WO2013183642A1 - 軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒 - Google Patents

軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒 Download PDF

Info

Publication number
WO2013183642A1
WO2013183642A1 PCT/JP2013/065486 JP2013065486W WO2013183642A1 WO 2013183642 A1 WO2013183642 A1 WO 2013183642A1 JP 2013065486 W JP2013065486 W JP 2013065486W WO 2013183642 A1 WO2013183642 A1 WO 2013183642A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
general formula
derivative represented
Prior art date
Application number
PCT/JP2013/065486
Other languages
English (en)
French (fr)
Inventor
菅 誠治
大樹 萬代
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2014520009A priority Critical patent/JP6119022B2/ja
Publication of WO2013183642A1 publication Critical patent/WO2013183642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/36One oxygen atom
    • C07D263/42One oxygen atom attached in position 5
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"

Definitions

  • the present invention relates to a pyridine derivative having a binaphthyl group or a salt thereof, a production method thereof, and an asymmetric catalyst comprising the same.
  • a compound having a binaphthyl group is widely used as an asymmetric synthesis catalyst.
  • a transition metal complex using BINAP [(1,1-binaphthalene) -2,2-diylbis (diphenylphosphine)] represented by the following formula as a ligand may exhibit excellent performance as a catalyst for asymmetric synthesis. It is one of the known and most widely used asymmetric ligands.
  • BINAP (1,1-binaphthalene) -2,2-diylbis (diphenylphosphine)
  • the progress of the reaction may be insufficient or the enantioselectivity may be insufficient.
  • Patent Document 1 describes the following N-spiro asymmetric phase transfer catalyst having a binaphthyl group and a biphenyl group. According to this, it is said that various natural or non-natural ⁇ -amino acid derivatives can be stereoselectively synthesized. However, the number of steps for synthesizing such an N-spiro asymmetric phase transfer catalyst is large, and the enantioselectivity may not be good, and improvement has been desired.
  • Non-Patent Document 1 discloses (S) -phenyl 4-benzyl-2- (4-methoxyphenyl) -5-oxo-4,5-dihydrooxazole-4 by a Stegrich rearrangement reaction using an asymmetric nucleophilic catalyst. It describes that -carboxylate can be obtained. However, the optically pure asymmetric nucleophilic catalyst used in this reaction is obtained by optically resolving a racemate a plurality of times using an optically active acid. There was a desire for improvement.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a pyridine derivative having a binaphthyl group or a salt thereof. It is another object of the present invention to provide an asymmetric catalyst comprising a pyridine derivative or a salt thereof, which can obtain an optically active substance suitably used for a pharmaceutical intermediate or the like with good enantioselectivity.
  • R 1 to R 6 and R 1 ′ to R 6 ′ each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkyl group having 2 to 10 carbon atoms.
  • an asymmetric catalyst comprising the pyridine derivative or a salt thereof is a preferred embodiment of the present invention.
  • the said subject is the following general formula (2): [Wherein R 1 to R 8 and R 1 ′ to R 8 ′ have the same meanings as those in the general formula (1). ]
  • This is also solved by providing a method for producing a pyridine derivative represented by the above general formula (1) or a salt thereof by reacting with a salt of a 4-halogenopyridine derivative represented by formula (1).
  • the said subject is solved by providing the binaphthyl derivative shown by following General formula (7).
  • R 1 is an alkoxy group having 1 to 10 carbon atoms
  • R 1 ′ is a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms.
  • the said subject is also solved by providing the allyl binaphthyl derivative shown by following General formula (8).
  • R 1 is an alkoxy group having 1 to 10 carbon atoms
  • R 1 ′ is a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms.
  • a pyridine derivative having a binaphthyl group or a salt thereof can be synthesized.
  • an optically active substance suitably used for a pharmaceutical intermediate or the like can be obtained with good enantioselectivity.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -1 obtained in Example 13.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -2 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -3 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -4 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -5 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum of a compound represented by the formula (S)-(D) -6 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum of a compound represented by the formula (S)-(D) -7 obtained in Example 13.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a mixture of a compound represented by the formula (S)-(D) -8 obtained in Example 13 and an unreacted raw material compound.
  • FIG. 1 is a 1 H-NMR spectrum of a compound represented by the formula (S)-(D) -9 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a compound represented by the formula (S)-(D) -10 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum of a compound represented by the formula (S)-(D) -11 obtained in Example 13.
  • FIG. 1 is a 1 H-NMR spectrum of a compound represented by the formula (S)-(F) -1 obtained in Example 15.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a mixture of a compound represented by the formula (S)-(F) -2 obtained in Example 15 and an unreacted raw material compound.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a mixture of a compound represented by the formula (S)-(F) -3 obtained in Example 15 and an unreacted raw material compound.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a mixture of a compound represented by the formula (S)-(F) -4 obtained in Example 15 and an unreacted raw material compound.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a mixture of a compound represented by the formula (S)-(F) -4 obtained in Example
  • the pyridine derivative of the present invention or a salt thereof is represented by the following general formula (1).
  • R 1 to R 6 and R 1 ′ to R 6 ′ each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkyl group having 2 to 10 carbon atoms.
  • R 1 to R 6 and R 1 ′ to R 6 ′ each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An alkynyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an acyl group having 2 to 10 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, and 3 to 10 carbon atoms
  • the alkyl group having 1 to 10 carbon atoms used for R 1 to R 6 and R 1 ′ to R 6 ′ in the general formula (1) may be a linear or branched alkyl group, or cyclic. May be a cycloalkyl group.
  • the alkyl group having 1 to 10 carbon atoms may further have a substituent.
  • substituents include aryl groups such as a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group; a pyridyl group, a thienyl group, and a furyl group.
  • alkylsulfinyl group such as methylsulfinyl group and ethylsulfinyl group
  • arylsulfinyl group such as phenylsulfinyl group; methylsulfonyloxy group, ethylsulfonyloxy group, phenylsulfonyloxy group, methoxysulfonyl group, ethoxysulfonyl group, Sulfonic acid ester groups such as phenyloxysulfonyl groups; amino groups; hydroxyl groups; cyano groups; nitro groups; halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, iodine atoms;
  • the alkenyl group having 2 to 10 carbon atoms may be linear or branched, and is a vinyl group, allyl group, methylvinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, cyclopropenyl. Group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • These alkenyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • the alkynyl group having 2 to 10 carbon atoms may be linear or branched and includes ethynyl group, propynyl group, propargyl group, butynyl group, pentynyl group, hexynyl group, phenylethynyl group and the like. It is done.
  • These alkynyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, and n-pentyloxy group. , Isopentyloxy group, neopentyloxy group, n-hexyloxy group, isohexyloxy group, 2-ethylhexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. Is mentioned. These alkoxy groups may have a substituent, and as such a substituent, a substituent other than the alkoxy group exemplified in the description of the alkyl group can be similarly used.
  • aryl group having 6 to 15 carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group and the like. These aryl groups may have a substituent, and as such a substituent, a substituent other than the aryl group exemplified in the description of the alkyl group, the above-described alkyl group, alkenyl group, alkynyl group, or the like is used. be able to.
  • acyl group having 2 to 10 carbon atoms examples include acetyl group, propionyl group, butyryl group, isobutyryl group, benzoyl group and the like. These acyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • arylalkyl group having 7 to 15 carbon atoms examples include benzyl group, 4-methoxybenzyl group, phenethyl group, diphenylmethyl group and the like. These arylalkyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • alkylsilyl group having 3 to 10 carbon atoms examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group and the like. These alkylsilyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • alkoxycarbonyl group having 2 to 10 carbon atoms examples include methoxycarbonyl group, ethoxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, allyloxycarbonyl group, n- Examples include butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, and benzyloxycarbonyl group.
  • These alkoxycarbonyl groups may have a substituent, and as such a substituent, a substituent other than the alkoxycarbonyl group exemplified in the description of the alkyl group can be used.
  • alkylthio group having 1 to 10 carbon atoms examples include a methylthio group, an ethylthio group, a propylthio group, and a butylthio group.
  • arylthio group having 6 to 15 carbon atoms examples include a phenylthio group and a naphthylthio group.
  • heteroaromatic group having 4 to 10 carbon atoms examples include pyridyl group, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazinyl group, oxazolyl group, thiazolyl group, pyrazolyl group, benzothiazolyl group, and benzoimidazolyl group.
  • These heteroaromatic ring groups may have a substituent, such as a substituent other than the heteroaromatic ring group exemplified in the description of the alkyl group, the above-described alkyl group, alkenyl group, alkynyl. A group or the like can be used.
  • the sulfonyloxy group examples include a sulfonyloxy group having an alkyl group having 1 to 10 carbon atoms (hereinafter sometimes abbreviated as an alkylsulfonyloxy group), and a sulfonyloxy group having an aryl group having 6 to 15 carbon atoms (hereinafter referred to as an alkylsulfonyloxy group). And may be abbreviated as arylsulfonyloxy group).
  • the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 15 carbon atoms the same substituents as those described above can be used.
  • alkylsulfonyloxy group examples include methanesulfonyloxy group, ethanesulfonyloxy group, n-propanesulfonyloxy group, isopropanesulfonyloxy group, n-butanesulfonyloxy group, tert-butanesulfonyloxy group and the like.
  • These alkylsulfonyloxy groups may have a substituent, and as such a substituent, the same substituents as exemplified in the description of the alkyl group can be used, and a halogen atom is preferable as the substituent. Is mentioned.
  • alkylsulfonyloxy group having a halogen atom a trifluoromethanesulfonyloxy group or the like is preferably used.
  • the arylsulfonyloxy group include a benzenesulfonyloxy group, a naphthalenesulfonyloxy group, and a biphenylsulfonyloxy group. These arylsulfonyloxy groups may have a substituent.
  • a suitable substituent includes an alkyl group.
  • a paratoluenesulfonyloxy group or the like is preferably used as the arylsulfonyloxy group having an alkyl group.
  • the amino group may be a primary amino group (—NH 2 ), a secondary amino group, or a tertiary amino group.
  • the secondary amino group is a mono-substituted amino group represented by —NHR 11 (R 11 is an arbitrary monovalent substituent), and R 11 includes an alkyl group having 1 to 10 carbon atoms, a carbon number of 6 15 to 15 aryl groups, acetyl group, benzoyl group, benzenesulfonyl group, tert-butoxycarbonyl group and the like.
  • the secondary amino group examples include a secondary amino group in which R 11 is an alkyl group such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group, a phenylamino group, and a naphthylamino group.
  • R 11 is an alkyl group such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group, a phenylamino group, and a naphthylamino group.
  • R 11 examples include a secondary amino group in which R 11 is an aryl group such as a group.
  • the hydrogen atom of the alkyl group or aryl group in R 11 may be further substituted with an acetyl group, a benzoyl group, a benzenesulfonyl group, a tert-butoxycarbonyl group, or
  • the tertiary amino group is a disubstituted amino group represented by —NR 11 R 12 (R 11 and R 12 are any monovalent substituent), and R 12 is the same as R 11. R 11 and R 12 may be the same or different from each other. Specific examples of the tertiary amino group include a dimethylamino group, a diethylamino group, a dibutylamino group, an ethylmethylamino group, a diphenylamino group, a methylphenylamino group, and the like, wherein R 11 and R 12 are substituted with an alkyl group and an aryl group. A tertiary amino group which is at least one selected from the group consisting of
  • the amide group is selected from the group consisting of —C ( ⁇ O) NR 13 R 14 (R 13 and R 14 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. An amide group represented by at least one). R 13 and R 14 may be the same or different from each other. As the alkyl group and aryl group in R 13 and R 14, the substituents exemplified in the description of the alkyl group and aryl group can be used in the same manner.
  • arylsilyl group examples include a tert-butyldiphenylsilyl group, a triphenylsilyl group, and a dimethylphenylsilyl group.
  • arylalkylsilyl group examples include a tribenzylsilyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • suitable substituents used for R 1 to R 6 and R 1 ′ to R 6 ′ include a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms. And at least one substituent selected from the group consisting of a group, an aryl group having 6 to 15 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, a sulfonyloxy group, and a halogen atom.
  • R 1 and R 1 ′ are a hydrogen atom, At least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, a sulfonyloxy group, and a halogen atom; It is preferable that R 2 to R 6 and R 2 ′ to R 6 ′ are hydrogen atoms, and R 1 and R 1 ′ are an alkyl group having 1 to 10 carbon atoms, 1 carbon atom At least one substituent selected from the group consisting of an alkoxy group having 10 to 10 atoms, an aryl group having 6 to 15 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, a sulfon
  • R 7 , R 7 ′, R 8 and R 8 ′ in the general formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom. It is. Examples of such an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a halogen atom include the description of R 1 to R 6 and R 1 ′ to R 6 ′ in the general formula (1). The same substituents as those exemplified can be used.
  • R 7 , R 7 ′, R 8 and R 8 ′ in the general formula (1) are selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. It is preferably at least one substituent selected, more preferably at least one substituent selected from the group consisting of a hydrogen atom, a methyl group, and an ethyl group. More preferably, it is an atom.
  • R 9 , R 9 ′, R 10 and R 10 ′ in the general formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom. It is. Examples of such an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a halogen atom include the description of R 1 to R 6 and R 1 ′ to R 6 ′ in the general formula (1). The same substituents as those exemplified can be used. From the viewpoint of good function as an asymmetric catalyst, it is preferable that R 9 , R 9 ′, R 10 and R 10 ′ in the general formula (1) are hydrogen atoms.
  • the pyridine derivative or salt thereof of the present invention described above may be a racemate, but from the viewpoint of easily obtaining an optically active compound without optical resolution when used as an asymmetric catalyst,
  • the pyridine derivative or a salt thereof itself is preferably an optically active substance, and in this case, it becomes an axially asymmetric optically active substance. That is, an optically active substance represented by the following general formula (1-S) or the following general formula (1-R) is preferable.
  • R 1 to R 10 and R 1 ′ to R 10 ′ have the same meaning as in the general formula (1).
  • R 1 to R 10 and R 1 ′ to R 10 ′ have the same meaning as in the general formula (1).
  • the method for obtaining a pyridine derivative represented by the general formula (1) or a salt thereof of the present invention is not particularly limited, and a binaphthyl derivative represented by the following general formula (6) can be suitably synthesized as a starting compound.
  • a binaphthyl derivative represented by the formula (6a) when R 1 in the general formula (6) is a phenyl group and R 2 to R 8 and R 1 ′ to R 8 ′ are hydrogen atoms is used as a starting compound.
  • a method for obtaining a pyridine derivative represented by the formula (1a) or a salt thereof when R 1 in the general formula (1) is a phenyl group and R 2 to R 10 and R 1 ′ to R 10 ′ are hydrogen atoms This will be described with reference to the following chemical reaction formula (I).
  • the binaphthyl derivative represented by the formula (6a) can be synthesized from 1,1′-binaphthol by a known method.
  • N-bromosuccinimide N-bromosuccinimide
  • AIBN azobisisobutyronitrile
  • Examples of the solvent used in the above reaction 1 include hydrocarbons such as benzene, toluene, xylene, cumene, hexane, heptane, and octane; dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2- Halogenated hydrocarbons such as tetrachloroethane and chlorobenzene; ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane and dimethoxyethane; esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile and propionitrile; dimethylformamide And amides such as N-methylpyrrolidone.
  • hydrocarbons such as benzene, toluene, xylene, cumene, hexan
  • a solvent may be used independently and may use 2 or more types together. Among these, hydrocarbon solvents and / or halogenated hydrocarbon solvents are preferably used.
  • the amount of the solvent to be used is preferably 1 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 1 part by mass of the binaphthyl derivative represented by the formula (6a).
  • the amount of N-bromosuccinimide (NBS) used in the above reaction 1 is not particularly limited, and is preferably 2 to 4 mol with respect to 1 mol of the binaphthyl derivative represented by the formula (6a). More preferably, it is 2.5 moles.
  • the amount of azobisisobutyronitrile (AIBN) used in the reaction 1 is not particularly limited, and is 0.001 to 0.1 mol with respect to 1 mol of the binaphthyl derivative represented by the formula (6a). It is preferably 0.01 to 0.1 mol.
  • the reaction temperature in the above reaction 1 is preferably 50 to 120 ° C., and the reaction time in the above reaction 1 is preferably 2 to 10 hours, more preferably 2 to 5 hours. .
  • the allylbinaphthyl derivative represented by the formula (4a) can be obtained by reacting the dibromobinaphthyl derivative represented by the formula (5a) obtained by the reaction 1 with allylamine. it can.
  • the present inventors confirmed that when 4-aminopyridine is reacted with the dibromobinaphthyl derivative represented by the formula (5a), the target reaction does not proceed and only a by-product is obtained. ing. Therefore, it is a preferred embodiment of the present invention to have the step of obtaining the allyl binaphthyl derivative represented by the general formula (4) from the dibromobinaphthyl derivative represented by the general formula (5).
  • the allyl binaphthyl derivative represented by the general formula (4) thus obtained is very useful as an intermediate of the pyridine derivative or a salt thereof of the present invention.
  • the allyl binaphthyl derivative represented by the following general formula (8) is an intermediate. It is very useful as a body.
  • R 1 is an alkoxy group having 1 to 10 carbon atoms
  • R 1 ′ is a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms.
  • the alkoxy group having 1 to 10 carbon atoms in the general formula (8) is the same as the alkoxy group exemplified in the description of R 1 to R 6 and R 1 ′ to R 6 ′ in the general formula (1). Things can be used.
  • the same solvents as those exemplified in the description of the above reaction 1 can be used, and among them, an ether solvent and / or a nitrile solvent are preferably used.
  • the amount of the solvent used is preferably 1 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 1 part by mass of the dibromobinaphthyl derivative represented by the formula (5a).
  • the amount of allylamine used in the reaction 2 is not particularly limited, and is preferably 3 to 8 mol, preferably 3 to 4 mol, relative to 1 mol of the dibromobinaphthyl derivative represented by the formula (5a). Is more preferable.
  • the reaction temperature in the above reaction 2 is preferably 30 to 100 ° C., and the reaction time in the above reaction 2 is preferably 2 to 20 hours, more preferably 5 to 15 hours. .
  • the allylbinaphthyl derivative represented by the formula (4a) is reacted with N, N-dimethylbarbituric acid (NDMBA) using a metal catalyst to obtain the formula (2a)
  • NDMBA N, N-dimethylbarbituric acid
  • the binaphthyl derivative shown by can be obtained. That is, it is a preferred embodiment of the present invention to have a step of obtaining the binaphthyl derivative represented by the general formula (2) from the allyl binaphthyl derivative represented by the general formula (4).
  • the allyl binaphthyl derivative represented by the general formula (2) thus obtained is very useful as an intermediate of the pyridine derivative of the present invention or a salt thereof.
  • the binaphthyl derivative represented by the following general formula (7) is an intermediate. As very useful.
  • R 1 is an alkoxy group having 1 to 10 carbon atoms
  • R 1 ′ is a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms.
  • the alkoxy group having 1 to 10 carbon atoms in the general formula (7) is the same as the alkoxy group exemplified in the description of R 1 to R 6 and R 1 ′ to R 6 ′ in the general formula (1). Things can be used.
  • the same solvents as those exemplified in the description of the above reaction 1 can be used, and among them, a halogenated hydrocarbon solvent is preferably used.
  • the amount of the solvent used is preferably 1 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 1 part by mass of the allylbinaphthyl derivative represented by the formula (4a).
  • the metal catalyst prepared by reaction of a metal complex and a ligand in the reaction system may be contained.
  • the ligand for example, triphenylphosphine, trimethylphosphine, triethylphosphine, tris (n-butyl) phosphine, tris (tert-butyl) phosphine and the like are preferably used.
  • Examples of the metal catalyst used in the above reaction 3 include PdCl 2 , PdBr 2 , Pd (OAc) 2 , Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (dba) 2 , Pd 2 (dba) 3. , Pd (CF 3 COO) 2 , Pd (acac) 2 , Pd (dppf) Cl 2 , [Pd (allyl)] 2 and other palladium catalysts; NiCl 2 , NiBr 2 , NiCl 2 (PPh 3 ) 2 and other nickel catalysts A catalyst etc. are mentioned, A palladium catalyst is used suitably.
  • dba dibenzylideneacetone
  • acac acetylacetonate
  • dppf diphenylphosphinoferrocene.
  • palladium catalysts such as Pd (OAc) 2 , Pd (PPh 3 ) 4 , [Pd (allyl)] 2 , and Pd (dba) 2 are more preferably used.
  • the amount of the metal catalyst used in the above reaction 3 is not particularly limited, and is preferably 0.001 to 0.1 mol relative to 1 mol of the allyl binaphthyl derivative represented by the formula (4a). More preferably, the amount is 01 to 0.1 mol.
  • the amount of N, N-dimethylbarbituric acid (NDMBA) used in the above reaction 3 is not particularly limited, and is 1 to 5 mol with respect to 1 mol of the allylbinaphthyl derivative represented by the formula (4a). It is preferably 2 to 4 mol.
  • the reaction temperature in the reaction 3 is preferably 30 to 100 ° C., and the reaction time in the reaction 3 is preferably 2 to 15 hours, and more preferably 5 to 10 hours. .
  • the binaphthyl derivative represented by the formula (2a) is converted into a metal catalyst and 2-dicyclohexylphosphino-2 ′, 6′-diisopropoxybiphenyl (RuPhos) in the presence of a base.
  • a salt of a 4-halogenopyridine derivative represented by the formula (3a) can be reacted with a salt of a 4-halogenopyridine derivative represented by the formula (3a) to obtain a pyridine derivative of the present invention represented by the formula (1a). That is, a pyridine derivative represented by the general formula (1) or a salt thereof is produced by reacting a binaphthyl derivative represented by the general formula (2) with a salt of a 4-halogenopyridine derivative represented by the general formula (3).
  • the method is a preferred embodiment of the present invention.
  • the same solvents as those exemplified in the description of the above reaction 1 can be used, and among them, hydrocarbon solvents and / or halogenated hydrocarbon solvents are preferably used.
  • the amount of the solvent used is preferably 1 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 1 part by mass of the binaphthyl derivative represented by the formula (2a).
  • Examples of the base used in the above reaction 4 include sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, magnesium carbonate, lithium carbonate, potassium fluoride, cesium fluoride, cesium chloride, odor Cesium carbonate, cesium carbonate, potassium phosphate, methoxy sodium, t-butoxy potassium, t-butoxy sodium, t-butoxy lithium, etc., among which t-butoxy potassium, t-butoxy sodium, and potassium phosphate At least one base selected from the group is preferably used.
  • the amount of the base used is preferably 1 to 10 mol, more preferably 2 to 5 mol, per 1 mol of the binaphthyl derivative represented by the formula (2a).
  • the same metal catalyst as exemplified in the description of the reaction 3 can be used, and among them, a palladium catalyst is preferably used.
  • palladium catalysts such as Pd (OAc) 2 , Pd (PPh 3 ) 4 , [Pd (allyl)] 2 , and Pd (dba) 2 are more preferably used.
  • the amount of the metal catalyst used in the above reaction 4 is not particularly limited, and is preferably 0.001 to 0.1 mol with respect to 1 mol of the binaphthyl derivative represented by the formula (2a), More preferably, it is ⁇ 0.1 mol.
  • RuPhos 2-dicyclohexylphosphino-2 ', 6'-diisopropoxybiphenyl
  • the amount of RuPhos used in the above reaction 4 is not particularly limited, and is preferably 0.001 to 0.1 mol with respect to 1 mol of the binaphthyl derivative represented by the formula (2a), More preferably, it is 0.1 mol.
  • the binaphthyl derivative represented by the formula (2a) is reacted with the salt of the 4-halogenopyridine derivative represented by the formula (3a), thereby the present invention represented by the formula (1a).
  • the pyridine derivative can be obtained.
  • the derivative represented by the formula (3a) is a salt, it has an advantage that it is excellent in handleability and stable.
  • X is a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint that the reaction proceeds better, X is preferably a bromine atom.
  • the present inventors have confirmed that the reaction does not easily proceed when X is a chlorine atom.
  • the salt of the 4-halogenopyridine derivative represented by the formula (3a) exists as a 4-halogenopyridine compound in the reaction system, not as a salt.
  • the reaction proceeds.
  • the pyridine derivative of the present invention represented by the formula (1a) thus obtained is not a salt, but a salt of the pyridine derivative of the present invention can be obtained by adding an acid to react.
  • the reaction temperature in the above reaction 4 is preferably 50 to 120 ° C., and the reaction time in the above reaction 4 is preferably 5 to 30 hours, more preferably 10 to 20 hours. .
  • a binaphthyl derivative represented by the formula (6b) is used as a starting compound, and the reactions 1 ′ to 4 ′ represent the formula (1b)
  • the pyridine derivative shown by the above formula (1a) can also be synthesized.
  • the reactions 1 'to 4' the same methods as those for the reactions 1 to 4 are preferably employed.
  • a pyridine derivative represented by the formula (1b ′) can be suitably synthesized by reacting at room temperature after adding an acid.
  • the amount of BBr 3 used in the above reaction 5 is not particularly limited, and is preferably 1 to 5 mol, preferably 2 to 4 mol, relative to 1 mol of the pyridine derivative represented by the formula (1b). Is more preferable.
  • the reaction temperature when the reaction is performed using BBr 3 is preferably ⁇ 50 to 30 ° C., and the reaction time is preferably 1 to 10 hours.
  • the amount of triethylamine used in the above reaction 5 is not particularly limited, and is preferably 1 to 5 mol, preferably 2 to 4 mol, relative to 1 mol of the pyridine derivative represented by the formula (1b). It is more preferable.
  • the amount of trifluoromethanesulfonic anhydride used is not particularly limited, but is preferably 1 to 5 mol, more preferably 1 to 3 mol.
  • the temperature at which trifluoromethanesulfonic anhydride is added is preferably ⁇ 100 to ⁇ 50 ° C., more preferably ⁇ 90 to ⁇ 70 ° C.
  • the reaction time is preferably 2 to 15 hours, more preferably 5 to 10 hours.
  • the same bases as exemplified in the description of the above reaction 4 can be used.
  • a metal catalyst used for the said reaction 6 the thing similar to the metal catalyst illustrated in description of the said reaction 3 can be used, A palladium catalyst is used suitably especially.
  • the amount of the metal catalyst used in the above reaction 6 is not particularly limited, and is preferably 0.001 to 0.1 mol relative to 1 mol of the binaphthyl derivative represented by the formula (1b ′). More preferably, the amount is 01 to 0.1 mol.
  • the reaction temperature in the above reaction 6 is preferably 30 to 100 ° C.
  • the reaction time in the above reaction 4 is preferably 5 to 30 hours, more preferably 10 to 20 hours. .
  • the pyridine derivative of the present invention or a salt thereof obtained as described above is preferably used as an asymmetric catalyst. Specifically, it is suitably used for asymmetric synthesis reactions such as asymmetric acylation reaction, asymmetric nucleophilic addition reaction, asymmetric hydrogenation reaction, asymmetric cycloaddition reaction, asymmetric halogenation reaction and the like. As can be seen from Examples described later, the present inventors have confirmed that an optically active substance can be obtained with good enantioselectivity in an asymmetric nucleophilic addition reaction such as the Stegrich rearrangement reaction. Therefore, it can be seen that the pyridine derivative of the present invention or a salt thereof is very useful because an optically active substance suitably used for a chiral element or a pharmaceutical intermediate can be obtained with good enantioselectivity.
  • azepine (604 mg, 1.46 mmol), N, N-dimethylbarbituric acid (NDMBA, 688 mg, 4.41 mmol), palladium acetate (II) (6.6 mg, 29 ⁇ mol), triphenylphosphine (31 mg, 0.12 mmol), and CH 2 Cl 2 (15 mL) was added and heated to reflux for 8 hours.
  • the reaction mixture was cooled to room temperature, toluene (30 mL) was added, and the mixture was washed with saturated aqueous sodium hydrogen carbonate solution. It was dried over MgSO 4 and the solvent was distilled off under reduced pressure with an evaporator to obtain a crude product.
  • reaction mixture was cooled to room temperature, added toluene (10 mL) and H 2 O (10 mL), filtered through Celite, and washed with brine. It was dried over MgSO 4 and the solvent was distilled off under reduced pressure with an evaporator to obtain a crude product.
  • Example 2 (Synthesis Example 6) [Synthesis of dibromobinaphthyl derivative represented by formula (5b)] (S) -3-methoxy-2,2 represented by the formula (6b) synthesized according to the literature (Kano, T. et al., Adv. Synth. Catal., 2007, 349, 556) in an Ar-substituted eggplant flask. Add '-dimethyl-1,1'-binaphthalene (811 mg, 2.60 mmol), N-bromosuccinimide (1.02 g, 5.71 mmol), azobisisobutyronitrile (21 mg, 0.13 mmol), and benzene (13 mL) and heat for 2 hours.
  • '-dimethyl-1,1'-binaphthalene 811 mg, 2.60 mmol
  • N-bromosuccinimide (1.02 g, 5.71 mmol
  • azobisisobutyronitrile 21 mg, 0.13
  • reaction mixture was cooled to room temperature, added toluene (50 mL) and H 2 O (50 mL), filtered through Celite, washed with brine, dried over MgSO 4 , and the solvent was evaporated under reduced pressure using an evaporator. The product was obtained.
  • reaction mixture was poured into MeOH (20 mL), and the solvent was distilled off under reduced pressure with an evaporator.
  • the eggplant flask containing the residue was substituted with Ar, triethylamine (84 ⁇ L, 0.60 mmol) and CH 2 Cl 2 (2.0 mL) were added, and the mixture was cooled to ⁇ 78 ° C.
  • trifluoromethanesulfonic Anhydride 39 ⁇ L, 0.24 mmol
  • the mixture was stirred at room temperature for 8 hours.
  • a saturated aqueous ammonium chloride solution (5 mL) and CH 2 Cl 2 (20 mL) were added to the reaction mixture, and then the organic layer was washed with a saturated aqueous sodium bicarbonate solution.
  • Example 5 (Synthesis Example 18) [Synthesis of pyridine derivative represented by formula (1e)] A binaphthyl derivative (201 mg, 0.367 mmol) represented by the formula (2e) and 4-bromopyridine represented by the formula (3a) synthesized according to the literature (Japanese Patent Laid-Open No. 2002-326992) were prepared in an Ar-substituted two-necked eggplant flask.
  • Binaphthyl derivative represented by the formula (2f) 52 mg, 0.18 mmol), 4-bromopyridine hydrochloride (69 mg, 0.36 mmol), NaOt-Bu (68 mg, 0.71 mmol), 1, 3-Bis (diphenylphosphino) propane (2.9 mg, 7.1 ⁇ mol), palladium acetate (II) (1.6 mg, 7.1 ⁇ mol), and toluene (1.6 mL) were added, and the mixture was stirred at 70 ° C. for 15 hours. Toluene (20 mL) was added to the reaction mixture, and the mixture was washed with a saturated aqueous sodium hydrogen carbonate solution.
  • Example 7 Synthesis Example 20 Synthesis of Compound represented by Formula (S)-(B) Using the pyridine derivatives obtained as described above as asymmetric nucleophilic catalysts, an intramolecular rearrangement reaction was performed on the compound represented by the formula (A). The reaction was carried out in a dichloromethane solvent at 0 ° C. for 12 hours, 1N HCl (4.0 mL) was added, extracted twice with CH 2 Cl 2 (5.0 mL), washed with brine, dried over MgSO 4 and the solvent was removed with an evaporator. Concentration gave the crude product.
  • Example 8 (Synthesis Example 21) [Synthesis of compound represented by formula (S)-(B)] The reaction solvent was examined using the compound represented by the formula (1d), which showed good enantioselectivity in Example 7.
  • the reaction solvent dichloromethane, toluene, diethyl ether (Et 2 O), diisopropyl ether (i-Pr 2 O), cyclopentyl methyl ether (CPME), tert-butyl methyl ether (TBME), and tetrahydrofuran were used, respectively.
  • the reaction was carried out in a reaction solvent at 0 ° C.
  • a compound (39.2 mg, 0.10 mmol) represented by formula (A) and diethyl ether (1.0 mL) are placed in a test tube with a screw cap replaced with Ar, cooled to ⁇ 78 ° C., and represented by formula (1d).
  • Example 10 Synthesis of Compound represented by Formula (S)-(B) Similarly, the reaction temperature was examined by reacting the compound represented by the formula (1d) in a toluene solvent for 12 hours. The obtained results are summarized in Table 5. As can be seen from Table 5 (entry 5), when the reaction is carried out in a toluene solvent at ⁇ 60 ° C., the enantioselectivity is 97: 3 (94% ee) and is represented by the formulas (S)-(B). It became clear that a compound was obtained.
  • a compound (38.8 mg, 0.10 mmol) represented by the formula (A) and toluene (1.0 mL) were placed in a test tube with a screw cap replaced with Ar, cooled to ⁇ 20 ° C., and represented by the formula (1d) ( S) -2,6-dimethoxy-4- (pyridin-4-yl) -4,5-dihydro-3H-dinaphtho [2,1-c: 1 ', 2'-e] azepine (4.4 mg, 10.2 ⁇ mol ) was added and stirred for 12 hours.
  • a compound (38.9 mg, 0.10 mmol) represented by the formula (A) and toluene (1.0 mL) were placed in a test tube with a screw cap substituted with Ar, and cooled to ⁇ 78 ° C., and represented by the formula (1d) ( S) -2,6-dimethoxy-4- (pyridin-4-yl) -4,5-dihydro-3H-dinaphtho [2,1-c: 1 ', 2'-e] azepine (4.4 mg, 10.2 ⁇ mol ) was added and stirred for 12 hours.
  • Example 11 Synthesis of Compound represented by Formula (S)-(B)
  • the reaction temperature was examined by reacting the compound represented by the formula (1d) in a cyclopentyl methyl ether (CPME) solvent for 12 hours.
  • the results obtained are summarized in Table 7.
  • Table 7 entry 5
  • the enantioselectivity is 97: 3 (94% ee) and is represented by the formulas (S)-(B). It became clear that a compound was obtained.
  • a compound tube (38.9 mg, 0.10 mmol) represented by formula (A) and cyclopentyl methyl ether (1.0 mL) were placed in a test tube with a screw cap replaced with Ar, cooled to ⁇ 78 ° C., and represented by formula (1d).
  • Example 12 Synthesis of Compound represented by Formula (S)-(B) The reaction temperature was examined by reacting the compound represented by the formula (1d) in a diisopropyl ether (i-Pr 2 O) solvent for 12 hours. The obtained results are summarized in Table 9.
  • Example 13 (Synthesis Example 26) [Synthesis of compounds represented by formulas (S)-(D) -1 to (S)-(D) -11]
  • the carbonate moiety (R 1 ) and protecting group (R 2 ) were examined by reacting the compound represented by the formula (1d) in a toluene solvent at ⁇ 60 ° C. for 12 hours.
  • the obtained results are summarized in Table 11.
  • 1 H-NMR charts of the compounds represented by formulas (S)-(D) -1 to (S)-(D) -11 are shown in FIGS. 1 to 11, respectively.
  • the 1 H-NMR chart shown in FIG. Not only a peak derived from the compound represented by-(D) -8 but also a peak derived from the starting compound was observed.
  • Example 14 Synthesis Example 27 Synthesis of Compound represented by Formula (S)-(B) The amount of catalyst was examined by reacting the compound represented by the formula (1d) in a toluene solvent at ⁇ 60 ° C. for 12 hours. In addition, the reaction time when the compound represented by the formula (1d) was reacted at -60 ° C. in a toluene solvent using 3 mol% was examined. The results obtained are summarized in Table 12.
  • Example 15 (Synthesis Example 28) [Synthesis of compounds represented by formulas (S)-(F) -1 to (S)-(F) -4]
  • the substrate application range (R 3 ) was examined by reacting the compound represented by the formula (1d) in a toluene solvent at ⁇ 60 ° C. for 12 hours.
  • the obtained results are summarized in Table 13.
  • FIGS. 12 to 15 show 1 H-NMR charts of the compounds represented by the formulas (S)-(F) -1 to (S)-(F) -4, respectively. In entries 2 to 4, a mixture of the compounds represented by the formulas (S)-(F) -2 to (S)-(F) -4 and unreacted raw material compounds was obtained.
  • the 1 H-NMR chart represented by 15 not only the peaks derived from the compounds represented by the formulas (S)-(F) -2 to (S)-(F) -4, but also the peaks derived from the starting compounds. Observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pyridine Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 光学活性体を良好なエナンチオ選択性で得ることのできる、下記一般式(1)で示されるピリジン誘導体又はその塩が提供される。 [式中、R1~R6及びR1'~R6'は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アシル基、アリールアルキル基、アルキルシリル基、アルコキシカルボニル基、アルキルチオ基、アリールチオ基、複素芳香環基、スルホニルオキシ基、アミノ基、アミド基、ニトロ基、水酸基、アリールシリル基、アリールアルキルシリル基、又はハロゲン原子であり、R7、R7'、R8及びR8'は、それぞれ独立して水素原子、アルキル基、アルコキシ基、又はハロゲン原子であり、R9、R9'、R10及びR10'は、それぞれ独立して水素原子、アルキル基、アルコキシ基、又はハロゲン原子である。]

Description

軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒
 本発明は、ビナフチル基を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒に関する。
 ビナフチル基を有する化合物が不斉合成触媒に広く利用されている。例えば、下記式に示すBINAP[(1,1-binaphthalene)-2,2-diylbis(diphenylphosphine)]を配位子として用いた遷移金属錯体は、不斉合成用触媒として優れた性能を示すことが知られており、最も汎用的に用いられている不斉配位子の一つである。しかしながら、反応の種類や条件によっては、BINAPを含む不斉触媒を用いた場合に、反応の進行が不十分となったり、エナンチオ選択性が不十分となったりする場合があった。
Figure JPOXMLDOC01-appb-C000012
 ビナフチル基を有する化合物に関して、特許文献1には下記のようなビナフチル基及びビフェニル基を有するN-スピロ不斉相間移動触媒が記載されている。これによれば、天然又は非天然の各種α-アミノ酸誘導体を立体選択的に合成することができるとされている。しかしながら、このようなN-スピロ不斉相間移動触媒を合成する工程数が多く、エナンチオ選択性が良好ではない場合もあり改善が望まれていた。
Figure JPOXMLDOC01-appb-C000013
 また、非特許文献1には、不斉求核触媒を用いたSteglich転位反応により、(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateが得られることが記載されている。しかしながら、この反応に用いられる光学的に純粋な不斉求核触媒は、光学活性な酸を用いてラセミ体を複数回光学分割することにより得られるものであるため、コスト高になるという問題があり改善が望まれていた。
Figure JPOXMLDOC01-appb-C000014
特開2002-326992号公報
Scott A. Shaw et al., J. Am.Chem. Soc., 2006, Vol.128, No.3, p.925-934
 本発明は上記課題を解決するためになされたものであり、ビナフチル基を有するピリジン誘導体又はその塩を提供することを目的とするものである。また、医薬品中間体などに好適に用いられる光学活性体を良好なエナンチオ選択性で得ることのできる、ピリジン誘導体又はその塩からなる不斉触媒を提供することを目的とするものである。
 上記課題は、下記一般式(1)で示されるピリジン誘導体又はその塩を提供することによって解決される。
Figure JPOXMLDOC01-appb-C000015
[式中、R~R及びR’~R’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数2~10のアシル基、炭素数7~15のアリールアルキル基、炭素数3~10のアルキルシリル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルチオ基、炭素数6~15のアリールチオ基、炭素数4~10の複素芳香環基、スルホニルオキシ基、アミノ基、アミド基、ニトロ基、水酸基、アリールシリル基、アリールアルキルシリル基、又はハロゲン原子であり、
、R’、R及びR’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子であり、
、R’、R10及びR10’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子である。]
 このとき、前記ピリジン誘導体又はその塩からなる不斉触媒が本発明の好適な実施態様である。
 また、上記課題は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000016
[式中、R~R及びR’~R’は、前記一般式(1)と同義である。]
で示されるビナフチル誘導体を下記一般式(3):
Figure JPOXMLDOC01-appb-C000017
[式中、R、R’、R10及びR10’は、前記一般式(1)と同義であり、Xはハロゲン原子である。]
で示される4-ハロゲノピリジン誘導体の塩と反応させて上記一般式(1)で示されるピリジン誘導体又はその塩の製造方法を提供することによっても解決される。
 このとき、下記一般式(4):
Figure JPOXMLDOC01-appb-C000018
[式中、R~R及びR’~R’は前記一般式(1)と同義である。]
で示されるアリルビナフチル誘導体を出発化合物として下記一般式(2):
Figure JPOXMLDOC01-appb-C000019
[式中、R~R及びR’~R’は、前記一般式(1)と同義である。]
で示されるビナフチル誘導体を得る工程を有するピリジン誘導体又はその塩の製造方法が本発明の好適な実施態様である。
 また、このとき、下記一般式(5):
Figure JPOXMLDOC01-appb-C000020
[式中、R~R及びR’~R’は前記一般式(1)と同義である。]
で示されるジブロモビナフチル誘導体を出発化合物として下記一般式(4):
Figure JPOXMLDOC01-appb-C000021
[式中、R~R及びR’~R’は前記一般式(1)と同義である。]
で示されるアリルビナフチル誘導体を得る工程を有するピリジン誘導体又はその塩の製造方法が本発明の好適な実施態様である。
 また、このとき、下記一般式(6):
Figure JPOXMLDOC01-appb-C000022
[式中、R~R及びR’~R’は前記一般式(1)と同義である。]
で示されるビナフチル誘導体を出発化合物として下記一般式(5):
Figure JPOXMLDOC01-appb-C000023
[式中、R~R及びR’~R’は前記一般式(1)と同義である。]
で示されるジブロモビナフチル誘導体を得る工程を有するピリジン誘導体又はその塩の製造方法も本発明の好適な実施態様である。
 また、上記課題は、下記一般式(7)で示されるビナフチル誘導体を提供することによって解決される。
Figure JPOXMLDOC01-appb-C000024
[式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
 また、上記課題は、下記一般式(8)で示されるアリルビナフチル誘導体を提供することによっても解決される。
Figure JPOXMLDOC01-appb-C000025
[式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
 本発明により、ビナフチル基を有するピリジン誘導体又はその塩を合成することができる。こうして得られた本発明のピリジン誘導体又はその塩は、不斉触媒として用いた場合に、医薬品中間体などに好適に用いられる光学活性体を良好なエナンチオ選択性で得ることができる。
実施例13で得られた式(S)-(D)-1で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-2で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-3で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-4で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-5で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-6で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-7で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-8で示される化合物と未反応の原料化合物との混合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-9で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-10で示される化合物のH-NMRスペクトル図である。 実施例13で得られた式(S)-(D)-11で示される化合物のH-NMRスペクトル図である。 実施例15で得られた式(S)-(F)-1で示される化合物のH-NMRスペクトル図である。 実施例15で得られた式(S)-(F)-2で示される化合物と未反応の原料化合物との混合物のH-NMRスペクトル図である。 実施例15で得られた式(S)-(F)-3で示される化合物と未反応の原料化合物との混合物のH-NMRスペクトル図である。 実施例15で得られた式(S)-(F)-4で示される化合物と未反応の原料化合物との混合物のH-NMRスペクトル図である。
 本発明のピリジン誘導体又はその塩は、下記一般式(1)で示されるものである。
Figure JPOXMLDOC01-appb-C000026
[式中、R~R及びR’~R’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数2~10のアシル基、炭素数7~15のアリールアルキル基、炭素数3~10のアルキルシリル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルチオ基、炭素数6~15のアリールチオ基、炭素数4~10の複素芳香環基、スルホニルオキシ基、アミノ基、アミド基、ニトロ基、水酸基、アリールシリル基、アリールアルキルシリル基、又はハロゲン原子であり、
、R’、R及びR’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子であり、
、R’、R10及びR10’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子である。]
 上記一般式(1)において、R~R及びR’~R’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数2~10のアシル基、炭素数7~15のアリールアルキル基、炭素数3~10のアルキルシリル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルチオ基、炭素数6~15のアリールチオ基、炭素数4~10の複素芳香環基、スルホニルオキシ基、アミノ基、アミド基、ニトロ基、水酸基、アリールシリル基、アリールアルキルシリル基、又はハロゲン原子である。中でも、R~R及びR’~R’としては、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数7~15のアリールアルキル基、及びハロゲン原子からなる群から選択される少なくとも1種の置換基が好適に用いられる。
 上記一般式(1)におけるR~R及びR’~R’に用いられる炭素数1~10のアルキル基としては、直鎖や分岐鎖のアルキル基であってもよいし、環状のシクロアルキル基であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖や分岐鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基等のシクロアルキル基が挙げられる。
 上記炭素数1~10のアルキル基は更に置換基を有していてもよく、かかる置換基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基等のアリール基;ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等の複素芳香環基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、ナフチルチオ基等のアリールチオ基;tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基等の三置換シリルオキシ基;アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等のアシロキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基等のアルコキシカルボニル基;メチルスルフィニル基、エチルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基等のアリールスルフィニル基;メチルスルフォニルオキシ基、エチルスルフォニルオキシ基、フェニルスルフォニルオキシ基、メトキシスルフォニル基、エトキシスルフォニル基、フェニルオキシスルフォニル基等のスルフォン酸エステル基;アミノ基;水酸基;シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;などが挙げられる。
 上記炭素数2~10のアルケニル基としては、直鎖であっても分岐鎖であってもよく、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。これらアルケニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記炭素数2~10のアルキニル基としては、直鎖であっても分岐鎖であってもよく、エチニル基、プロピニル基、プロパルギル基、ブチニル基、ペンチニル基、ヘキシニル基、フェニルエチニル基等が挙げられる。これらアルキニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、2-エチルヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等が挙げられる。これらアルコキシ基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアルコキシ基以外の置換基を同様に用いることができる。
 上記炭素数6~15のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。これらアリール基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアリール基以外の置換基や、上述のアルキル基、アルケニル基、アルキニル基等を用いることができる。
 上記炭素数2~10のアシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基等が挙げられる。これらアシル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記炭素数7~15のアリールアルキル基としては、ベンジル基、4-メトキシベンジル基、フェネチル基、ジフェニルメチル基等が挙げられる。これらアリールアルキル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記炭素数3~10のアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基等が挙げられる。これらアルキルシリル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記炭素数2~10のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、アリルオキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。これらアルコキシカルボニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアルコキシカルボニル基以外の置換基を用いることができる。
 上記炭素数1~10のアルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等が挙げられる。また、上記炭素数6~15のアリールチオ基としては、フェニルチオ基、ナフチルチオ基等が挙げられる。これらアルキルチオ基やアリールチオ基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアルキルチオ基やアリールチオ基以外の置換基を同様に用いることができる。
 上記炭素数4~10の複素芳香環基としては、ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等が挙げられる。これら複素芳香環基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された複素芳香環基以外の置換基や、上述のアルキル基、アルケニル基、アルキニル基等を用いることができる。
 上記スルホニルオキシ基としては、炭素数1~10のアルキル基を有するスルホニルオキシ基(以下、アルキルスルホニルオキシ基と略記することがある)、炭素数6~15のアリール基を有するスルホニルオキシ基(以下、アリールスルホニルオキシ基と略記することがある)等が挙げられる。炭素数1~10のアルキル基及び炭素数6~15のアリール基としては、上記説明した置換基と同様のものを用いることができる。アルキルスルホニルオキシ基としては、メタンスルホニルオキシ基、エタンスルホニルオキシ基、n-プロパンスルホニルオキシ基、イソプロパンスルホニルオキシ基、n-ブタンスルホニルオキシ基、tert-ブタンスルホニルオキシ基等が挙げられる。これらアルキルスルホニルオキシ基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができ、好適な置換基としてハロゲン原子が挙げられる。ハロゲン原子を有するアルキルスルホニルオキシ基としては、トリフルオロメタンスルホニルオキシ基等が好適に用いられる。アリールスルホニルオキシ基としては、ベンゼンスルホニルオキシ基、ナフタレンスルホニルオキシ基、ビフェニルスルホニルオキシ基等が挙げられる。これらアリールスルホニルオキシ基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアリール基以外の置換基や、上述のアルキル基、アルケニル基、アルキニル基等を用いることができ、好適な置換基としてアルキル基が挙げられる。アルキル基を有するアリールスルホニルオキシ基としては、パラトルエンスルホニルオキシ基等が好適に用いられる。
 上記アミノ基としては、1級アミノ基(-NH)の他、2級アミノ基、3級アミノ基であっても良い。2級アミノ基は、-NHR11(R11は任意の一価の置換基である)で示されるモノ置換アミノ基であり、R11としては、炭素数1~10のアルキル基、炭素数6~15のアリール基、アセチル基、ベンゾイル基、ベンゼンスルホニル基、tert-ブトキシカルボニル基等が挙げられる。2級アミノ基の具体例としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基等のようにR11がアルキル基である2級アミノ基や、フェニルアミノ基、ナフチルアミノ基等のようにR11がアリール基である2級アミノ基等が挙げられる。また、R11におけるアルキル基やアリール基の水素原子が、更にアセチル基、ベンゾイル基、ベンゼンスルホニル基、tert-ブトキシカルボニル基等で置換されていてもよい。3級アミノ基は、-NR1112(R11及びR12は任意の一価の置換基である)で示されるジ置換アミノ基であり、R12としては、R11と同様のものを用いることができ、R11及びR12は互いに同じでも異なっていてもよい。3級アミノ基の具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基、メチルフェニルアミノ基等のようにR11及びR12がアルキル基及びアリール基からなる群から選択される少なくとも1種である3級アミノ基等が挙げられる。
 上記アミド基としては、-C(=O)NR1314(R13及びR14は水素原子、炭素数1~10のアルキル基及び炭素数6~15のアリール基からなる群から選択される少なくとも1種である)で示されるアミド基が挙げられる。R13及びR14は互いに同じでも異なっていてもよい。R13及びR14におけるアルキル基、アリール基としては、上記アルキル基やアリール基の説明のところで例示された置換基を同様に用いることができる。
 上記アリールシリル基としては、tert-ブチルジフェニルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。また、上記アリールアルキルシリル基としては、トリベンジルシリル基等が挙げられる。これらアリールシリル基及びアリールアルキルシリル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記一般式(1)において、R~R及びR’~R’に用いられる好適な置換基としては、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数7~15のアリールアルキル基、スルホニルオキシ基及びハロゲン原子からなる群から選択される少なくとも1種の置換基が挙げられる。不斉触媒としての機能が良好である観点からは、上記一般式(1)におけるR~R及びR’~R’のうち、R及びR’が、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数7~15のアリールアルキル基、スルホニルオキシ基及びハロゲン原子からなる群から選択される少なくとも1種の置換基であり、かつR~R及びR’~R’が水素原子であることが好ましく、R及びR’が、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数7~15のアリールアルキル基、スルホニルオキシ基及びハロゲン原子からなる群から選択される少なくとも1種の置換基であり、かつR~R及びR’~R’が水素原子であることがより好ましい。
 上記一般式(1)におけるR、R’、R及びR’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子である。このような炭素数1~10のアルキル基、炭素数1~10のアルコキシ基及びハロゲン原子としては、上記一般式(1)におけるR~R及びR’~R’の説明のところで例示された置換基と同様のものを用いることができる。不斉触媒としての機能が良好である観点からは、一般式(1)におけるR、R’、R及びR’が、水素原子及び炭素数1~10のアルキル基からなる群から選択される少なくとも1種の置換基であることが好適であり、中でも水素原子、メチル基、及びエチル基からなる群から選択される少なくとも1種の置換基であることがより好適であり、水素原子であることが更に好適である。
 上記一般式(1)におけるR、R’、R10及びR10’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子である。このような炭素数1~10のアルキル基、炭素数1~10のアルコキシ基及びハロゲン原子としては、上記一般式(1)におけるR~R及びR’~R’の説明のところで例示された置換基と同様のものを用いることができる。不斉触媒としての機能が良好である観点からは、一般式(1)におけるR、R’、R10及びR10’が、水素原子であることが好適である。
 以上説明した本発明のピリジン誘導体又はその塩は、ラセミ体であってもよいが、不斉触媒として用いた際に光学分割することなく容易に光学活性化合物が得られる観点からは、本発明のピリジン誘導体又はその塩自体が光学活性体であることが好ましく、この場合、軸不斉光学活性体となる。すなわち、下記一般式(1-S)又は下記一般式(1-R)で示される光学活性体であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
[式中、R~R10及びR’~R10’は、前記一般式(1)と同義である。]
Figure JPOXMLDOC01-appb-C000028
[式中、R~R10及びR’~R10’は、前記一般式(1)と同義である。]
 本発明の一般式(1)で示されるピリジン誘導体又はその塩を得る方法としては特に限定されず、下記一般式(6)で示されるビナフチル誘導体を出発化合物として好適に合成することができる。以下、一般式(6)におけるRがフェニル基であり、R~R及びR’~R’が水素原子であるときの式(6a)で示されるビナフチル誘導体を出発化合物として、一般式(1)におけるRがフェニル基であり、R~R10及びR’~R10’が水素原子であるときの式(1a)で示されるピリジン誘導体又はその塩を得る方法について、下記化学反応式(I)を参照しながら説明する。なお、式(6a)で示されるビナフチル誘導体は、1,1’-ビナフトールから既知の方法により合成することができる。
Figure JPOXMLDOC01-appb-C000029
 上記化学反応式(I)の反応1で示されるように、まず、式(6a)で示されるビナフチル誘導体に、N-ブロモスクシンイミド(NBS)とアゾビスイソブチロニトリル(AIBN)を添加することにより、ジブロモ化された式(5a)で示されるジブロモビナフチル誘導体を得ることができる。
 上記反応1で用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、ヘキサン、ヘプタン、オクタンなどの炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロベンゼンなどのハロゲン化炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンなどのエーテル;酢酸エチル、酢酸ブチルなどのエステル;アセトニトリル、プロピオニトリルなどのニトリル;ジメチルホルムアミド、N-メチルピロリドンなどのアミド等が挙げられる。溶媒は、単独で使用してもよいし、2種以上を併用してもよい。中でも、炭化水素溶媒、及び/又はハロゲン化炭化水素溶媒が好適に使用される。かかる溶媒の使用量は、式(6a)で示されるビナフチル誘導体1質量部に対して、1~100質量部であることが好ましく、1~50質量部であることがより好ましい。
 上記反応1に用いられるN-ブロモスクシンイミド(NBS)の使用量としては特に限定されず、式(6a)で示されるビナフチル誘導体1モルに対して、2~4モルであることが好ましく、2~2.5モルであることがより好ましい。上記反応1に用いられるアゾビスイソブチロニトリル(AIBN)の使用量としては特に限定されず、式(6a)で示されるビナフチル誘導体1モルに対して、0.001~0.1モルであることが好ましく、0.01~0.1モルであることがより好ましい。上記反応1における反応温度としては、50~120℃であることが好ましく、また、上記反応1における反応時間としては、2~10時間であることが好ましく、2~5時間であることがより好ましい。
Figure JPOXMLDOC01-appb-C000030
 続いて、上記反応2で示されるように、反応1により得られた式(5a)で示されるジブロモビナフチル誘導体にアリルアミンを反応させることにより、式(4a)で示されるアリルビナフチル誘導体を得ることができる。ここで、本発明者らは、式(5a)で示されるジブロモビナフチル誘導体に4-アミノピリジンを反応させた場合には目的とする反応が進行せず、副生成物のみ得られることを確認している。したがって、一般式(5)で示されるジブロモビナフチル誘導体から一般式(4)で示されるアリルビナフチル誘導体を得る工程を有することが本発明の好適な実施態様である。こうして得られる一般式(4)で示されるアリルビナフチル誘導体は、本発明のピリジン誘導体又はその塩の中間体として非常に有用であり、特に、下記一般式(8)で示されるアリルビナフチル誘導体が中間体として非常に有用である。
Figure JPOXMLDOC01-appb-C000031
[式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
 上記一般式(8)における炭素数1~10のアルコキシ基としては、上記一般式(1)におけるR~R及びR’~R’の説明のところで例示されたアルコキシ基と同様のものを用いることができる。
 上記反応2で用いられる溶媒としては、上記反応1の説明のところで例示された溶媒と同様のものを用いることができ、中でもエーテル溶媒、及び/又はニトリル溶媒が好適に使用される。かかる溶媒の使用量は、式(5a)で示されるジブロモビナフチル誘導体1質量部に対して、1~100質量部であることが好ましく、1~50質量部であることがより好ましい。
 上記反応2に用いられるアリルアミンの使用量としては特に限定されず、式(5a)で示されるジブロモビナフチル誘導体1モルに対して、3~8モルであることが好ましく、3~4モルであることがより好ましい。上記反応2における反応温度としては、30~100℃であることが好ましく、また、上記反応2における反応時間としては、2~20時間であることが好ましく、5~15時間であることがより好ましい。
Figure JPOXMLDOC01-appb-C000032
 続いて、上記反応3で示されるように、式(4a)で示されるアリルビナフチル誘導体に、金属触媒を用いてN,N-ジメチルバルビツール酸(NDMBA)と反応させることにより、式(2a)で示されるビナフチル誘導体を得ることができる。すなわち、一般式(4)で示されるアリルビナフチル誘導体から一般式(2)で示されるビナフチル誘導体を得る工程を有することが本発明の好適な実施態様である。こうして得られる一般式(2)で示されるアリルビナフチル誘導体は、本発明のピリジン誘導体又はその塩の中間体として非常に有用であり、特に、下記一般式(7)で示されるビナフチル誘導体が中間体として非常に有用である。
Figure JPOXMLDOC01-appb-C000033
[式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
 上記一般式(7)における炭素数1~10のアルコキシ基としては、上記一般式(1)におけるR~R及びR’~R’の説明のところで例示されたアルコキシ基と同様のものを用いることができる。
 上記反応3で用いられる溶媒としては、上記反応1の説明のところで例示された溶媒と同様のものを用いることができ、中でもハロゲン化炭化水素溶媒が好適に使用される。かかる溶媒の使用量は、式(4a)で示されるアリルビナフチル誘導体1質量部に対して、1~100質量部であることが好ましく、1~50質量部であることがより好ましい。
 上記反応3に用いられる金属触媒としては特に限定されず、反応系中で金属錯体と配位子との反応により調製される金属触媒が含まれていてもよい。配位子としては、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリス(n-ブチル)ホスフィン、トリス(tert-ブチル)ホスフィン等が好適に使用される。上記反応3に用いられる金属触媒としては、PdCl、PdBr、Pd(OAc)、Pd(PPh、PdCl(PPh、Pd(dba)、Pd(dba)、Pd(CFCOO)、Pd(acac)、Pd(dppf)Cl、[Pd(allyl)]等のパラジウム触媒;NiCl、NiBr、NiCl(PPh等のニッケル触媒などが挙げられ、パラジウム触媒が好適に使用される。ここで、dbaはジベンジリデンアセトン、acacはアセチルアセトナート、dppfはジフェニルホスフィノフェロセンを示す。パラジウム触媒の中でも、Pd(OAc)、Pd(PPh、[Pd(allyl)]、Pd(dba)等のパラジウム触媒がより好適に使用される。
 上記反応3に用いられる金属触媒の使用量としては特に限定されず、式(4a)で示されるアリルビナフチル誘導体1モルに対して、0.001~0.1モルであることが好ましく、0.01~0.1モルであることがより好ましい。上記反応3に用いられるN,N-ジメチルバルビツール酸(NDMBA)の使用量としては特に限定されず、式(4a)で示されるアリルビナフチル誘導体1モルに対して、1~5モルであることが好ましく、2~4モルであることがより好ましい。上記反応3における反応温度としては、30~100℃であることが好ましく、また、上記反応3における反応時間としては、2~15時間であることが好ましく、5~10時間であることがより好ましい。
Figure JPOXMLDOC01-appb-C000034
 続いて、上記反応4で示されるように、式(2a)で示されるビナフチル誘導体に、塩基の存在下、金属触媒及び2-ジシクロヘキシルホスフィノ-2’,6’-ジイソプロポキシビフェニル(RuPhos)を用いて、式(3a)で示される4-ハロゲノピリジン誘導体の塩と反応させることにより、式(1a)で示される本発明のピリジン誘導体を得ることができる。すなわち、一般式(2)で示されるビナフチル誘導体と一般式(3)で示される4-ハロゲノピリジン誘導体の塩とを反応させることにより、一般式(1)で示されるピリジン誘導体又はその塩の製造方法が本発明の好適な実施態様である。
 上記反応4で用いられる溶媒としては、上記反応1の説明のところで例示された溶媒と同様のものを用いることができ、中でも炭化水素溶媒、及び/又はハロゲン化炭化水素溶媒が好適に使用される。かかる溶媒の使用量は、式(2a)で示されるビナフチル誘導体1質量部に対して、1~100質量部であることが好ましく、1~50質量部であることがより好ましい。
 上記反応4に用いられる塩基としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸マグネシウム、炭酸リチウム、ふっ化カリウム、フッ化セシウム、塩化セシウム、臭化セシウム、炭酸セシウム、リン酸カリウム、メトキシナトリウム、t-ブトキシカリウム、t-ブトキシナトリウム、t-ブトキシリチウム等が挙げられ、中でも、t-ブトキシカリウム、t-ブトキシナトリウム、及びリン酸カリウムからなる群から選択される少なくとも1種の塩基が好適に使用される。かかる塩基の使用量は、式(2a)で示されるビナフチル誘導体1モルに対して、1~10モルであることが好ましく、2~5モルであることがより好ましい。
 上記反応4に用いられる金属触媒としては、上記反応3の説明のところで例示された金属触媒と同様のものを用いることができ、中でもパラジウム触媒が好適に使用される。パラジウム触媒の中でも、Pd(OAc)、Pd(PPh、[Pd(allyl)]、Pd(dba)等のパラジウム触媒がより好適に使用される。上記反応4に用いられる金属触媒の使用量としては特に限定されず、式(2a)で示されるビナフチル誘導体1モルに対して、0.001~0.1モルであることが好ましく、0.01~0.1モルであることがより好ましい。
 上記反応4では、2-ジシクロヘキシルホスフィノ-2’,6’-ジイソプロポキシビフェニル(RuPhos)が好適に使用される。RuPhosを用いることにより、高収率で目的物を得ることができる。上記反応4に用いられるRuPhosの使用量としては特に限定されず、式(2a)で示されるビナフチル誘導体1モルに対して、0.001~0.1モルであることが好ましく、0.01~0.1モルであることがより好ましい。
 上述のように、反応4では、式(2a)で示されるビナフチル誘導体に対して、式(3a)で示される4-ハロゲノピリジン誘導体の塩と反応させることにより式(1a)で示される本発明のピリジン誘導体を得ることができる。ここで、式(3a)で示される誘導体が塩であることで取扱性に優れるとともに安定である利点を有する。式(3a)で示される4-ハロゲノピリジン誘導体の塩において、Xはハロゲン原子であり、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。反応がより良好に進行する観点からは、Xが臭素原子であることが好ましい。本発明者らは、Xが塩素原子である場合には反応が進行しにくいことを確認している。ここで、上記反応4では、塩基の存在下で反応が行われるため、式(3a)で示される4-ハロゲノピリジン誘導体の塩は、反応系中では塩ではなく4-ハロゲノピリジン化合物として存在しつつ反応が進行する。こうして得られた式(1a)で示される本発明のピリジン誘導体は、塩ではないが、酸を加えて反応させることで本発明のピリジン誘導体の塩を得ることができる。
 上記反応4における反応温度としては、50~120℃であることが好ましく、また、上記反応4における反応時間としては、5~30時間であることが好ましく、10~20時間であることがより好ましい。
 ここで、上記反応1~4の代わりに下記化学反応式(II)で示されるように、式(6b)で示されるビナフチル誘導体を出発化合物として、反応1’~4’により式(1b)で示されるピリジン誘導体を得た後に、上記式(1a)で示されるピリジン誘導体を合成することもできる。反応1’~4’としては、上記反応1~4と同様の方法が好適に採用される。
Figure JPOXMLDOC01-appb-C000035
 下記反応5で示されるように、式(1b)で示されるピリジン誘導体に対して、BBrを加えて0℃で反応させ、更にトリエチルアミンを加えて-78℃に冷却してから無水トリフルオロメタンスルホン酸を加えた後に室温で反応させることにより式(1b’)で示されるピリジン誘導体を好適に合成することができる。
Figure JPOXMLDOC01-appb-C000036
 上記反応5に用いられるBBrの使用量としては特に限定されず、式(1b)で示されるピリジン誘導体1モルに対して、1~5モルであることが好ましく、2~4モルであることがより好ましい。BBrを用いて反応させる際の反応温度としては、-50~30℃であることが好ましく、反応時間としては、1~10時間であることが好ましい。
 また、上記反応5に用いられるトリエチルアミンの使用量としては特に限定されず、式(1b)で示されるピリジン誘導体1モルに対して、1~5モルであることが好ましく、2~4モルであることがより好ましい。また、無水トリフルオロメタンスルホン酸の使用量としては特に限定されず、1~5モルであることが好ましく、1~3モルであることがより好ましい。無水トリフルオロメタンスルホン酸を加える際の温度としては、-100~-50℃であることが好ましく、-90~-70℃であることがより好ましい。反応時間としては、2~15時間であることが好ましく、5~10時間であることがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 続いて、上記反応6で示されるように、式(1b’)で示されるピリジン誘導体に対し、塩基の存在下、PhB(OH)及び金属触媒を用いて反応させることで、式(1a)で示されるピリジン誘導体を合成することができる。
 上記反応6に用いられる塩基としては、上記反応4の説明のところで例示された塩基と同様のものを用いることができる。また、上記反応6に用いられる金属触媒としては、上記反応3の説明のところで例示された金属触媒と同様のものを用いることができ、中でもパラジウム触媒が好適に使用される。上記反応6に用いられる金属触媒の使用量としては特に限定されず、式(1b’)で示されるビナフチル誘導体1モルに対して、0.001~0.1モルであることが好ましく、0.01~0.1モルであることがより好ましい。
 上記反応6における反応温度としては、30~100℃であることが好ましく、また、上記反応4における反応時間としては、5~30時間であることが好ましく、10~20時間であることがより好ましい。
 上述のようにして得られた本発明のピリジン誘導体又はその塩は、不斉触媒として好適に使用される。具体的には、不斉アシル化反応、不斉求核付加反応、不斉水素化反応、不斉付加環化反応、不斉ハロゲン化反応などの不斉合成反応に好適に使用される。後述する実施例からも分かるように、本発明者らは、Steglich転位反応のような不斉求核付加反応において、良好なエナンチオ選択性で光学活性体が得られることを確認している。したがって、本発明のピリジン誘導体又はその塩は、キラル素子や医薬品中間体などに好適に用いられる光学活性体を良好なエナンチオ選択性で得ることができるため、非常に有用であることが分かる。
 以下、実施例を用いて本発明を更に具体的に説明する。
実施例1
(合成例1)[式(6a)で示されるビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000038
 Ar置換したナスフラスコに、文献(Kano, T. et al., Adv. Synth. Catal., 2007, 349, 556)に従って調製した(R)-2,2'-dimethyl-[1,1'-binaphthalen]-3-yl trifluoromethanesulfonate (1.27 g, 2.96 mmol)、phenylboronic acid (433 mg, 3.55 mmol)、1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (73 mg, 89 μmol)、aq. potassium phosphate (10 mL)、及びTHF (30 mL)を入れ、50℃で12時間攪拌した。反応混合液を室温に冷却後、H2O (50 mL)に注ぎ、toluene (30 mL)で抽出後、brineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 20/1 to 10/1)で精製し、式(6a)で示される(S)-2,2'-dimethyl-3-phenyl-1,1'-binaphthalene (1.00 g, 2.81 mmol, 95% yield)を得た。
 上記式(6a)で示されるビナフチル誘導体の物性データを以下に示す。
 Colorless solid. 1H NMR (600 MHz, CDCl3) δ7.90 (t, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.51-7.44 (m, 4H), 7.44-7.37 (m, 3H), 7.27-7.20 (m, 2H), 7.16 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 2.10 (s, 3H), 1.91 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 142.5, 141.4, 136.1, 135.8, 134.4, 132.9, 132.8, 132.4, 132.13, 132.10, 129.7, 128.9, 128.4, 128.2, 128.1, 128.0, 127.6, 127.0, 126.3, 126.2, 125.83, 125.79, 125.5, 125.1, 20.3, 18.3; HRMS (FAB+) calcd. for C28H23 [M+H+] 359.1800, found 359.1813.
(合成例2)[式(5a)で示されるジブロモビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000039
 Ar置換したナスフラスコに、式(6a)で示される(S)-2,2'-dimethyl-3-phenyl-1,1'-binaphthalene (1.32 g, 3.67 mmol)、N-bromosuccinimide (NBS, 1.44 g, 8.08 mmol)、azobisisobutyronitrile (AIBN, 30 mg, 0.18 mmol)、及びbenzene (38 mL)を入れ、3時間加熱還流した。反応混合液を室温に冷却後、H2O (50 mL)に注ぎ、toluene (30 mL)を加え抽出後、brineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: トルエン)で精製し、式(5a)で示される(S)-2,2'-bis(bromomethyl)-3-phenyl-1,1'-binaphthalene (純度74%, 1.88 g)を得た。
 上記式(5a)で示されるジブロモビナフチル誘導体の物性データを以下に示す。
 Pale yellow foam. 1H NMR (600 MHz, CDCl3) δ8.04 (d, J = 8.4 Hz, 1H), 7.96-7.90 (m, 3H), 7.78 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 6.6 Hz, 2H), 7.54-7.44 (m, 5H), 7.33-7.27 (m, 2H), 7.16 (t, J = 8.7 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 4.39 (d, J = 10.2 Hz, 1H), 4.29 (d, J = 10.5 Hz, 1H), 4.25 (d, J = 10.5 Hz, 1H), 4.17 (d, J = 10.2 Hz, 1H); HRMS (FAB+) calcd. for C28H21Br2 [M+H+] 516.9992, found 516.9972.
(合成例3)[式(4a)で示されるアリルビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000040
 Ar置換したナスフラスコに、式(5a)で示される(S)-2,2'-bis(bromomethyl)-3-phenyl-1,1'-binaphthalene (1.36 g, 2.62 mmol)、allylamine (0.65 mL, 8.66 mmol)、及びTHF (26 mL)を入れ、50℃で12時間加熱攪拌した。反応混合液を室温に冷却後、EtOAc (50 mL)を加えbrineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 10/1 to 2/1)で精製し、式(4a)で示される(S)-4-allyl-2-phenyl-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (711 mg, 1.72 mmol, 66% yield)を得た。
 上記式(4a)で示されるアリルビナフチル誘導体の物性データを以下に示す。
 Yellow solid. 1H NMR (600 MHz, CDCl3) δ7.99-7.93 (m, 4H), 7.71 (bs, 2H), 7.55-7.45 (m, 6H), 7.43-7.39 (m, 2H), 7.29 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.28-7.23 (m, 1H), 5.82-5.74 (m, 1H), 5.02-4.94 (m, 2H), 3.91 (d, J = 12.0 Hz, 1H), 3.74 (d, J = 12.9 Hz, 1H), 3.47 (d, J = 12.9 Hz, 1H), 3.02 (dd, J = 13.4, 6.5 Hz, 1H), 2.86 (dd, J = 13.4, 6.5 Hz, 1H), 2.78 (d, J = 12.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 141.5, 140.6, 136.35, 136.32, 135.3, 133.2, 133.0, 132.8, 132.6, 131.6, 130.8, 130.2, 129.4, 128.44, 128.41, 128.37, 128.3, 127.8, 127.70, 127.65, 127.2, 125.95, 125.89, 125.8, 125.5, 117.3, 58.5, 54.9, 51.4; HRMS (FAB+) calcd. for C31H26N [M+H+] 412.2065, found 412.2047.
(合成例4)[式(2a)で示されるビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000041
 Ar置換したナスフラスコに、式(4a)で示される(S)-4-allyl-2-phenyl-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (604 mg, 1.46 mmol)、N,N-dimethylbarbituric acid (NDMBA, 688 mg, 4.41 mmol)、palladium acetate(II) (6.6 mg, 29 μmol)、triphenylphosphine (31 mg, 0.12 mmol)、及びCH2Cl2 (15 mL)を入れ、8時間加熱還流した。反応混合液を室温に冷却後、toluene (30 mL)を加え、飽和炭酸水素ナトリウム水溶液で洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 2/1 to 1/20)で精製し、式(2a)で示されるビナフチル誘導体 (484 mg, 1.30 mmol, 89% yield)を得た。
 上記式(2a)で示されるビナフチル誘導体の物性データを以下に示す。
 Orange solid. 1H NMR (600 MHz, CDCl3) δ8.00-7.90 (m, 4H), 7.61 (bd, J = 7.2 Hz, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.52-7.36 (m, 7H), 7.31-7.20 (m, 2H), 3.93 (d, J = 12.6 Hz, 1H), 3.88 (d, J = 12.6 Hz, 1H), 3.64 (d, J = 12.6 Hz, 1H), 3.24 (d, J = 12.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 141.6, 140.1, 136.0, 135.3, 135.2, 133.4, 133.2, 132.6, 131.6, 130.9, 129.82, 129.75, 129.1, 128.5, 128.45, 128.38, 127.62, 127.59, 127.3, 127.0, 126.0, 125.9, 125.8, 125.5, 49.1, 46.6; HRMS (FAB+) calcd. for C28H22N [M+H+] 372.1752, found 372.1768.
(合成例5)[式(1a)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000042
 Ar置換したネジ蓋付き試験管に、式(2a)で示されるビナフチル誘導体 (60 mg, 0.16 mmol)、式(3a)で示される4-bromopyridine hydrochloride (63 mg, 0.32 mmol)、NaOt-Bu (62 mg, 0.65 mmol)、2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl (RuPhos, 6.0 mg, 13 μmol)、palladium acetate(II) (1.5 mg, 6.5 μmol)、及びdimethoxyethane (1.6 mL)を入れ、90℃で15時間攪拌した。反応混合液を室温に冷却後、toluene (10 mL)とH2O (10 mL)を加えてセライトろ過し、brineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: EtOAc → CH2Cl2/MeOH = 5/1)で精製し、式(1a)で示される(S)-2-phenyl-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (60 mg, 0.13 mmol, 83% yield)を得た。
 上記式(1a)で示されるピリジン誘導体の物性データを以下に示す。
 Pale yellow foam; 1H NMR (600 MHz, CDCl3) δ 8.09 (d, J = 5.7 Hz, 2H), 8.00-7.92 (m, 4H), 7.58-7.50 (m, 4H), 7.47 (d, J = 8.4 Hz, 1H), 7.42-7.20 (m, 7H), 6.37 (d, J = 5.7 Hz, 2H), 4.87 (d, J = 13.2 Hz, 1H), 4.66 (d, J = 12.6 Hz, 1H), 3.97 (d, J = 12.6 Hz, 1H), 3.58 (d, J = 13.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 153.0, 149.9, 140.9, 140.0, 135.9, 135.5, 135.4, 132.8, 132.7, 131.52, 131.48, 130.7, 129.9, 129.8, 129.5, 128.6, 128.50, 128.46, 127.7, 127.60, 127.55, 127.3, 126.5, 126.3, 126.2, 126.1, 108.5, 50.6, 46.0; IR (KBr) 3050, 2362, 1592, 1507, 1233 cm-1; HRMS (FAB+) calcd. for C33H25N2 [M+H+] 449.2018, found 449.1997.
実施例2
(合成例6)[式(5b)で示されるジブロモビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000043
 Ar置換したナスフラスコに文献(Kano, T. et al., Adv. Synth. Catal., 2007, 349, 556)に従って合成した式(6b)で示される(S)-3-methoxy-2,2'-dimethyl-1,1'-binaphthalene (811 mg, 2.60 mmol)、N-bromosuccinimide (1.02 g, 5.71 mmol)、azobisisobutyronitrile (21 mg, 0.13 mmol)、及びbenzene (13 mL)を入れ、2時間加熱還流した。反応混合液を室温に冷却後、H2O (30 mL)に注ぎ、EtOAc (30 mL)を加え抽出後、brineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 20/1 to 10/1)で精製し、式(5b)で示される(S)-2,2'-bis(bromomethyl)-3-methoxy-1,1'-binaphthalene (純度89%, 1.11 g, 2.38 mmol, 92% yield)を得た。
 上記式(5b)で示されるピリジン誘導体の物性データを以下に示す。
 Colorless foam. 1H NMR (600 MHz, CDCl3) δ8.02 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.51-7.43 (m, 2H), 7.34 (s, 1H), 7.28-7.24 (m, 1H), 7.14-7.10 (m, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.41 (d, J = 9.6 Hz, 1H), 4.34 (d, J = 10.5 Hz, 1H), 4.24 (d, J = 10.5 Hz, 1H), 4.18 (d, J = 9.6 Hz, 1H), 4.12 (s, 3H); HRMS (FAB+) calcd. for C23H19Br2 [M+H+] 470.9784, found 470.9775.
(合成例7)[式(4b)で示されるアリルビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000044
 Ar置換したナスフラスコに、式(5b)で示される(S)-2,2'-bis(bromomethyl)-3-methoxy-1,1'-binaphthalene (4.03 g, 8.57 mmol)、allylamine (2.12 mL, 28.3 mmol)、及びTHF (28 mL)を入れ、50℃で15時間加熱攪拌した。反応混合液を室温に冷却後、toluene (30 mL)を加えbrineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 5/1 to 1/1)で精製し、式(4b)で示される(S)-4-allyl-2-methoxy-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (2.12 g, 5.80 mmol, 77% yield)を得た。
 上記式(4b)で示されるアリルビナフチル誘導体の物性データを以下に示す。
 Colorless solid. 1H NMR (600 MHz, CDCl3) δ7.99 (t, J = 8.1 Hz, 2H), 7.89 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.51-7.41 (m, 3H), 7.35 (s, 1H), 7.30 (bt, J = 7.8 Hz, 1H), 7.15 (bt, J = 7.8 Hz, 1H), 6.15-6.05 (m, 1H), 5.31 (d, J = 17.4 Hz, 1H), 5.26 (d, J = 9.6 Hz, 1H), 4.46 (d, J = 12.6 Hz, 1H), 4.06 (s, 3H), 3.82 (d, J = 12.3 Hz, 1H), 3.30-3.22 (m, 2H), 3.12 (dd, J = 13.2, 6.0 Hz, 1H), 2.88 (d, J = 12.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 155.5, 137.2, 136.4, 134.9, 134.1, 133.6, 133.1 131.4, 128.4, 128.3, 127.8, 127.6, 127.5, 127.1, 126.9, 126.1, 126.0, 125.8, 125.4, 123.4, 117.7, 105.5, 58.8, 55.5, 55.0, 46.6; HRMS (FAB+) calcd. for C26H24NO [M+H+] 366.1858, found 366.1854.
(合成例8)[式(2b)で示されるビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000045
 Ar置換したナスフラスコに、式(4b)で示される(S)-4-allyl-2-methoxy-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (2.12 g, 5.80 mmol)、N,N-dimethylbarbituric acid (2.72 g, 17.4 mmol)、palladium acetate(II) (26 mg, 0.12 mmol)、triphenylphosphine (122 mg, 0.46 mmol)、及びCH2Cl2 (29 mL)を入れ、6時間加熱還流した。反応混合液を室温に冷却後、CH2Cl2 (100 mL)を加え、飽和炭酸水素ナトリウム水溶液で洗浄し、MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: 1 % Et3N in EtOAc to EtOAc/MeOH 10/1 to 1/1)で精製し、式(2b)で示される(S)-2-methoxy-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (1.77 g, 5.43 mmol, 94% yield)を得た。
 上記式(2b)で示されるビナフチル誘導体の物性データを以下に示す。
 Orange solid. 1H NMR (600 MHz, CDCl3) δ7.97 (d, J = 8.4 Hz, 1H), 7.94 (dd, J = 7.5, 1.5 Hz, 1H), 7.84 (bd, J = 8.4 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.48-7.43 (m, 2H), 7.42 (ddd, J = 8.1, 6.8, 1.4 Hz, 1H), 7.33 (bd, J = 8.4 Hz, 1H), 7.30 (s, 1H), 7.28-7.25 (m, 1H), 7.11 (ddd, J = 8.1, 6.8, 1.4 Hz, 1H), 4.48 (d, J = 12.9 Hz, 1H), 4.03 (s, 3H), 3.83 (d, J = 12.0 Hz, 1H), 3.50 (d, J = 12.0 Hz, 1H), 3.06 (d, J = 12.9 Hz, 1H), 1.85 (bs, 1H); HRMS (FAB+) calcd. for C23H20NO [M+H+] 326.1545, found 326.1561.
(合成例9)[式(1b)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000046
 Ar置換したナスフラスコに、式(2b)で示される(S)-2-methoxy-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (1.66 g, 5.06 mmol)、式(3a)で示される4-bromopyridine hydrochloride (1.97 g, 10.1 mmol)、NaOt-Bu (1.95 g, 20.2 mmol)、2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl (94 mg, 0.20 mmol)、bis(dibenzylideneacetone)palladium(0) (57 mg, 0.10 mmol)、及びtoluene (25 mL)を入れ、90℃で15時間攪拌した。反応混合液を室温に冷却後、toluene (50 mL)とH2O (50 mL)を加えてセライトろ過し、brineで洗浄してMgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: EtOAc→CH2Cl2/MeOH = 1/0 to 2/1)で精製し、式(1b)で示される(S)-2-methoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (1.61 g, 4.00 mmol, 79% yield)を得た。
 上記式(1b)で示されるピリジン誘導体の物性データを以下に示す。
 Pale brown solid. 1H NMR (600 MHz, CDCl3) δ8.27 (dd, J = 5.3, 1.7 Hz, 2H), 7.95 (dd, J = 8.1, 2.1 Hz, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.55-7.47 (m, 3H), 7.45 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.31 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.28 (s, 1H), 7.15 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 6.79 (dd, J = 5.3, 1.7 Hz, 2H), 5.40 (d, J = 13.2 Hz, 1H), 4.59 (d, J = 12.6 Hz, 1H), 3.95 (s, 3H), 3.78 (d, J = 12.6 Hz, 1H), 3.41 (d, J = 13.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 154.7, 153.6, 150.1, 137.0, 135.2, 134.3, 133.4, 132.9, 131.5, 129.4, 128.4, 127.65, 127.57, 127.56, 127.3, 126.8, 126.6, 126.3, 126.1, 125.6, 123.9, 108.7, 106.3, 55.8, 50.8, 41.3; HRMS (FAB+) calcd. for C28H23N2O [M+H+] 403.1810, found 403.1802.
(合成例10)[式(1b’)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000047
 Ar置換したナスフラスコに、式(1b)で示される(S)-2-methoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (80 mg, 0.20 mmol)、及びCH2Cl2 (2.0 mL)を入れ、0℃に冷却後、boron tribromide (1.0 M in CH2Cl2 solution, 0.48 mL, 0.48 mmol)を滴下した。0℃で3時間攪拌後、反応混合液をMeOH (20 mL)に注ぎ入れ、エバポレータで溶媒を減圧留去した。残渣の入ったナスフラスコをAr置換後、triethylamine (84 μL, 0.60 mmol)、及びCH2Cl2(2.0 mL)を加え、-78℃に冷却した。trifluoromethanesulfonic Anhydride (39 μL, 0.24 mmol)を加えた後、室温で8時間攪拌した。反応混合液に飽和塩化アンモニウム水溶液 (5 mL)、及びCH2Cl2 (20 mL)を加えた後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: EtOAc→1% Et3N in EtOAc)で精製し、式(1b’)で示される(S)-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-2-yl trifluoromethanesulfonate (75 mg, 0.14 mmol, 72% yield)を得た。
 上記式(1b’)で示されるピリジン誘導体の物性データを以下に示す。
 Yellow solid. 1H NMR (600 MHz, CDCl3) δ8.31 (d, J = 5.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H), 7.98 (dd, J = 8.1, 5.7 Hz, 2H), 7.93 (s, 1H), 7.60 (bt, J = 7.5 Hz, 1H), 7.57-7.50 (m, 3H), 7.43 (d, J = 9.0 Hz, 1H), 7.40-7.33 (m, 2H), 6.77 (bd, J = 5.4 Hz, 2H), 5.13 (d, J = 13.5 Hz, 1H), 4.64 (d, J = 12.9 Hz, 1H), 3.78 (d, J = 12.9 Hz, 1H), 3.64 (d, J = 13.5 Hz, 1H); HRMS (FAB+) calcd. for C28H20F3N2O3S [M+H+] 521.1147, found 521.1130.
(合成例11)[式(1a)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000048
 Ar置換したナスフラスコに、式(1b’)で示される(S)-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-2-yl trifluoromethanesulfonate (38 mg, 73 μmol)、phenylboronic acid (11 mg, 88 μmol)、1,1'-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (3.0 mg, 3.7 μmol)、aq. potassium phosphate (0.2 mL)、及びTHF (0.7 mL)を入れ、50℃で18時間攪拌した。反応混合液を室温に冷却後、H2O (20 mL)に注ぎ、toluene (20 mL)で抽出後、brineで洗浄した。MgSO4で乾燥し、エバポレータで溶媒を減圧留去して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: CH2Cl2/EtOAc = 8/1 to 4/1)で精製し、式(1a)で示される(S)-2-phenyl-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (純度80%, 33 mg)を得た。
実施例3
(合成例12)[式(1c)で示されるピリジン誘導体の合成]
 Ar置換したネジ蓋付き試験管に、式(2c)で示されるビナフチル誘導体(58 mg, 0.16 mmol)、式(3a)で示される4-bromopyridine hydrochloride (50.9 mg, 0.26 mmol)、NaOt-Bu (75.1 mg, 0.78 mmol)、2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl (Ruphos) (4.9 mg, 10.5 μmol)、bis(dibenzylideneacetone)palladium(0) (3.0 mg, 5.2 μmol)、及びトルエン (1.3 mL)を入れ、90℃で24時間攪拌した。反応混合液にH2O (2 mL)を加えてセライトろ過し、トルエンで抽出してbrineで洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 5/1(v/v) to 1%Et3N to EtOAc + 1%Et3N)で精製し、式(1c)で示される(S)- 2,6-diphenyl-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (41.8 mg, 0.80 mmol, 61% yield)を得た。
 上記式(1c)で示されるピリジン誘導体の物性データを以下に示す。
 Colorless solid. m.p. 143-144 ℃; [α]D 20 -170.3 (c 0.20, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.97-7.95 (m, 6H), 7.55-7.31 (m, 16H), 6.03 (dd, J = 5.2, 1.6 Hz, 2H), 4.88 (d, J = 12.6 Hz, 2H), 3.66 (d, J = 12.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 152.3, 149.4, 140.7, 139.8, 136.2, 132.7, 131.1, 130.7, 129.9, 129.7, 128.5, 128.3, 127.6, 127.4, 126.4, 126.1, 108.3, 45.8; IR (KBr) 3053, 2925, 2852, 2360, 1593, 703 cm-1; HRMS (FAB+) [M+H]+ calcd. for C39H29N2 525.2331, found 525.2331.
実施例4
(合成例13)[式(5d)で示されるジブロモビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000050
 Ar置換したナスフラスコに、文献(Ooi, T. et al., J. Am. Chem. Soc. 2003, 125, 5139)に従って合成した式(6d)で示される(S)-3,3’-dimethoxy-2,2'-dimethyl-1,1'-binaphthalene (6.19 g, 18.1 mmol)、N-bromosuccinimide (7.08 g, 39.8 mmol)、azobisisobutyronitrile (297 mg, 1.81 mmol)、及びbenzene (90.5 mL)を入れ、90℃で7時間攪拌した。反応混合液にH2O (80 mL)を加えてトルエン (30 mL × 2)で抽出し、有機層を飽和重曹水、brineで洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。再結晶 (CH2Cl2/hexane)で精製し、式(5d)で示される(S)-2,2'-bis(bromomethyl)-3,3’-dimethoxy-1,1'-binaphthalene (7.39 g, 14.8 mmol, 82% yield)を得た。
 上記式(5d)で示されるジブロモビナフチル誘導体の物性データを以下に示す。
 Colorless solid. [α]D 20 -163.5 (c 0.22, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.3 Hz, 2H), 7.44 (ddd, J = 8.3, 7.1, 1.4 Hz, 2H), 7.33 (s, 2H), 7.11 (ddd, J = 8.3, 7.1, 1.4 Hz, 2H), 6.99 (bd, J = 8.3Hz, 2H), 4.35-4.26 (m, 4H), 4.11 (s, 6H); 13C NMR (100 MHz, CDCl3) δ155.5, 136.4, 127.7, 127.3, 127.2, 126.7, 126.6, 124.1, 106.4, 55.8, 27.8; IR (KBr) 3060. 2935, 1599, 1170, 750 cm-1; HRMS (FAB+)  [M+H]+ calcd. for C24H21Br2O2 500.9889, found 500.9881.
(合成例14)[式(4d)で示されるアリルビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000051
 Ar置換したナスフラスコに、式(5d)で示される(S)-2,2'-bis(bromomethyl)-3,3’-dimethoxy-1,1'-binaphthalene (1.58 g, 3.16 mmol)、allylamine (781 μL, 10.4 mmol)、アセトニトリル (31.6 mL)、及びトルエン (10.5 mL)を入れ、50℃で20時間攪拌した。反応混合液にH2O (50 mL)を加えて酢酸エチル (50 mL × 2)で抽出し、有機層をH2O (30 mL × 2)、brineで洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して式(4d)で示されるアリルビナフチル誘導体の粗生成物を得た。粗生成物はそのまま次の反応に用いた。なお化合物分析用に粗生成物の一部をグラディエントシリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 3/1(v/v) to hexane/EtOAc = 2/1(v/v))で精製した。
 上記式(4d)で示されるアリルビナフチル誘導体の物性データを以下に示す。
 Colorless solid. [α]D 20 +438.8 (c 0.23, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.41 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 7.28 (s, 2H), 7.10 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 6.08-5.98 (m, 1H), 5.23-5.14 (m, 2H), 4.36 (d, J = 12.4 Hz, 2H), 4.02 (s, 6H), 3.25 (dd, J = 13.2, 6.7 Hz, 1H), 2.98 (dd, J = 13.2, 6.7 Hz, 1H), 2.78 (d, J = 12.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 155.4, 137.0, 136.4, 134.0, 127.5, 127.0, 126.8, 126.2, 125.9, 123.3, 117.3, 105.5, 59.0, 55.4, 46.6; IR (KBr) 2950, 2827, 1596, 1226, 752 cm-1; HRMS (FAB+) [M+H]+ calcd. for C27H26NO2 396.1964, found 396.1967.
(合成例15)[式(2d)で示されるビナフチル誘導体の合成]
Figure JPOXMLDOC01-appb-C000052
 Ar置換した2ツ口フラスコに、式(4d)で示されるアリルビナフチル誘導体の粗生成物、palladium(II) acetate (34.5 mg, 0.153 mmol)、triphenylphosphine (160 mg, 0.608 mmol)、1,3-dimethylbarbituric acid (NDMBA) (1.43 g, 9.15 mmol)、及びCH2Cl2 (30.4 mL)を入れ、40℃で13時間攪拌した。反応混合液に飽和重曹水(30 mL)を加えて、飽和重曹水、brineで洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して式(2d)で示されるビナフチル誘導体の粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: EtOAc→1% Et3N in EtOAc)で精製し、式(2d)で示されるビナフチル誘導体 (1.08 g, 3.04 mmol, 96% yield)を得た。
 上記式(2d)で示されるビナフチル誘導体の物性データを以下に示す。
 Orange solid. [α]D 20 +388.5 (c 0.20, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.41 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 7.29 (s, 2H), 7.11(ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 4.47 (d, J = 12.0 Hz, 2H), 4.03 (s, 6H), 3.04 (d, J = 12.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 154.8, 136.9, 133.9, 127.5, 127.3, 127.0, 126.8, 125.9, 123.4, 105.8, 55.5, 39.9; IR (KBr) 2934, 1595, 1231, 832, 748 cm-1; HRMS (FAB+) [M+H]+ calcd. for C24H22NO2 356.1651, found 356.1661.
(合成例16)[式(1d)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000053
 Ar置換したナスフラスコに、式(2d)で示されるビナフチル誘導体(732.9 mg, 2.06 mmol)、式(3a)で示される4-bromopyridine hydrochloride (801.0 mg, 4.12 mmol)、NaOt-Bu (1.192 g, 12.4 mmol)、RuPhos (77.2 mg, 0.17 mmol)、bis(dibenzylideneacetone)palladium(0) (47.4 mg, 82.4 μmol)、及びトルエン (20.6 mL)を入れ、90℃で23時間攪拌した。反応混合液にH2O (20 mL)を加えてセライトろ過し、トルエンで抽出してbrineで2回洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー(SiO2: EtOAc to 2%Et3N in EtOAc)で精製し、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (638.8 mg, 1.48 mmol, 72% yield)を得た。
 上記式(1d)で示されるピリジン誘導体の物性データを以下に示す。
 Orange solid. [α]D 20 -293.7 (c 0.20, CHCl3);1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 5.2, 1.5 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.46-7.43 (m, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.28 (s, 2H), 7.15 (ddd, J = 8.4, 7.2, 1.2 Hz, 2H), 6.85 (dd, J = 5.2, 1.5 Hz, 2H), 5.38 (d, J = 12.6 Hz, 2H), 3.96 (s, 6H), 3.36 (d, J = 12.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 154.5, 153.8, 149.5, 137.1, 134.2, 127.5, 127.1, 126.7, 126.5, 125.7, 123.8, 108.8, 106.2, 55.7, 41.2; IR (KBr) 3421, 3003, 2937, 1507, 749 cm-1; HRMS (FAB+)  [M+H]+ calcd. for C29H25N2O2 433.1916, found 433.1913.
(合成例17)[式(1d’)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000054
 Ar置換した2ツ口ナスフラスコに、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (86.3 mg, 0.200 mmol)、及び塩化メチレン (2.0 mL)を入れ、0℃に冷却し、BBr3 (ca. 1.0 M CH2Cl2 solution) (0.72 mL, 0.72 mmol)を入れ、0℃で4時間攪拌した。反応混合液をメタノール (30 mL)に移し、エバポレータで溶媒を濃縮して粗生成物を得た。Ar置換した2ツ口ナスフラスコに、粗生成物、塩化メチレン (2.0 mL)、triethylamine (139 μL, 1.0 mmol)を入れ、-78℃に冷却してtrifluoromethanesulfonic anhydride (78.7 μL, 0.48 mmol)を加えた後、室温で13時間攪拌した。反応混合液にH2O (5 mL)を加えて塩化メチレン (5 mL × 2)で抽出し、H2O (5 mL)、brineで洗浄し、MgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー (SiO2: hexane/EtOAc = 1/1(v/v))で精製し、式(1d’)で示されるピリジン誘導体 (99.7 mg, 0.149 mmol, 75% yield)を得た。
 上記式(1d’)で示されるピリジン誘導体の物性データを以下に示す。
 Colorless solid. 1H NMR (400 MHz, CDCl3) δ8.33 (d, J = 6.0 Hz, 2H), 8.01 (bd, J = 7.6 Hz, 4H), 7.64 (ddd, J = 8.0, 6.0, 2.1 Hz, 2H), 7.46-7.41 (m, 4H), 6.79 (d, J = 6.0 Hz, 2H), 5.15 (d, J = 13.6 Hz, 2H), 3.59 (d, J = 13.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 152.9, 150.3, 144.5, 137.6, 133.2, 130.3, 128.8, 128.3, 128.1, 127.5, 126.0, 121.3, 118.7 (q, J = 318.4 Hz), 108.9, 42.7; HRMS (FAB+) [M+H]+ calcd. for C29H19F6N2O6S2 669.0589, found 669.0582.
実施例5
(合成例18)[式(1e)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000055
 Ar置換した2ツ口ナスフラスコに、文献(特開2002-326992号公報)に従って合成した式(2e)で示されるビナフチル誘導体 (201 mg, 0.367 mmol)、式(3a)で示される4-bromopyridine hydrochloride (143 mg, 0.734 mmol)、NaOt-Bu (212 mg, 2.21 mmol)、RuPhos (13.7 mg, 29.4 μmol)、bis(dibenzylideneacetone)palladium(0) (8.6 mg, 15.0 μmol)、及びトルエン (3.7 mL)を入れ、90℃で24時間攪拌した。反応混合液にクロロホルム (10 mL)、H2O (5 mL)を加えてセライトろ過し、クロロホルムで抽出し、brineで2回洗浄してMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。再結晶 (CHCl3/hexane)で精製し、式(1e)で示される(S)-2,6-di(naphthalen-2-yl)-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (187.4 mg, 0.300 mmol, 82% yield)を得た。
 上記式(1e)で示されるピリジン誘導体の物性データを以下に示す。
 Colorless solid. m.p. >280 ℃; 1H NMR (400 MHz, CDCl3) δ 8.07(s, 2H), 7.99 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.2 Hz, 4H), 7.83 (bd, J = 4.8 Hz, 4H), 7.57-7.49 (m, 10H), 7.36 (ddd, J = 8.2, 7.2, 1.4 Hz, 4H), 6.05 (d, J = 6.0 Hz, 2H), 4.96 (bd, J = 9.6 Hz, 2H), 3.79 (bd, J = 12.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 152.2, 149.4, 139.8, 136.2, 133.1, 132.8, 132.4, 131.3, 130.7, 130.3, 128.7, 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 126.6, 126.5, 126.3, 126.2, 108.4, 46.1; IR (KBr) 3053, 2866, 2359, 1589, 749 cm-1; HRMS (FAB+) [M+H]+ calcd. for C47H33N2 625.2644, found 625.2662.
実施例6
(合成例19)[式(1f)で示されるピリジン誘導体の合成]
Figure JPOXMLDOC01-appb-C000056
 Ar置換したネジ蓋付き試験管に文献(Akhatou, A. et al., Tetrahedron 2007, 63, 6232; Ooi, T. et al., J. Am. Chem. Soc. 1999, 121, 6519)に従って合成した式(2f)で示されるビナフチル誘導体 (52 mg, 0.18 mmol)、式(3a)で示される4-bromopyridine hydrochloride (69 mg, 0.36 mmol)、NaOt-Bu (68 mg, 0.71 mmol)、1,3-Bis(diphenylphosphino)propane (2.9 mg, 7.1 μmol)、palladium acetate(II) (1.6 mg, 7.1 μmol)、及びtoluene (1.6 mL)を入れ、70℃で15時間攪拌した。反応混合液にトルエン(20 mL)を加え、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層をMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。グラディエントシリカゲルカラムクロマトグラフィー (SiO2: CH2Cl2/MeOH = 5/1 to 2/1)で精製し、式(1f)で示される(S)-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (58 mg, 0.16 mmol, 88% yield)を得た。
 上記式(1f)で示されるピリジン誘導体の物性データを以下に示す。
 Colorless solid. 1H NMR (600 MHz, CDCl3) δ8.29 (bd, J = 6.3 Hz, 2H), 7.95 (d, J = 8.9 Hz, 4H), 7.54-7.48(m, 6H), 7.31 (bt, J = 8.9 Hz, 2H), 6.75 (bd, J = 6.3 Hz, 2H), 4.63 (d, J = 12.6 Hz, 2H), 3.83 (d, J = 12.6 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ153.5, 150.3, 135.0, 133.5, 132.9, 131.5, 129.4, 128.5, 127.6, 127.4, 126.3, 126.1, 108.6, 50.7; HRMS (FAB+) calcd. for C27H21N2 [M+H+] 373.1705, found 373.1699.
実施例7
(合成例20)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000057
 上述のようにして得られたピリジン誘導体をそれぞれ不斉求核触媒として用いて、式(A)で示される化合物に対する分子内転位反応を行った。ジクロロメタン溶媒中で0℃、12時間反応させ、1N HCl (4.0 mL)を加えてCH2Cl2 (5.0 mL)で2回抽出し、brineで洗浄してMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))で精製し、式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateを得た。得られた結果を表1にまとめて示す。表1(entry 4)から分かるように、式(1d)で示されるピリジン誘導体を不斉求核触媒として用いた場合、良好なエナンチオ選択性86:14(72% ee)で式(S)-(B)で示される化合物が得られることが明らかになった。なお、式(S)-(B)で示される化合物は、第四級不斉炭素をもつアミノ酸誘導体として有用な化合物である。
Figure JPOXMLDOC01-appb-T000058
実施例8
(合成例21)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000059
 実施例7において良好なエナンチオ選択性が示された式(1d)で示される化合物を用いて、反応溶媒の検討を行った。反応溶媒としては、ジクロロメタン、トルエン、ジエチルエーテル(EtO)、ジイソプロピルエーテル(i-PrO)、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル(TBME)、テトラヒドロフランをそれぞれ用いた。反応溶媒中で0℃、12時間反応させ、1N HCl (4.0 mL)を加えてCH2Cl2 (5.0 mL)で2回抽出し、brineで洗浄してMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))で精製し、式(S)-(B)で示される化合物を得た。得られた結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000060
実施例9
(合成例22)[式(S)-(B)で示される化合物の合成]
 実施例7において良好なエナンチオ選択性が示された式(1d)で示される化合物を用いて、反応温度の検討を行った。ジエチルエーテル溶媒中で12時間反応させ、1N HCl (4.0 mL)を加えてCH2Cl2 (5.0 mL)で2回抽出し、brineで洗浄してMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))で精製し、式(S)-(B)で示される化合物を得た。得られた結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000062
 Ar置換したネジ蓋付き試験管に、式(A)で示される化合物 (39.2 mg, 0.10 mmol)、及びジエチルエーテル (1.0 mL)を入れ、-78 ℃に冷却し、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine(4.4 mg, 10.2 μmol)を加えて12時間攪拌した。4M HCl in 1,4-dioxane (1.0 mL)を加えて、エバポレータで溶媒を濃縮してシリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))によって触媒を除き,式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateの粗生成物を得た。1H NMRにて粗生成物を確認したところ、反応変換率は25%であり、エナンチオ選択性は97:3(94% ee)であった。得られた結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000063
実施例10
(合成例23)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000064
 また同様に、式(1d)で示される化合物を用いてトルエン溶媒中で12時間反応させることにより、反応温度の検討を行った。得られた結果を表5にまとめて示す。表5(entry 5)から分かるように、トルエン溶媒中、-60℃で反応させた場合に、良好なエナンチオ選択性97:3(94% ee)で式(S)-(B)で示される化合物が得られることが明らかになった。
 Ar置換したネジ蓋付き試験管に、式(A)で示される化合物 (38.8 mg, 0.10 mmol)、及びトルエン (1.0 mL)を入れ、-20℃に冷却し、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine (4.4 mg, 10.2 μmol)を加えて12時間攪拌した。1N HCl (4.0 mL)を加えてCH2Cl2 (5.0 mL)で2回抽出し、brineで洗浄してMgSO4で乾燥し、エバポレータで溶媒を濃縮して粗生成物を得た。シリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))で精製し、式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylate (40.5 mg, 0.10 mmol, >98% yield)を得た。
Figure JPOXMLDOC01-appb-T000065
 Ar置換したネジ蓋付き試験管に、式(A)で示される化合物 (38.9 mg, 0.10 mmol)、及びトルエン (1.0 mL)を入れ、-78℃に冷却し、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine(4.4 mg, 10.2 μmol)を加えて12時間攪拌した。4M HCl in 1,4-dioxane (1.0 mL)を加えて、エバポレータで溶媒を濃縮してシリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))によって触媒を除き,式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateの粗生成物を得た。1H NMRにて粗生成物を確認したところ、反応変換率は45%であり、エナンチオ選択性は97:3(94% ee)であった。得られた結果を表6にまとめて示す。
Figure JPOXMLDOC01-appb-T000066
実施例11
(合成例24)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000067
 式(1d)で示される化合物を用いてシクロペンチルメチルエーテル(CPME)溶媒中で12時間反応させることにより、反応温度の検討を行った。得られた結果を表7にまとめて示す。表7(entry 5)から分かるように、CPME溶媒中、-60℃で反応させた場合に、良好なエナンチオ選択性97:3(94% ee)で式(S)-(B)で示される化合物が得られることが明らかになった。
Figure JPOXMLDOC01-appb-T000068
 Ar置換したネジ蓋付き試験管に、式(A)で示される化合物 (38.9 mg, 0.10 mmol)、及びシクロペンチルメチルエーテル (1.0 mL)を入れ、-78 ℃に冷却し、式(1d)で示される(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine(4.4 mg, 10.2 μmol)を加えて12時間攪拌した。4M HCl in 1,4-dioxane (1.0 mL)を加えて、エバポレータで溶媒を濃縮してシリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))によって触媒を除き、式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateの粗生成物を得た。1H NMRにて粗生成物を確認したところ、反応変換率は36%であり、エナンチオ選択性は94:6(88% ee)であった。得られた結果を表8にまとめて示す。
Figure JPOXMLDOC01-appb-T000069
実施例12
(合成例25)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000070
 式(1d)で示される化合物を用いてジイソプロピルエーテル(i-PrO)溶媒中で12時間反応させることにより、反応温度の検討を行った。得られた結果を表9にまとめて示す。
Figure JPOXMLDOC01-appb-T000071
 Ar置換したネジ蓋付き試験管に、式(A)で示される化合物 (38.6 mg, 0.10 mmol)、及びジイソプロピルエーテル (1.0 mL)を入れ、-78℃に冷却し、式(1d)で示され(S)-2,6-dimethoxy-4-(pyridin-4-yl)-4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepine(4.4 mg, 10.2 μmol)を加えて12時間攪拌した。4M HCl in 1,4-dioxane (1.0 mL)を加えて、エバポレータで溶媒を濃縮してシリカゲルカラムクロマトグラフィー (SiO2: hexane/Et2O = 1/1(v/v))によって触媒を除き、式(S)-(B)で示される(S)-phenyl 4-benzyl-2-(4-methoxyphenyl)-5-oxo-4,5-dihydrooxazole-4-carboxylateの粗生成物を得た。1H NMRにて粗生成物を確認したところ、反応変換率は10%以下となった。得られた結果を表10にまとめて示す。
Figure JPOXMLDOC01-appb-T000072
実施例13
(合成例26)[式(S)-(D)-1~(S)-(D)-11で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000073
 式(1d)で示される化合物を用いてトルエン溶媒中で-60℃で12時間反応させることにより、カーボネート部位(R)及び保護基(R)の検討を行った。得られた結果を表11にまとめて示す。また、式(S)-(D)-1~(S)-(D)-11で示される化合物のH-NMRチャートをそれぞれ図1~11に示す。なお、entry 8では、式(S)-(D)-8で示される化合物と未反応の原料化合物との混合物が得られたため、図8で示されるH-NMRチャートでは、式(S)-(D)-8で示される化合物に由来するピークだけではなく、原料化合物に由来するピークも観測された。
Figure JPOXMLDOC01-appb-T000074
実施例14
(合成例27)[式(S)-(B)で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000075
 式(1d)で示される化合物を用いてトルエン溶媒中で-60℃、12時間反応させることにより、触媒量の検討を行った。また、式(1d)で示される化合物を3mol%用いてトルエン溶媒中で-60℃で反応させる際の反応時間の検討を行った。得られた結果を表12にまとめて示す。
Figure JPOXMLDOC01-appb-T000076
実施例15
(合成例28)[式(S)-(F)-1~(S)-(F)-4で示される化合物の合成]
Figure JPOXMLDOC01-appb-C000077
 式(1d)で示される化合物を用いてトルエン溶媒中で-60℃で12時間反応させることにより、基質適用範囲(R)の検討を行った。得られた結果を表13にまとめて示す。また、式(S)-(F)-1~(S)-(F)-4で示される化合物のH-NMRチャートをそれぞれ図12~15に示す。なお、entry 2~4では、それぞれ式(S)-(F)-2~(S)-(F)-4で示される化合物と未反応の原料化合物との混合物が得られたため、図13~15で示されるH-NMRチャートでは、式(S)-(F)-2~(S)-(F)-4で示される化合物に由来するピークだけではなく、原料化合物に由来するピークも観測された。
Figure JPOXMLDOC01-appb-T000078
 式(S)-(B)で示される化合物の物性データを以下に示す。
 Colorless oil. Enantiomeric excess was determined by HPLC with Chiralcel OD-H column (hexane/iPrOH = 20/1 (v/v), flow rate = 0.525 mL/min, 40 °C), tR(R) 18.5 min and tR(S) 24.3 min, 89.9% ee; 1H NMR (400 MHz, CDCl3) δ7.86-7.90 (m, 2H), 7.36-7.40 (m, 2H), 7.18-7.27 (m, 6H), 7.10-7.13 (m, 2H), 6.92-6.96 (m, 2H), 3.86 (s, 3H), 3.73 (d. J = 13.6 Hz, 1H), 3.60 (d, J = 13.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 173.6, 164.5, 163.6, 163.1, 150.2, 132.8, 130.2, 129.5, 128.3, 127.6, 126.5, 121.1, 117.2, 114.2, 77.5, 55.5, 40.2.

Claims (8)

  1.  下記一般式(1)で示されるピリジン誘導体又はその塩。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~R及びR’~R’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数1~10のアルコキシ基、炭素数6~15のアリール基、炭素数2~10のアシル基、炭素数7~15のアリールアルキル基、炭素数3~10のアルキルシリル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルチオ基、炭素数6~15のアリールチオ基、炭素数4~10の複素芳香環基、スルホニルオキシ基、アミノ基、アミド基、ニトロ基、水酸基、アリールシリル基、アリールアルキルシリル基、又はハロゲン原子であり、
    、R’、R及びR’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子であり、
    、R’、R10及びR10’は、それぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、又はハロゲン原子である。]
  2.  請求項1記載のピリジン誘導体又はその塩からなる不斉触媒。
  3.  前記一般式(1)で示されるピリジン誘導体又はその塩の製造方法であって、
    下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R~R及びR’~R’は、前記一般式(1)と同義である。]
    で示されるビナフチル誘導体を下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R’、R10及びR10’は、前記一般式(1)と同義であり、Xはハロゲン原子である。]
    で示される4-ハロゲノピリジン誘導体の塩と反応させることを特徴とする請求項1記載のピリジン誘導体又はその塩の製造方法。
  4.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R~R及びR’~R’は前記一般式(1)と同義である。]
    で示されるアリルビナフチル誘導体を出発化合物として下記一般式(2):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R~R及びR’~R’は、前記一般式(1)と同義である。]
    で示されるビナフチル誘導体を得る工程を有する請求項3記載のピリジン誘導体又はその塩の製造方法。
  5.  下記一般式(5):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R~R及びR’~R’は前記一般式(1)と同義である。]
    で示されるジブロモビナフチル誘導体を出発化合物として下記一般式(4):
    Figure JPOXMLDOC01-appb-C000007
    [式中、R~R及びR’~R’は前記一般式(1)と同義である。]
    で示されるアリルビナフチル誘導体を得る工程を有する請求項3又は4記載のピリジン誘導体又はその塩の製造方法。
  6.  下記一般式(6):
    Figure JPOXMLDOC01-appb-C000008
    [式中、R~R及びR’~R’は前記一般式(1)と同義である。]
    で示されるビナフチル誘導体を出発化合物として下記一般式(5):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R~R及びR’~R’は前記一般式(1)と同義である。]
    で示されるジブロモビナフチル誘導体を得る工程を有する請求項3~5のいずれか記載のピリジン誘導体又はその塩の製造方法。
  7.  下記一般式(7)で示されるビナフチル誘導体。
    Figure JPOXMLDOC01-appb-C000010
    [式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
  8.  下記一般式(8)で示されるアリルビナフチル誘導体。
    Figure JPOXMLDOC01-appb-C000011
    [式中、Rが炭素数1~10のアルコキシ基であり、R’が水素原子又は炭素数1~10のアルコキシ基である。]
PCT/JP2013/065486 2012-06-05 2013-06-04 軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒 WO2013183642A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520009A JP6119022B2 (ja) 2012-06-05 2013-06-04 軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012128070 2012-06-05
JP2012-128070 2012-06-05
JP2013044808 2013-03-06
JP2013-044808 2013-03-06

Publications (1)

Publication Number Publication Date
WO2013183642A1 true WO2013183642A1 (ja) 2013-12-12

Family

ID=49712031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065486 WO2013183642A1 (ja) 2012-06-05 2013-06-04 軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒

Country Status (2)

Country Link
JP (1) JP6119022B2 (ja)
WO (1) WO2013183642A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031736A1 (ja) * 2014-08-23 2016-03-03 国立大学法人 岡山大学 軸不斉を有するピリジン誘導体又はその塩、及びそれからなる不斉触媒
CN109400580A (zh) * 2018-12-24 2019-03-01 河南师范大学 3,4-二氨基吡啶氮氧类手性催化剂及其在Steglich重排中的应用
CN115304457A (zh) * 2021-05-07 2022-11-08 中国科学院上海有机化学研究所 一种联二萘骨架的环戊二烯铑络合物的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015402A (ja) * 2003-06-26 2005-01-20 Nagase & Co Ltd 光学活性3,5−ジヒドロ−4H−ジナフト[2,1−c:1’,2’−e]アゼピンおよびそのシュウ酸塩の製造方法
WO2005073196A1 (ja) * 2004-01-30 2005-08-11 Nagase & Co., Ltd. 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα-アミノ酸およびその誘導体の製造方法
JP2006143627A (ja) * 2004-11-17 2006-06-08 Kyoto Univ 軸不斉を有する光学活性アミノ酸誘導体及び該アミノ酸誘導体を不斉触媒として用いる光学活性化合物の製造方法
WO2007013697A1 (ja) * 2005-07-29 2007-02-01 Nagase & Co., Ltd. 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα−アミノ酸およびその誘導体の製造方法
CN101073781A (zh) * 2007-06-22 2007-11-21 天津大学 含联萘轴手性功能基的4-二甲胺基吡啶有机分子催化剂及其制备方法
JP2008024596A (ja) * 2006-07-18 2008-02-07 Toyohashi Univ Of Technology 光学活性2,6−ビスアミノメチルピリジン誘導体とその製造方法およびその使用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963140B2 (ja) * 2012-10-12 2016-08-03 国立大学法人金沢大学 不斉脱水縮合剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015402A (ja) * 2003-06-26 2005-01-20 Nagase & Co Ltd 光学活性3,5−ジヒドロ−4H−ジナフト[2,1−c:1’,2’−e]アゼピンおよびそのシュウ酸塩の製造方法
WO2005073196A1 (ja) * 2004-01-30 2005-08-11 Nagase & Co., Ltd. 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα-アミノ酸およびその誘導体の製造方法
JP2006143627A (ja) * 2004-11-17 2006-06-08 Kyoto Univ 軸不斉を有する光学活性アミノ酸誘導体及び該アミノ酸誘導体を不斉触媒として用いる光学活性化合物の製造方法
WO2007013697A1 (ja) * 2005-07-29 2007-02-01 Nagase & Co., Ltd. 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα−アミノ酸およびその誘導体の製造方法
JP2008024596A (ja) * 2006-07-18 2008-02-07 Toyohashi Univ Of Technology 光学活性2,6−ビスアミノメチルピリジン誘導体とその製造方法およびその使用
CN101073781A (zh) * 2007-06-22 2007-11-21 天津大学 含联萘轴手性功能基的4-二甲胺基吡啶有机分子催化剂及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031736A1 (ja) * 2014-08-23 2016-03-03 国立大学法人 岡山大学 軸不斉を有するピリジン誘導体又はその塩、及びそれからなる不斉触媒
CN109400580A (zh) * 2018-12-24 2019-03-01 河南师范大学 3,4-二氨基吡啶氮氧类手性催化剂及其在Steglich重排中的应用
CN115304457A (zh) * 2021-05-07 2022-11-08 中国科学院上海有机化学研究所 一种联二萘骨架的环戊二烯铑络合物的制备方法

Also Published As

Publication number Publication date
JP6119022B2 (ja) 2017-04-26
JPWO2013183642A1 (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
US9096626B2 (en) Monophosphorus ligands and their use in cross-coupling reactions
JP6119022B2 (ja) 軸不斉を有するピリジン誘導体又はその塩、及びその製造方法並びにそれからなる不斉触媒
CN110437068B (zh) 一种芳烃甲基化的制备方法
JP2009522210A (ja) 2,2’,6,6’−テトラオキサゾリンビフェニル配位子およびその調製方法
CN111517964B (zh) 一种拆分手性化合物的方法
US9512155B2 (en) Chiral phosphines for palladium-catalyzed asymmetric α-arylation of ester enolates to produce tertiary stereocenters in high enantioselectivity
JP5963140B2 (ja) 不斉脱水縮合剤
CN102190581A (zh) 用于制备4'-卤烷基联苯基-2-羧酸的方法
US10544177B2 (en) Chiral dihydrobenzooxaphosphole ligands and synthesis thereof
EP3204356A1 (en) Method for coupling a first compound to a second compound
CN106565704B (zh) 一种咪唑并[1,2-a]吡啶的芳基化方法
JP6601629B2 (ja) 軸不斉を有するピリジン誘導体又はその塩、及びそれからなる不斉触媒
JP7214497B2 (ja) 輪状化合物の製造方法
JP2019085385A (ja) インデノイソキノリン派生物の調製方法
CN104163777B (zh) 一种合成甲腈化合物的方法及其在伊伐布雷定合成中的应用
Seitz et al. Modular synthesis of chiral pentadentate bis (oxazoline) ligands
CN102503887B (zh) 一种制备1-(n-取代氨基)异喹啉类化合物方法
WO2016004899A1 (en) Process for making tetracyclic heterocycle compounds
CN106831522B (zh) 内酰胺类化合物及其制备方法
KR101815001B1 (ko) 고 입체순도를 갖는 4-치환된-5-원고리-설파미데이트-5-포스포네이트 화합물 및 이의 제조방법
JP6893360B2 (ja) 1,1’−ビナフチル誘導体の製造方法および1,1’−ビナフチル誘導体
CN105837625B (zh) 一种β‑酮基取代的磷酸酯类化合物的制备方法
JP2012188387A (ja) キラルスピロビストリアゾール化合物、その製造方法及びその用途
Braconi et al. A Chiral Naphthyridine Diimine Ligand Platform Enables Nickel-Catalyzed Asymmetric Alkylidenecyclopropanations
CN105985263A (zh) 一种n,n-二取代氨基-丙二腈类化合物的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799938

Country of ref document: EP

Kind code of ref document: A1