち、Yes)と判定された場合には、コントローラ13は、ソレノイド141への通電を停止し、ピニオンギア144とリングギア11との噛み合いを解除させるとともに、スタータモータ145への通電を停止する(ステップS206)。
 続いて、コントローラ13は、エンジン自動停止中フラグF1を「0」にセットし(ステップS207)、図3の処理を終了して、次の制御周期に進む。
 以下、図6を参照しながら、燃料噴射に伴うエンジン再始動について詳細に説明する。図6(a)、(b)は、この発明の実施の形態1に係るエンジン始動装置における燃料噴射制御を、従来技術と比較して示す説明図である。図6(a)は、特許文献1におけるスタータ駆動に併せた燃料噴射の再開を示し、図6(b)は、この発明の実施の形態1に係るエンジン始動装置における燃料噴射の再開を示している。
 また、図6は、3気筒エンジンの場合を示している。図中の矢印は、点火タイミングを示しており、エンジン自動停止中は中断され、エンジン再始動条件成立後の所定のタイミング(ここでは、圧縮行程中のクランク角BTDC05deg毎)で点火が再開されるものとする。なお、図6において、「爆」は爆発行程、「排」は排気行程、「吸」は吸気行程、「圧」は圧縮行程をそれぞれ示している。
 まず、図6(a)を用いて、スタータ駆動に併せた燃料噴射の再開について説明する。エンジン再始動条件成立後にエンジン回転速度NEの低下により、ピニオンギア144とリングギア11とを噛み合わせることができる回転速度になると、ソレノイド141に通電してスタータ14の駆動を開始する。また、これと併せて所定の複数気筒(例えば、吸気行程にある気筒および排気行程にある気筒)に燃料噴射を実施する(図6(a)におけるタイミングA1)。
 その後、タイミングA1で噴射された燃料がシリンダ内に吸い込まれ、タイミングB1で着火して初爆が発生する。ここで、タイミングA1では、吸気行程および排気行程の気筒に燃料が噴射されているが、吸気行程の気筒(図6(a)の#3気筒)へ噴射された燃料は、その後すぐに圧縮行程へ移るため、十分に気筒内へ燃料が入らず、燃料噴射後最初の圧縮(タイミングB2)では、燃焼しない場合がある。よって、タイミングA1にて排気行程で燃料噴射された気筒(図6(a)の#2気筒)の圧縮において、最初の燃焼が発生することとなる(タイミングB1)。また、タイミングA1で燃料噴射を実施した後は、通常のシーケンシャル噴射、例えば排気行程中のクランク角BTDC05deg毎に燃料噴射を実施する(図6の(a)に網掛け部で示すタイミング)ことで、エンジンを再始動することができる。
 次に、図6(b)を用いて、この発明の実施の形態1に係るエンジン始動装置における燃料噴射の再開について説明する。エンジン再始動条件成立後にエンジン回転速度NEの低下により、スタータ駆動後燃焼可能回転速度Nr1以下になると判定された場合に、所定の複数気筒(例えば、吸気行程にある気筒および排気行程にある気筒)に燃料噴射を実施する(図6(b)におけるタイミングA2)。
 その後、タイミングA2で噴射された燃料がシリンダ内に吸い込まれ、タイミングB2で着火して初爆が発生する。また、タイミングA2で燃料噴射を実施した後は、上述したシーケンシャル噴射に移行することで、エンジンを再始動することができる。
 このように、この発明の実施の形態1に係るエンジン始動装置における燃料噴射の再開は、スタータ駆動に併せた燃料噴射の再開によるエンジンの再始動よりも早期(図6(b)に示したT1の期間分)に初爆を迎えることができ、結果としてエンジンが再始動するまでに要する時間も短縮される。
 続いて、図7を参照しながら、この発明の実施の形態1に係るエンジン始動装置の動作について説明する。図7は、この発明の実施の形態1に係るエンジン始動装置の動作を示すタイミングチャートである。
 図7において、車両走行中にエンジン自動停止条件が成立し、燃料噴射が停止される。その後、エンジン再始動条件(例えば、ドライバがブレーキペダルから足を離す等)が成立した時刻t3においては、エンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1よりも高いので、燃料噴射は再開されない(図4のステップS201でNo)。
 続いて、エンジン回転速度NEがさらに低下し、スタータ駆動後燃焼可能回転速度Nr1以下になった時刻t4において、燃料噴射を再開する(図4のステップS201でYes)。次に、燃料噴射を再開した後、エンジン回転速度NEがスタータ駆動許可回転速度Nr2以下になった時刻t5において、ソレノイド141への通電を開始してスタータモータ145を駆動させる。
 その後、時刻t4において噴射した燃料が圧縮行程で燃焼し、時刻t6において初爆が発生する。また、スタータ駆動に併せた燃料噴射の再開を実施した場合のエンジン回転挙動を図7に点線で示しているが、時刻t4ではなく、時刻t5またはそれ以降のタイミングで燃料噴射が再開されるので、時刻t6の圧縮行程には燃料が間に合わず、早くとも時刻t7で初爆が発生することになる。
 このように、コントローラ13は、慣性回転中のエンジン再始動条件成立後にエンジン回転速度NEがスタータ駆動後燃焼可能回転速度Nr1以下になった後、ピニオンギア144の移動開始前に燃料噴射を再開して、ギア噛み合い後最初の圧縮気筒で燃焼を発生させる。
 これにより、エンジンの再始動を速やか、かつ静粛に行うことができ、ドライバに違和感を与えず、さらに、スタータの通電時間を短縮することにより、省電力、部品の長寿命化を達成することができる。
 以上のように、実施の形態1によれば、エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン始動装置であって、エンジンのクランク軸に連結されたリングギアと、通電により回転するスタータモータと、スタータモータの回転をリングギアに伝達するピニオンギアと、通電によりピニオンギアをリングギア方向に移動させて噛み合わせるピニオンギア移動部と、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御部とを備えている。
 また、所定の圧縮気筒は、ピニオンギアとリングギアとの噛み合い完了後、最初の圧縮気筒である。
 そのため、スタータモータ駆動後最初の圧縮気筒で燃焼が発生するように、燃料噴射を行うことにより、エンジンの再始動を早めることができる。
 また、燃料噴射制御部は、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始前に、燃料噴射を再開する。
 また、エンジンへの燃料噴射停止によるエンジンの慣性回転中に、エンジン再始動条件が成立した場合には、少なくともエンジン回転速度に基づいて、ピニオンギア移動部によりピニオンギアの移動を開始した後、スタータモータへの通電を開始する
 そのため、スタータモータ駆動後最初の点火タイミングで燃焼が発生するように、燃料噴射を行うことにより、エンジンの再始動を早めることができる。
 実施の形態2.
 上記実施の形態1では、エンジン回転速度NEとスタータ駆動後燃焼可能回転速度Nr1との比較により燃料噴射を再開し、ギア噛み合い後最初の圧縮気筒で燃焼を発生させると説明した。
 しかしながら、一般にエンジン回転速度NEが極端に低い場合は燃焼効率が悪く、また上死点前(例えば、BTDC05deg)に点火を行う場合には、逆回転方向の燃焼トルクが発生する。そのため、ギア噛み合い後に燃焼許可エンジン回転速度(例えば、200rpm)以上になる最初の圧縮気筒で燃焼が発生するように燃料噴射を再開してもよい。
 そこで、この実施の形態2では、コントローラ13が、エンジン回転速度NEが燃焼許可エンジン回転速度Nr3以上になる最初の圧縮気筒で燃焼が発生するように燃料噴射を再開する場合について説明する。なお、この発明の実施の形態2に係るエンジン始動装置の構成は、上述した実施の形態1のものと同様なので、説明を省略する。
 以下、図8を参照しながら、この発明の実施の形態2に係るエンジン始動装置の具体的な動作について説明する。図8は、この発明の実施の形態2に係るエンジン始動装置における一連の処理を示すフローチャートである。
 図8において、基本的には、図3に示したステップS101~ステップS107と同様の処理になるが、ステップS304において、エンジンが惰性回転している(すなわち、Yes)と判定された場合、およびステップS308において、エンジン自動停止中フラグF1が「1」である(すなわち、Yes)と判定された場合に、コントローラ13は、さらに燃料噴射許可判定を実施する(ステップS305またはステップS309)。
 次に、図9を参照しながら、図8のステップS305またはステップS309における燃料噴射許可判定について詳細に説明する。図9は、この発明の実施の形態2に係るエンジン始動装置における燃料噴射許可判定の一連の処理を示すフローチャートである。
 まず、コントローラ13は、今回の処理タイミングにおけるクランク角CAが、吸気限界となる角度CA1(例えば、BTDC90deg)であるか否かを判定する(ステップS401)。
 ステップS401において、今回の処理タイミングにおけるクランク角CAが、吸気限界となる角度CA1でない(すなわち、No)と判定された場合には、コントローラ13は、今回の処理タイミングにおけるクランク角CAが、あらかじめ定められた燃焼可能判定角度CA2(例えば、BTDC30deg)であるか否かを判定する(ステップS402)。
 ここで、燃焼可能判定角度CA2は、スタータモータ145によって、エンジン回転速度NEが燃焼許可エンジン回転速度Nr3以上になるまでに必要な回転角度分、圧縮気筒における点火タイミング(BTDC05deg)から遡った角度である。例えば、スタータモータ145によって、25degだけクランク軸が回転される間に、エンジン回転速度NEが燃焼許可エンジン回転速度Nr3以上になる場合には、燃焼可能判定角度CA2は、BTDC05degから25deg遡ったBTDC30degとなる。
 ステップS402において、今回の処理タイミングにおけるクランク角CAが、燃焼可能判定角度CA2である(すなわち、Yes)と判定された場合には、コントローラ13は、NECA3に今回の処理タイミングにおけるエンジン回転速度NEを格納し(ステップS403)、今回行程における燃焼可能判定角度CA2でのエンジン回転速度を記憶して、図9に示した今回の処理タイミングにおける燃料噴射許可判定の処理を終了する。
 一方、ステップS402において、今回の処理タイミングにおけるクランク角CAが、燃焼可能判定角度CA2でない(すなわち、No)と判定された場合には、コントローラ13は、そのまま図9に示した今回の処理タイミングにおける燃料噴射許可判定の処理を終了する。
 また一方、ステップS401において、今回の処理タイミングにおけるクランク角CAが、吸気限界となる角度CA1である(すなわち、Yes)と判定された場合には、コントローラ13は、NECA2にNECA1を格納し(ステップS404)、前回行程における吸気限界となる角度CA1でのエンジン回転速度を記憶する。
 続いて、コントローラ13は、NECA1に今回の処理タイミングにおけるエンジン回転速度NEを格納し(ステップS405)、今回行程における吸気限界となる角度CA1でのエンジン回転速度を記憶する。
 次に、コントローラ13は、ギア噛み合い後最初の圧縮気筒の燃焼タイミングにおけるエンジン回転速度NEbが、燃焼許可エンジン回転速度Nr3以上であるか否か、すなわち燃料噴射を許可するか否かを判定する(ステップS406)。
 ステップS406において、エンジン回転速度NEbが、燃焼許可エンジン回転速度Nr3以上である(すなわち、Yes)と判定された場合には、コントローラ13は、燃料噴射許可フラグF2を「1」にセットして(ステップS407)、ステップS402に移行する。
 一方、ステップS406において、エンジン回転速度NEbが、燃焼許可エンジン回転速度Nr3よりも小さい(すなわち、No)と判定された場合には、コントローラ13は、そのままステップS402に移行する。
 ここで、ステップS406において、具体的には、次式(1)に基づいて判定を行う。
Figure JPOXMLDOC01-appb-M000001
 エンジンの慣性回転中において、アイドリング回転速度(例えば、700rpm)以下では、回転速度に依存する粘性抵抗をほぼ0とみなすことができ、各角度間で見た場合のエネルギ損失は、互いに等しいと考えられる。
 すなわち、吸気限界となる角度CA1における1行程間の回転エネルギ変化ELoss1は、エンジンの回転慣性をJとして、次式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 同様に、前回行程のエンジン回転速度を用いて、吸気限界となる角度CA1と燃焼可能判定角度CA2との間の回転エネルギ変化ELoss2は、次式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 また、式(2)、(3)を用いて、吸気限界となる角度CA1において、次回行程の燃焼可能判定角度CA2における回転エネルギは、次式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 なお、式(1)の左辺は、式(4)をJで除算して2倍したものである。式(1)の左辺が0より小さい、すなわち次回行程の燃焼可能判定角度CA2における回転エネルギが0より小さい場合には、エンジンの慣性回転のみでは当該角度まで回転せず、ピニオンギア144とリングギア11との噛み合い後、スタータモータ145による回転中に当該角度に到達することを意味する。
 ここで、燃焼可能判定角度CA2について、スタータモータ145により回転される間に、エンジン回転速度NEが燃焼許可エンジン回転速度Nr3以上となった後に、圧縮気筒の燃焼タイミングとなるので、効率よく燃焼が行われ、スムーズにエンジンの再始動を行うことができる。
 また逆に、式(1)の左辺が0以上、すなわち次回行程の燃焼可能判定角度CA2における回転エネルギが0以上の場合には、ギア噛み合いまでに1行程以上存在する、または燃焼可能判定角度CA2まで到達後、燃焼タイミング前にエンジン回転速度NEが0となる。
 したがって、次回行程の燃焼可能判定角度CA2における回転エネルギが0以上の場合に燃料噴射を再開したときには、ギア噛み合い前に燃焼が再開、またはスタータモータ145による回転が十分行われず(25deg以下)、エンジン回転速度NEが低い段階で圧縮気筒の燃焼タイミングとなり、スムーズなエンジンの再始動が行われない恐れがある。そのため、式(1)の真偽に基づいて燃料噴射許可フラグF2を設定することにより、スムーズなエンジンの再始動が可能となる。
 続いて、図10を参照しながら、図8のステップS307に示したエンジン再始動制御について詳細に説明する。図10は、この発明の実施の形態2に係るエンジン始動装置におけるエンジン再始動条件成立時のスタータ制御および燃料噴射に関する一連の処理を示すフローチャートである。
 まず、コントローラ13は、燃料噴射許可フラグF2が「1」であるか否かを判定する(ステップS501)。
 ステップS501において、燃料噴射許可フラグF2が「1」である(すなわち、Yes)と判定された場合には、ステップS502に移行して、燃料噴射を再開する。なお、ステップS502以下の処理は、図4に示したステップS202~ステップS207と同様なので、説明を省略する。
 一方、ステップS501において、燃料噴射許可フラグF2が「0」である(すなわち、No)と判定された場合には、コントローラ13は、今回の処理タイミングにおけるエンジン回転速度NEが、スタータ駆動許可回転速度Nr2以上であるか否かを判定する(ステップS508)。
 ステップS508において、今回の処理タイミングにおけるエンジン回転速度NEが、スタータ駆動許可回転速度Nr2以上である(すなわち、Yes)と判定された場合には、コントローラ13は、燃料噴射を再開し(ステップS509)、ステップS504に移行して、ソレノイド141への通電を開始する。
 一方、ステップS508において、今回の処理タイミングにおけるエンジン回転速度NEが、スタータ駆動許可回転速度Nr2よりも小さい(すなわち、No)と判定された場合には、コントローラ13は、図10に示した今回の処理タイミングにおけるエンジン再始動制御の処理を終了して、次の制御周期へと進む。
 このように、コントローラ13は、燃焼可能判定角度CA2におけるエンジンの回転エネルギが0よりも小さいか否かにより、圧縮気筒での燃焼タイミングにおけるエンジン回転速度NEbが、燃焼許可エンジン回転速度Nr3以上か否かを判定する。また、コントローラ13は、この判定に基づいて、ピニオンギア144の移動開始前に燃料噴射を再開して、燃焼許可エンジン回転速度Nr3以上となる最初の圧縮気筒で燃焼を発生させる。
 これにより、エンジンの再始動を速やか、かつ静粛に行うことができ、ドライバに違和感を与えず、さらに、スタータの通電時間を短縮することにより、省電力、部品の長寿命化を達成することができる。
 また、吸気限界となる角度CA1のタイミングで燃料噴射許可判定を行うことにより、より遅いタイミングでエンジン再始動条件が成立した場合であっても、早期に燃料噴射を再開することができる可能性が高くなる。
 以上のように、実施の形態2によれば、エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止してエンジンを自動停止させ、その後エンジン再始動条件の成立によりエンジンを再始動させるエンジン始動装置であって、エンジンのクランク軸に連結されたリングギアと、通電により回転するスタータモータと、スタータモータの回転をリングギアに伝達するピニオンギアと、通電によりピニオンギアをリングギア方向に移動させて噛み合わせるピニオンギア移動部と、エンジン再始動条件の成立後、かつピニオンギア移動部によるピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御部とを備えている。
 また、所定の圧縮気筒におけるエンジン回転速度を予測する回転速度予測部をさらに備え、所定の圧縮気筒は、回転速度予測部で予測されたエンジン回転速度が、所定の回転速度以上となる最初の圧縮気筒である。
 そのため、スタータモータ駆動後最初の圧縮気筒で燃焼が発生するように、燃料噴射を行うことにより、エンジンの再始動を早めることができる。
 また、回転速度予測部は、エンジンの各気筒における吸気限界前に、エンジン回転速度を予測する。
 そのため、スタータモータ駆動後最初の点火タイミングで燃焼が発生するように、燃料噴射を行うことにより、エンジンの再始動を早めることができる。
 実施の形態3.
 上記実施の形態2では、燃焼タイミングをBTDC05degとして説明したが、上死点後(例えば、ATDC05deg)にイグニッションコイル16への電圧チャージを開始して、点火を行うようにしてもよい。
 このように、上死点後に点火を行うようにすれば、低回転で燃焼が発生した場合であっても、逆回転方向の燃焼トルクが発生することがなくなるので、燃料噴射を再開可能な領域を増やすことができる。具体的には、燃焼可能判定角度CA2を、より上死点に近い角度に設定することができる。
 また、上死点前にイグニッションコイル16への電圧チャージを開始し、何らかの理由によりピニオンギア144とリングギア11との噛み合いに失敗した場合には、イグニッションコイル16の焼損を防止するために、電圧チャージを開放し、点火火花を発生させる必要がある。
 このとき、燃料噴射が再開されていると、点火によって上死点前で燃焼が発生し、エンジンの振動等によりドライバに違和感を与える恐れがある。そのため、上死点後にイグニッションコイル16への電圧チャージを開始することにより、仮にピニオンギア144とリングギア11との噛み合いに失敗し、電圧チャージを開放した場合であっても、逆回転方向のトルクが発生せず、エンジンの振動等を抑制することができる。
 以上のように、実施の形態3によれば、イグニッションコイルと、イグニッションコイルによる点火タイミングを制御する点火タイミング制御部と、をさらに備え、点火タイミング制御部は、所定の圧縮気筒への点火を上死点後とする。
 また、イグニッションコイルと、イグニッションコイルに電圧をチャージする点火準備部と、をさらに備え、点火準備部は、イグニッションコイルへの電圧チャージを上死点後に開始する。
 そのため、スタータモータ駆動後最初の点火タイミングで燃焼が発生するように、燃料噴射を行うことにより、エンジンの再始動を早めることができる。
 10 エンジン始動装置、11 リングギア、12 クランク角センサ、13 コントローラ(ピニオンギア移動部、燃料噴射制御部、回転速度予測部、点火タイミング制御部、点火準備部)、14 スタータ、15 インジェクタ、16 イグニッションコイル、141 ソレノイド、142 プランジャ、143 レバー、144 ピニオンギア、145 スタータモータ、146 ワンウェイクラッチ。

Claims (9)

  1.  エンジン自動停止条件の成立によりエンジンへの燃料噴射を停止して前記エンジンを自動停止させ、その後エンジン再始動条件の成立により前記エンジンを再始動させるエンジン始動装置であって、
     前記エンジンのクランク軸に連結されたリングギアと、
     通電により回転するスタータモータと、
     前記スタータモータの回転を前記リングギアに伝達するピニオンギアと、
     通電により前記ピニオンギアを前記リングギア方向に移動させて噛み合わせるピニオンギア移動部と、
     前記エンジン再始動条件の成立後、かつ前記ピニオンギア移動部による前記ピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御部と、
     を備えたエンジン始動装置。
  2.  前記所定の圧縮気筒は、前記ピニオンギアと前記リングギアとの噛み合い完了後、最初の圧縮気筒である
     請求項1に記載のエンジン始動装置。
  3.  前記所定の圧縮気筒におけるエンジン回転速度を予測する回転速度予測部をさらに備え、
     前記所定の圧縮気筒は、前記回転速度予測部で予測されたエンジン回転速度が、所定の回転速度以上となる最初の圧縮気筒である
     請求項1に記載のエンジン始動装置。
  4.  前記回転速度予測部は、前記エンジンの各気筒における吸気限界前に、エンジン回転速度を予測する
     請求項3に記載のエンジン始動装置。
  5.  前記燃料噴射制御部は、前記エンジン再始動条件の成立後、かつ前記ピニオンギア移動部による前記ピニオンギアの移動開始前に、燃料噴射を再開する
     請求項1から請求項4までの何れか1項に記載のエンジン始動装置。
  6.  イグニッションコイルと、
     前記イグニッションコイルによる点火タイミングを制御する点火タイミング制御部と、をさらに備え、
     前記点火タイミング制御部は、前記所定の圧縮気筒への点火を上死点後とする
     請求項1から請求項5までの何れか1項に記載のエンジン始動装置。
  7.  イグニッションコイルと、
     前記イグニッションコイルに電圧をチャージする点火準備部と、をさらに備え、
     前記点火準備部は、前記イグニッションコイルへの電圧チャージを上死点後に開始する
     請求項1から請求項6までの何れか1項に記載のエンジン始動装置。
  8.  前記エンジンへの燃料噴射停止によるエンジンの慣性回転中に、前記エンジン再始動条件が成立した場合には、少なくともエンジン回転速度に基づいて、前記ピニオンギア移動部により前記ピニオンギアの移動を開始した後、前記スタータモータへの通電を開始する
     請求項1から請求項7までの何れか1項に記載のエンジン始動装置。
  9.  エンジンのクランク軸に連結されたリングギアと、通電により回転するスタータモータと、前記スタータモータの回転を前記リングギアに伝達するピニオンギアと、通電により前記ピニオンギアを前記リングギア方向に移動させて噛み合わせるピニオンギア移動部と、を備え、エンジン自動停止条件の成立により前記エンジンへの燃料噴射を停止して前記エンジンを自動停止させ、その後エンジン再始動条件の成立により前記エンジンを再始動させるエンジン始動装置によって実行されるエンジン始動方法であって、
     前記エンジン再始動条件の成立後、かつ前記ピニオンギア移動部による前記ピニオンギアの移動開始後に、所定の圧縮気筒で燃焼が発生するように燃料噴射を再開する燃料噴射制御ステップ、
     を備えたエンジン始動方法。
PCT/JP2013/057785 2012-06-14 2013-03-19 エンジン始動装置およびエンジン始動方法 WO2013187101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380031149.XA CN104350260B (zh) 2012-06-14 2013-03-19 发动机启动装置和发动机启动方法
JP2014520975A JP5901763B2 (ja) 2012-06-14 2013-03-19 エンジン始動装置およびエンジン始動方法
US14/396,819 US9631596B2 (en) 2012-06-14 2013-03-19 Engine starting device and engine starting method
DE112013003078.0T DE112013003078B4 (de) 2012-06-14 2013-03-19 Motorstartvorrichtung und Motorstartverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-134851 2012-06-14
JP2012134851 2012-06-14

Publications (1)

Publication Number Publication Date
WO2013187101A1 true WO2013187101A1 (ja) 2013-12-19

Family

ID=49757941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057785 WO2013187101A1 (ja) 2012-06-14 2013-03-19 エンジン始動装置およびエンジン始動方法

Country Status (5)

Country Link
US (1) US9631596B2 (ja)
JP (1) JP5901763B2 (ja)
CN (1) CN104350260B (ja)
DE (1) DE112013003078B4 (ja)
WO (1) WO2013187101A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101530B2 (ja) * 2013-03-26 2017-03-22 日立オートモティブシステムズ株式会社 車載制御装置およびスタータ
FR3005490B1 (fr) * 2013-05-13 2016-11-25 Continental Automotive France Procede de demarrage a froid d'un moteur a combustion interne a allumage commande fonctionnant avec un carburant comportant de l'ethanol
JP6311629B2 (ja) 2015-03-11 2018-04-18 トヨタ自動車株式会社 多気筒内燃機関の制御装置
JP6504006B2 (ja) * 2015-09-29 2019-04-24 株式会社デンソー エンジンの制御装置
JP6459992B2 (ja) 2016-01-26 2019-01-30 株式会社デンソー エンジン始動装置
JP6610470B2 (ja) * 2016-08-30 2019-11-27 株式会社デンソー エンジン始動装置
WO2018173982A1 (ja) * 2017-03-23 2018-09-27 本田技研工業株式会社 車両のエンジン制御装置
US10487789B2 (en) * 2017-12-21 2019-11-26 Ford Global Technologies, Llc Engine starting via electric turbocharger
JP6580174B2 (ja) * 2018-02-23 2019-09-25 三菱電機株式会社 内燃機関の制御装置及び制御方法
CN110758372B (zh) * 2019-09-25 2021-04-16 潍柴动力股份有限公司 双行星排混合动力系统的控制方法、控制装置及车辆
FR3129182A1 (fr) 2021-11-18 2023-05-19 Psa Automobiles Sa Procede de redemarrage d’un moteur thermique en phase d’arret comprenant une gestion de modes de redemarrage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115009A (ja) * 2007-11-07 2009-05-28 Denso Corp 筒内噴射エンジンの停止後燃圧制御装置
JP2011140938A (ja) * 2009-12-11 2011-07-21 Denso Corp エンジン自動停止始動制御装置
JP2011169225A (ja) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp エンジン自動停止再始動装置
JP2011169228A (ja) * 2010-02-18 2011-09-01 Mitsubishi Motors Corp 内燃機関の始動制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321796B2 (ja) * 2000-08-10 2009-08-26 株式会社デンソー スタータ制御方法
JP2003065191A (ja) 2001-08-28 2003-03-05 Toyota Motor Corp 内燃機関の始動制御装置
JP4096863B2 (ja) 2003-11-07 2008-06-04 トヨタ自動車株式会社 エンジン始動装置及びエンジン始動方法
JP4228882B2 (ja) * 2003-11-11 2009-02-25 トヨタ自動車株式会社 内燃機関の始動装置およびこれを備える自動車
JP3772891B2 (ja) * 2004-04-30 2006-05-10 マツダ株式会社 エンジンの始動装置
DE102005004326A1 (de) 2004-08-17 2006-02-23 Robert Bosch Gmbh Startvorrichtung für einen Verbrennungsmotor mit separatem Einrück- und Startvorgang
CN100582461C (zh) * 2005-04-29 2010-01-20 通用汽车环球科技运作公司 用于发动机起动和曲轴转动-运转过渡时的燃料控制
JP2008163818A (ja) 2006-12-28 2008-07-17 Hitachi Ltd スタータ
US8561588B2 (en) * 2008-03-07 2013-10-22 GM Global Technology Operations LLC Engine stop/start system and method of operating same
DE102008041037A1 (de) * 2008-08-06 2010-02-11 Robert Bosch Gmbh Verfahren und Vorrichtung einer Steuerung für einen Start-Stopp-Betrieb einer Brennkraftmaschine
JP5007839B2 (ja) * 2008-09-02 2012-08-22 株式会社デンソー エンジン自動停止始動制御装置
JP4737571B2 (ja) * 2008-09-08 2011-08-03 株式会社デンソー エンジン始動装置
JP4835774B2 (ja) * 2009-09-04 2011-12-14 株式会社デンソー エンジン停止始動制御装置
DE102010061084A1 (de) * 2009-12-08 2011-07-21 DENSO CORPORATION, Aichi-pref. System zum Ankurbeln einer internen Verbrennungsmaschine durch in Eingriff bringen von einem Ritzel mit einem Zahnkranz
US8510019B2 (en) * 2010-01-20 2013-08-13 Denso Corporation Control device of automatic engine stop and start
JP4937374B2 (ja) 2010-04-06 2012-05-23 三菱電機株式会社 始動制御装置
JP5189154B2 (ja) * 2010-10-28 2013-04-24 三菱電機株式会社 エンジン自動停止再始動装置
JP4926272B1 (ja) 2010-10-29 2012-05-09 三菱電機株式会社 エンジン自動停止再始動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115009A (ja) * 2007-11-07 2009-05-28 Denso Corp 筒内噴射エンジンの停止後燃圧制御装置
JP2011140938A (ja) * 2009-12-11 2011-07-21 Denso Corp エンジン自動停止始動制御装置
JP2011169225A (ja) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp エンジン自動停止再始動装置
JP2011169228A (ja) * 2010-02-18 2011-09-01 Mitsubishi Motors Corp 内燃機関の始動制御装置

Also Published As

Publication number Publication date
DE112013003078B4 (de) 2019-06-13
CN104350260B (zh) 2017-05-17
US9631596B2 (en) 2017-04-25
US20150096535A1 (en) 2015-04-09
JPWO2013187101A1 (ja) 2016-02-04
JP5901763B2 (ja) 2016-04-13
CN104350260A (zh) 2015-02-11
DE112013003078T5 (de) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5901763B2 (ja) エンジン始動装置およびエンジン始動方法
JP5108040B2 (ja) エンジン自動停止再始動装置
EP2302199B1 (en) System for restarting internal combustion engine when engine restart request occurs
US8757120B2 (en) Engine start device
JP3941705B2 (ja) 内燃機関の停止始動制御装置
JP5214006B2 (ja) エンジン制御装置およびエンジン制御方法
US7263959B2 (en) Control apparatus of internal combustion engine
US9267479B2 (en) Engine starting device and engine starting method
US20110172901A1 (en) Control device for controlling automatic engine stop and start
JP5442042B2 (ja) エンジン始動装置およびエンジン始動方法
US9243599B2 (en) Engine starting device
US10145323B2 (en) Starting control device for engine
US10294880B2 (en) Engine control apparatus to predict engine speed accurately
US10132283B2 (en) Engine starting apparatus
JP3951924B2 (ja) 内燃機関の停止始動制御装置
JP2016136015A (ja) 車両制御装置
JP6759684B2 (ja) 車両駆動部の制御装置およびプログラム
JP6071736B2 (ja) エンジン始動装置
JP6253544B2 (ja) 内燃機関の自動停止/再始動制御システム
JP5554436B1 (ja) エンジン始動装置
JP2013007307A (ja) 内燃機関のアイドリングストップの制御方法及びアイドリングストップシステム
JP6203653B2 (ja) アイドルストップシステムの制御装置
JP2013060887A (ja) 内燃機関のアイドリングストップの制御方法及びアイドリングストップシステム
JP2007162703A (ja) 内燃機関の停止始動制御装置
JP2010019096A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396819

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013003078

Country of ref document: DE

Ref document number: 1120130030780

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803797

Country of ref document: EP

Kind code of ref document: A1