WO2013183345A1 - 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 - Google Patents

微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 Download PDF

Info

Publication number
WO2013183345A1
WO2013183345A1 PCT/JP2013/060164 JP2013060164W WO2013183345A1 WO 2013183345 A1 WO2013183345 A1 WO 2013183345A1 JP 2013060164 W JP2013060164 W JP 2013060164W WO 2013183345 A1 WO2013183345 A1 WO 2013183345A1
Authority
WO
WIPO (PCT)
Prior art keywords
microparticles
light
detector
region
fluorescence
Prior art date
Application number
PCT/JP2013/060164
Other languages
English (en)
French (fr)
Inventor
尚 新田
今西 慎悟
太一 竹内
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/404,196 priority Critical patent/US10371632B2/en
Priority to CN201380028501.4A priority patent/CN104321635B/zh
Priority to JP2014519863A priority patent/JP6206404B2/ja
Priority to EP13800843.8A priority patent/EP2860511B1/en
Publication of WO2013183345A1 publication Critical patent/WO2013183345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1415Control of particle position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present technology relates to a data correction method and a fine particle measuring device in the fine particle measuring device. More specifically, the present invention relates to a data correction method for correcting measurement errors caused by variations in the flow positions of microparticles in flow paths formed in a flow cell, a microchip, and the like in a microparticle measurement apparatus.
  • a laminar flow containing microparticles (also referred to as a sheath flow) is formed in a flow channel formed in a flow cell and a microchip, and the fluorescence generated from the microparticles by irradiating the microparticles in the laminar flow with light.
  • a microparticle measuring apparatus that detects scattered light is known. For example, in a flow cytometer, the optical properties of microparticles such as cells and beads can be measured and analyzed based on the intensity or spectrum of the detected fluorescence or scattered light.
  • the laminar flow is formed so that microparticles flow almost in the center of the flow path in the microparticle measurement device, the flow positions of individual microparticles in the flow path vary. Measurement error due to the problem becomes a problem. In order to shorten the measurement time, the dispersion of the flow position of the microparticles in the flow channel and the measurement error caused by this change the flow rate of the sample liquid laminar flow containing the microparticles in the laminar flow. In particular, when it increases, it becomes large.
  • the optical positional relationship between the microparticles, the light irradiation system for the microparticles, and the fluorescence and scattered light detection systems generated from the microparticles is very small. Deviation between particles. As a result, a measurement error due to an optical position shift occurs in the intensity and spectrum of the fluorescence and scattered light detected by each microparticle.
  • Patent Document 1 and Patent Document 2 disclose techniques for suppressing measurement errors due to variations in the flow positions of such fine particles.
  • detection light sintered light
  • detection light scattered light
  • side scattered light or back scattered light through a light splitter
  • a position shift between the center of the excitation light and the center of the sheath flow is detected from the detection position, and the position of the flow cell is adjusted so that the position shift falls within a predetermined range.
  • Patent Document 2 describes a technique for detecting the position information of the microparticles using the change in deflection angle generated in the scattered light generated from the microparticles and adjusting the position of the flow cell or the focal position of the excitation light. Yes.
  • the measurement error due to the variation in the flow position of the fine particles becomes a problem even when the fluorescence generated from the fine particles is measured as a spectrum.
  • the fluorescence generated from the fine particles is dispersed using a spectroscopic element such as a prism and a grating mirror. Then, the dispersed fluorescence is detected by a light receiving element array in which PMTs and photodiodes are arranged one-dimensionally, or a two-dimensional light receiving element such as a CCD and a CMOS.
  • the wavelength range of the fluorescence incident on one of a plurality of independent detection channels arranged in the light receiving element array or the two-dimensional light receiving element is changed between the microparticles. May shift.
  • the wavelength range of the fluorescence projected from the microparticle k with respect to the detection channel n is ⁇ k to ⁇ k + 1
  • the microparticle l having a flow position in the channel different from the microparticle k The wavelength range of the fluorescence projected from ⁇ 1 to ⁇ l + 1 becomes ( ⁇ k , ⁇ k + 1 ) and ( ⁇ l , ⁇ l + 1 ) values may be different.
  • a measurement error due to a shift in the wavelength range of the fluorescence incident on the detection channel n occurs in the fluorescence spectrum detected by each microparticle.
  • the present technology provides a technology that can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
  • the main purpose can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
  • the present technology is capable of detecting light generated from the microparticles by irradiating the microparticles flowing through the flow path with light, and detecting the intensity information of the light
  • a data correction method in a microparticle measuring apparatus which includes a position detection procedure capable of acquiring position information of microparticles, and a correction procedure for correcting the intensity information based on the position information.
  • the position detection procedure as the position information, the position information of the microparticles in the X-axis direction that is the irradiation direction of light to the microparticles and / or the flow direction of the microparticles.
  • an S-polarized component separated from scattered light generated from the microparticles and given astigmatism is received by a detector, and the S-polarized component of the detector is detected.
  • a light receiving position may be acquired as the position information.
  • a detector in which a light receiving surface is divided into a plurality of regions may be used as the detector. More specifically, a detector in which the light receiving surface is divided into four regions of region A, region B, region C, and region D is used as the detector.
  • the position information of the microparticles in the Z-axis direction may be acquired from the difference ⁇ 1 (AC) of the detection values between the region A and the region C not adjacent to the region A. Further, from the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) of the detection values of the region A and the region C and the sum (B + D) of the detection values of the region B and the region D, You may acquire the said positional information on the said microparticle in the said X-axis direction. In this data correction method, the intensity information may be corrected based on the difference ⁇ 1 and / or the difference ⁇ 2 in the correction procedure.
  • the correction procedure only the intensity information of the microparticles in which the difference ⁇ 1 and / or the difference ⁇ 2 is within a predetermined range may be extracted.
  • the correction procedure includes: The spectrum information can be corrected based on the position information.
  • the present technology provides a light irradiation unit that irradiates light to the microparticles flowing through the flow path, a light detection unit that detects light generated from the microparticles, and a position detection that acquires positional information of the microparticles.
  • a microparticle measurement apparatus comprising: a unit; and a calculation unit that corrects intensity information of light generated from the microparticles acquired by the light detection unit based on the position information.
  • the position detection unit includes a first spectroscopic element that separates scattered light generated from the fine particles into an S-polarized component and a P-polarized component, and an S-polarized light detector that receives the S-polarized component.
  • the S-polarized light detector may have a light receiving surface divided into a plurality of regions and may be divided into four regions of region A, region B, region C, and region D in a lattice pattern.
  • the calculation unit includes a difference ⁇ 1 (AC) of a detection value between the region A and the region C not adjacent to the region A, and / or the region A and the region.
  • the intensity information is corrected based on the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum of detected values of C (A + C) and the sum of detected values of the regions B and D (B + D). May be.
  • the calculation unit may calculate a difference ⁇ 1 (AC) between the detection values of the region A and the region C not adjacent to the region A and / or the detection values of the region A and the region C. Only the intensity information of the microparticles in which the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) and the sum of detected values of the region B and the region D (B + D) is within a predetermined range May be extracted.
  • the microparticle measurement apparatus includes a second spectroscopic element that separates the light generated from the microparticles into the scattered light and fluorescence, and a P-polarization detector that detects the P-polarization component in the light detection unit; A fluorescence detector for detecting the fluorescence.
  • the microparticle measurement apparatus includes a third spectroscopic element that separates the fluorescence in the light detection unit, and the fluorescence detector detects a plurality of the fluorescence separated by the third spectroscopic element. Independent light receiving elements may be arranged.
  • the “intensity information” includes information on the wavelength range of fluorescence detected from a certain minute particle and the intensity of fluorescence in the wavelength range. More specifically, in the “intensity information”, when the fluorescence generated from a certain minute particle is guided to the light receiving element and detected, the wavelength range of the fluorescence incident on the light receiving element, and the fluorescence within the wavelength range Contains information about the strength of the. Therefore, “correction of intensity information” specifically refers to the incident fluorescence wavelength region to a light receiving element and / or the fluorescence intensity in the wavelength region of a certain minute particle based on the position information of the minute particle. It means to correct.
  • microparticles widely include living body-related microparticles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
  • Biologically relevant microparticles include chromosomes, liposomes, mitochondria, organelles (organelles) that constitute various cells.
  • Cells include animal cells (such as blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • biologically relevant microparticles may include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
  • the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
  • Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethyl methacrylate, and the like.
  • Inorganic polymer materials include glass, silica, magnetic materials, and the like.
  • Metals include gold colloid, aluminum and the like.
  • the shape of these fine particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
  • This technology provides a technology that can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
  • FIG. It is a figure for demonstrating the structure of the measurement part of the microparticle measuring apparatus which concerns on this technique. It is a figure for demonstrating the structure of the light-receiving surface of the S polarization detector 51.
  • FIG. It is a figure for demonstrating the laminar flow L which flows through the flow path C, and the laser spot S of the excitation light 1 irradiated to the microparticle P in the laminar flow L.
  • FIG. A graph illustrating changes in the peak wavelength (A) and peak intensity (B) of fluorescence 3 calculated based on the detection result of the fluorescence detector 32 when the flow position of the microparticles P is moved in the Z-axis direction. It is.
  • the relationship between the difference ⁇ 1 when the flow position of the fine particle P is moved in the Z-axis direction and the peak wavelength (A) and peak intensity (B) of the fluorescence 3 calculated based on the detection result of the fluorescence detector 32 is shown. It is a graph to illustrate. A graph illustrating changes in the peak wavelength (A) and peak intensity (B) of fluorescence 3 calculated based on the detection result of the fluorescence detector 32 when the flow position of the microparticles P is moved in the X-axis direction. It is. It is a graph which illustrates the change of difference delta 1 and difference delta 2 when the flow position of fine particle P is moved to the direction of the X-axis.
  • FIG. 1 is a diagram illustrating the configuration of the measuring unit of the microparticle measuring device according to the present technology.
  • the fine particle measuring apparatus according to the present technology is generally composed of a measuring unit shown in the figure and a calculation unit (not shown).
  • the measurement unit includes a light irradiation unit that irradiates the microparticles P flowing through the flow path C with the excitation light 1, a light detection unit that detects the scattered light 2 and the fluorescence 3 generated from the microparticles P, and the microparticles P.
  • a position detecting unit that acquires position information.
  • the light irradiation unit collects the excitation light 1 with respect to the light source 11 that emits the excitation light 1 and the fine particles P that flow through the flow path C formed in the flow cell and the microchip. And an objective lens 12 that emits light.
  • the light source 11 is appropriately selected from a laser diode, an SHG (Second Harmonic Generation) laser, a solid-state laser, a gas laser, a high-intensity LED (Light Emitting Diode), and the like according to the purpose of measurement.
  • Optical elements other than the light source 11 and the objective lens 12 may be arranged in the light irradiation unit as necessary.
  • the light detection unit includes the condenser lens 21, the spectroscopic element 22, the spectroscopic element 31, a fluorescence detector 32, and a P polarization detector 41.
  • the condensing lens 11 condenses the scattered light 2 and the fluorescence 3 generated from the fine particles P irradiated with the excitation light 1.
  • the scattered light 2 may be various kinds of scattered light such as forward scattered light, side scattered light, Rayleigh scattering, and Mie scattering.
  • the fluorescence 3 may be fluorescence generated from the microparticles P themselves or fluorescence generated from a fluorescent substance labeled on the microparticles P.
  • the spectroscopic element 22 separates the scattered light 2 and the fluorescence 3 collected by the condenser lens 11.
  • the spectroscopic element 22 uses a dichroic mirror that reflects only light of a specific wavelength and transmits other wavelength components. In the microparticle measuring apparatus according to the present embodiment, the scattered light 2 is reflected, and the fluorescence 3 Is used.
  • the spectroscopic element 31 is a prism, a grating mirror, or the like, and further splits the fluorescence 3 separated by the spectroscopic element 22 and projects it onto the fluorescence detector 32.
  • the fluorescence detector 32 detects the fluorescence 3 separated by the spectroscopic element 22.
  • a plurality of independent light receiving elements are arranged in the fluorescence detector 32, and each light receiving element detects light in a wavelength region that is spectrally projected from the spectroscopic element 31 and projected from the fluorescence 3.
  • a PMT array in which 32-channel PMTs (photo ⁇ ⁇ ⁇ ⁇ multiplier tubes) are arranged one-dimensionally as light receiving elements is used as the fluorescence detector 32.
  • the fluorescence detector 32 converts the detected intensity information of the fluorescence 3 into an electrical signal and outputs it to the calculation unit.
  • a photodiode array or a two-dimensional light receiving element such as a CCD and a CMOS may be used.
  • the fluorescence 3 generated from the fine particles P can be acquired as a spectrum (see FIG. 11 described later).
  • the P polarization detector 41 detects the P polarization component 4 contained in the scattered light 2 separated by the spectroscopic element 22.
  • the P polarization detector 41 for example, a PD (Photo diode), a CCD (Charge Coupled Device), or a PMT (Photo-Multiplier Tube) can be used.
  • the P-polarized light detector 41 converts the detected intensity information of the P-polarized component 4 into an electric signal and outputs it to the calculation unit. From the intensity information of the P-polarized component 4, analysis on the size, internal structure and the like of the microparticle P can be performed.
  • the position detection unit includes the spectroscopic element 23, the S polarization detector 51, and the astigmatism element 52.
  • the spectroscopic element 23 separates incident non-polarized light into two polarized lights whose vibration directions are orthogonal to each other, and separates the scattered light 2 separated by the spectroscopic element 22 into a P-polarized component 4 and an S-polarized component 5. . Specifically, the spectroscopic element 23 transmits the P polarization component 4 and reflects the S polarization component 5 of the incident scattered light 2.
  • the S polarization detector 51 detects the S polarization component 5 separated by the spectroscopic element 23, and its light receiving surface is divided into a plurality of regions.
  • a quadrant photodiode in which the light receiving surface is divided into four regions of region A, region B, region C, and region D is used. Yes.
  • the astigmatism element 52 is a cylindrical lens disposed between the spectroscopic element 23 and the S-polarized light detector 51, and gives astigmatism to the S-polarized light component 5 transmitted toward the S-polarized light detector 51.
  • the position detection unit acquires the light receiving position (imaging pattern) on the light receiving surface of the polarization detector 51 of the S-polarized component 5 in which astigmatism has occurred as position information of the microparticles P, and outputs it to the calculation unit.
  • the light receiving position (imaging pattern) of the S polarization component 5 on the light receiving surface of the polarization detector 51 will be described in detail later.
  • the arithmetic unit calculates the intensity information of the fluorescence 3 and the P-polarized component 4 input from the fluorescence detector 32 and the P-polarized light detector 41 of the light detection unit, and the minute particles P input from the position detection unit. A correction process is performed based on the position information.
  • the calculation unit includes a hard disk, a CPU, a memory, and the like in which a program for executing this processing and an OS are stored.
  • FIG. 3A shows a laminar flow L that flows through the flow path C and a laser spot S of the excitation light 1 that is irradiated onto the fine particles P in the laminar flow L.
  • the irradiation direction of the excitation light 1 with respect to the fine particles P is the X-axis direction
  • the liquid feeding direction of the laminar flow L is the Y-axis direction
  • the X-axis direction and the direction perpendicular to the Y-axis direction are the Z-axis direction.
  • the laminar flow L is formed so that the fine particles P flow in the approximate center of the flow path C, but the flow positions of the fine particles P vary in the Z-axis direction.
  • the intensity of the laser spot S takes a Gaussian distribution (B) or a top flat distribution (C) as shown in FIGS. 3B and 3C, and is highest at the center and low at the periphery in the Z-axis direction.
  • the irradiation intensity of the fine particle P by the excitation light 1 is the highest. Get higher.
  • the irradiation of the fine particle P with the excitation light 1 is performed. Strength is lower. Accordingly, the irradiation intensity of the excitation light 1 is different between the microparticles P, and the intensity of the scattered light 2 and the fluorescence 3 generated from the microparticles P is also different, which causes a measurement error.
  • the top flat optical system of FIG. 3C is designed so that the change in irradiation intensity due to the position shift is small near the center of the laminar flow L, the influence is small as compared with the Gaussian optical system of FIG. 3B. A similar measurement error also occurs due to variations in the flow position of the fine particles P in the X-axis direction.
  • the shift of the optical position between the microparticle P and the light irradiation unit due to the variation in the flow position of the microparticle P causes the wavelength range of the fluorescence 3 incident on each of the PMTs 1 to 32 of the fluorescence detector 32 to shift between the microparticles P. It becomes a factor.
  • the detection channel k when the wavelength range of the fluorescence 3 projected from the fine particles P k is ⁇ k ⁇ ⁇ k + 1, flowing position in the channel C and the fine particles P k
  • the wavelength range of the fluorescence 3 projected from the different microparticles P 1 becomes ⁇ l to ⁇ l + 1 , and the values of ( ⁇ k , ⁇ k + 1 ) and ( ⁇ l , ⁇ l + 1 ) may be different.
  • a measurement error due to a shift in the wavelength range of the fluorescence 3 incident on the detection channel k occurs in the fluorescence spectrum detected by each microparticle P (see FIG. 5 described later).
  • the calculation unit calculates the measurement error caused by the variation in the intensity of the fluorescence 3 caused by the variation in the flow position of the fine particles P and the variation in the wavelength range of the fluorescence 3 incident on each PMT of the fluorescence detector 32. Is corrected based on the position information of the fine particles P.
  • the calculation unit first obtains a difference in detection values between a plurality of regions provided on the light receiving surface of the S polarization detector 51. Specifically, the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) for the detection values in the regions A, B, C, and D of the quadrant photodiode shown in FIG. Take.
  • the fine particle P indicates the center position of the laser spot S in FIG. 3A.
  • the imaging pattern is a solid line in FIG. It becomes the image shown by.
  • the imaging pattern of the S-polarized component 5 changes corresponding to the flow position of the fine particles P, and the ratio of the S-polarized component 5 projected onto the areas A to D corresponds to the flow position of the fine particles P. And change. For this reason, the pattern of detection values of the S-polarized component 5 in the regions A to D directly reflects the flow position of the microparticles P.
  • the present inventors can acquire the positional information of the microparticles P in the Z-axis direction in FIG. 3A from the difference ⁇ 1 (AC), and from the difference ⁇ 2 ((A + C) ⁇ (B + D)) in FIG. It has been found that the position information of the microparticles P in the axial direction can be acquired.
  • the fine particles P increase as the movement amount increases as shown in FIG.
  • the intensity decreases, the dispersion increases, and the shape of the fluorescence spectrum also changes.
  • the horizontal axis represents wavelength
  • the vertical axis represents intensity (fluorescence intensity per wavelength)
  • the frequency is represented by a color scale.
  • the numbers at the top of the graph indicate the amount of movement of the stepping motor by the number of pulses.
  • an average spectrum is calculated for the fluorescence spectrum measured as shown in FIG. 5B, smoothed by the kernel smoothing method, and the maximum and maximum values are obtained for the resulting curve.
  • the wavelength was acquired.
  • the relationship between the pulse movement amount and the fluorescence peak wavelength is plotted in FIG. 4A
  • the relationship between the pulse movement amount and the fluorescence peak intensity is plotted in FIG. 4B. It is.
  • the horizontal axis indicates the amount of pulse movement
  • the vertical axis indicates the fluorescence peak wavelength in FIG. 4A and the fluorescence intensity in FIG. 4B. From these results, it can be confirmed that the peak wavelength and intensity of the fluorescence spectrum detected by the positional deviation of the microparticles P in the Z-axis direction change.
  • FIG. 6 shows changes in the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the Z-axis direction by the stepping motor.
  • the difference ⁇ 1 changes in correlation with the movement amount. From this, it can be seen that the positional information of the microparticles P in the Z-axis direction can be obtained from the difference ⁇ 1 (AC).
  • FIG. 7 shows the relationship between the difference ⁇ 1 (AC) and the peak wavelength and peak intensity of the detected fluorescence spectrum.
  • the difference ⁇ 1 (AC) as the position information of the microparticles P in the Z-axis direction, the wavelength and intensity distortion of the fluorescence 3 incident on the PMT caused by the position shift in the Z-axis direction can be corrected. Is possible.
  • FIG. 8 shows the result of analyzing the fluorescence spectrum when the flow cell is moved in the X-axis direction by the same method as in FIG. 4.
  • FIG. 8A shows the result when the flow cell is moved in the X-axis direction by a stepping motor.
  • FIG. 8B shows the relationship between the amount of movement and the fluorescence peak wavelength
  • FIG. 8B shows the relationship between the amount of movement and the fluorescence peak intensity.
  • the horizontal axis in FIG. 8 indicates the amount of movement of the stepping motor by the number of pulses. From the figure, it can be seen that for the movement of the flow cell in the X direction, the change in the fluorescence peak wavelength is small compared to the Z-axis direction, but the fluorescence peak intensity changes greatly.
  • FIG. 9 shows changes in the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the X-axis direction by the stepping motor.
  • the difference ⁇ 2 changes in correlation with the movement amount. From this, it can be seen that the positional information of the microparticles P in the X-axis direction can be obtained from the difference ⁇ 2 ((A + C) ⁇ (B + D)).
  • the calculation unit uses the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) described above as the position information of the microparticles P, and uses the intensity information of the fluorescence 3 and the P polarization component 4.
  • the correction process is performed.
  • the correction process is performed by creating a regression curve from the relationship shown in FIGS. 7 and 10 and correcting the intensity information according to the values of the differences ⁇ 1 and ⁇ 2 using a calibration formula representing the regression curve. Is called.
  • the differences ⁇ 1 and ⁇ 2 are acquired as position information together with the intensity information of the fluorescence 3. Then, for each microparticle P, using the above calibration calculation formula, the amount of distortion of the fluorescence wavelength and the fluorescence intensity caused by the deviation of the flow position of the microparticle P is calculated from the values of the differences ⁇ 1 and ⁇ 2, Correct the amount of distortion.
  • the distortion amount (change amount) of the wavelength range of the fluorescence 3 incident on each PMT of the fluorescence detector 32 is calculated from the values of the differences ⁇ 1 and ⁇ 2, and each PMT is detected by the calculated distortion amount. This is done by shifting the wavelength range.
  • the correction of the fluorescence intensity is performed by calculating a distortion rate (change rate) of the intensity value of the fluorescence 3 incident on each PMT from the values of the differences ⁇ 1 and ⁇ 2, and dividing the intensity value of each PMT by the calculated distortion rate.
  • FIG. 11 shows an example of the fluorescence spectrum before and after correction.
  • FIG. 11A shows a spectrum chart before correction, where the horizontal axis indicates the wavelength, the vertical axis indicates the fluorescence intensity, and the color scale indicates the frequency.
  • FIG. 11B shows the result of correcting the wavelength shift effect due to the positional shift using this difference ⁇ 1 for this data.
  • the detection channel 10 (PMT10) of the fluorescence detector 32 is designed to detect fluorescence having a wavelength of 540.0 nm to 546.0 nm.
  • a wavelength shift of 1.5 nm occurs in the detection wavelength range of the detection channel No. 10 from the value of the difference ⁇ 1 for a certain fine particle P.
  • the correction deals with the measurement result of the detection channel 10 for the fine particle P as the measurement result in the wavelength range of 541.5 nm to 547.5 nm.
  • the spectrum has a shape in which the dispersion is large and distorted due to the measurement error caused by the variation in the flow position of the fine particles P.
  • the corrected B the spectrum has a smooth shape with small dispersion.
  • regression curve and calibration calculation formula are preferably obtained before measurement of the microparticles P used as a sample by using calibration microbeads.
  • the regression curve and the calibration calculation formula can be more simply obtained as follows.
  • FIG. 12 illustrates a bead population surrounded by Gate1 and Gate2.
  • a feature amount of the fluorescence spectrum is calculated for the extracted beads or a group thereof, and a regression curve and a calibration formula that relate the values of the differences ⁇ 1 and ⁇ 2 to the feature amount are obtained.
  • the feature amount the peak wavelength and peak intensity of fluorescence incident on each PMT of the fluorescence detector 32 can be used.
  • the difference ⁇ 1 and / or the above-described difference such as Gate1 and Gate2 shown in FIG.
  • the microparticle measurement apparatus by acquiring the position information of each microparticle P and correcting the intensity information of the scattered light 2 and the fluorescence 3 of the microparticle P, It is possible to accurately measure the intensity and spectrum of the scattered light 2 and the fluorescence 3 by compensating the measurement error caused by the positional deviation of the fine particles P.
  • a fluorescence spectrum having a smooth shape with small dispersion can be obtained, so that the fluorescence spectrum of the microparticle P as a sample can be more intuitively recognized, and the fluorescence spectrophotometer Data comparison with a fluorescence spectrum obtained using a meter or the like can be easily performed.
  • the light detection unit is configured by combining the spectroscopic element 31 and the fluorescence detector 32 that is a light receiving element array or a two-dimensional light receiving element, An example in which the fluorescence 3 generated from the fine particles P is acquired as a spectrum has been described.
  • the light detection unit uses a plurality of wavelength selection elements (here, three of reference numerals 31a, 31b, and 31c) to obtain a desired wavelength from the fluorescence 3, as shown in FIG.
  • a configuration may be adopted in which only a region is selected and detected by a fluorescence detector (here, three reference numerals 32a, 32b, and 32c).
  • a fluorescence detector here, three reference numerals 32a, 32b, and 32c.
  • a dichroic mirror or the like that reflects only light in a specific wavelength range and transmits other light may be used.
  • PD Photo diode
  • CCD Charge Coupled Device
  • PMT Photo-Multiplier Tube
  • the combination of a wavelength selection element and a fluorescence detector is not restricted to three shown here, It can be made into 1 or 2 or more.
  • a quadrant photodiode is used as the position detection unit, and an image is formed on the light receiving surface of the polarization detector 51 of the S-polarized light component 5 that causes astigmatism.
  • the example which acquires a pattern (light reception position) as the positional information on the microparticle P was demonstrated.
  • Data correction method and data correction program corresponds to the correction processing executed by the calculation unit of the above-described microparticle measurement apparatus.
  • a data correction program for executing this data correction is stored in the calculation unit of the fine particle measuring apparatus.
  • the program is stored and held in the hard disk, read into the memory under the control of the CPU and OS, and executes the above-described correction processing.
  • the program can be recorded on a computer-readable recording medium.
  • the recording medium is not particularly limited as long as it is a computer-readable recording medium. Specifically, for example, a disk-shaped recording medium such as a flexible disk or a CD-ROM is used. A tape-type recording medium such as a magnetic tape may be used.
  • the data correction method in the microparticle measurement apparatus can also have the following configuration. (1) It is possible to detect light generated from the microparticles by irradiating the microparticles flowing through the flow path, and to obtain intensity information of the light, and to acquire the position information of the microparticles.
  • a data correction method in a microparticle measurement apparatus comprising: a possible position detection procedure; and a correction procedure for correcting the intensity information based on the position information.
  • the position information the position information of the microparticles in the X-axis direction that is the irradiation direction of light to the microparticles and / or the Y-axis that is the flow direction of the microparticles
  • the data correction method according to (1) wherein position information of the microparticles in the Z-axis direction perpendicular to the direction and the X-axis direction is acquired.
  • the S-polarized component separated from the scattered light generated from the microparticles and given astigmatism is received by a detector, and the light-receiving position of the S-polarized component in the detector is determined.
  • the data correction method according to (1) or (2) which is acquired as the position information.
  • the microparticle measuring apparatus can also be configured as follows. (1) a light irradiation unit that irradiates light to the microparticles flowing through the flow path, a light detection unit that detects light generated from the microparticles, a position detection unit that acquires position information of the microparticles, A microparticle measurement apparatus comprising: an arithmetic unit that corrects intensity information of light generated from the microparticles acquired by the light detection unit based on the position information.
  • the position detection unit includes: a first spectroscopic element that separates scattered light generated from the microparticles into an S-polarized component and a P-polarized component; an S-polarized light detector that receives the S-polarized component; An astigmatism element that is disposed between one spectroscopic element and the S-polarization detector and gives astigmatism to the S-polarization component, and a light receiving position of the S-polarization component in the S-polarization detector.
  • the fine particle measuring apparatus according to (1), wherein the position information is acquired.
  • the microparticle measuring apparatus wherein the light receiving surface of the S-polarized light detector is divided into four regions of region A, region B, region C, and region D in a lattice shape.
  • the calculation unit may detect a difference ⁇ 1 (AC) between the area A and the area C that is not adjacent to the area A, and / or a detection value between the area A and the area C.
  • the intensity information is corrected based on the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum of the detected values (A + C) and the sum of the detected values of the regions B and D (B + D) (4)
  • the calculation unit may detect a difference ⁇ 1 (AC) between the area A and the area C that is not adjacent to the area A, and / or a detection value between the area A and the area C.
  • the intensity information of the microparticles in which the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) and the sum (B + D) of the detection values of the region B and the region D is within a predetermined range
  • the microparticle measurement apparatus according to any one of (2) to (7), wherein the astigmatism element is a cylindrical lens.
  • a second spectroscopic element that separates the light generated from the microparticles into the scattered light and fluorescence, and a P-polarization detector that detects the P-polarized component in the light detection unit, and the fluorescence is detected.
  • the fine particle measuring device according to any one of (2) to (7), further comprising: (10) A plurality of independent light receiving elements that have a third spectroscopic element that splits the fluorescence in the light detection unit, and that detect the fluorescence split by the third spectroscopic element in the fluorescence detector.
  • the microparticle measurement apparatus according to any one of the above (1) to (10), in which are arranged.
  • the present technology it is possible to effectively correct measurement errors caused by variations in the flow positions of minute particles in the flow path, and to measure the intensity and spectrum of fluorescence and scattered light with high accuracy. Therefore, the present technology is preferably applied to a microparticle measuring apparatus for analyzing the optical characteristics of microparticles such as cells in more detail, and can be particularly preferably applied to a spectral flow cytometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 微小粒子の流路内の通流位置のばらつきによって生じる測定誤差を効果的に補正して、蛍光及び散乱光の強度及びスペクトルを高精度に測定することが可能な技術の提供。 流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、前記微小粒子の位置情報を取得可能な位置検出手順と、前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、微小粒子測定装置におけるデータ補正方法を提供する。このデータ補正方法では、前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得する。

Description

微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置
 本技術は、微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置に関する。より詳しくは、微小粒子測定装置において、フローセル及びマイクロチップなどに形成された流路内における微小粒子の通流位置のばらつきに起因して生じる測定誤差を補正するデータ補正方法等に関する。
 フローセル及びマイクロチップなどに形成された流路内に微小粒子を含むラミナーフロー(シースフローとも称される)を形成し、ラミナーフロー中の微小粒子に光を照射して微小粒子から発生する蛍光及び散乱光を検出する微小粒子測定装置が知られている。例えばフローサイトメータでは、検出される蛍光又は散乱光の強度又はスペクトルに基づいて細胞及びビーズなどの微小粒子の光学特性を測定し、分析できる。
 微小粒子測定装置では、流路の概ね中央に微小粒子が通流するようにラミナーフローを形成しているものの、個々の微小粒子の流路内の通流位置にはばらつきがあるため、このばらつきに起因した測定誤差が問題となる。流路内における微小粒子の通流位置のばらつき及びこれに起因した測定誤差は、測定時間を短縮化するため、ラミナーフロー中において微小粒子を含むサンプル液層流の流量をシース液層流の流量に対して増やす場合、特に大きくなる。
 流路内の通流位置が微小粒子間でばらつくと、微小粒子と、微小粒子への光の照射系及び微小粒子から発生する蛍光及び散乱光の検出系と、の光学的な位置関係が微小粒子間でずれてしまう。その結果、各微小粒子で検出される蛍光及び散乱光の強度及びスペクトルに、光学位置のずれに起因した測定誤差が発生する。
 特許文献1及び特許文献2には、このような微小粒子の通流位置のばらつきによる測定誤差を抑制するための技術が開示されている。特許文献1に記載の流動粒子分析装置では、前方散乱光、側方散乱光又は後方散乱光から光分割器を介して取りだした検出光(散乱光)を、4分割フォトダイオード及びエリアCCDなどによって検出している。そして、その検出位置から、励起光の中心とシースフローの中心との位置ずれを検出し、この位置ずれが所定の範囲内に入るようにフローセルの位置を調節している。また、特許文献2には、微小粒子から発生する散乱光に生じる偏向角変化を利用して微小粒子の位置情報を検出し、フローセルの位置又は励起光の焦点位置を調整する技術が記載されている。
特開平9-166541号公報 特開2011-149822号公報
 微小粒子の通流位置のばらつきによる測定誤差は、微小粒子から発生する蛍光をスペクトルとして測定する場合にも問題となる。微小粒子から発生する蛍光を、プリズム及びグレーティングミラーなどの分光素子を用いて分光する。そして、分光された蛍光を、PMT及びフォトダイオードなどが一次元に配列された受光素子アレイ、あるいはCCD及びCMOSなどの二次元受光素子などによって検出する。このとき、微小粒子の通流位置にばらつきが存すると、受光素子アレイ又は二次元受光素子に配された独立した複数の検出チャネルのうちの一つに入射する蛍光の波長範囲が、微小粒子間でずれてしまう場合がある。
 具体的には、検出チャネルnに対して、微小粒子kから投影される蛍光の波長範囲がλ~λk+1である場合に、流路内の通流位置が微小粒子kと異なる微小粒子lから投影される蛍光の波長範囲がλ~λl+1となり、(λ、λk+1)及び(λ、λl+1)の値が異なってしまう場合がある。その結果、各微小粒子で検出される蛍光スペクトルに、検出チャネルnに入射する蛍光の波長範囲のずれに起因した測定誤差が発生する。
 本技術は、微小粒子の流路内の通流位置のばらつきによって生じる測定誤差を効果的に補正して、蛍光及び散乱光の強度及びスペクトルを高精度に測定することが可能な技術を提供することを主な目的とする。
 上記課題解決のため、本技術は、流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、前記微小粒子の位置情報を取得可能な位置検出手順と、前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、微小粒子測定装置におけるデータ補正方法を提供する。
 このデータ補正方法では、前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得してもよい。
 このデータ補正方法では、前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得してもよい。
 このデータ補正方法では、前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いてもよい。より具体的には、前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用いる。そして、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得してもよい。また、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得してもよい。
 このデータ補正方法では、前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正してもよい。あるいは、前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出してもよい。
 このデータ補正方法の前記強度検出手順において、前記微小粒子から発生する前記光を複数の異なる波長域において検出し、前記強度情報を前記光のスペクトル情報として取得する場合には、前記補正手順では、このスペクトル情報を前記位置情報に基づいて補正することもできる。
 また、本技術は、流路を通流する微小粒子に光を照射する光照射部と、前記微小粒子から発生する光を検出する光検出部と、前記微小粒子の位置情報を取得する位置検出部と、前記光検出部により取得された前記微小粒子から発生する光の強度情報を、前記位置情報に基づいて補正する演算部と、を備える微小粒子測定装置を提供する。
 この微小粒子測定装置において、前記位置検出部は、前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得してもよい。
 この微小粒子測定装置において、前記S偏光検出器は、受光面が複数領域に分割されており、領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されていてもよい。
 この微小粒子測定装置において、前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、に基づいて前記強度情報を補正してもよい。あるいは、前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、が所定範囲内である前記微小粒子の前記強度情報のみを抽出してもよい。
 この微小粒子測定装置は、前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有していてもよい。
 また、微小粒子測定装置は、前記光検出部に、前記蛍光を分光する第三分光素子を有し、前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されていてもよい。
 本技術において、「強度情報」には、ある微小粒子から検出される蛍光の波長域、及び該波長域内における蛍光の強度に関する情報が含まれる。より具体的には、「強度情報」には、ある微小粒子から発生する蛍光を受光素子へ導光して検出する場合に、当該受光素子に入射する蛍光の波長域、及び該波長域内における蛍光の強度に関する情報が含まれる。従って、「強度情報の補正」とは、具体的には、ある微小粒子について、受光素子への入射蛍光波長域、及び/又は該波長域内における蛍光強度を、当該微小粒子の位置情報に基づいて補正することを意味する。
 また、本技術において、「微小粒子」には、細胞や微生物、リポソームなどの生体関連微小粒子、あるいはラテックス粒子やゲル粒子、工業用粒子などの合成粒子などが広く含まれるものとする。
 生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。さらに、生体関連微小粒子には、核酸やタンパク質、これらの複合体などの生体関連高分子も包含され得るものとする。また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら微小粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
 本技術により、微小粒子の流路内の通流位置のばらつきによって生じる測定誤差を効果的に補正して、蛍光及び散乱光の強度及びスペクトルを高精度に測定することが可能な技術が提供される。
本技術に係る微小粒子測定装置の測定部の構成を説明するための図である。 S偏光検出器51の受光面の構成を説明するための図である。 流路Cを通流するラミナーフローLと、ラミナーフローL中の微小粒子Pに照射される励起光1のレーザスポットSを説明するための図である。 微小粒子Pの通流位置をZ軸方向に移動させた場合に、蛍光検出器32の検出結果を元に算出した蛍光3のピーク波長(A)及びピーク強度(B)の変化を例示するグラフである。 微小粒子Pの通流位置をZ軸方向に移動させた場合に蛍光検出器32により検出される蛍光スペクトルの変化を例示するグラフである。 微小粒子Pの通流位置をZ軸方向に移動させた場合に蛍光検出器32により検出される蛍光スペクトルの平均値(平均スペクトル)を例示するグラフである。 微小粒子Pの通流位置をZ軸方向に移動させたときの差分Δ1及び差分Δ2の変化を例示するグラフである。 微小粒子Pの通流位置をZ軸方向に移動させたときの差分Δ1と蛍光検出器32の検出結果を元に算出した蛍光3のピーク波長(A)及びピーク強度(B)との関係を例示するグラフである。 微小粒子Pの通流位置をX軸方向に移動させた場合に、蛍光検出器32の検出結果を元に算出した蛍光3のピーク波長(A)及びピーク強度(B)の変化を例示するグラフである。 微小粒子Pの通流位置をX軸方向に移動させたときの差分Δ1及び差分Δ2の変化を例示するグラフである。 微小粒子Pの通流位置をX軸方向に移動させたときの差分Δ2と蛍光検出器32の検出結果を元に算出した蛍光3のピーク波長(A)及びピーク強度(B)との関係を例示するグラフである。 補正前の蛍光スペクトル(A)及び補正後の蛍光スペクトル(B)を例示するグラフである。 差分Δ1及び差分Δ2を軸として、微小粒子Pの集団をプロットした分布図の一例である。 光検出部の変形例の構成を説明するための図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。
 
1.微小粒子測定装置の構成
(1)測定部
 (1-1)光照射部
 (1-2)光検出部
 (1-3)位置検出部
(2)演算部
2.微小粒子測定装置におけるデータ補正処理
(1)補正対象
(2)補正処理
3.変形例
(1)光検出部
(2)位置検出部
4.データ補正方法及びデータ補正プログラム
 
1.微小粒子測定装置の構成
(1)測定部
 図1は、本技術に係る微小粒子測定装置の測定部の構成を説明する図である。本技術に係る微小粒子測定装置は、大略、図に示される測定部と、不図示の演算部とから構成されている。測定部は、流路Cを通流する微小粒子Pに励起光1を照射する光照射部と、微小粒子Pから発生する散乱光2及び蛍光3を検出する光検出部と、微小粒子Pの位置情報を取得する位置検出部と、を含む。
(1-1)光照射部
 光照射部は、励起光1を出射する光源11と、フローセル及びマイクロチップなどに形成された流路Cを通流する微小粒子Pに対して励起光1を集光する対物レンズ12とを含んで構成されている。光源11は、測定の目的に応じてレーザダイオード、SHG(Second Harmonic Generation)レーザ、固体レーザ、ガスレーザ及び高輝度LED(Light Emitting Diode:発光ダイオード)などから適宜選択される。光照射部には、必要に応じて、光源11及び対物レンズ12以外の光学素子が配されていてもよい。
(1-2)光検出部
 光検出部は、集光レンズ21、分光素子22、分光素子31、蛍光検出器32とP偏光検出器41とを含んで構成されている。
 集光レンズ11は、励起光1を照射された微小粒子Pから発生する散乱光2及び蛍光3を集光する。散乱光2は、前方散乱光、側方散乱光、レイリー散乱及びミー散乱などの各種散乱光であってよい。また、蛍光3は、微小粒子Pそのものから発生する蛍光又は微小粒子Pに標識された蛍光物質から発生する蛍光であってよい。
 分光素子22は、集光レンズ11により集光された散乱光2と蛍光3とを分離する。分光素子22には、特定波長の光のみを反射し、それ以外の波長成分を透過するダイクロックミラーが用いられ、本実施形態に係る微小粒子測定装置では、散乱光2を反射し、蛍光3を透過するものが使用されている。
 分光素子31は、プリズム及びグレーティングミラーなどとされ、分光素子22により分離された蛍光3をさらに分光して蛍光検出器32に投影する。蛍光検出器32は、分光素子22により分光された蛍光3を検出する。蛍光検出器32には、複数の独立した受光素子が配列されており、各受光素子が蛍光3のうち分光素子31から分光されて投影されてくる波長域の光を検出する。本実施形態に係る微小粒子測定装置では、蛍光検出器32として、受光素子として32チャネルのPMT(photo multiplier tube)を一次元に配列したPMTアレイを用いている。蛍光検出器32は、検出された蛍光3の強度情報を電気信号に変換して演算部に出力する。なお、蛍光検出器32として、フォトダイオードアレイや、CCD及びCMOSなどの2次元受光素子を用いてもよい。
 分光素子31と組み合わせて、受光素子アレイ又は2次元受光素子を蛍光検出器32に用いることにより、微小粒子Pから発生する蛍光3をスペクトル(後述の図11参照)として取得することができる。
 P偏光検出器41は、分光素子22により分離された散乱光2に含まれるP偏光成分4を検出する。P偏光検出器41には、例えばPD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。P偏光検出器41は、検出されたP偏光成分4の強度情報を電気信号に変換して演算部に出力する。P偏光成分4の強度情報からは、微小粒子Pの大きさ、内部構造等に関する分析を行うことができる。
(1-3)位置検出部
 位置検出部は、分光素子23、S偏光検出器51と非点収差素子52とを含んで構成されている。
 分光素子23は、入射する非偏光を、振動方向が直交する2つの偏光に分離するものであり、分光素子22により分離された散乱光2をP偏光成分4とS偏光成分5とに分離する。具体的には、分光素子23は、入射した散乱光2のうちP偏光成分4を透過し、S偏光成分5を反射する。
 S偏光検出器51は、分光素子23により分離されたS偏光成分5を検出するものであり、その受光面が複数の領域に分割されている。本実施形態に係る微小粒子測定装置では、図2に示すように、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された4分割フォトダイオードを用いている。
 非点収差素子52は、分光素子23とS偏光検出器51との間に配設されたシリンドリカルレンズであり、S偏光検出器51へ向かって透過するS偏光成分5に非点収差を与える。位置検出部は、非点収差を生じたS偏光成分5の偏光検出器51の受光面における受光位置(結像パターン)を、微小粒子Pの位置情報として取得して演算部に出力する。S偏光成分5の偏光検出器51の受光面における受光位置(結像パターン)については詳しく後述する。
(2)演算部
 演算部は、光検出部の蛍光検出器32及びP偏光検出器41から入力される蛍光3及びP偏光成分4の強度情報を、位置検出部から入力される微小粒子Pの位置情報に基づいて補正する処理を行う。演算部は、この処理を実行するためのプログラムとOSが格納されたハードディスク、CPU及びメモリなどにより構成される。
2.微小粒子測定装置におけるデータ補正処理
 次に、演算部による蛍光3及びP偏光成分4の強度情報の補正処理について詳細に説明する。
(1)補正対象
 図3Aに、流路Cを通流するラミナーフローLと、ラミナーフローL中の微小粒子Pに照射される励起光1のレーザスポットSを示す。図中、微小粒子Pに対する励起光1の照射方向をX軸方向、ラミナーフローLの送液方向をY軸方向、X軸方向及びY軸方向に垂直な方向をZ軸方向とする。
 ラミナーフローLは流路Cの概ね中央を微小粒子Pが通流するように形成されているが、微小粒子Pの通流位置にはZ軸方向にばらつきがある。レーザスポットSの強度は、図3B、Cに示すようなガウスシアンの分布(B)又はトップフラットの分布(C)をとり、Z軸方向において中心で最も高く周辺で低い。いずれの場合でも、微小粒子PがレーザスポットSの中心位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に一致するとき、励起光1による微小粒子Pの照射強度が最も高くなる。一方、微小粒子PがレーザスポットSの中心を外れた周辺位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に不一致の場合には、励起光1による微小粒子Pの照射強度がより低くなる。従って、微小粒子P間で励起光1の照射強度が異なることとなり、微小粒子Pから発生する散乱光2及び蛍光3の強度にも差が生じ、測定誤差の原因となる。ただし、図3Cのトップフラット光学系は、ラミナ―フローLの中央付近では位置ずれによる照射強度変化が小さくなるように設計されているため、図3Bのガウシアン光学系に比較して影響は小さい。同様の測定誤差は、X軸方向における微小粒子Pの通流位置のばらつきに起因しても生じる。
 微小粒子Pの通流位置のばらつきによる微小粒子Pと光照射部との光学位置のずれは、蛍光検出器32のPMT1~32のそれぞれに入射する蛍光3の波長範囲が微小粒子P間でずれる要因ともなる。具体的には、検出チャネルkに対して、微小粒子Pから投影される蛍光3の波長範囲がλ~λk+1である場合に、流路C内の通流位置が微小粒子Pと異なる微小粒子Pから投影される蛍光3の波長範囲がλ~λl+1となり、(λ、λk+1)及び(λ、λl+1)の値が異なってしまう場合がある。その結果、各微小粒子Pで検出される蛍光スペクトルに、検出チャネルkに入射する蛍光3の波長範囲のずれに起因した測定誤差が発生する(後述図5参照)。
(2)補正処理
 演算部は、微小粒子Pの通流位置がばらつくことによって生じる蛍光3の強度のばらつき及び蛍光検出器32の各PMTに入射する蛍光3の波長範囲のばらつきに起因した測定誤差を、微小粒子Pの位置情報に基づいて補正する処理を行う。
 演算部は、まず、S偏光検出器51の受光面に設けられた複数の領域間で検出値の差分をとる。具体的には、図2に示した4分割フォトダイオードの領域A、領域B、領域C及び領域Dにおける検出値について、差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))をとる。
 非点収差素子52により非点収差を与えられたS偏光成分5のS偏光検出器51の受光面における結像パターン(受光位置)は、微小粒子Pが図3AのレーザスポットSの中心位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に一致するとき、図2中点線で示す像となる。一方、微小粒子PがレーザスポットSの中心を外れた周辺位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に不一致の場合には、結像パターンは、図2中実線で示す像となる。すなわち、微小粒子Pの通流位置に対応してS偏光成分5の結像パターンは変化し、S偏光成分5のうち領域A~Dに投影される割合が微小粒子Pの通流位置に対応して変化する。このため、領域A~DにおけるS偏光成分5の検出値のパターンは、微小粒子Pの通流位置を直接反映する。
 本発明者らは、上記差分Δ1(A-C)から、図3AのZ軸方向における微小粒子Pの位置情報を取得でき、上記差分Δ2((A+C)-(B+D))から図3AのX軸方向における微小粒子Pの位置情報を取得できることを見出している。
 微小粒子Pが通流する流路Cが形成されたフローセルをステッピングモータによりZ軸方向に移動させた場合、光学位置のずれに伴って、図5Aに示すように移動量が大きくなるほど微小粒子Pの蛍光3は強度が低下して分散が大きくなり、蛍光スペクトルの形状も変化する。なお、図では、横軸に波長、縦軸に強度(波長あたりの蛍光強度)を示し、色スケールによって頻度を示す。グラフ上部の数字はステッピングモータの移動量をパルス数によって示したものである。
 この蛍光スペクトルの変化を定量化するために、図5Bに示すように計測された蛍光スペクトルについて平均スペクトルを計算し、カーネル平滑化法によってスムージングを行い、その結果の曲線について最大値および最大値での波長を取得した。これをステッピングモータの各移動量に対して行うことにより、パルス移動量と蛍光ピーク波長との関係をプロットしたものが図4A、パルス移動量と蛍光ピーク強度との関係をプロットしたのが図4Bである。いずれのグラフも横軸はパルス移動量を示し、縦軸は図4Aでは蛍光ピーク波長、図4Bでは蛍光強度を示している。ここでの結果から、微小粒子PのZ軸方向の位置ずれによって検出される蛍光スペクトルのピーク波長及び強度が変化することが確認できる。
 微小粒子Pが通流するフローセルをステッピングモータによりZ軸方向に移動させたときの差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))の変化を図6に示す。図に示されるように、移動量に相関して差分Δ1のみが変化する。このことから、差分Δ1(A-C)から微小粒子PのZ軸方向における位置情報が得られることが分かる。さらに、図6の結果と図4の結果を合わせることで、差分Δ1(A-C)と、検出された蛍光スペクトルのピーク波長及びピーク強度との関係を得ることができる(図7)。従って、微小粒子PのZ軸方向における位置情報として差分Δ1(A-C)を用いることで、Z軸方向における位置ずれにより生じるPMTに入射する蛍光3の波長及び強度の歪みを補正することが可能である。
 また、微小粒子Pが通流するフローセルをステッピングモータによりX軸方向に移動させた場合についても、上述のZ軸方向への移動と同様に解析を行った。図8は、フローセルをX軸方向に移動させたときの蛍光スペクトルの解析を図4と同様の方法で行った結果であり、図8AはフローセルをステッピングモータでX軸方向に移動させた際の移動量と蛍光ピーク波長との関係を、図8Bは移動量と蛍光ピーク強度との関係を示したものである。なお、図8横軸は、ステッピングモータの移動量をパルス数によって示す。図から、フローセルのX方向の移動に対しては、Z軸方向と比較すると蛍光ピーク波長の変化は小さいが、蛍光ピーク強度は大きく変化している様子が分かる。
 微小粒子Pが通流するフローセルをステッピングモータによりX軸方向に移動させたときの差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))の変化を図9に示す。図に示されるように、移動量に相関して差分Δ2のみが変化する。このことから、差分Δ2((A+C)-(B+D))から微小粒子PのX軸方向における位置情報が得られることが分かる。さらに、図9の結果と図8の結果を合わせることで、差分Δ2((A+C)-(B+D))と、検出された蛍光スペクトルのピーク波長及びピーク強度との関係を得ることができる(図10)。従って、微小粒子PのX軸方向における位置情報としてΔ2((A+C)-(B+D))を用いることで、X軸方向における位置ずれにより生じるPMTに入射する蛍光の波長及び強度の歪みを補正することが可能である。
 次に、演算部は、上述した差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))を微小粒子Pの位置情報をして用い、蛍光3及びP偏光成分4の強度情報の補正処理を行う。補正処理は、図7及び図10に示される関係から回帰曲線を作成し、当該回帰曲線を表すキャリブレーション計算式を利用して強度情報を差分Δ1及びΔ2の値に応じて補正することによって行われる。
 具体的には、微小粒子Pの全てについて、蛍光3の強度情報とともに、位置情報として差分Δ1及びΔ2を取得する。そして、各微小粒子Pについて、上記キャリブレーション計算式を用いて、差分Δ1及びΔ2の値から微小粒子Pの通流位置のずれによって生じている蛍光波長及び蛍光強度の歪み量を算出し、当該歪み量を補正する。
 蛍光波長の補正は、差分Δ1及びΔ2の値から、蛍光検出器32の各PMTに入射する蛍光3の波長範囲の歪み量(変化量)を算出し、算出された歪み量だけ各PMTの検出波長範囲をずらすことによって行う。また、蛍光強度の補正は、差分Δ1及びΔ2の値から、各PMTに入射する蛍光3の強度値の歪み率(変化率)を算出し、算出された歪み率によって各PMTの強度値を除すことによって行う。なお、ここでは、蛍光3の強度情報の補正について説明したが、P偏光成分4の強度情報についても同様にして補正できる。
 図11に、補正前後の蛍光スペクトルの一例を示す。図11Aは補正前のスペクトルチャートを示し、横軸が波長、縦軸が蛍光強度、色スケールが頻度を示す。このデータに対して、差分Δ1を用いて位置ずれによる波長ずれの効果を補正した結果が図11Bである。例えば、蛍光検出器32の検出チャネル10番(PMT10)が波長540.0nm~546.0nmの蛍光を検出するように設計されているとする。この場合に、ある微小粒子Pについての差分Δ1の値から、検出チャネル10番の検出波長範囲に1.5nmの波長ずれが発生していることが想定されたとする。この場合において、上記補正は、当該微小粒子Pについては、検出チャネル10番の計測結果を波長域541.5nm~547.5nmにおける計測結果として取り扱うものである。補正前のAでは、微小粒子Pの通流位置のばらつきによって生じる測定誤差により分散が大きく歪な形状のスペクトルとなっている。補正後のBでは、分散が小さく滑らかな形状のスペクトルとなっている。
 上述の回帰曲線及びキャリブレーション計算式は、キャリブレーション用のマイクロビーズを用いて、試料とする微小粒子Pの測定前に取得しておくことが好ましい。回帰曲線及びキャリブレーション計算式は、より簡便には以下のようにして得ることもできる。
 すなわち、まず、フローセルの位置を固定した状態で、キャリブレーション用のマイクロビーズについて、蛍光3の強度情報と、位置情報としての差分Δ1及びΔ2を取得する。そして、差分Δ1及びΔ2が異なる2以上のビーズあるいは2以上のビーズの集団を抽出する。差分Δ1及びΔ2が異なる2つのビーズ集団として、図12に、Gate1及びGate2で囲われたビーズ集団を例示する。
 次に、抽出されたビーズあるいはその集団について蛍光スペクトルの特徴量を算出し、差分Δ1及びΔ2の値と当該特徴量とを関係付ける回帰曲線及びキャリブレーション計算式を得る。特徴量としては、蛍光検出器32の各PMTに入射する蛍光のピーク波長及びピーク強度などを用いることができる。
 さらに、上述の回帰曲線及びキャリブレーション計算式を用いることなく、微小粒子Pの位置ずれに起因した測定誤差を排除する方法として、図12に示したGate1及びGate2のように差分Δ1及び/又は前記差分Δ2が所定範囲内である微小粒子Pの強度情報のみを抽出して測定結果とする方法も挙げられる。
 以上のように本技術に係る微小粒子測定装置によれば、微小粒子Pの一つ一つの位置情報を取得して、微小粒子Pの散乱光2及び蛍光3の強度情報を補正することにより、微小粒子Pの位置ずれに起因した測定誤差を補償して、散乱光2及び蛍光3の強度及びスペクトルの測定を正確に行うことができる。また、本技術に係る微小粒子測定装置によれば、分散が小さく滑らかな形状の蛍光スペクトルを得ることができるため、試料とする微小粒子Pの蛍光スペクトルをより直感的に認識でき、蛍光分光光度計などを用いて得られる蛍光スペクトルとのデータ比較を容易に行うことができる。
3.変形例
(1)光検出部
 上述の実施形態に係る微小粒子測定装置では、分光素子31と、受光素子アレイ又は2次元受光素子とした蛍光検出器32とを組み合わせて光検出部を構成し、微小粒子Pから発生する蛍光3をスペクトルとして取得する例を説明した。本技術に係る微小粒子測定装置において、光検出部は、図13に示すように、複数の波長選択素子(ここでは符号31a、31b、31cの3つ)を用いて、蛍光3から所望の波長域のみを選択して蛍光検出器(ここでは符号32a、32b、32cの3つ)によって検出する構成であってもよい。波長選択素子31a、31b、31cには、特定の波長域の光のみを反射し、それ以外の光を透過するダイクロイックミラー等を使用すればよい。また、蛍光検出器32a、32b、32cには、PD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。なお、波長選択素子及び蛍光検出器の組み合わせはここで示した3つに限られず、1又は2以上とできる。
(2)位置検出部
 上述の実施形態に係る微小粒子測定装置では、位置検出部として4分割フォトダイオードを用い、非点収差を生じたS偏光成分5の偏光検出器51の受光面における結像パターン(受光位置)を微小粒子Pの位置情報として取得する例を説明した。本技術に係る微小粒子測定装置では、位置検出部に高速カメラを用いて、流路Cを通流する微小粒子Pを直接撮影し、画像処理によって微小粒子Pの位置情報を取得することも考えられる。
4.データ補正方法及びデータ補正プログラム
 本技術に係るデータ補正方法は、上述の微小粒子測定装置の演算部によって実行される補正処理に対応するものである。また、微小粒子測定装置の演算部には、このデータ補正を実行するためのデータ補正プログラムが格納されている。
 プログラムは、ハードディスクに格納・保持され、CPUおよびOSの制御の下でメモリに読み込まれて、上述の補正処理を実行する。プログラムは、コンピュータ読み取り可能な記録媒体に記録されたものとできる。記録媒体としては、コンピュータ読み取り可能な記録媒体であれば特に制限はないが、具体的には、例えば、フレキシブルディスクやCD-ROM等の円盤形記録媒体が用いられる。また、磁気テープ等のテープ型記録媒体を用いてもよい。
 本技術に係る微小粒子測定装置におけるデータ補正方法は以下のような構成をとることもできる。
(1)流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、前記微小粒子の位置情報を取得可能な位置検出手順と、前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、微小粒子測定装置におけるデータ補正方法。
(2)前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得する上記(1)記載のデータ補正方法。
(3)前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得する上記(1)又は(2)記載のデータ補正方法。
(4)前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる上記(3)記載のデータ補正方法。
(5)前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得する上記(4)記載のデータ補正方法。
(6)前記位置検出手順において、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得する上記(5)記載のデータ補正方法。
(7)前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正する上記(6)記載のデータ補正方法。
(8)前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出する上記(6)記載のデータ補正方法。
(9)前記検出器として、4分割フォトダイオードを用いる上記(4)~(7)のいずれかに記載のデータ補正方法。
 また、本技術に係る微小粒子測定装置は以下のような構成をとることもできる。
(1)流路を通流する微小粒子に光を照射する光照射部と、前記微小粒子から発生する光を検出する光検出部と、前記微小粒子の位置情報を取得する位置検出部と、前記光検出部により取得された前記微小粒子から発生する光の強度情報を、前記位置情報に基づいて補正する演算部と、を備える微小粒子測定装置。
(2)前記位置検出部は、前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得する上記(1)記載の微小粒子測定装置。
(3)前記S偏光検出器の受光面が複数領域に分割されている上記(2)記載の微小粒子測定装置。
(4)前記S偏光検出器の受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されている上記(3)記載の微小粒子測定装置。
(5)前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、に基づいて前記強度情報を補正する上記(4)記載の微小粒子測定装置。
(6)前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、が所定範囲内である前記微小粒子の前記強度情報のみを抽出する上記(4)記載の微小粒子測定装置。
(7)前記S偏光検出器が4分割フォトダイオードである上記(3)~(6)のいずれかに記載の微小粒子測定装置。
(8)前記非点収差素子がシリンドリカルレンズである上記(2)~(7)のいずれかに記載の微小粒子測定装置。
(9)前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有する上記(2)~(7)のいずれかに記載の微小粒子測定装置。
(10)前記光検出部に、前記蛍光を分光する第三分光素子を有し、前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている上記(1)~(10)のいずれかに記載の微小粒子測定装置。
 本技術によれば、微小粒子の流路内の通流位置のばらつきによって生じる測定誤差を効果的に補正して、蛍光及び散乱光の強度及びスペクトルを高精度に測定することできる。従って、本技術は、細胞等の微小粒子の光学特性をより詳細に解析するための微小粒子測定装置に好適に適用されるものであり、特にはスペクトル型フローサイトメータに好適に適用できる。
1:励起光、11:光源、12:対物レンズ、2:散乱光、21:集光レンズ、22:分光素子、23:分光素子、3:蛍光、31:分光素子、31a,31b,31c:波長選択素子、32,32a,32b,32c:蛍光検出器、4:P偏光成分、41:P偏光検出器、5:S偏光成分、51:S偏光検出器、52:非点収差素子、C:流路、L:ラミナーフロー、P:微小粒子、S:レーザスポット

Claims (19)

  1.  流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、
    前記微小粒子の位置情報を取得可能な位置検出手順と、
    前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、
    微小粒子測定装置におけるデータ補正方法。
  2.  前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得する請求項1記載のデータ補正方法。
  3.  前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得する請求項2記載のデータ補正方法。
  4.  前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる請求項3記載のデータ補正方法。
  5.  前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、
    前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得する請求項4記載のデータ補正方法。
  6.  前記位置検出手順において、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得する請求項5記載のデータ補正方法。
  7.  前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正する請求項6記載のデータ補正方法。
  8.  前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出する請求項6記載のデータ補正方法。
  9.  前記検出器として、4分割フォトダイオードを用いる請求項7記載のデータ補正方法。
  10.  流路を通流する微小粒子に光を照射する光照射部と、
    前記微小粒子から発生する光を検出する光検出部と、
    前記微小粒子の位置情報を取得する位置検出部と、
    前記光検出部により取得された前記微小粒子から発生する光の強度情報を、前記位置情報に基づいて補正する演算部と、を備える微小粒子測定装置。
  11.  前記位置検出部は、
    前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、
    前記S偏光成分を受光するS偏光検出器と、
    前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、
    前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得する請求項10記載の微小粒子測定装置。
  12.  前記S偏光検出器の受光面が複数領域に分割されている請求項11記載の微小粒子測定装置。
  13.  前記S偏光検出器の受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されている請求項12記載の微小粒子測定装置。
  14.  前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、
    前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、
    に基づいて前記強度情報を補正する請求項13記載の微小粒子測定装置。
  15.  前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、
    前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、
    が所定範囲内である前記微小粒子の前記強度情報のみを抽出する請求項13記載の微小粒子測定装置。
  16.  前記S偏光検出器が4分割フォトダイオードである請求項14記載の微小粒子測定装置。
  17.  前記非点収差素子がシリンドリカルレンズである請求項16記載の微小粒子測定装置。
  18.  前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、
    前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有する請求項17記載の微小粒子測定装置。
  19.  前記光検出部に、前記蛍光を分光する第三分光素子を有し、
    前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている請求項18記載の微小粒子測定装置。
PCT/JP2013/060164 2012-06-06 2013-04-03 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 WO2013183345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/404,196 US10371632B2 (en) 2012-06-06 2013-04-03 Data correction method in fine particle measuring device and fine particle measuring device
CN201380028501.4A CN104321635B (zh) 2012-06-06 2013-04-03 微粒测量装置中的数据校正方法和微粒测量装置
JP2014519863A JP6206404B2 (ja) 2012-06-06 2013-04-03 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置
EP13800843.8A EP2860511B1 (en) 2012-06-06 2013-04-03 Data correction method in fine particle measuring device and fine particle measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012129080 2012-06-06
JP2012-129080 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183345A1 true WO2013183345A1 (ja) 2013-12-12

Family

ID=49711746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060164 WO2013183345A1 (ja) 2012-06-06 2013-04-03 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置

Country Status (5)

Country Link
US (1) US10371632B2 (ja)
EP (1) EP2860511B1 (ja)
JP (2) JP6206404B2 (ja)
CN (2) CN104321635B (ja)
WO (1) WO2013183345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677826A (zh) * 2015-01-22 2015-06-03 中国农业大学 一种高度校正系统及方法
WO2017191699A1 (ja) 2016-05-06 2017-11-09 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報処理システム
JPWO2019031048A1 (ja) * 2017-08-08 2020-07-02 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP2023517238A (ja) * 2020-03-16 2023-04-24 イングラン, エルエルシー 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889603B1 (en) 2012-10-15 2018-08-01 Sony Corporation Microparticle measuring device
BE1022048B1 (nl) 2014-04-11 2016-02-10 Ugentec Bvba Methoden voor fluorescentie data correctie
KR102356454B1 (ko) * 2015-02-17 2022-01-27 삼성전자주식회사 이중 커플러 소자, 상기 이중 커플러를 포함하는 분광기, 및 상기 분광기를 포함하는 비침습형 생체 센서
WO2017090210A1 (ja) * 2015-11-27 2017-06-01 株式会社ニコン 顕微鏡、観察方法、及び画像処理プログラム
CN105891066A (zh) * 2016-04-11 2016-08-24 中国计量学院 一种颗粒粒度检测装置及检测方法
CN107290253B (zh) * 2017-06-27 2019-06-04 迈克医疗电子有限公司 样本检测数据的处理方法及装置
CN111602052B (zh) 2018-04-28 2021-10-12 深圳迈瑞生物医疗电子股份有限公司 一种血液检测方法及血液分析系统
WO2020017183A1 (ja) * 2018-07-20 2020-01-23 ソニー株式会社 微小粒子測定用スペクトロメータ、該微小粒子測定用スペクトロメータを用いた微小粒子測定装置及び微小粒子測定用光電変換システムの校正方法
US20220146469A1 (en) * 2019-03-13 2022-05-12 Shimadzu Corporation Liquid chromatograph
DE102019209213A1 (de) * 2019-06-26 2020-12-31 Q.ant GmbH Sensoranordnung zur Charakterisierung von Partikeln

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129738A (ja) * 1984-07-20 1986-02-10 Canon Inc 粒子解析装置及び粒子解析方法
JPH02304333A (ja) * 1989-05-18 1990-12-18 Hitachi Ltd 流動細胞分析装置
JPH09166541A (ja) 1995-12-18 1997-06-24 Sumitomo Electric Ind Ltd 流動粒子分析装置
JP2009162650A (ja) * 2008-01-08 2009-07-23 Sony Corp 光学的測定装置
JP2009244080A (ja) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置
JP2011149822A (ja) 2010-01-21 2011-08-04 Sony Corp 光学的測定装置及び光学的測定方法
JP2012047464A (ja) * 2010-08-24 2012-03-08 Sony Corp 微小粒子測定装置及び光軸補正方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643566A (en) 1984-07-20 1987-02-17 Canon Kabushiki Kaisha Particle analyzing apparatus
US5258791A (en) * 1990-07-24 1993-11-02 General Electric Company Spatially resolved objective autorefractometer
US5436464A (en) * 1992-04-13 1995-07-25 Nikon Corporation Foreign particle inspecting method and apparatus with correction for pellicle transmittance
JP3805565B2 (ja) * 1999-06-11 2006-08-02 株式会社日立製作所 電子線画像に基づく検査または計測方法およびその装置
US20140226158A1 (en) * 2004-03-06 2014-08-14 Michael Trainer Methods and apparatus for determining particle characteristics
US20090323061A1 (en) * 2006-02-28 2009-12-31 Lukas Novotny Multi-color hetereodyne interferometric apparatus and method for sizing nanoparticles
JP4504946B2 (ja) * 2006-05-16 2010-07-14 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP4509163B2 (ja) 2007-10-26 2010-07-21 ソニー株式会社 微小粒子の測定方法
JP4489146B2 (ja) 2008-02-07 2010-06-23 三井造船株式会社 蛍光検出装置及び蛍光検出方法
JP5272823B2 (ja) * 2009-03-17 2013-08-28 ソニー株式会社 焦点情報生成装置及び焦点情報生成方法
JP5016705B2 (ja) * 2009-06-09 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. 流体ハンドリング構造
JP2012026754A (ja) * 2010-07-20 2012-02-09 Sony Corp 微小粒子測定装置及び光照射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129738A (ja) * 1984-07-20 1986-02-10 Canon Inc 粒子解析装置及び粒子解析方法
JPH02304333A (ja) * 1989-05-18 1990-12-18 Hitachi Ltd 流動細胞分析装置
JPH09166541A (ja) 1995-12-18 1997-06-24 Sumitomo Electric Ind Ltd 流動粒子分析装置
JP2009162650A (ja) * 2008-01-08 2009-07-23 Sony Corp 光学的測定装置
JP2009244080A (ja) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置
JP2011149822A (ja) 2010-01-21 2011-08-04 Sony Corp 光学的測定装置及び光学的測定方法
JP2012047464A (ja) * 2010-08-24 2012-03-08 Sony Corp 微小粒子測定装置及び光軸補正方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677826A (zh) * 2015-01-22 2015-06-03 中国农业大学 一种高度校正系统及方法
CN104677826B (zh) * 2015-01-22 2017-11-24 中国农业大学 一种高度校正系统及方法
WO2017191699A1 (ja) 2016-05-06 2017-11-09 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報処理システム
JPWO2019031048A1 (ja) * 2017-08-08 2020-07-02 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP7010293B2 (ja) 2017-08-08 2022-01-26 ソニーグループ株式会社 情報処理装置、情報処理方法及びプログラム
US11561161B2 (en) 2017-08-08 2023-01-24 Sony Corporation Information processing apparatus, information processing method, and program
JP2023517238A (ja) * 2020-03-16 2023-04-24 イングラン, エルエルシー 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法
JP7416972B2 (ja) 2020-03-16 2024-01-17 イングラン, エルエルシー 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法

Also Published As

Publication number Publication date
US20150112627A1 (en) 2015-04-23
CN104321635A (zh) 2015-01-28
CN104321635B (zh) 2018-06-05
JP2018025559A (ja) 2018-02-15
EP2860511B1 (en) 2020-02-19
CN108593529A (zh) 2018-09-28
EP2860511A1 (en) 2015-04-15
JP6428883B2 (ja) 2018-11-28
JP6206404B2 (ja) 2017-10-04
JPWO2013183345A1 (ja) 2016-01-28
EP2860511A4 (en) 2016-01-27
US10371632B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6428883B2 (ja) 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置
JP6299600B2 (ja) 微小粒子測定装置
USRE49543E1 (en) Fine particle measuring apparatus
JP5381741B2 (ja) 光学的測定装置及び光学的測定方法
JP6274104B2 (ja) 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置
JP2012047464A (ja) 微小粒子測定装置及び光軸補正方法
KR20170052256A (ko) 라만 산란을 이용한 물질의 농도 측정 장치 및 방법
WO2019021621A1 (ja) 試料観察装置及び試料観察方法
US20220107271A1 (en) Microparticle analysis device, analysis device, analysis program, and microparticle analysis system
JP2021121803A (ja) 微小粒子測定システム及び微小粒子測定方法
JP2021051074A (ja) 分光分析装置
JP2009250900A (ja) 表面プラズモンセンサー
JP6350626B2 (ja) データ解析方法
JP5274031B2 (ja) 分析方法および分析装置
JP2005055299A (ja) 微粒子計測装置及び計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519863

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013800843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404196

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE