WO2013185360A1 - 一种液晶显示面板及其阵列基板 - Google Patents

一种液晶显示面板及其阵列基板 Download PDF

Info

Publication number
WO2013185360A1
WO2013185360A1 PCT/CN2012/077057 CN2012077057W WO2013185360A1 WO 2013185360 A1 WO2013185360 A1 WO 2013185360A1 CN 2012077057 W CN2012077057 W CN 2012077057W WO 2013185360 A1 WO2013185360 A1 WO 2013185360A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrode
switching element
film transistor
thin film
Prior art date
Application number
PCT/CN2012/077057
Other languages
English (en)
French (fr)
Inventor
王醉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/522,325 priority Critical patent/US9082331B2/en
Publication of WO2013185360A1 publication Critical patent/WO2013185360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display panel and an array substrate thereof.
  • 3D Three Dimensions, 3D
  • 3D stereoscopic display technology is also becoming more and more mature.
  • 3D stereoscopic video devices such as 3D TVs, 3D projections, and 3D cameras are emerging.
  • 2D Two Dimensions, 2D
  • the difference in flat display is that the 3D stereoscopic display technology is more realistic and has better visual effects, and has gradually become the mainstream development direction of future display devices.
  • the FPR 3D display system includes a liquid crystal display panel 11, Patterned Retarder film 12 and polarized glasses 13.
  • the liquid crystal display panel 101 includes pixels 16 forming a left-eye signal, pixels 17 forming a right-eye signal, and a black matrix therebetween (Black) Matrix, BM) 18.
  • the FPR 3D display system is mainly by Patterned attached to the liquid crystal display panel 11.
  • the Retarder film 12 separates the 3D picture into the left eye image 14 and the right eye image 15, and then passes the left eye image 14 and the right eye image 15 to the left and right eyes of the user via the polarized glasses 13.
  • the user's left and right eyes receive two sets of images, and then the brain synthesizes stereoscopic images.
  • FPR 3D display technology does not require the opening and closing of the lens
  • FPR The display in the 3D display system has a lighter flickering effect, which can bring a better visual experience, especially with VA (Vertical Alignment, liquid crystal vertical orientation type display panel to view 3D images, the display effect is better.
  • VA Vertical Alignment, liquid crystal vertical orientation type display panel to view 3D images
  • the display effect is better.
  • the VA type display panel has a relatively high contrast ratio and a short response time compared to the conventional display panel, and can provide a better display effect.
  • the uniformity of the screen of the VA panel is not good enough, and color drift often occurs, and color shift is likely to occur when viewed from a large viewing angle.
  • FPR 3D display technology also has the problem of limited viewing angle, that is, the viewer's perspective is narrow.
  • a solution to the problem of 3D display technology viewing angle limitation is generally to increase the width of the black matrix 18 between the pixel 16 forming the left eye signal and the pixel 17 forming the right eye signal to reduce the possibility of binocular signal crosstalk, as shown in FIG. Show.
  • the width of the black matrix 18 needs to be increased to 1/3 of the width of the entire pixel to reduce the crosstalk phenomenon to some extent.
  • the aperture ratio of the pixel is greatly reduced, and the brightness of the liquid crystal display panel is also lowered.
  • there is no binocular crosstalk problem and the brightness is thus reduced.
  • the pixel structure adopting the pixel design scheme of 1G2D includes a first data line 21, a second data line 22, a scan line 23, a main pixel 24, and a sub-pixel 25.
  • the first data line 21 and the second data line 22 respectively supply signals to the main pixel 24 and the sub-pixel 25, and the main pixel 24 and the sub-pixel 25 are driven by the same scanning line 23.
  • a black screen signal is input to the main pixel 204 to display black to achieve a "black matrix" effect in the main pixel region, thereby also reducing binocular signal crosstalk.
  • the liquid crystal molecules of the main pixel 24 and the sub-pixel 25 have different corners, so that the liquid crystal panel has a good low color shift effect in the 2D display mode.
  • the main pixel 24 area is black, only the liquid crystal molecules of the sub-pixel 25 are deflected, and the low color shift function is lost, and the color shift of the VA type display panel itself exists. The color anomaly observed when the viewer is at a large viewing angle is more serious.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display panel and an array substrate thereof, which can improve the color difference of a large viewing angle to a certain extent in the 3D display mode, reduce color distortion, and improve display effect.
  • a technical solution adopted by the present invention is to provide an array substrate of a VA type liquid crystal display panel, the array substrate including at least a plurality of first scan lines, second scan lines, data lines, and a plurality of a pixel unit arranged side by side, each of the pixel units including a switching element and a pixel electrode, each of the pixel units corresponding to at least one first scan line, a second scan line, and a data line;
  • the pixel electrode includes at least a first a sub-electrode, a second sub-electrode, and a third sub-electrode; each of the pixel units has at least three switching elements, at least a first switching element, a second switching element, and a third switching element, respectively;
  • the output ends of the switching element, the second switching element and the third switching element are electrically connected to the first sub-electrode, the second sub-electrode and the third sub-electrode, respectively, and the input ends of the first switching element
  • the array substrate includes at least a plurality of third scan lines, the data lines include first data lines, each of the pixel units corresponding to at least one of the third scan lines and a first data line;
  • the switching element of the pixel unit further includes a fourth switching element and a fifth switching element;
  • the pixel unit further includes a first coupling capacitor and a second coupling capacitor; and outputs of the fourth switching element and the fifth switching element are respectively electrically connected a first coupling capacitor and a second coupling capacitor, wherein the input ends of the first switching component, the second switching component, and the third switching component are electrically connected to the first data line, and the input of the fourth switching element and the fifth switching element, respectively
  • the second sub-electrode and the third sub-electrode are respectively electrically connected, and the control ends of the fourth switching element and the fifth switching element are electrically connected to the third scan line respectively; wherein, when entering the 3D display mode, the data line passes The inputting, by the third switching element, the voltage signal corresponding to the black
  • a second sub-electrode then stopping inputting the scan signal to the first scan line; stopping input of the scan signal to the first scan line and then inputting a scan signal to the third scan line to control opening of the fourth switching element, the second sub- A voltage signal of the electrode is coupled to the first coupling capacitor through a fourth switching element, and the first coupling capacitor is adjusted such that a predetermined voltage difference exists between the first sub-electrode and the second sub-electrode.
  • an array substrate of a liquid crystal display panel including at least a plurality of first scan lines, second scan lines, data lines, and a plurality of side by side a pixel unit, each of which includes a switching element and a pixel electrode, each pixel unit corresponding to at least one first scan line, a second scan line, and a data line;
  • the pixel electrode includes at least a first sub-electrode, a second sub-electrode, and a a three sub-electrode;
  • the number of switching elements of each pixel unit is at least three, at least respectively a first switching element, a second switching element, and a third switching element; the first switching element, the second switching element, and the third switching element
  • the output ends are electrically connected to the first sub-electrode, the second sub-electrode and the third sub-electrode, respectively, wherein the input ends of the first switching element, the second switching element and the
  • the first scan line and the second scan line respectively input scan signals to control the first switching element, the second switching element and the third switching element to be turned on, and the data lines respectively pass through the first switching element
  • the second switching element and the third switching element input a voltage signal corresponding to the same image to be displayed to the first sub-electrode, the second sub-electrode, and the third sub-electrode, and control the first sub-electrode, the second sub-electrode, and the third sub-electrode
  • the array substrate includes at least a plurality of third scan lines, the data lines include a first data line, each pixel unit corresponding to at least one third scan line and the first data line; and the switching element of each pixel unit further includes a fourth switch And a fifth switching element; the pixel unit further includes a first coupling capacitor and a second coupling capacitor; the output ends of the fourth switching component and the fifth switching component are electrically connected to the first coupling capacitor and the second coupling capacitor, respectively, the first switching component
  • the input ends of the second switching element and the third switching element are respectively electrically connected to the first data line, and the input ends of the fourth switching element and the fifth switching element are electrically connected to the second sub-electrode and the third sub-electrode, respectively, and the fourth switching element And the control end of the fifth switching element is electrically connected to the third scan line respectively; wherein, when entering the 3D display mode, the data line inputting the voltage signal corresponding to the black image to the third sub-electrode through the third switching element means: the
  • the first switching element, the second switching element, the third switching element, the fourth switching element, and the fifth switching element are a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, and a fifth a thin film transistor;
  • the first thin film transistor includes a first gate, a first source, and a first drain, the first source is electrically connected to the first data line, and the first drain is electrically connected to the first sub-electrode, the first gate The pole is electrically connected to the first scan line to control the on and off of the first thin film transistor;
  • the second thin film transistor includes a second gate, a second source and a second drain, and the second source is electrically connected to the first data line Connecting, the second drain is electrically connected to the second sub-electrode, the second gate is electrically connected to the first scan line to control on and off of the second thin film transistor;
  • the third thin film transistor comprises a third gate and a third source And a third drain, the third source is electrical
  • the data lines are respectively input through the first switching element, the second switching element, and the third switching element to correspond to the same type that needs to be displayed.
  • controlling a voltage signal of the image to the first sub-electrode, the second sub-electrode, and the third sub-electrode, and controlling a preset voltage difference between the at least two sub-electrodes of the first sub-electrode, the second sub-electrode, and the third sub-electrode Means that the first data line inputs a voltage signal that needs to display the same image to the first sub-electrode, the second sub-electrode, and the third sub-electrode through the first thin film transistor, the second thin film transistor, and the third thin film transistor, respectively, and then stops inputting Scanning the signal to the first scan line and the second scan line; stopping inputting the scan signal to the first scan line and the second scan line, and then
  • the array substrate includes at least a plurality of third scan lines, the data lines include a first data line, each pixel unit corresponding to at least one third scan line and the first data line; and the switching element of each pixel unit further includes a fourth switch
  • the pixel unit further includes a first coupling capacitor; the output end of the fourth switching element is electrically connected to the first coupling capacitor, and the input ends of the first switching component, the second switching component, and the third switching component are electrically connected to the first data line, respectively.
  • the input end of the fourth switching element is electrically connected to the second sub-electrode, and the control end of the fourth switching element is electrically connected to the third scan line; wherein, when entering the 3D display mode, the data line inputs a voltage corresponding to the black image through the third switching element
  • the signal to the third sub-electrode means that the first data line inputs a voltage signal corresponding to the black image to the third sub-electrode through the third switching element; the data line is respectively input through the first switching element and the second switching element to correspond to the same desired display a voltage signal of the image to the first sub-electrode and the second sub-electrode, and controlling the storage between the first sub-electrode and the second sub-electrode
  • the preset voltage difference means that the first data line inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode and the second sub-electrode through the first switching element and the second switching element, respectively, and then stops inputting the scan
  • the first switching element, the second switching element, the third switching element, and the fourth switching element are respectively a first thin film transistor, a second thin film transistor, a third thin film transistor, and a fourth thin film transistor;
  • the first thin film transistor includes the first a first source and a first drain, the first source is electrically connected to the first data line, the first drain is electrically connected to the first sub-electrode, and the first gate is electrically connected to the first scan line to control
  • the first thin film transistor is turned on and off;
  • the second thin film transistor includes a second gate, a second source, and a second drain, the second source is electrically connected to the first data line, and the second drain and the second sub
  • the second electrode is electrically connected to the first scan line to control the on and off of the second thin film transistor;
  • the third thin film transistor includes a third gate, a third source and a third drain, and the third source
  • the pole is electrically connected to the first data line or electrically connected to the second drain of the second thin film
  • the data lines are respectively input through the first switching element, the second switching element, and the third switching element to correspond to the same type that needs to be displayed.
  • controlling a voltage signal of the image to the first sub-electrode, the second sub-electrode, and the third sub-electrode, and controlling a preset voltage difference between the at least two sub-electrodes of the first sub-electrode, the second sub-electrode, and the third sub-electrode Means that the first data line inputs a voltage signal that needs to display the same image to the first sub-electrode, the second sub-electrode, and the third sub-electrode through the first thin film transistor, the second thin film transistor, and the third thin film transistor, respectively, and then stops inputting Scanning a signal to the first scan line and the second scan line; stopping input of the scan signal to the first scan line and the second scan line, the
  • the signal is controlled to open the fourth thin film transistor, and the voltage signal of the second sub-electrode is coupled to the first coupling capacitor through the fourth thin film transistor to adjust the first Coupling a capacitor such that a predetermined voltage difference exists between the second sub-electrode and the first sub-electrode and the third sub-electrode, respectively; and in a case where the third source is electrically connected to the first drain of the first thin film transistor, the data
  • the line inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode, the second sub-electrode, and the third sub-electrode through the first switching element, the second switching element, and the third switching element, respectively, and controls the first sub-electrode
  • the voltage signal is passed through the first thin film transistor and then input to the third sub-electrode through the third thin film transistor, and then the input of the scan signal to the first scan line and the second scan line is stopped; the input scan is stopped. Transmitting a scan signal to the third scan line after the signal is applied to the first scan line and the second scan line to control the fourth thin film transistor to be turned on, and the voltage signal of the second sub-electrode Through the fourth thin film transistor coupled to the first coupling capacitor, a first adjustment capacitor coupled to the second sub-electrode sub-electrode, respectively, between the first and the third sub-electrodes are present with the predetermined voltage difference.
  • the data line includes a second data line and a third data line, each pixel unit corresponding to at least one second data line and a third data line; the input end of the first switching element is electrically connected to the second data line, and the second switching element And the input end of the third switching element is electrically connected to the third data line respectively; wherein, when entering the 3D display mode, the data line inputting the voltage signal corresponding to the black image to the third sub-electrode through the third switching element means: the third data
  • the line inputs a voltage signal corresponding to the black image to the third sub-electrode through the third switching element; the data line inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode and the first through the first switching element and the second switching element respectively
  • the second sub-electrode, and controlling the presence of the preset voltage difference between the first sub-electrode and the second sub-electrode means that the second data line and the third data line respectively need to display the same through the first
  • the voltage signal of the image is applied to the first sub-electrode and the second sub-electrode, so that the voltage signals input by the second data line and the third data line are different so that Between a sub-electrode and a second sub-electrode predetermined voltage difference.
  • the first switching element, the second switching element, and the third switching element are respectively a first thin film transistor, a second thin film transistor, and a third thin film transistor;
  • the first thin film transistor includes a first gate, a first source, and a first a drain, the first source is electrically connected to the second data line, the first drain is electrically connected to the first sub-electrode, and the first gate is electrically connected to the first scan line to control on and off of the first thin film transistor;
  • the second thin film transistor includes a second gate, a second source, and a second drain, the second source is electrically connected to the third data line, the second drain is electrically connected to the second sub-electrode, and the second gate and the second a scan line is electrically connected to control conduction and turn-off of the second thin film transistor;
  • the third thin film transistor includes a third gate, a third source, and a third drain, and the third source is electrically connected to the third data line or The second drain of the second thin film transistor is electrically
  • the data lines are respectively input through the first switching element, the second switching element, and the third switching element to correspond to the same type that needs to be displayed.
  • controlling a voltage signal of the image to the first sub-electrode, the second sub-electrode, and the third sub-electrode, and controlling a preset voltage difference between the at least two sub-electrodes of the first sub-electrode, the second sub-electrode, and the third sub-electrode Means that the second data line inputs a first voltage signal that needs to display the same image to the first sub-electrode through the first thin film transistor, and the third data line inputs a second image that needs to display an image through the second thin film transistor and the third thin film transistor, respectively.
  • a voltage signal is applied to the second sub-electrode and the third sub-electrode such that the first voltage signal and the second voltage signal are different such that a predetermined voltage difference exists between the first sub-electrode and the second sub-electrode and the third sub-electrode, respectively
  • the third source is electrically connected to the second drain of the second thin film transistor
  • the data lines respectively pass through the first switching element, the second switching element, and the third opening
  • the component inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode, the second sub-electrode, and the third sub-electrode, and controls at least two sub-electrodes of the first sub-electrode, the second sub-electrode, and the third sub-electrode
  • the presence of the preset voltage difference between the two data lines means that the second data line inputs the first voltage signal of the same image through the first thin film transistor to the first sub-electrode, and the third
  • a second voltage signal of the image to the second sub-electrode the second voltage signal being passed through the second thin film transistor and input to the third sub-electrode through the third thin film transistor, so that the first voltage signal and the second voltage signal are different to make the first a predetermined voltage difference exists between each of the sub-electrodes and the second sub-electrode and the third sub-electrode; and when the third source is electrically connected to the first drain of the first thin film transistor, the data lines respectively pass through the first switch
  • the component, the second switching component, and the third switching component input a voltage signal corresponding to the same image to be displayed to the first sub-electrode, the second sub-electrode, and
  • the three sub-electrodes, and controlling the preset voltage difference between the at least two sub-electrodes of the first sub-electrode, the second sub-electrode, and the third sub-electrode means that the second data line needs to display the same type through the input of
  • a liquid crystal display panel including an array substrate, the array substrate including at least a plurality of first scan lines, second scan lines, data lines, and a plurality of side by side arrangements.
  • each of the pixel units includes a switching element and a pixel electrode, each pixel unit corresponding to at least one first scan line, a second scan line, and a data line;
  • the pixel electrode includes at least a first sub-electrode, a second sub-electrode, and a third sub-electrode;
  • the number of switching elements of each pixel unit is at least three, at least respectively a first switching element, a second switching element, and a third switching element; a first switching element, a second switching element, and a third switching element
  • the output ends are electrically connected to the first sub-electrode, the second sub-electrode and the third sub-electrode, respectively, wherein the input ends of the first switching element, the second switching element and the third switching element are electrically connected to the data line, the first switching element and the first
  • the control ends of the two switching elements are electrically connected to the first scan line, and the control end of the third switching element is electrically connected to the second scan line
  • the first scan line inputs a scan signal to control the opening of the first switching element and the second switching element, and the data lines are respectively input through the first switching element and the second switching element to be displayed correspondingly
  • a voltage signal of the same image is applied to the first sub-electrode and the second sub-electrode, and a preset voltage difference exists between the first sub-electrode and the second sub-electrode.
  • the liquid crystal display panel is a VA type liquid crystal display panel; when entering the 2D display mode, the first scan line and the second scan line respectively input scan signals to control the first switching element, the second switching element and the third switching element to be turned on,
  • the data line inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode, the second sub-electrode, and the third sub-electrode through the first switching element, the second switching element, and the third switching element, respectively, and controls the first sub-controller
  • the invention has the beneficial effects that the pixel electrode of the pixel unit is divided into at least a first sub-electrode, a second sub-electrode and a third sub-electrode, and the black matrix is realized in the third sub-electrode.
  • FIG. 1 is a schematic structural view of an FPR 3D display system in the prior art, and shows optical path differences under two viewing angle conditions;
  • FIG. 2 is a schematic diagram of a pixel structure adopting a 1G2D pixel design scheme in the prior art, and simultaneously showing main pixel and sub-pixel display states in a 2D display mode and a 3D display mode;
  • FIG. 3 is a schematic structural view of an embodiment of an array substrate of a liquid crystal display panel of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a pixel unit at a broken line portion of the array substrate of FIG. 3;
  • FIG. 5 is a schematic diagram showing an effect of displaying a black screen by a third sub-electrode when the pixel unit in FIG. 4 enters a 3D display mode;
  • FIG. 6 is a schematic structural view of still another embodiment of a pixel unit at a broken line portion of the array substrate of FIG. 3;
  • FIG. 7 is a schematic structural diagram of an embodiment in which a preset voltage difference exists between at least two sub-electrodes of three sub-electrodes of a pixel unit according to an embodiment of the present invention
  • FIG. 8 is an equivalent circuit diagram when the switching element of FIG. 7 is a thin film transistor
  • FIG. 9 is a schematic structural diagram of still another embodiment of controlling a preset voltage difference between at least two of the three sub-electrodes of the pixel unit in the embodiment of the present invention.
  • FIG. 10 is an equivalent circuit diagram when the switching element of FIG. 9 is a thin film transistor
  • FIG. 11 is a schematic structural diagram of still another embodiment in which a preset voltage difference exists between at least two of the three sub-electrodes of the control pixel unit in the embodiment of the present invention
  • FIG. 12 is an equivalent circuit diagram when the switching element of FIG. 11 is a thin film transistor
  • FIG. 13 is a schematic structural diagram of still another embodiment in which a preset voltage difference exists between at least two of the three sub-electrodes of the control pixel unit in the embodiment of the present invention
  • Figure 14 is an equivalent circuit diagram when the switching element of Figure 13 is a thin film transistor
  • 15 is a schematic structural diagram of still another embodiment in which a preset voltage difference exists between at least two of the three sub-electrodes of the control pixel unit in the embodiment of the present invention
  • Figure 16 is an equivalent circuit diagram when the switching element of Figure 15 is a thin film transistor
  • 17 is a schematic structural diagram of still another embodiment of controlling a preset voltage difference between at least two of the three sub-electrodes of the pixel unit in the embodiment of the present invention.
  • Fig. 18 is an equivalent circuit diagram when the switching element of Fig. 17 is a thin film transistor.
  • the structural design of the array substrate embodiment of the liquid crystal display panel of the present invention enables the liquid crystal display panel to improve the color difference of the large viewing angle to a certain extent in the 2D display mode and the 3D display mode, thereby reducing color distortion and improving the display effect.
  • an embodiment of the array substrate 10 of the liquid crystal display panel of the present invention includes at least a plurality of first scan lines 101, second scan lines 102, data lines 103, and a plurality of pixel units 104 arranged side by side.
  • Each of the pixel units 104 includes a switching element 1041 and a pixel electrode 1042, and each pixel unit corresponds to at least one first scan line 101, second scan line 102, and data line 103.
  • the pixel electrode 1042 includes at least a first sub-electrode 10421, a second sub-electrode 10422, and a third sub-electrode 10423.
  • the number of switching elements 1041 of each pixel unit 104 is at least three, which are a first switching element 10411, a second switching element 10412, and a third switching element 10413, respectively.
  • the first switching element 10411, the second switching element 10412, and the third switching element 10413 each include an input end, an output end, and a control end.
  • the output ends of the first switching element 10411, the second switching element 10412, and the third switching element 10413 are electrically connected to the first sub-electrode 10421, the second sub-electrode 10422, and the third sub-electrode 10423, respectively, and the input ends are electrically connected to the data line 103, respectively.
  • the control terminals of the first switching element 10411 and the second switching element 10412 are electrically connected to the first scan line 101, respectively.
  • the control terminal of the third switching element 10413 is electrically connected to the second scan line 102.
  • the first switching element 10411 and the second switching element 10412 respectively control display and shutdown of the first sub-electrode 10421 and the second sub-electrode 10422, and the control terminals thereof are electrically connected to the first scan line 101.
  • the first switching element 10411 and the second switching element 10412 are simultaneously turned on, and the data line 103 passes through the first switching element 10411 and the second switching element 10412 to the first sub-electrode 10421 and the second sub-portion.
  • the electrode 10422 inputs a voltage signal to cause the first sub-electrode 10421 and the second sub-electrode 10422 to be displayed.
  • the third switching element 10413 controls display and shutdown of the third sub-electrode 10423, and its control terminal is electrically coupled to the second scan line 102.
  • the third switching element 10413 is turned on, and the data line 103 is input with a voltage signal to the third sub-electrode 10423 via the third switching element 10413, so that the third sub-electrode 10423 is displayed.
  • the array substrate 10 of the present embodiment enables the liquid crystal display panel to switch between 2D screen display and 3D screen display.
  • the second scan line 102 inputs a scan signal to control the third switch element 10413 to be turned on, and the data line 103 inputs a voltage signal corresponding to the black image to the third sub-electrode 10423 through the third switch element 10413.
  • the input of the scan signal to the second scan line 102 is then stopped.
  • the voltage signal of the black image is input to the third sub-electrode 10423, and the third sub-electrode 10423 can be "cleared", so that the third sub-electrode 10423 displays a black screen, and then the second scan line 102 is turned off, no longer
  • the three sub-electrodes 10423 input a scan signal to maintain the third sub-electrode 10423 in a black state, as shown in FIG.
  • the first scan line 101 inputs a scan signal to control the first switching element 10411 and the second switching element 10412 to be turned on, and the data line 103 passes through the first switching element 10411 and the second switch, respectively.
  • the component 10412 inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode 10421 and the second sub-electrode 10422, and controls a preset voltage difference between the first sub-electrode 10421 and the second sub-electrode 10422.
  • the entire pixel unit 104 may also be "cleared" first. Specifically, a scan signal is simultaneously input to the first scan line 101 and the second scan line 102 to turn on the first switching element 10411, the second switching element 10412, and the third switching element 10413, and the data line 103 passes through the first switching element 10411, The second switching element 10412 and the third switching element 10413 input a voltage signal of the black image to the first sub-electrode 10421, the second sub-electrode 10422, and the third sub-electrode 10423 to "clear screen" the entire pixel unit 104, so that the whole The pixel unit 104 displays a black screen.
  • the scan signal is input to the second scan line 102, the third sub-electrode 10423 is kept in a black state, and the scan signal is input to the first scan line 101.
  • the data line 103 passes through the first switching element 10411 and the second switching element 10412, respectively.
  • the voltage signal corresponding to the same image needs to be input to the first sub-electrode 10421 and the second sub-electrode 10422, and a preset voltage difference exists between the first sub-electrode 10421 and the second sub-electrode 10422.
  • the specific value of the preset voltage difference can be set according to actual needs. The requirement is that the basic display quality can be ensured after setting, and the color difference of the large viewing angle can be improved, and the color distortion is reduced.
  • the specific value of the present invention is not limited.
  • the third sub-electrode 10423 is kept in a black state, which is equivalent to a black matrix, whereby the possibility of double-eye signal crosstalk in the 3D display mode can be reduced.
  • the preset voltage difference exists between the first sub-electrode 10421 and the second sub-electrode 10422, thereby controlling the deflection of the liquid crystal molecules, thereby improving the color difference of the large viewing angle to a certain extent, reducing the color distortion, and improving the 3D display effect. .
  • the input end of the third switching element 20413 can also be electrically connected to the output end of the second switching element 20412.
  • the data line 203 inputs a voltage signal to the second sub-electrode 20422 through the second switching element 20412, and the voltage signal passes through the second switching element 20412 and is input to the third sub-electrode 20423 through the third switching element 20413.
  • the first scan line 101 and the second scan line 102 respectively input scan signals to control the first switching element 10411, the second switching element 10412, and the third switching element 10413 to be turned on.
  • the data line 103 inputs a voltage signal corresponding to the same image to be displayed to the first sub-electrode 10421, the second sub-electrode 10422, and the third sub-port through the first switching element 10411, the second switching element 10412, and the third switching element 10413, respectively.
  • the electrode 10423 controls a predetermined voltage difference between at least two of the first sub-electrode 10421, the second sub-electrode 10422, and the third sub-electrode 10423.
  • the present invention also provides various pixel unit designs that control the presence of a preset voltage difference between at least two of the three sub-electrodes.
  • the output ends of the fourth switching element 30414 and the fifth switching element 30415 are electrically connected to the first coupling capacitor 3043 and the second coupling capacitor 3044, respectively.
  • the input ends of the first switching element 30411, the second switching element 30412, and the third switching element 30413 are electrically connected to the first data line 3031, respectively.
  • the input ends of the fourth switching element 30414 and the fifth switching element 30415 are electrically connected to the second sub-electrode 30422 and the third sub-electrode 30423, respectively, and the control ends thereof are electrically connected to the third scan line 305, respectively.
  • the second scan line 302 inputs a scan signal to turn on the third switching element 30413, and the first data line 3031 inputs a voltage signal corresponding to the black image to the third sub-electrode 30423 through the third switching element 30413. .
  • the input of the scan signal to the second scan line 302 is then stopped, so that the third sub-electrode 30423 remains black.
  • the first scan line 301 inputs a control signal to turn on the first switching element 30411 and the second switching element 30412, and the first data line 3031 inputs a voltage corresponding to the same image to be displayed through the first switching element 30411 and the second switching element 30412, respectively.
  • the signal is applied to the first sub-electrode 30421 and the second sub-electrode 30422 to cause the liquid crystal display panel to display an image, and the potentials of the first sub-electrode 30421 and the second sub-electrode 30422 are the same.
  • the input of the scan signal to the first scan line 301 is then stopped.
  • the third scan line 305 inputs a scan signal to control the fourth switching element 30414 to be turned on.
  • the voltage signal of the second sub-electrode 30422 is coupled to the first coupling capacitor 3043 through the fourth switching element 30414, so that the potential of the second sub-electrode 30422 is changed, and the potential of the first sub-electrode 30421 No change has occurred.
  • the size of the first coupling capacitor 3043 is adjusted according to the actual requirement of the role bias, so that there is a preset voltage difference between the first sub-electrode 30421 and the second sub-electrode 30422.
  • the switching element 3041 is a three-terminal control switch. As shown in FIG. 8, the first switching element 30411, the second switching element 30412, the third switching element 30413, the fourth switching element 30414, and the fifth switching element 30415 of the present embodiment are respectively the first. Thin film transistor 30411', second thin film transistor 30412', third thin film transistor 30413', fourth thin film transistor 30414', and fifth thin film transistor 30415'.
  • the first thin film transistor 30411' includes a first gate 30411'3, a first source 30411'1, and a first drain 30411'2.
  • the first gate 30411'3, the first source 30411'1, and the first drain 30411'2 serve as a control terminal, an input terminal, and an output terminal of the first thin film transistor 30411', respectively.
  • the first source 30411'1 is electrically connected to the first data line 3031
  • the first drain 30411'2 is electrically connected to the first sub-electrode 30421
  • the first gate 30411'3 is electrically connected to the first scan line 301 to control the first source.
  • a thin film transistor 30411' is turned on and off.
  • the third thin film transistor 30413' includes a third gate 30413'3, a third source 30413'1, and a third drain 30413'2.
  • the third gate 30413'3, the third source 30413'1, and the third drain 30413'2 serve as a control terminal, an input terminal, and an output terminal of the third thin film transistor 30413', respectively.
  • the third source 3041'1 is electrically connected to the first data line 3031
  • the third drain 30413'2 is electrically connected to the third sub-electrode 30423
  • the third gate 30413'3 is electrically connected to the second scan line 302 to control the
  • the three thin film transistors 30413' are turned on and off.
  • the fourth thin film transistor 30414' includes a fourth gate 30414'3, a fourth source 30414'1, and a fourth drain 30414'2.
  • the fourth gate 30414'3, the fourth source 30414'1, and the fourth drain 30414'2 serve as a control terminal, an input terminal, and an output terminal of the fourth thin film transistor 30414', respectively.
  • the fourth source 30414'1 is electrically connected to the second sub-electrode 30422
  • the fourth drain 30414'2 is electrically connected to the first coupling capacitor 3043
  • the fourth gate 30414'3 is electrically connected to the third scan line 305 to control the
  • the four thin film transistors 30414' are turned on and off.
  • the fifth thin film transistor 30415' includes a fifth gate 30415'3, a fifth source 30415'1, and a fifth drain 30415'2.
  • the fifth gate 30415'3, the fifth source 30415'1, and the fifth drain 30415'2 serve as a control terminal, an input terminal, and an output terminal of the fifth thin film transistor 30415', respectively.
  • the fifth source 30415'1 is electrically connected to the third sub-electrode 30423
  • the fifth drain 30415'2 is electrically connected to the second coupling capacitor 3044
  • the fifth gate 30415'3 is electrically connected to the third scan line 305 to control the
  • the five thin film transistors 30415' are turned on and off.
  • the first scan line 301 and the second scan line 302 respectively input scan signals to control the first thin film transistor 30411', the second thin film transistor 30412', and the third thin film transistor 30413' to be turned on
  • a data line 3031 inputs a voltage signal that needs to display the same image to the first sub-electrode 30421, the second sub-electrode 30422, and the third through the first thin film transistor 30411', the second thin film transistor 30412', and the third thin film transistor 30413', respectively.
  • the sub-electrode 30423 causes the liquid crystal display panel to display an image.
  • the potentials of the first sub-electrode 30421, the second sub-electrode 30422, and the third sub-electrode 30423 are the same, and then the input of the scan signal to the first scan line 301 and the second scan line is stopped. 302. After the input of the scan signal to the first scan line 301 and the second scan line 302 is stopped, the third scan line 305 inputs a scan signal to control the opening of the fourth thin film transistor 30414' and the fifth thin film transistor 30415'.
  • the size of the first coupling capacitor 3043 and the second coupling capacitor 3044 are adjusted according to the actual positional bias, so that the potentials of the second sub-electrode 30422 and the third sub-electrode 30423 are changed according to actual needs.
  • adjusting the first coupling capacitor 3043 and the second coupling capacitor 3044 may cause a preset voltage difference between the first sub-electrode 30421 and the second sub-electrode 30422 and the third sub-electrode 30423, respectively, and the second sub-electrode 30422 and the third The sub-electrodes 30423 are equal in voltage; or there is a preset voltage difference between the first sub-electrode 30421, the second sub-electrode 30422, and the third sub-electrode 30423.
  • the size of the first coupling capacitor 3043 and the second coupling capacitor 3044 are changed by electrically connecting the second sub-electrode 30422 and the third sub-electrode 30243 to the added first coupling capacitor 3043 and the second coupling capacitor 3044, respectively.
  • the potentials of the second sub-electrode 30422 and the third sub-electrode 30423 are changed, so that the first sub-electrode 30421 and the second sub-electrode 30422 and the third sub-electrode 30423 respectively have a preset voltage difference or a first sub-portion.
  • the color of the large viewing angle is abnormal, the color distortion is reduced, and the display effect is improved; and in the 3D display mode, there is a preset voltage difference between the first sub-electrode 30421 and the second sub-electrode 30422, and the third sub-electrode 30423 is composed of the second scan line.
  • 302 alone achieves the effect of "black matrix", which can solve the technical problem of signal crosstalk, and can also improve the color anomaly of large viewing angle and reduce color distortion.
  • the input end of the third switching element 40413 can also be electrically connected to the output end of the second switching element 40412.
  • the first data line 4031 inputs a voltage signal to the second sub-electrode 40422 through the second switching element 40412, and the voltage signal passes through the second switching element 40412, and then is input to the third sub-electrode 40423 through the third switching element 40413.
  • FIG. 9 in addition to the above-described change in the output end of the third switching element 40413 electrically connected to the output end of the second switching element 40412, the other structural unit shown in FIG. 9 and the corresponding structure shown in FIG. The units are similar, so the other structures shown in FIG. 9 will not be described again.
  • FIG. 10 is an equivalent circuit diagram of the switching element 4041 of FIG. 9 as a thin film transistor.
  • the first data line 4031 inputs a voltage signal that needs to display the same image to the first sub-electrode 40421 and the first thin film transistor 40411' and the second thin film transistor 40412', respectively.
  • the two sub-electrodes 40422 pass the voltage signal through the second thin film transistor 40412' and then through the third thin film transistor 40413' to the third sub-electrode 40423, and then stop inputting the scan signal to the first scan line 401 and the second scan line 402.
  • FIG. 11 is a schematic structural diagram of still another embodiment for controlling a preset voltage difference between at least two sub-electrodes of three sub-electrodes according to an embodiment of the present invention.
  • the array substrate 10 includes at least a plurality of The third scan line 705, the data line 103 includes a first data line 7031.
  • Each of the pixel units 104 corresponds to at least one third scan line 705 and a first data line 7031.
  • the switching element 7041 of each pixel unit 104 further includes a fourth switching element 70414.
  • the pixel unit 104 also includes a first coupling capacitor 7043.
  • the structure of the pixel unit of the present embodiment is different from the structure of the pixel unit shown in FIG.
  • FIG. 11 is an equivalent circuit diagram when the switching element in FIG. 11 is a thin film transistor.
  • the first data line 7031 inputs a voltage signal to the first sub-electrode 70421,
  • the two sub-electrodes 70422 and the third sub-electrode 70423 have the same potential of the three sub-electrodes.
  • the potential of the second sub-electrode 70422 is changed by the fourth thin film transistor 70414' being coupled to the first coupling capacitor 7043.
  • the size of the first coupling capacitor 7043 is adjusted according to the actual requirement of the role, so that the potential of the second sub-electrode 70422 is changed according to actual needs, and the second sub-electrode 70422 is respectively associated with the first sub-electrode 70421 and the third sub-electrode 70423. There is a preset voltage difference between them, and the first sub-electrode 70421 and the third sub-electrode 70423 maintain the voltages equal.
  • the first coupling capacitor 7043 is adjusted such that the second sub-electrode 70422 is respectively connected to the first sub-electrode 70421 and the third sub-electrode 70423.
  • a predetermined voltage difference exists between the first sub-electrode 70421 and the second sub-electrode 70422, and the third sub-electrode 70423 is separately controlled by the second scan line 702 to achieve the effect of a “black matrix”, which can solve the technical problem of signal crosstalk. It also improves color anomalies at large viewing angles and reduces color distortion.
  • the input end of the third switching element 80413 can also be electrically connected to the output end of the second switching element 80412.
  • the first data line 8031 inputs a voltage signal to the second sub-electrode 80422 through the second switching element 80412, and the voltage signal passes through the second switching element 80412, and then is input to the third sub-electrode 80423 through the third switching element 80413.
  • FIG. 13 in addition to the above-described change in the output end of the third switching element 80413 electrically connected to the output end of the second switching element 80412, since the other structural units shown in FIG. 13 are similar to the corresponding structural units shown in FIG. 11, Other structures shown in FIG. 13 will not be described again.
  • FIG. 14 is an equivalent circuit diagram of the switching element of FIG. 13 as a thin film transistor, a third source 8041'1 of the third thin film transistor 80413' and a second drain 80412'2 of the second thin film transistor 80412'. Electrical connection.
  • the first data line 8031 inputs a voltage signal that needs to display the same image to the first sub-electrode 80421 and the first thin film transistor 80411' and the second thin film transistor 80412', respectively.
  • the third source 8041'1 of the third thin film transistor 80413' of the embodiment of the present invention may also be electrically connected to the first drain 80411'2 of the first thin film transistor 80411'.
  • the voltage signals input to the first, second, and third sub-electrodes are the same, and then the second sub-electrode 80422 and the first are respectively adjusted by adjusting the first coupling capacitor 8043.
  • the circuit connection relationship and the driving principle of the other parts are similar to those of the above embodiment, and therefore, the details are not described herein, and can be understood by referring to the above embodiments.
  • FIG. 15 is a schematic structural diagram of still another embodiment for controlling a preset voltage difference between at least two of the three sub-electrodes according to an embodiment of the present invention.
  • the data line 103 of the array substrate 10 is shown in FIG.
  • a second data line 5032 and a third data line 5033 are included, and each of the pixel units 104 corresponds to at least one second data line 5032 and third data line 5033.
  • the second scan line 502 inputs a scan signal to the third switching element 50413 to turn on the third switching element 50413, and the third data line 5033 inputs a voltage signal corresponding to the black image through the third switching element 50413.
  • the third sub-electrode 50423 is "cleared", and the third sub-electrode 50423 is displayed as a black screen.
  • the input of the scan signal to the second scan line 502 is then stopped, so that the third sub-electrode 50423 remains black.
  • the first scan line 501 inputs a scan signal to turn on the first switching element 50411 and the second switching element 50412, and the second data line 5032 and the third data line 5033 are respectively input through the first switching element 50411 and the second switching element 50412 to display correspondingly.
  • the voltage signal of the same image is applied to the first sub-electrode 50421 and the second sub-electrode 50422, and different voltage signals are input by setting the second data line 5032 and the third data line 5033 to make the first sub-electrode 50421 and the second sub-electrode There is a preset voltage difference between 50422.
  • the switching element 5041 is a three-terminal control switch.
  • the first switching element 50411, the second switching element 50412, and the third switching element 50413 are the first thin film transistor 50411', the second thin film transistor 50412', and the third thin film transistor 50413', respectively.
  • the first thin film transistor 50411' includes a first gate 50411'3, a first source 50411'1, and a first drain 50411'2.
  • the first gate 50411'3, the first source 50411'1, and the first drain 50411'2 serve as a control terminal, an input terminal, and an output terminal of the first thin film transistor 50411', respectively.
  • the first source 50411'1 is electrically connected to the second data line 5032
  • the first drain 50411'2 is electrically connected to the first sub-electrode 50421
  • the first gate 50411'3 is electrically connected to the first scan line 501 to control the first source.
  • a thin film transistor 50411' is turned on and off.
  • the second thin film transistor 50412' includes a second gate 50412'3, a second source 50412'1, and a second drain 50412'2.
  • the second gate 50412'3, the second source 50412'1, and the second drain 50412'2 serve as a control terminal, an input terminal, and an output terminal of the second thin film transistor 50412', respectively.
  • the second source 50412'1 is electrically connected to the third data line 5033
  • the second drain 50412'2 is electrically connected to the second sub-electrode 50422
  • the second gate 50412'3 is electrically connected to the first scan line 501 to control the second source.
  • the second thin film transistor 50412' is turned on and off.
  • the third thin film transistor 50413' includes a third gate 50413'3, a third source 50413'1, and a third drain 50413'2.
  • the third gate 5041'3, the third source 50413'1, and the third drain 50413'2 serve as a control terminal, an input terminal, and an output terminal of the third thin film transistor 50413', respectively.
  • the third source 5041'1 is electrically connected to the third data line 5033
  • the third drain 50413'2 is electrically connected to the third sub-electrode 50423, and the third gate 50413'3 is electrically connected to the second scan line 502 to control the third source.
  • the three thin film transistors 50413' are turned on and off.
  • the first scan line 501 and the second scan line 502 respectively input scan signals to turn on the first thin film transistor 50411', the second thin film transistor 50412', and the third thin film transistor 50413'.
  • the second data line 5032 inputs a first voltage signal that needs to display the same image to the first sub-electrode 50421 through the first thin film transistor 50411', and the third data line 5033 passes through the second thin film transistor 50412' and the third thin film transistor 50413', respectively.
  • a second voltage signal that needs to display the image is input to the second sub-electrode 50422 and the third sub-electrode 50423.
  • the second sub-electrode 50422 and the third sub-electrode 50423 have the same potential.
  • the first sub-electrode 50421 is input with a voltage signal through the second data line 5032
  • the third data line 5033 is respectively input with a voltage signal to the second sub-electrode 50422 and the third sub-electrode 50423, since the second data line 5032 and the The voltage signals input by the three data lines 5033 are different, so that a preset voltage difference between the first sub-electrode 50421 and the second sub-electrode 50422 and the third sub-electrode 50423 can be respectively controlled to control the deflection of the liquid crystal molecules, thereby enabling
  • the liquid crystal display panel can improve the color abnormality of the large viewing angle to a certain extent in the 2D display mode and the 3D display mode, reduce the color distortion, and improve the display effect; and the third sub-electrode 50423 is separately controlled by the second scanning line 502, so that The third sub-electrode 50423 realizes the effect of the “black matrix” in the 3D display
  • the input end of the third switching element 60413 can also be electrically connected to the output end of the second switching element 60412.
  • the third data line 6033 inputs a voltage signal to the second sub-electrode 60422 through the second switching element 60412, and the voltage signal passes through the second switching element 60412, and then is input to the third sub-electrode through the third switching element 60413. 60423.
  • FIG. 18 is an equivalent circuit diagram of the switching element 6041 of FIG. 17 as a thin film transistor, the third source 6041'1 of the third thin film transistor 60413' and the second thin film transistor 60412'.
  • the drain 60412'2 is electrically connected.
  • the first scan line 601 and the second scan line 602 respectively input scan signals to turn on the first thin film transistor 60411', the second thin film transistor 60412', and the third thin film transistor 60413'. .
  • the second data line 6032 inputs a first voltage signal that needs to display the same image to the first sub-electrode 60421 through the first thin film transistor 60411'
  • the third data line 6033 inputs the first image that needs to display the same image through the second thin film transistor 60412'.
  • the two voltage signals are sent to the second sub-electrode 60422.
  • the second voltage signal passes through the second thin film transistor 60412' and passes through the third thin film transistor 60413' to the third sub-electrode 60423.
  • the first voltage signal and the second voltage signal there is a difference between the first sub-electrode 60421 and the second sub-electrode 60422 and the third sub-electrode 60423, respectively. difference.
  • the third source 60413'1 of the third thin film transistor 60413' of the embodiment of the present invention may also be electrically connected to the first drain 60411'2 of the first thin film transistor 60411'.
  • the second data line 6032 inputs a first voltage signal that needs to display the same image to the first thin film transistor 60411', and the first voltage signal is input through the first thin film transistor 60411'.
  • the third thin film transistor 60413' is made such that the voltage signals of the first sub-electrode 60421 and the third sub-electrode 60423 are the same.
  • the third data line 6033 is directed to the second thin film transistor 60412' Enter a second voltage signal that needs to display the same image. There is a difference between the first voltage signal and the second voltage signal such that a predetermined voltage difference exists between the second sub-electrode 60422 and the first sub-electrode 60421 and the third sub-electrode 60423, respectively.
  • the circuit connection relationship and the driving principle of the other portions are similar to those of the above embodiment, and will not be further described herein.
  • the present invention also provides an embodiment of a liquid crystal display panel comprising the array substrate according to any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种液晶显示面板及其阵列基板(10),阵列基板(10)包括至少多条第一扫描线(101)、第二扫描线(102)、数据线(103)以及多个并排设置的像素单元(104),将像素单元(104)的像素电极(1042)划分为至少第一子电极(10421)、第二子电极(10422)以及第三子电极(10423),同时控制第一子电极(10421)和第二子电极(10422)在3D显示模式下显示同一种图像的电压信号时存在预设电压差。通过上述方式,液晶显示面板在3D显示模式下能够减少信号串扰问题,可在一定程度上改善大视角的颜色差异,降低色彩失真。

Description

一种液晶显示面板及其阵列基板
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种液晶显示面板及其阵列基板。
【背景技术】
随着显示技术的不断发展,3D(Three Dimensions,3D)立体显示技术也越来越成熟。3D电视、3D投影、3D摄像机等3D立体影像设备层出不穷。与2D(Two Dimensions,2D)平面显示不同的是,3D立体显示技术的画面更逼真,具有更好的视觉效果,已逐渐成为未来显示设备的主流发展方向。
FPR(Film-type Patterned Retarder,偏光式)是现有3D液晶显示的成像方式之一。如图1所示,FPR 3D显示系统包括液晶显示面板11、Patterned Retarder(偏光)薄膜12以及偏光眼镜13。液晶显示面板101包括形成左眼信号的像素16、形成右眼信号的像素17以及两者之间的黑色矩阵(Black Matrix,BM)18。FPR 3D显示系统主要是通过附着在液晶显示面板11上的Patterned Retarder薄膜12将3D画面分离成左眼图像14和右眼图像15,再经过偏光眼镜13将左眼图像14和右眼图像15分别送至用户的左、右眼睛。用户的左右眼接收到两组图像,再经大脑合成立体影像。
由于FPR 3D显示技术不需要镜片的一开一合,因此FPR 3D显示系统中的显示闪烁感较轻,能带来更好的视觉体验,尤其是配合VA(Vertical Alignment,液晶垂直取向)型显示面板来观看3D影像,其显示效果更佳。这是因为VA型显示面板相较于传统显示面板而言具有相当高的对比度和较短的响应时间,能提供更好显示效果。但是VA型面板的屏幕均匀度不够好,往往会发生颜色漂移现象,在大视角观看时容易出现色偏。而FPR 3D显示技术也存在视角限制的问题,即观看者的视角较窄。当观看者处于较大视角位置时会出现双眼信号相互串扰的现象,如本应送到右眼的信号却被左眼同时观察到了,如图1虚线部分所示,由此会导致画面严重串扰,图像清晰度差。因此,在VA型显示面板上实现FPR 3D显示技术时,大视觉问题尤其严重。
现有技术中,解决上述FPR 3D显示技术视角限制的问题的方案通常是增加形成左眼信号的像素16和形成右眼信号的像素17之间的黑色矩阵18的宽度,以减小双眼信号串扰的可能性,如图1所示。通过计算,黑色矩阵18宽度需增加至整个像素的1/3宽度才可以在一定程度上减少串扰现象。但是,通过这种方式会导致像素的开口率大幅减小,液晶显示面板的亮度也会降低。特别是当处于2D显示模式下,本身不存在双眼串扰问题,亮度却因此而降低。另一方面,将纯2D显示面板转变为同时具备2D和3D显示功能的面板时,只需制作一道黑色矩阵光罩即可实现转换。增加黑色矩阵18的宽度后,对应的黑色矩阵光罩也需进行相应的更改,增加了液晶显示面板的制造成本。
另一种解决方案是采用1G2D(One Gate line Two Data line,一条扫描线两条数据线)的像素设计。如图2所示,采用1G2D的像素设计方案的像素结构包括第一数据线21、第二数据线22、扫描线23、主像素24以及子像素25。第一数据线21和第二数据线22分别给主像素24和子像素25提供信号,主像素24和子像素25采用同一条扫描线23驱动。当液晶显示面板从2D显示模式切换至3D显示模式时,向主像素204输入黑色画面信号使其显示黑色,以在主像素区域实现“黑色矩阵”的效果,由此也可减少双眼信号串扰。1G2D的像素设计中主像素24和子像素25的液晶分子转角不相同,使液晶面板在2D显示模式下具备很好的低色偏效果。但是,在切换至3D显示模式时,由于主像素24区域为黑色,此时只表现出子像素25的液晶分子偏转,失去了低色偏功能,再加上VA型显示面板本身的色偏存在,使观看者处于大视角位置时观察到的颜色异常现象更为严重。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示面板及其阵列基板,能够使液晶显示面板在3D显示模式下可在一定程度上改善大视角的颜色差异,降低色彩失真,提高显示效果。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种VA型液晶显示面板的阵列基板,所述阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个所述像素单元均包括开关元件和像素电极,每个所述像素单元对应至少一条第一扫描线、第二扫描线以及数据线;所述像素电极至少包括第一子电极、第二子电极以及第三子电极;每个所述像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;所述第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,所述第一开关元件和第二开关元件的输入端分别电连接数据线,所述第三开关元件的输入端电连接数据线或第二开关元件的输出端,所述第一开关元件和第二开关元件的控制端分别电连接第一扫描线,所述第三开关元件的控制端电连接第二扫描线;其中,在所述第三开关元件的输入端电连接数据线的情况下,在进入3D显示模式时,所述第二扫描线输入扫描信号以控制第三开关元件打开,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至所述第二扫描线;停止输入扫描信号至所述第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差;在进入2D显示模式时,所述第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
其中,所述阵列基板包括至少多条第三扫描线,所述数据线包括第一数据线,每个所述像素单元对应至少一条所述第三扫描线以及第一数据线;每个所述像素单元的开关元件进一步包括第四开关元件以及第五开关元件;所述像素单元还包括第一耦合电容和第二耦合电容;所述第四开关元件和第五开关元件的输出端分别电连接第一耦合电容和第二耦合电容,所述第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,所述第四开关元件和第五开关元件的输入端分别电连接第二子电极和第三子电极,所述第四开关元件和第五开关元件的控制端分别电连接第三扫描线;其中,在进入3D显示模式时,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:所述第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:所述第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至所述第一扫描线;停止输入扫描信号至所述第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,所述第二子电极的电压信号通过第四开关元件耦合至所述第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示面板的阵列基板,阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个像素单元均包括开关元件和像素电极,每个像素单元对应至少一条第一扫描线、第二扫描线以及数据线;像素电极至少包括第一子电极、第二子电极以及第三子电极;每个像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,第一开关元件、第二开关元件以及第三开关元件的输入端分别电连接数据线,第一开关元件和第二开关元件的控制端分别电连接第一扫描线,第三开关元件的控制端电连接第二扫描线;其中,在进入3D显示模式时,第二扫描线输入扫描信号以控制第三开关元件打开,数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至第二扫描线;停止输入扫描信号至第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差。
其中,在进入2D显示模式时,第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
其中,阵列基板包括至少多条第三扫描线,数据线包括第一数据线,每个像素单元对应至少一条第三扫描线以及第一数据线;每个像素单元的开关元件进一步包括第四开关元件以及第五开关元件;像素单元还包括第一耦合电容和第二耦合电容;第四开关元件和第五开关元件的输出端分别电连接第一耦合电容和第二耦合电容,第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,第四开关元件和第五开关元件的输入端分别电连接第二子电极和第三子电极,第四开关元件和第五开关元件的控制端分别电连接第三扫描线;其中,在进入3D显示模式时,数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至第一扫描线;停止输入扫描信号至第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,第二子电极的电压信号通过第四开关元件耦合至第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
其中,第一开关元件、第二开关元件、第三开关元件、第四开关元件以及第五开关元件分别为第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管以及第五薄膜晶体管;第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,第一源极与第一数据线电连接,第一漏极与第一子电极电连接,第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,第二源极与第一数据线电连接,第二漏极与第二子电极电连接,第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,第三源极与第一数据线电连接或与第二薄膜晶体管的第二漏极电连接,第三漏极与第三子电极电连接,第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭;第四薄膜晶体管包括第四栅极、第四源极以及第四漏极,第四源极与第二子电极电连接,第四漏极与第一耦合电容电连接,第四栅极与第三扫描线电连接以控制第四薄膜晶体管的导通与关闭;第五薄膜晶体管包括第五栅极、第五源极以及第五漏极,第五源极与第三子电极电连接,第五漏极与第二耦合电容电连接,第五栅极与第三扫描线电连接以控制第五薄膜晶体管的导通与关闭。
其中,在进入2D显示模式时,在第三源极与第一数据线电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第一数据线分别通过第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管和第五薄膜晶体管打开,第二子电极的电压信号通过第四薄膜晶体管耦合至第一耦合电容,第三子电极的电压信号通过第五薄膜晶体管耦合至第二耦合电容,调整第一耦合电容和第二耦合电容以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差或第一、第二、第三子电极三者之间均存在预设电压差;在第三源极与第二薄膜晶体管的第二漏极电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管和第五薄膜晶体管打开,第二子电极的电压信号通过第四薄膜晶体管输入至第一耦合电容,第三子电极的电压信号通过第五薄膜晶体管输入至第二耦合电容,调整第一耦合电容和第二耦合电容以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差或第一、第二、第三子电极三者之间均存在预设电压差。
其中,阵列基板包括至少多条第三扫描线,数据线包括第一数据线,每个像素单元对应至少一条第三扫描线以及第一数据线;每个像素单元的开关元件进一步包括第四开关元件;像素单元还包括第一耦合电容;第四开关元件的输出端电连接第一耦合电容,第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,第四开关元件的输入端电连接第二子电极,第四开关元件的控制端电连接第三扫描线;其中,在进入3D显示模式时,数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至第一扫描线;停止输入扫描信号至第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,第二子电极的电压信号通过第四开关元件耦合至第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
其中,第一开关元件、第二开关元件、第三开关元件以及第四开关元件分别为第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管;第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,第一源极与第一数据线电连接,第一漏极与第一子电极电连接,第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,第二源极与第一数据线电连接,第二漏极与第二子电极电连接,第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,第三源极与第一数据线电连接或与第二薄膜晶体管的第二漏极电连接或与第一薄膜晶体管的第一漏极电连接,第三漏极与第三子电极电连接,第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭;第四薄膜晶体管包括第四栅极、第四源极以及第四漏极,第四源极与第二子电极电连接,第四漏极与第一耦合电容电连接,第四栅极与第三扫描线电连接以控制第四薄膜晶体管的导通与关闭。
其中,在进入2D显示模式时,在第三源极与第一数据线电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第一数据线分别通过第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,第二子电极的电压信号通过第四薄膜晶体管耦合至第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差;在第三源极与第二薄膜晶体管的第二漏极电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极和第三子电极中的至少两个子电极之间存在预设电压差是指:第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,第二子电极的电压信号通过第四薄膜晶体管耦合至第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差;在第三源极与第一薄膜晶体管的第一漏极电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极和第三子电极中的至少两个子电极之间存在预设电压差是指:第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第一薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,第二子电极的电压信号通过第四薄膜晶体管耦合至第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差。
其中,数据线包括第二数据线和第三数据线,每个像素单元对应至少一条第二数据线以及第三数据线;第一开关元件的输入端电连接第二数据线,第二开关元件和第三开关元件的输入端分别电连接第三数据线;其中,在进入3D显示模式时,数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:第三数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:第二数据线和第三数据线分别通过第一开关元件和第二开关元件输入对应需要显示同一种图像的电压信号至第一子电极和第二子电极,使第二数据线和第三数据线输入的电压信号存在差异以使第一子电极和第二子电极之间存在预设电压差。
其中,第一开关元件、第二开关元件以及第三开关元件分别为第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管;第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,第一源极与第二数据线电连接,第一漏极与第一子电极电连接,第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,第二源极与第三数据线电连接,第二漏极与第二子电极电连接,第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,第三源极与第三数据线电连接或与第二薄膜晶体管的第二漏极电连接或与第一薄膜晶体管的第一漏极电连接,第三漏极与第三子电极电连接,第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭。
其中,在进入2D显示模式时,在第三源极与第三数据线电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第二数据线通过第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,第三数据线分别通过第二薄膜晶体管和第三薄膜晶体管输入需要显示图像的第二电压信号至第二子电极和第三子电极,使第一电压信号和第二电压信号存在差异以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差;在第三源极与第二薄膜晶体管的第二漏极电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第二数据线通过第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,第三数据线通过第二薄膜晶体管输入需要显示同一种图像的第二电压信号至第二子电极,第二电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,使第一电压信号和第二电压信号存在差异以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差;在第三源极与第一薄膜晶体管的第一漏极电连接的情况下,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:第二数据线通过第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,第一电压信号通过第一薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,第三数据线通过第二薄膜晶体管输入需要显示同一种图像的第二电压信号至第二子电极,使第一电压信号和第二电压信号存在差异以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶显示面板,包括阵列基板,阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个像素单元均包括开关元件和像素电极,每个像素单元对应至少一条第一扫描线、第二扫描线以及数据线;像素电极至少包括第一子电极、第二子电极以及第三子电极;每个像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,第一开关元件、第二开关元件以及第三开关元件的输入端分别电连接数据线,第一开关元件和第二开关元件的控制端分别电连接第一扫描线,第三开关元件的控制端电连接第二扫描线;在进入3D显示模式时,第二扫描线输入扫描信号以控制第三开关元件打开,数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至第二扫描线;停止输入扫描信号至第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差。
其中,液晶显示面板是VA型液晶显示面板;在进入2D显示模式时,第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
本发明的有益效果是:区别于现有技术的情况,本发明将像素单元的像素电极划分为至少第一子电极、第二子电极以及第三子电极,在第三子电极实现“黑色矩阵”的效果,并且使第一子电极和第二子电极在显示同一种图像的电压信号的情况下,两者之间存在预设电压差,能够解决3D显示模式下信号串扰的技术问题,可在一定程度上改善大视角的颜色差异,降低色彩失真,提高显示效果。
此外,同时向第一、第二以及第三子电极输入对应需要显示的同一种图像的电压信号,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差,也能够提高2D显示模式下液晶显示面板的亮度以及像素的开口率,改善大视角的颜色差异,降低色彩失真,提高显示效果。
【附图说明】
图1是现有技术中一种FPR 3D显示系统的结构示意图,同时示出两种视角条件下的光路差异;
图2是现有技术中采用1G2D像素设计方案的像素结构示意图,同时分别示出处于2D显示模式和3D显示模式下的主像素和子像素显示状态;
图3是本发明液晶显示面板的阵列基板的一实施例的结构示意图;
图4是图3中阵列基板虚线部分处的一个像素单元的一实施例的结构示意图;
图5是图4中的像素单元进入3D显示模式时第三子电极显示黑画面的效果示意图;
图6是图3中阵列基板虚线部分处一个像素单元的又一实施例的结构示意图;
图7是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的一实施例的结构示意图;
图8是图7中的开关元件为薄膜晶体管时的等效电路图;
图9是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图;
图10是图9中的开关元件为薄膜晶体管时的等效电路图;
图11是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图;
图12是图11中的开关元件为薄膜晶体管时的等效电路图;
图13是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图;
图14是图13中的开关元件为薄膜晶体管时的等效电路图;
图15是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图;
图16是图15中的开关元件为薄膜晶体管时的等效电路图;
图17是本发明实施例中控制像素单元的三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图;
图18是图17中的开关元件为薄膜晶体管时的等效电路图。
【具体实施方式】
本发明液晶显示面板的阵列基板实施例的结构设计能使液晶显示面板在2D显示模式和3D显示模式下均可在一定程度上改善大视角的颜色差异,降低色彩失真,提高显示效果。
下面将结合附图和实施例对本发明进行详细描述。
参阅图3和图4,本发明液晶显示面板的阵列基板10的一实施例包括至少多条第一扫描线101、第二扫描线102、数据线103以及多个并排设置的像素单元104。其中,每个像素单元104均包括开关元件1041和像素电极1042,并且每个像素单元对应至少一条第一扫描线101、第二扫描线102以及数据线103。
像素电极1042至少包括第一子电极10421、第二子电极10422以及第三子电极10423。每个像素单元104的开关元件1041数量至少为三个,分别是第一开关元件10411、第二开关元件10412以及第三开关元件10413。
第一开关元件10411、第二开关元件10412以及第三开关元件10413均包括输入端、输出端和控制端。第一开关元件10411、第二开关元件10412以及第三开关元件10413的输出端分别电连接第一子电极10421、第二子电极10422以及第三子电极10423,输入端分别电连接数据线103。第一开关元件10411和第二开关元件10412的控制端分别电连接第一扫描线101。第三开关元件10413的控制端电连接第二扫描线102。
第一开关元件10411和第二开关元件10412分别控制第一子电极10421和第二子电极10422的显示与关闭,其控制端均电连接第一扫描线101。向第一扫描线101输入扫描信号时,第一开关元件10411和第二开关元件10412同时打开,数据线103通过第一开关元件10411和第二开关元件10412向第一子电极10421和第二子电极10422输入电压信号,使第一子电极10421和第二子电极10422显示。第三开关元件10413控制第三子电极10423的显示与关闭,其控制端电连接第二扫描线102。向第二扫描线102输入扫描信号时,第三开关元件10413打开,数据线103通过第三开关元件10413向第三子电极10423输入电压信号,使第三子电极10423显示。
本实施例的阵列基板10可使液晶显示面板实现2D画面显示和3D画面显示之间的切换。
在液晶显示面板进入3D显示模式时,第二扫描线102输入扫描信号以控制第三开关元件10413打开,数据线103通过第三开关元件10413输入对应黑色图像的电压信号至第三子电极10423,随后停止输入扫描信号至第二扫描线102。其中,对第三子电极10423输入黑色图像的电压信号,可对第三子电极10423进行“清屏”,使第三子电极10423显示黑画面,随后关闭第二扫描线102,不再对第三子电极10423输入扫描信号,使第三子电极10423保持黑画面状态,如图5所示。在停止输入扫描信号至第二扫描线102后,第一扫描线101输入扫描信号以控制第一开关元件10411和第二开关元件10412打开,数据线103分别通过第一开关元件10411和第二开关元件10412输入对应需要显示的同一种图像的电压信号至第一子电极10421和第二子电极10422,并控制第一子电极10421和第二子电极10422之间存在预设电压差。
当然,在液晶显示面板进入3D显示模式时,也可先对整个像素单元104进行“清屏”。具体地,向第一扫描线101和第二扫描线102同时输入扫描信号以打开第一开关元件10411、第二开关元件10412以及第三开关元件10413,数据线103分别通过第一开关元件10411、第二开关元件10412以及第三开关元件10413输入黑色图像的电压信号至第一子电极10421、第二子电极10422以及第三子电极10423,以对整个像素单元104进行“清屏”,使整个像素单元104显示黑色画面。随后停止对第二扫描线102输入扫描信号,使第三子电极10423保持黑画面状态,继续对第一扫描线101输入扫描信号,数据线103分别通过第一开关元件10411和第二开关元件10412输入对应需要显示同一种图像的电压信号至第一子电极10421和第二子电极10422,并控制第一子电极10421和第二子电极10422之间存在预设电压差。预设电压差的具体数值可根据实际需要设定,要求是设定后既能够保证基本的显示质量,同时又能够改善大视角的颜色差异,降低色彩失真,本发明对此具体数值不作限制。
通过上述方式,液晶显示面板进入3D显示模式时,使第三子电极10423保持黑画面状态,等效于黑色矩阵,由此可减小3D显示模式下双眼信号串扰的可能性。并且,控制第一子电极10421和第二子电极10422之间存在预设电压差,进而控制液晶分子的偏转,从而可在一定程度上改善大视角的颜色差异,降低色彩失真,提高3D显示效果。
值得注意的是,参阅图6,第三开关元件20413的输入端还可电连接第二开关元件20412的输出端。数据线203通过第二开关元件20412输入电压信号至第二子电极20422,电压信号通过第二开关元件20412后,通过第三开关元件20413输入至第三子电极20423。
除上述将第三开关元件20413的输入端电连接第二开关元件20412的输出端的变化之外,由于图6所示的其他结构单元与图4所示的相应结构单元类似,因此不再对图6所示的其他结构进行赘述。
继续参阅图4,液晶显示面板在进入2D显示模式时,第一扫描线101和第二扫描线102分别输入扫描信号以控制第一开关元件10411、第二开关元件10412以及第三开关元件10413打开,数据线103分别通过第一开关元件10411、第二开关元件10412以及第三开关元件10413输入对应需要显示的同一种图像的电压信号至第一子电极10421、第二子电极10422以及第三子电极10423,并控制第一子电极10421、第二子电极10422以及第三子电极10423中的至少两个子电极之间存在预设电压差。
液晶显示面板在进入2D显示模式时,第一扫描线101和第二扫描线102均打开,三个子电极10421、10422、10423都输入对应需要显示同一种图像的电压信号,由此可使像素单元104具有较大的开口率,提高液晶显示面板的亮度。并且,控制三个子电极10421、10422、10423中的至少两个子电极之间存在预设电压差,进而控制液晶分子的偏转,从而可在一定程度上改善大视角的颜色差异,降低色彩失真。
本发明还提供了多种控制三个子电极中的至少两个子电极之间存在预设电压差的像素单元设计方案。
参阅图7,并结合图3,阵列基板10包括至少多条第三扫描线305,数据线103包括第一数据线3031。每个像素单元104对应至少一条第三扫描线305以及第一数据线3031。每个像素单元104的开关元件3041进一步包括第四开关元件30414以及第五开关元件30415。像素单元104还包括第一耦合电容3043和第二耦合电容3044。
其中,第四开关元件30414和第五开关元件30415的输出端分别电连接第一耦合电容3043和第二耦合电容3044。第一开关元件30411、第二开关元件30412以及第三开关元件30413的输入端分别电连接第一数据线3031。第四开关元件30414和第五开关元件30415的输入端分别电连接第二子电极30422和第三子电极30423,其控制端分别电连接第三扫描线305。
在液晶显示面板进入3D显示模式时,第二扫描线302输入扫描信号以打开第三开关元件30413,第一数据线3031通过第三开关元件30413输入对应黑色图像的电压信号至第三子电极30423。随后停止输入扫描信号至第二扫描线302,使第三子电极30423保持黑画面。第一扫描线301输入控制信号以打开第一开关元件30411和第二开关元件30412,第一数据线3031分别通过第一开关元件30411和第二开关元件30412输入对应需要显示的同一种图像的电压信号至第一子电极30421和第二子电极30422,使液晶显示面板显示图像,此时第一子电极30421和第二子电极30422的电位相同。随后停止输入扫描信号至第一扫描线301。停止输入扫描信号至第一扫描线301后,第三扫描线305输入扫描信号以控制第四开关元件30414打开。第四开关元件30414打开后,第二子电极30422的电压信号通过第四开关元件30414耦合至第一耦合电容3043,使第二子电极30422的电位发生了变化,而第一子电极30421的电位未发生改变。根据实际视角色偏的需求,调整第一耦合电容3043的大小,进而使第一子电极30421和第二子电极30422之间存在预设电压差。
本实施例中,开关元件3041为三端式控制开关。如图8所示,以薄膜晶体管开关为例,本实施例的第一开关元件30411、第二开关元件30412、第三开关元件30413、第四开关元件30414以及第五开关元件30415分别为第一薄膜晶体管30411’、第二薄膜晶体管30412’、第三薄膜晶体管30413’、第四薄膜晶体管30414’以及第五薄膜晶体管30415’。
其中,第一薄膜晶体管30411’包括第一栅极30411’3、第一源极30411’1以及第一漏极30411’2。第一栅极30411’3、第一源极30411’1以及第一漏极30411’2分别作为第一薄膜晶体管30411’的控制端、输入端以及输出端。第一源极30411’1与第一数据线3031电连接,第一漏极30411’2与第一子电极30421电连接,第一栅极30411’3与第一扫描线301电连接以控制第一薄膜晶体管30411’的导通与关闭。
第二薄膜晶体管30412’包括第二栅极30412’3、第二源极30412’1以及第二漏极30412’2。第二栅极30412’3、第二源极30412’1以及第二漏极30412’2分别作为第二薄膜晶体管30412’的控制端、输入端以及输出端。第二源极30412’1与第一数据线3031电连接,第二漏极30412’2与第二子电极30422电连接,第二栅极30412’3与第一扫描线301电连接以控制第二薄膜晶体管30412’的导通与关闭。
第三薄膜晶体管30413’包括第三栅极30413’3、第三源极30413’1以及第三漏极30413’2。第三栅极30413’3、第三源极30413’1以及第三漏极30413’2分别作为第三薄膜晶体管30413’的控制端、输入端以及输出端。第三源极30413’1与第一数据线3031电连接,第三漏极30413’2与第三子电极30423电连接,第三栅极30413’3与第二扫描线302电连接以控制第三薄膜晶体管30413’的导通与关闭。
第四薄膜晶体管30414’包括第四栅极30414’3、第四源极30414’1以及第四漏极30414’2。第四栅极30414’3、第四源极30414’1以及第四漏极30414’2分别作为第四薄膜晶体管30414’的控制端、输入端以及输出端。第四源极30414’1与第二子电极30422电连接,第四漏极30414’2与第一耦合电容3043电连接,第四栅极30414’3与第三扫描线305电连接以控制第四薄膜晶体管30414’的导通与关闭。
第五薄膜晶体管30415’包括第五栅极30415’3、第五源极30415’1以及第五漏极30415’2。第五栅极30415’3、第五源极30415’1以及第五漏极30415’2分别作为第五薄膜晶体管30415’的控制端、输入端以及输出端。第五源极30415’1与第三子电极30423电连接,第五漏极30415’2与第二耦合电容3044电连接,第五栅极30415’3与第三扫描线305电连接以控制第五薄膜晶体管30415’的导通与关闭。
液晶显示面板在进入2D显示模式时,第一扫描线301和第二扫描线302分别输入扫描信号以控制第一薄膜晶体管30411’、第二薄膜晶体管30412’以及第三薄膜晶体管30413’打开,第一数据线3031分别通过第一薄膜晶体管30411’、第二薄膜晶体管30412’以及第三薄膜晶体管30413’输入需要显示同一种图像的电压信号至第一子电极30421、第二子电极30422以及第三子电极30423,使液晶显示面板显示图像,此时第一子电极30421、第二子电极30422以及第三子电极30423的电位相同,随后停止输入扫描信号至第一扫描线301和第二扫描线302。停止输入扫描信号至第一扫描线301和第二扫描线302后,第三扫描线305输入扫描信号以控制第四薄膜晶体管30414’和第五薄膜晶体管30415’打开。由于第一耦合电容3043和第二耦合电容3044的存在,因此第四薄膜晶体管30414’和第五薄膜晶体管30415’打开后,第二子电极30422的电压信号通过第四薄膜晶体管30414’耦合至第一耦合电容3043,第三子电极30423的电压信号通过第五薄膜晶体管30415’耦合至第二耦合电容3044,使得第二子电极30422和第三子电极30423的电位发生了变化。根据实际视角色偏的需求,调整第一耦合电容3043和第二耦合电容3044的大小,使第二子电极30422和第三子电极30423的电位根据实际需要进行变化。即调整第一耦合电容3043和第二耦合电容3044可使第一子电极30421分别与第二子电极30422和第三子电极30423之间存在预设电压差,而第二子电极30422和第三子电极30423电压相等;或者使第一子电极30421、第二子电极30422、第三子电极30423三者之间均存在预设电压差。
由上述可知,通过使第二子电极30422和第三子电极30423分别与增加的第一耦合电容3043和第二耦合电容3044电连接,改变第一耦合电容3043和第二耦合电容3044的大小,使第二子电极30422和第三子电极30423的电位发生变化,进而可使第一子电极30421分别与第二子电极30422和第三子电极30423之间均存在预设电压差或第一子电极30421、第二子电极30422和第三子电极30423三者之间均存在预设电压差,以此控制液晶分子的偏转,从而能够使液晶显示面板在2D显示模式下可在一定程度上改善大视角的颜色异常,降低色彩失真,提高显示效果;并且在3D显示模式下使第一子电极30421和第二子电极30422之间存在预设电压差,第三子电极30423由第二扫描线302单独控制而实现“黑色矩阵”的效果,能够解决信号串扰的技术问题,也可改善大视角的颜色异常,降低色彩失真。
此外,参阅图9,第三开关元件40413的输入端也可电连接第二开关元件40412的输出端。第一数据线4031通过第二开关元件40412输入电压信号至第二子电极40422,电压信号通过第二开关元件40412后,再通过第三开关元件40413输入至第三子电极40423。
同理地,图9中,除上述将第三开关元件40413的输入端电连接第二开关元件40412的输出端的变化之外,由于图9所示的其他结构单元与图7所示的相应结构单元类似,因此不再对图9所示的其他结构进行赘述。
参阅图10,图10为图9的开关元件4041为薄膜晶体管时的等效电路图,第三薄膜晶体管40413’的第三源极40413’1与第二薄膜晶体管40412’的第二漏极40412’2电连接。此时,当液晶显示面板进入2D显示模式时,第一数据线4031分别通过第一薄膜晶体管40411’和第二薄膜晶体管40412’输入需要显示同一种图像的电压信号至第一子电极40421和第二子电极40422,电压信号通过第二薄膜晶体管40412’后通过第三薄膜晶体管40413’输入至第三子电极40423,随后停止输入扫描信号至第一扫描线401和第二扫描线402。向第三扫描线405输入扫描信号以控制第四薄膜晶体管40414’和第五薄膜晶体管40415’打开,第二子电极40422的电压信号通过第四薄膜晶体管40414’耦合至第一耦合电容4043,第三子电极40423的电压信号通过第五薄膜晶体管40415’耦合至第二耦合电容4044,使得第二子电极40422和第三子电极40423的电位发生变化。根据实际视角色偏的需求,调整第一耦合电容4043和第二耦合电容4044的大小,使第二子电极40422和第三子电极40423的电位根据实际需要进行变化,进而可使第一子电极40421分别与第二子电极40422和第三子电极40423之间均存在预设电压差或第一子电极40421、第二子电极40422、第三子电极40423三者之间均存在预设电压差。
参阅图11,并结合图3,图11是本发明实施例中控制三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图,阵列基板10包括至少多条第三扫描线705,数据线103包括第一数据线7031。每个像素单元104对应至少一条第三扫描线705以及第一数据线7031。每个像素单元104的开关元件7041进一步包括第四开关元件70414。像素单元104还包括第一耦合电容7043。本实施例的像素单元的结构与图7所示的像素单元的结构除了第五开关元件和第二耦合电容的区别之外,其余相对应的结构以及各结构之间的连接关系均是相类似的,因此本实施例不再对图11以及图12的结构及其连接关系进行赘述,其中,图12是图11中的开关元件为薄膜晶体管时的等效电路图。
液晶显示面板进入3D显示模式时,其3D显示驱动原理与上述实施例是相类似的,具体过程可参考上述实施例进行理解,在此不进行赘述。
参阅图12,在第三源极70413’1与第一数据线7031电连接的情况下,液晶显示面板在进入2D显示模式时,第一数据线7031输入电压信号至第一子电极70421、第二子电极70422以及第三子电极70423使三个子电极电位相同。关闭第一扫描线701和第二扫描线702,向第三扫描线705输入扫描信号以控制第四薄膜晶体管70414’打开后,由于第一耦合电容7043的存在,第二子电极70422的电压信号通过第四薄膜晶体管70414’耦合至第一耦合电容7043,使得第二子电极70422的电位发生了变化。根据实际视角色偏的需求,调整第一耦合电容7043的大小,使第二子电极70422电位根据实际需要进行变化,进而使第二子电极70422分别与第一子电极70421和第三子电极70423之间均存在预设电压差,而第一子电极70421和第三子电极70423保持电压相等。
由上述可知,通过使第二子电极70422与增加的第一耦合电容7043电连接,调整第一耦合电容7043使第二子电极70422分别与第一子电极70421和第三子电极70423之间均存在预设电压差,以控制液晶分子的偏转,从而能够使液晶显示面板在2D显示模式下可在一定程度上改善大视角的颜色异常,降低色彩失真,提高显示效果;并且在3D显示模式下使第一子电极70421和第二子电极70422之间存在预设电压差,第三子电极70423由第二扫描线702单独控制而实现“黑色矩阵”的效果,能够解决信号串扰的技术问题,也可改善大视角的颜色异常,降低色彩失真。
此外,参阅图13,第三开关元件80413的输入端也可电连接第二开关元件80412的输出端。第一数据线8031通过第二开关元件80412输入电压信号至第二子电极80422,电压信号通过第二开关元件80412后,再通过第三开关元件80413输入至第三子电极80423。
图13中,除上述将第三开关元件80413的输入端电连接第二开关元件80412的输出端的变化之外,由于图13所示的其他结构单元与图11所示的相应结构单元类似,因此不再对图13所示的其他结构进行赘述。
参阅图14,图14为图13的开关元件为薄膜晶体管时的等效电路图,第三薄膜晶体管80413’的第三源极80413’1与第二薄膜晶体管80412’的第二漏极80412’2电连接。此时,当液晶显示面板进入2D显示模式时,第一数据线8031分别通过第一薄膜晶体管80411’和第二薄膜晶体管80412’输入需要显示同一种图像的电压信号至第一子电极80421和第二子电极80422,电压信号通过第二薄膜晶体管80412’后通过第三薄膜晶体管80413’输入至第三子电极80423,随后停止输入扫描信号至第一扫描线801和第二扫描线802。向第三扫描线805输入扫描信号以控制第四薄膜晶体管40414’打开,第二子电极80422的电压信号通过第四薄膜晶体管40414’耦合至第一耦合电容8043,使得第二子电极80422的电位发生变化。根据实际视角色偏的需求,调整第一耦合电容8043使第二子电极80422分别与第一子电极80421和第三子电极80423之间均存在预设电压差。
值得注意的是,本发明实施例的第三薄膜晶体管80413’的第三源极80413’1还可以与第一薄膜晶体管80411’的第一漏极80411’2电连接。此时,当液晶显示面板进入2D显示模式时,输入至第一、第二以及第三子电极的电压信号是相同的,而后通过调整第一耦合电容8043使第二子电极80422分别与第一子电极80421和第三子电极80423之间均存在预设电压差。其他部分的电路连接关系与驱动原理与上述实施例是相类似的,因此在此不进行一一赘述,可参考上述实施例进行理解。
参阅图15,并结合图3,图15是本发明实施例中控制三个子电极中的至少两个子电极之间存在预设电压差的又一实施例的结构示意图,阵列基板10的数据线103包括第二数据线5032和第三数据线5033,每个像素单元104对应至少一条第二数据线5032和第三数据线5033。
其中,第一开关元件50411的输入端电连接第二数据线5032,第二开关元件50412和第三开关元件50413的输入端分别电连接第三数据线5033。
在液晶显示面板进入3D显示模式时,第二扫描线502输入扫描信号至第三开关元件50413以打开第三开关元件50413,第三数据线5033通过第三开关元件50413输入对应黑色图像的电压信号至第三子电极50423,对第三子电极50423进行“清屏”,使第三子电极50423显示黑画面。随后停止输入扫描信号至第二扫描线502,使第三子电极50423保持黑画面。然后第一扫描线501输入扫描信号打开第一开关元件50411和第二开关元件50412,第二数据线5032和第三数据线5033分别通过第一开关元件50411和第二开关元件50412输入对应需要显示同一种图像的电压信号至第一子电极50421和第二子电极50422,通过设置第二数据线5032和第三数据线5033输入不同的电压信号,以使第一子电极50421和第二子电极50422之间存在预设电压差。
参阅图16,本实施例中,开关元件5041为三端式控制开关。以薄膜晶体管开关为例,第一开关元件50411、第二开关元件50412以及第三开关元件50413分别为第一薄膜晶体管50411’、第二薄膜晶体管50412’以及第三薄膜晶体管50413’。
其中,第一薄膜晶体管50411’包括第一栅极50411’3、第一源极50411’1以及第一漏极50411’2。第一栅极50411’3、第一源极50411’1以及第一漏极50411’2分别作为第一薄膜晶体管50411’的控制端、输入端以及输出端。第一源极50411’1与第二数据线5032电连接,第一漏极50411’2与第一子电极50421电连接,第一栅极50411’3与第一扫描线501电连接以控制第一薄膜晶体管50411’的导通与关闭。
第二薄膜晶体管50412’包括第二栅极50412’3、第二源极50412’1以及第二漏极50412’2。第二栅极50412’3、第二源极50412’1以及第二漏极50412’2分别作为第二薄膜晶体管50412’的控制端、输入端以及输出端。第二源极50412’1与第三数据线5033电连接,第二漏极50412’2与第二子电极50422电连接,第二栅极50412’3与第一扫描线501电连接以控制第二薄膜晶体管50412’的导通与关闭。
第三薄膜晶体管50413’包括第三栅极50413’3、第三源极50413’1以及第三漏极50413’2。第三栅极50413’3、第三源极50413’1以及第三漏极50413’2分别作为第三薄膜晶体管50413’的控制端、输入端以及输出端。第三源极50413’1与第三数据线5033电连接,第三漏极50413’2与第三子电极50423电连接,第三栅极50413’3与第二扫描线502电连接以控制第三薄膜晶体管50413’的导通与关闭。
液晶显示面板在进入2D显示模式时,第一扫描线501和第二扫描线502分别输入扫描信号以打开第一薄膜晶体管50411’、第二薄膜晶体管50412’以及第三薄膜晶体管50413’。第二数据线5032通过第一薄膜晶体管50411’输入需要显示同一种图像的第一电压信号至第一子电极50421,第三数据线5033分别通过第二薄膜晶体管50412’和第三薄膜晶体管50413’输入需要显示所述图像的第二电压信号至第二子电极50422和第三子电极50423。根据实际视角色偏的需求,使第一电压信号和第二电压信号存在差异,由此可使第一子电极50421分别与第二子电极50422和第三子电极50423之间存在预设电压差,而第二子电极50422和第三子电极50423电位相同。
由上述可知,通过第二数据线5032给第一子电极50421输入电压信号,第三数据线5033分别给第二子电极50422和第三子电极50423输入电压信号,由于第二数据线5032和第三数据线5033输入的电压信号存在差异,因此可以使第一子电极50421分别与第二子电极50422和第三子电极50423之间均存在预设电压差,以控制液晶分子的偏转,从而能够使液晶显示面板在2D显示模式和3D显示模式下都可在一定程度上改善大视角的颜色异常,降低色彩失真,提高显示效果;并且第三子电极50423由第二扫描线502单独控制,使第三子电极50423在3D显示模式下实现“黑色矩阵”的效果,解决信号串扰的技术问题,在2D显示模式下控制第三子电极50423正常打开,也能够提高2D显示模式下液晶显示面板的亮度以及像素的开口率。
此外,参阅图17,第三开关元60413的输入端也可电连接第二开关元件60412的输出端。在此种情况下,第三数据线6033通过第二开关元件60412输入电压信号至第二子电极60422,电压信号通过第二开关元件60412后,再通过第三开关元件60413输入至第三子电极60423。
具体地,参阅图18,图18为图17的开关元件6041为薄膜晶体管管时的等效电路图,第三薄膜晶体管60413’的第三源极60413’1与第二薄膜晶体管60412’的第二漏极60412’2电连接。此时,液晶显示面板在进入2D显示模式时,第一扫描线601和第二扫描线602分别输入扫描信号以打开第一薄膜晶体管60411’、第二薄膜晶体管60412’以及第三薄膜晶体管60413’。第二数据线6032通过第一薄膜晶体管60411’输入需要显示同一种图像的第一电压信号至第一子电极60421,第三数据线6033通过第二薄膜晶体管60412’输入需要显示同一种图像的第二电压信号至第二子电极60422。第二电压信号通过第二薄膜晶体管60412’后通过第三薄膜晶体管60413’至第三子电极60423。根据实际视角色偏的需求,使第一电压信号和第二电压信号存在差异,由此可使第一子电极60421分别与第二子电极60422和第三子电极60423之间均存在预设电压差。
值得注意的是,本发明实施例的第三薄膜晶体管60413’的第三源极60413’1还可以与第一薄膜晶体管60411’的第一漏极60411’2电连接。此时,当液晶显示面板在进入2D显示模式时,第二数据线6032向第一薄膜晶体管60411’输入需要显示同一种图像的第一电压信号,第一电压信号通过第一薄膜晶体管60411’输入至第三薄膜晶体管60413’,从而使第一子电极60421和第三子电极60423的电压信号相同。第三数据线6033向第二薄膜晶体管60412’ 输入需要显示同一种图像的第二电压信号。使第一电压信号和第二电压信号存在差异,从而使第二子电极60422分别与第一子电极60421和第三子电极60423之间均存在预设电压差。其它部分的电路连接关系和驱动原理与上述实施例是相类似的,在此也不进行一一赘述。
本发明还提供一种液晶显示面板的一实施例,包括上述任一实施例所述的阵列基板。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种VA型液晶显示面板的阵列基板,其中,
    所述阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个所述像素单元均包括开关元件和像素电极,每个所述像素单元对应至少一条第一扫描线、第二扫描线以及数据线;
    所述像素电极至少包括第一子电极、第二子电极以及第三子电极;
    每个所述像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;
    所述第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,所述第一开关元件和第二开关元件的输入端分别电连接数据线,所述第三开关元件的输入端电连接数据线或第二开关元件的输出端,所述第一开关元件和第二开关元件的控制端分别电连接第一扫描线,所述第三开关元件的控制端电连接第二扫描线;
    其中,在所述第三开关元件的输入端电连接数据线的情况下,在进入3D显示模式时,所述第二扫描线输入扫描信号以控制第三开关元件打开,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至所述第二扫描线;停止输入扫描信号至所述第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差;
    在进入2D显示模式时,所述第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
  2. 根据权利要求1所述的阵列基板,其中,
    所述阵列基板包括至少多条第三扫描线,所述数据线包括第一数据线,每个所述像素单元对应至少一条所述第三扫描线以及第一数据线;
    每个所述像素单元的开关元件进一步包括第四开关元件以及第五开关元件;
    所述像素单元还包括第一耦合电容和第二耦合电容;
    所述第四开关元件和第五开关元件的输出端分别电连接第一耦合电容和第二耦合电容,所述第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,所述第四开关元件和第五开关元件的输入端分别电连接第二子电极和第三子电极,所述第四开关元件和第五开关元件的控制端分别电连接第三扫描线;
    其中,在进入3D显示模式时,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:所述第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;
    所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:所述第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至所述第一扫描线;停止输入扫描信号至所述第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,所述第二子电极的电压信号通过第四开关元件耦合至所述第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
  3. 一种液晶显示面板的阵列基板,其中,
    所述阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个所述像素单元均包括开关元件和像素电极,每个所述像素单元对应至少一条第一扫描线、第二扫描线以及数据线;
    所述像素电极至少包括第一子电极、第二子电极以及第三子电极;
    每个所述像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;
    所述第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,所述第一开关元件、第二开关元件以及第三开关元件的输入端分别电连接数据线,所述第一开关元件和第二开关元件的控制端分别电连接第一扫描线,所述第三开关元件的控制端电连接第二扫描线;
    其中,在进入3D显示模式时,所述第二扫描线输入扫描信号以控制第三开关元件打开,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至所述第二扫描线;停止输入扫描信号至所述第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差。
  4. 根据权利要求3所述的阵列基板,其中,
    在进入2D显示模式时,所述第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
  5. 根据权利要求4所述的阵列基板,其中,
    所述阵列基板包括至少多条第三扫描线,所述数据线包括第一数据线,每个所述像素单元对应至少一条所述第三扫描线以及第一数据线;
    每个所述像素单元的开关元件进一步包括第四开关元件以及第五开关元件;
    所述像素单元还包括第一耦合电容和第二耦合电容;
    所述第四开关元件和第五开关元件的输出端分别电连接第一耦合电容和第二耦合电容,所述第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,所述第四开关元件和第五开关元件的输入端分别电连接第二子电极和第三子电极,所述第四开关元件和第五开关元件的控制端分别电连接第三扫描线;
    其中,在进入3D显示模式时,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:所述第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;
    所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:所述第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至所述第一扫描线;停止输入扫描信号至所述第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,所述第二子电极的电压信号通过第四开关元件耦合至所述第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
  6. 根据权利要求5所述的阵列基板,其中,
    所述第一开关元件、第二开关元件、第三开关元件、第四开关元件以及第五开关元件分别为第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管以及第五薄膜晶体管;
    所述第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,所述第一源极与第一数据线电连接,所述第一漏极与第一子电极电连接,所述第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;
    所述第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,所述第二源极与第一数据线电连接,所述第二漏极与第二子电极电连接,所述第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;
    所述第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,所述第三源极与第一数据线电连接或与第二薄膜晶体管的第二漏极电连接,所述第三漏极与第三子电极电连接,所述第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭;
    所述第四薄膜晶体管包括第四栅极、第四源极以及第四漏极,所述第四源极与第二子电极电连接,所述第四漏极与第一耦合电容电连接,所述第四栅极与第三扫描线电连接以控制第四薄膜晶体管的导通与关闭;
    所述第五薄膜晶体管包括第五栅极、第五源极以及第五漏极,所述第五源极与第三子电极电连接,所述第五漏极与第二耦合电容电连接,所述第五栅极与第三扫描线电连接以控制第五薄膜晶体管的导通与关闭。
  7. 根据权利要求6所述的阵列基板,其中,
    在进入2D显示模式时,在所述第三源极与第一数据线电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第一数据线分别通过第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管和第五薄膜晶体管打开,所述第二子电极的电压信号通过第四薄膜晶体管耦合至所述第一耦合电容,所述第三子电极的电压信号通过第五薄膜晶体管耦合至第二耦合电容,调整第一耦合电容和第二耦合电容以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差或第一、第二、第三子电极三者之间均存在预设电压差;
    在所述第三源极与第二薄膜晶体管的第二漏极电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管和第五薄膜晶体管打开,所述第二子电极的电压信号通过第四薄膜晶体管耦合至所述第一耦合电容,所述第三子电极的电压信号通过第五薄膜晶体管耦合至第二耦合电容,调整第一耦合电容和第二耦合电容以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差或第一、第二、第三子电极三者之间均存在预设电压差。
  8. 根据权利要求3所述的阵列基板,其中,
    所述阵列基板包括至少多条第三扫描线,所述数据线包括第一数据线,每个所述像素单元对应至少一条所述第三扫描线以及第一数据线;
    每个所述像素单元的开关元件进一步包括第四开关元件;
    所述像素单元还包括第一耦合电容;
    所述第四开关元件的输出端电连接第一耦合电容,所述第一开关元件、第二开关元件、第三开关元件的输入端分别电连接第一数据线,所述第四开关元件的输入端电连接第二子电极,所述第四开关元件的控制端电连接第三扫描线;
    其中,在进入3D显示模式时,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:所述第一数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;
    所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:所述第一数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,随后停止输入扫描信号至所述第一扫描线;停止输入扫描信号至所述第一扫描线后第三扫描线输入扫描信号以控制第四开关元件的打开,所述第二子电极的电压信号通过第四开关元件耦合至所述第一耦合电容,调整第一耦合电容以使第一子电极和第二子电极之间存在预设电压差。
  9. 根据权利要求8所述的阵列基板,其中,
    所述第一开关元件、第二开关元件、第三开关元件以及第四开关元件分别为第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管;
    所述第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,所述第一源极与第一数据线电连接,所述第一漏极与第一子电极电连接,所述第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;
    所述第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,所述第二源极与第一数据线电连接,所述第二漏极与第二子电极电连接,所述第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;
    所述第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,所述第三源极与第一数据线电连接或与第二薄膜晶体管的第二漏极电连接或与第一薄膜晶体管的第一漏极电连接,所述第三漏极与第三子电极电连接,所述第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭;
    所述第四薄膜晶体管包括第四栅极、第四源极以及第四漏极,所述第四源极与第二子电极电连接,所述第四漏极与第一耦合电容电连接,所述第四栅极与第三扫描线电连接以控制第四薄膜晶体管的导通与关闭。
  10. 根据权利要求9所述的阵列基板,其中,
    在进入2D显示模式时,在所述第三源极与第一数据线电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第一数据线分别通过第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,所述第二子电极的电压信号通过第四薄膜晶体管耦合至所述第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差;
    在所述第三源极与第二薄膜晶体管的第二漏极电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极和第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,所述第二子电极的电压信号通过第四薄膜晶体管耦合至所述第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差;
    在所述第三源极与第一薄膜晶体管的第一漏极电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极和第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第一数据线分别通过第一薄膜晶体管和第二薄膜晶体管输入需要显示同一种图像的电压信号至第一子电极和第二子电极,电压信号通过第一薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,随后停止输入扫描信号至第一扫描线和第二扫描线;停止输入扫描信号至第一扫描线和第二扫描线后第三扫描线输入扫描信号以控制第四薄膜晶体管打开,所述第二子电极的电压信号通过第四薄膜晶体管耦合至所述第一耦合电容,调整第一耦合电容以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差。
  11. 根据权利要求3所述的阵列基板,其中,
    所述数据线包括第二数据线和第三数据线,每个所述像素单元对应至少一条所述第二数据线以及第三数据线;
    所述第一开关元件的输入端电连接第二数据线,所述第二开关元件和第三开关元件的输入端分别电连接第三数据线;
    其中,在进入3D显示模式时,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极是指:所述第三数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极;
    所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差是指:所述第二数据线和第三数据线分别通过第一开关元件和第二开关元件输入对应需要显示同一种图像的电压信号至第一子电极和第二子电极,使第二数据线和第三数据线输入的电压信号存在差异以使第一子电极和第二子电极之间存在预设电压差。
  12. 根据权利要求11所述的阵列基板,其中,
    所述第一开关元件、第二开关元件以及第三开关元件分别为第一薄膜晶体管、第二薄膜晶体管以及第三薄膜晶体管;
    所述第一薄膜晶体管包括第一栅极、第一源极以及第一漏极,所述第一源极与第二数据线电连接,所述第一漏极与第一子电极电连接,所述第一栅极与第一扫描线电连接以控制第一薄膜晶体管的导通与关闭;
    所述第二薄膜晶体管包括第二栅极、第二源极以及第二漏极,所述第二源极与第三数据线电连接,所述第二漏极与第二子电极电连接,所述第二栅极与第一扫描线电连接以控制第二薄膜晶体管的导通与关闭;
    所述第三薄膜晶体管包括第三栅极、第三源极以及第三漏极,所述第三源极与第三数据线电连接或与第二薄膜晶体管的第二漏极电连接或与第一薄膜晶体管的第一漏极电连接,所述第三漏极与第三子电极电连接,所述第三栅极与第二扫描线电连接以控制第三薄膜晶体管的导通与关闭。
  13. 根据权利要求12所述的阵列基板,其中,
    在进入显示2D模式时,在所述第三源极与第三数据线电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第二数据线通过所述第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,所述第三数据线分别通过所述第二薄膜晶体管和第三薄膜晶体管输入需要显示所述图像的第二电压信号至第二子电极和第三子电极,使第一电压信号和第二电压信号存在差异以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差;
    在所述第三源极与第二薄膜晶体管的第二漏极电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第二数据线通过所述第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,所述第三数据线通过第二薄膜晶体管输入需要显示同一种图像的第二电压信号至第二子电极,第二电压信号通过第二薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,使第一电压信号和第二电压信号存在差异以使第一子电极分别与第二子电极和第三子电极之间均存在预设电压差;
    在所述第三源极与第一薄膜晶体管的第一漏极电连接的情况下,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差是指:
    所述第二数据线通过所述第一薄膜晶体管输入需要显示同一种图像的第一电压信号至第一子电极,第一电压信号通过第一薄膜晶体管后通过第三薄膜晶体管输入至第三子电极,所述第三数据线通过第二薄膜晶体管输入需要显示同一种图像的第二电压信号至第二子电极,使第一电压信号和第二电压信号存在差异以使第二子电极分别与第一子电极和第三子电极之间均存在预设电压差。
  14. 一种液晶显示面板,其中,包括阵列基板;
    所述阵列基板包括至少多条第一扫描线、第二扫描线、数据线以及多个并排设置的像素单元,每个所述像素单元均包括开关元件和像素电极,每个所述像素单元对应至少一条第一扫描线、第二扫描线以及数据线;
    所述像素电极至少包括第一子电极、第二子电极以及第三子电极;
    每个所述像素单元的开关元件数量为至少三个,至少分别是第一开关元件、第二开关元件以及第三开关元件;
    所述第一开关元件、第二开关元件以及第三开关元件的输出端分别电连接第一子电极、第二子电极以及第三子电极,所述第一开关元件、第二开关元件以及第三开关元件的输入端分别电连接数据线,所述第一开关元件和第二开关元件的控制端分别电连接第一扫描线,所述第三开关元件的控制端电连接第二扫描线;
    在进入3D显示模式时,所述第二扫描线输入扫描信号以控制第三开关元件打开,所述数据线通过第三开关元件输入对应黑色图像的电压信号至第三子电极,随后停止输入扫描信号至所述第二扫描线;停止输入扫描信号至所述第二扫描线后第一扫描线输入扫描信号以控制第一开关元件和第二开关元件打开,所述数据线分别通过第一开关元件和第二开关元件输入对应需要显示的同一种图像的电压信号至第一子电极和第二子电极,并控制第一子电极和第二子电极之间存在预设电压差。
  15. 根据权利要求14所述的液晶显示面板,其中,
    所述液晶显示面板是VA型液晶显示面板;
    在进入2D显示模式时,所述第一扫描线和第二扫描线分别输入扫描信号以控制第一开关元件、第二开关元件以及第三开关元件打开,所述数据线分别通过第一开关元件、第二开关元件以及第三开关元件输入对应需要显示的同一种图像的电压信号至第一子电极、第二子电极以及第三子电极,并控制第一子电极、第二子电极以及第三子电极中的至少两个子电极之间存在预设电压差。
PCT/CN2012/077057 2012-06-13 2012-06-18 一种液晶显示面板及其阵列基板 WO2013185360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/522,325 US9082331B2 (en) 2012-06-13 2012-06-18 Liquid crystal display panel and array substrate thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210194876.5A CN102707527B (zh) 2012-06-13 2012-06-13 一种液晶显示面板及其阵列基板
CN201210194876.5 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013185360A1 true WO2013185360A1 (zh) 2013-12-19

Family

ID=46900434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077057 WO2013185360A1 (zh) 2012-06-13 2012-06-18 一种液晶显示面板及其阵列基板

Country Status (2)

Country Link
CN (1) CN102707527B (zh)
WO (1) WO2013185360A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323995B (zh) * 2013-06-21 2016-02-03 深圳市华星光电技术有限公司 液晶阵列基板及电子装置
CN103389604B (zh) * 2013-07-19 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103353698B (zh) * 2013-07-19 2016-03-30 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103399439B (zh) * 2013-07-26 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103399435B (zh) * 2013-08-01 2015-09-16 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103454823B (zh) * 2013-09-09 2016-01-06 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103472644B (zh) * 2013-09-25 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
US20150138170A1 (en) * 2013-11-21 2015-05-21 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel, pixel structure therein and driving method thereof
CN103605224A (zh) * 2013-11-21 2014-02-26 深圳市华星光电技术有限公司 显示面板及其中像素结构以及驱动方法
CN103605223B (zh) * 2013-11-21 2016-03-16 深圳市华星光电技术有限公司 显示面板及其中像素结构以及驱动方法
CN103941442B (zh) 2014-04-10 2016-07-20 深圳市华星光电技术有限公司 显示面板及其驱动方法
CN107144994B (zh) * 2017-06-29 2018-10-23 惠科股份有限公司 一种显示面板的驱动方法、驱动装置及显示装置
CN107301847B (zh) * 2017-06-29 2018-08-28 惠科股份有限公司 一种显示面板的驱动方法、驱动装置及显示装置
CN116564222B (zh) * 2023-07-07 2023-11-24 惠科股份有限公司 显示装置的驱动方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504503A (zh) * 2009-04-10 2009-08-12 友达光电股份有限公司 像素阵列、液晶显示面板以及光电装置
CN102081911A (zh) * 2009-11-30 2011-06-01 乐金显示有限公司 立体图像显示设备及其驱动方法
CN102231256A (zh) * 2011-06-15 2011-11-02 友达光电股份有限公司 显示子像素电路及使用其的平面显示面板
CN102298238A (zh) * 2011-08-19 2011-12-28 深圳市华星光电技术有限公司 液晶显示器
CN102436105A (zh) * 2011-10-20 2012-05-02 友达光电股份有限公司 液晶显示装置及其显示驱动方法
CN102693694A (zh) * 2012-03-09 2012-09-26 友达光电股份有限公司 像素电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013388B2 (en) * 2010-09-22 2015-04-21 Sharp Kabushiki Kaisha Liquid crystal display device and display apparatus
WO2012063830A1 (ja) * 2010-11-09 2012-05-18 シャープ株式会社 液晶表示装置、表示装置およびゲート信号線駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504503A (zh) * 2009-04-10 2009-08-12 友达光电股份有限公司 像素阵列、液晶显示面板以及光电装置
CN102081911A (zh) * 2009-11-30 2011-06-01 乐金显示有限公司 立体图像显示设备及其驱动方法
CN102231256A (zh) * 2011-06-15 2011-11-02 友达光电股份有限公司 显示子像素电路及使用其的平面显示面板
CN102298238A (zh) * 2011-08-19 2011-12-28 深圳市华星光电技术有限公司 液晶显示器
CN102436105A (zh) * 2011-10-20 2012-05-02 友达光电股份有限公司 液晶显示装置及其显示驱动方法
CN102693694A (zh) * 2012-03-09 2012-09-26 友达光电股份有限公司 像素电路

Also Published As

Publication number Publication date
CN102707527A (zh) 2012-10-03
CN102707527B (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2013185360A1 (zh) 一种液晶显示面板及其阵列基板
WO2014059690A1 (zh) 一种阵列基板及液晶显示装置
WO2015043033A1 (zh) 一种阵列基板及液晶显示面板
WO2015013988A1 (zh) 一种阵列基板及液晶显示面板
WO2014187011A1 (zh) 一种阵列基板及液晶显示装置
WO2015006995A1 (zh) 一种阵列基板及液晶显示面板
WO2015010348A1 (zh) 一种阵列基板及液晶显示面板
WO2015006992A1 (zh) 一种阵列基板及液晶显示面板
WO2014187010A1 (zh) 一种阵列基板及液晶显示面板
US9082331B2 (en) Liquid crystal display panel and array substrate thereof
WO2012053874A2 (ko) 입체 디스플레이 시스템과 그 시스템에 사용되는 안경 및 그 디스플레이 방법
US20120287098A1 (en) Electro-optical device and electronic apparatus
WO2014043926A1 (zh) 一种阵列基板及液晶显示面板
WO2016183922A1 (zh) 一种液晶显示面板及装置
WO2013155683A1 (zh) 液晶显示装置及其驱动电路
WO2015081577A1 (zh) 显示装置及其显示图像的方法
WO2015154330A1 (zh) 显示面板及其驱动方法
WO2014043924A1 (zh) 一种阵列基板及液晶显示面板
WO2016074262A1 (zh) 一种coa阵列基板及液晶显示面板
WO2016192127A1 (zh) 一种阵列基板和液晶显示面板
WO2016026167A1 (zh) 一种液晶显示面板及阵列基板
WO2019090843A1 (zh) 像素驱动架构及显示装置
WO2020155255A1 (zh) 显示面板的驱动方法、驱动装置以及显示设备
WO2013159372A1 (zh) 立体显示装置及其驱动方法
WO2018152902A1 (zh) 液晶显示面板及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13522325

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878692

Country of ref document: EP

Kind code of ref document: A1