WO2013183345A1 - 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 - Google Patents
微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 Download PDFInfo
- Publication number
- WO2013183345A1 WO2013183345A1 PCT/JP2013/060164 JP2013060164W WO2013183345A1 WO 2013183345 A1 WO2013183345 A1 WO 2013183345A1 JP 2013060164 W JP2013060164 W JP 2013060164W WO 2013183345 A1 WO2013183345 A1 WO 2013183345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microparticles
- light
- detector
- region
- fluorescence
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 239000010419 fine particle Substances 0.000 title claims abstract description 71
- 238000012937 correction Methods 0.000 title claims abstract description 67
- 238000001514 detection method Methods 0.000 claims abstract description 92
- 238000005259 measurement Methods 0.000 claims abstract description 53
- 239000011859 microparticle Substances 0.000 claims description 160
- 230000010287 polarization Effects 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 24
- 201000009310 astigmatism Diseases 0.000 claims description 19
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 22
- 238000001228 spectrum Methods 0.000 abstract description 16
- 210000004027 cell Anatomy 0.000 description 19
- 238000002189 fluorescence spectrum Methods 0.000 description 18
- 230000005284 excitation Effects 0.000 description 17
- 239000002245 particle Substances 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000011324 bead Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 3
- 0 C[C@]1CC[C@@](*)CC1 Chemical compound C[C@]1CC[C@@](*)CC1 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N CC1CCCC1 Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 108700041286 delta Proteins 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N2015/1415—Control of particle position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
Definitions
- the present technology relates to a data correction method and a fine particle measuring device in the fine particle measuring device. More specifically, the present invention relates to a data correction method for correcting measurement errors caused by variations in the flow positions of microparticles in flow paths formed in a flow cell, a microchip, and the like in a microparticle measurement apparatus.
- a laminar flow containing microparticles (also referred to as a sheath flow) is formed in a flow channel formed in a flow cell and a microchip, and the fluorescence generated from the microparticles by irradiating the microparticles in the laminar flow with light.
- a microparticle measuring apparatus that detects scattered light is known. For example, in a flow cytometer, the optical properties of microparticles such as cells and beads can be measured and analyzed based on the intensity or spectrum of the detected fluorescence or scattered light.
- the laminar flow is formed so that microparticles flow almost in the center of the flow path in the microparticle measurement device, the flow positions of individual microparticles in the flow path vary. Measurement error due to the problem becomes a problem. In order to shorten the measurement time, the dispersion of the flow position of the microparticles in the flow channel and the measurement error caused by this change the flow rate of the sample liquid laminar flow containing the microparticles in the laminar flow. In particular, when it increases, it becomes large.
- the optical positional relationship between the microparticles, the light irradiation system for the microparticles, and the fluorescence and scattered light detection systems generated from the microparticles is very small. Deviation between particles. As a result, a measurement error due to an optical position shift occurs in the intensity and spectrum of the fluorescence and scattered light detected by each microparticle.
- Patent Document 1 and Patent Document 2 disclose techniques for suppressing measurement errors due to variations in the flow positions of such fine particles.
- detection light sintered light
- detection light scattered light
- side scattered light or back scattered light through a light splitter
- a position shift between the center of the excitation light and the center of the sheath flow is detected from the detection position, and the position of the flow cell is adjusted so that the position shift falls within a predetermined range.
- Patent Document 2 describes a technique for detecting the position information of the microparticles using the change in deflection angle generated in the scattered light generated from the microparticles and adjusting the position of the flow cell or the focal position of the excitation light. Yes.
- the measurement error due to the variation in the flow position of the fine particles becomes a problem even when the fluorescence generated from the fine particles is measured as a spectrum.
- the fluorescence generated from the fine particles is dispersed using a spectroscopic element such as a prism and a grating mirror. Then, the dispersed fluorescence is detected by a light receiving element array in which PMTs and photodiodes are arranged one-dimensionally, or a two-dimensional light receiving element such as a CCD and a CMOS.
- the wavelength range of the fluorescence incident on one of a plurality of independent detection channels arranged in the light receiving element array or the two-dimensional light receiving element is changed between the microparticles. May shift.
- the wavelength range of the fluorescence projected from the microparticle k with respect to the detection channel n is ⁇ k to ⁇ k + 1
- the microparticle l having a flow position in the channel different from the microparticle k The wavelength range of the fluorescence projected from ⁇ 1 to ⁇ l + 1 becomes ( ⁇ k , ⁇ k + 1 ) and ( ⁇ l , ⁇ l + 1 ) values may be different.
- a measurement error due to a shift in the wavelength range of the fluorescence incident on the detection channel n occurs in the fluorescence spectrum detected by each microparticle.
- the present technology provides a technology that can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
- the main purpose can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
- the present technology is capable of detecting light generated from the microparticles by irradiating the microparticles flowing through the flow path with light, and detecting the intensity information of the light
- a data correction method in a microparticle measuring apparatus which includes a position detection procedure capable of acquiring position information of microparticles, and a correction procedure for correcting the intensity information based on the position information.
- the position detection procedure as the position information, the position information of the microparticles in the X-axis direction that is the irradiation direction of light to the microparticles and / or the flow direction of the microparticles.
- an S-polarized component separated from scattered light generated from the microparticles and given astigmatism is received by a detector, and the S-polarized component of the detector is detected.
- a light receiving position may be acquired as the position information.
- a detector in which a light receiving surface is divided into a plurality of regions may be used as the detector. More specifically, a detector in which the light receiving surface is divided into four regions of region A, region B, region C, and region D is used as the detector.
- the position information of the microparticles in the Z-axis direction may be acquired from the difference ⁇ 1 (AC) of the detection values between the region A and the region C not adjacent to the region A. Further, from the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) of the detection values of the region A and the region C and the sum (B + D) of the detection values of the region B and the region D, You may acquire the said positional information on the said microparticle in the said X-axis direction. In this data correction method, the intensity information may be corrected based on the difference ⁇ 1 and / or the difference ⁇ 2 in the correction procedure.
- the correction procedure only the intensity information of the microparticles in which the difference ⁇ 1 and / or the difference ⁇ 2 is within a predetermined range may be extracted.
- the correction procedure includes: The spectrum information can be corrected based on the position information.
- the present technology provides a light irradiation unit that irradiates light to the microparticles flowing through the flow path, a light detection unit that detects light generated from the microparticles, and a position detection that acquires positional information of the microparticles.
- a microparticle measurement apparatus comprising: a unit; and a calculation unit that corrects intensity information of light generated from the microparticles acquired by the light detection unit based on the position information.
- the position detection unit includes a first spectroscopic element that separates scattered light generated from the fine particles into an S-polarized component and a P-polarized component, and an S-polarized light detector that receives the S-polarized component.
- the S-polarized light detector may have a light receiving surface divided into a plurality of regions and may be divided into four regions of region A, region B, region C, and region D in a lattice pattern.
- the calculation unit includes a difference ⁇ 1 (AC) of a detection value between the region A and the region C not adjacent to the region A, and / or the region A and the region.
- the intensity information is corrected based on the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum of detected values of C (A + C) and the sum of detected values of the regions B and D (B + D). May be.
- the calculation unit may calculate a difference ⁇ 1 (AC) between the detection values of the region A and the region C not adjacent to the region A and / or the detection values of the region A and the region C. Only the intensity information of the microparticles in which the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) and the sum of detected values of the region B and the region D (B + D) is within a predetermined range May be extracted.
- the microparticle measurement apparatus includes a second spectroscopic element that separates the light generated from the microparticles into the scattered light and fluorescence, and a P-polarization detector that detects the P-polarization component in the light detection unit; A fluorescence detector for detecting the fluorescence.
- the microparticle measurement apparatus includes a third spectroscopic element that separates the fluorescence in the light detection unit, and the fluorescence detector detects a plurality of the fluorescence separated by the third spectroscopic element. Independent light receiving elements may be arranged.
- the “intensity information” includes information on the wavelength range of fluorescence detected from a certain minute particle and the intensity of fluorescence in the wavelength range. More specifically, in the “intensity information”, when the fluorescence generated from a certain minute particle is guided to the light receiving element and detected, the wavelength range of the fluorescence incident on the light receiving element, and the fluorescence within the wavelength range Contains information about the strength of the. Therefore, “correction of intensity information” specifically refers to the incident fluorescence wavelength region to a light receiving element and / or the fluorescence intensity in the wavelength region of a certain minute particle based on the position information of the minute particle. It means to correct.
- microparticles widely include living body-related microparticles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
- Biologically relevant microparticles include chromosomes, liposomes, mitochondria, organelles (organelles) that constitute various cells.
- Cells include animal cells (such as blood cells) and plant cells.
- Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
- biologically relevant microparticles may include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
- the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
- Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethyl methacrylate, and the like.
- Inorganic polymer materials include glass, silica, magnetic materials, and the like.
- Metals include gold colloid, aluminum and the like.
- the shape of these fine particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
- This technology provides a technology that can effectively correct measurement errors caused by variations in the flow position of minute particles in the flow path, and can measure the intensity and spectrum of fluorescence and scattered light with high accuracy.
- FIG. It is a figure for demonstrating the structure of the measurement part of the microparticle measuring apparatus which concerns on this technique. It is a figure for demonstrating the structure of the light-receiving surface of the S polarization detector 51.
- FIG. It is a figure for demonstrating the laminar flow L which flows through the flow path C, and the laser spot S of the excitation light 1 irradiated to the microparticle P in the laminar flow L.
- FIG. A graph illustrating changes in the peak wavelength (A) and peak intensity (B) of fluorescence 3 calculated based on the detection result of the fluorescence detector 32 when the flow position of the microparticles P is moved in the Z-axis direction. It is.
- the relationship between the difference ⁇ 1 when the flow position of the fine particle P is moved in the Z-axis direction and the peak wavelength (A) and peak intensity (B) of the fluorescence 3 calculated based on the detection result of the fluorescence detector 32 is shown. It is a graph to illustrate. A graph illustrating changes in the peak wavelength (A) and peak intensity (B) of fluorescence 3 calculated based on the detection result of the fluorescence detector 32 when the flow position of the microparticles P is moved in the X-axis direction. It is. It is a graph which illustrates the change of difference delta 1 and difference delta 2 when the flow position of fine particle P is moved to the direction of the X-axis.
- FIG. 1 is a diagram illustrating the configuration of the measuring unit of the microparticle measuring device according to the present technology.
- the fine particle measuring apparatus according to the present technology is generally composed of a measuring unit shown in the figure and a calculation unit (not shown).
- the measurement unit includes a light irradiation unit that irradiates the microparticles P flowing through the flow path C with the excitation light 1, a light detection unit that detects the scattered light 2 and the fluorescence 3 generated from the microparticles P, and the microparticles P.
- a position detecting unit that acquires position information.
- the light irradiation unit collects the excitation light 1 with respect to the light source 11 that emits the excitation light 1 and the fine particles P that flow through the flow path C formed in the flow cell and the microchip. And an objective lens 12 that emits light.
- the light source 11 is appropriately selected from a laser diode, an SHG (Second Harmonic Generation) laser, a solid-state laser, a gas laser, a high-intensity LED (Light Emitting Diode), and the like according to the purpose of measurement.
- Optical elements other than the light source 11 and the objective lens 12 may be arranged in the light irradiation unit as necessary.
- the light detection unit includes the condenser lens 21, the spectroscopic element 22, the spectroscopic element 31, a fluorescence detector 32, and a P polarization detector 41.
- the condensing lens 11 condenses the scattered light 2 and the fluorescence 3 generated from the fine particles P irradiated with the excitation light 1.
- the scattered light 2 may be various kinds of scattered light such as forward scattered light, side scattered light, Rayleigh scattering, and Mie scattering.
- the fluorescence 3 may be fluorescence generated from the microparticles P themselves or fluorescence generated from a fluorescent substance labeled on the microparticles P.
- the spectroscopic element 22 separates the scattered light 2 and the fluorescence 3 collected by the condenser lens 11.
- the spectroscopic element 22 uses a dichroic mirror that reflects only light of a specific wavelength and transmits other wavelength components. In the microparticle measuring apparatus according to the present embodiment, the scattered light 2 is reflected, and the fluorescence 3 Is used.
- the spectroscopic element 31 is a prism, a grating mirror, or the like, and further splits the fluorescence 3 separated by the spectroscopic element 22 and projects it onto the fluorescence detector 32.
- the fluorescence detector 32 detects the fluorescence 3 separated by the spectroscopic element 22.
- a plurality of independent light receiving elements are arranged in the fluorescence detector 32, and each light receiving element detects light in a wavelength region that is spectrally projected from the spectroscopic element 31 and projected from the fluorescence 3.
- a PMT array in which 32-channel PMTs (photo ⁇ ⁇ ⁇ ⁇ multiplier tubes) are arranged one-dimensionally as light receiving elements is used as the fluorescence detector 32.
- the fluorescence detector 32 converts the detected intensity information of the fluorescence 3 into an electrical signal and outputs it to the calculation unit.
- a photodiode array or a two-dimensional light receiving element such as a CCD and a CMOS may be used.
- the fluorescence 3 generated from the fine particles P can be acquired as a spectrum (see FIG. 11 described later).
- the P polarization detector 41 detects the P polarization component 4 contained in the scattered light 2 separated by the spectroscopic element 22.
- the P polarization detector 41 for example, a PD (Photo diode), a CCD (Charge Coupled Device), or a PMT (Photo-Multiplier Tube) can be used.
- the P-polarized light detector 41 converts the detected intensity information of the P-polarized component 4 into an electric signal and outputs it to the calculation unit. From the intensity information of the P-polarized component 4, analysis on the size, internal structure and the like of the microparticle P can be performed.
- the position detection unit includes the spectroscopic element 23, the S polarization detector 51, and the astigmatism element 52.
- the spectroscopic element 23 separates incident non-polarized light into two polarized lights whose vibration directions are orthogonal to each other, and separates the scattered light 2 separated by the spectroscopic element 22 into a P-polarized component 4 and an S-polarized component 5. . Specifically, the spectroscopic element 23 transmits the P polarization component 4 and reflects the S polarization component 5 of the incident scattered light 2.
- the S polarization detector 51 detects the S polarization component 5 separated by the spectroscopic element 23, and its light receiving surface is divided into a plurality of regions.
- a quadrant photodiode in which the light receiving surface is divided into four regions of region A, region B, region C, and region D is used. Yes.
- the astigmatism element 52 is a cylindrical lens disposed between the spectroscopic element 23 and the S-polarized light detector 51, and gives astigmatism to the S-polarized light component 5 transmitted toward the S-polarized light detector 51.
- the position detection unit acquires the light receiving position (imaging pattern) on the light receiving surface of the polarization detector 51 of the S-polarized component 5 in which astigmatism has occurred as position information of the microparticles P, and outputs it to the calculation unit.
- the light receiving position (imaging pattern) of the S polarization component 5 on the light receiving surface of the polarization detector 51 will be described in detail later.
- the arithmetic unit calculates the intensity information of the fluorescence 3 and the P-polarized component 4 input from the fluorescence detector 32 and the P-polarized light detector 41 of the light detection unit, and the minute particles P input from the position detection unit. A correction process is performed based on the position information.
- the calculation unit includes a hard disk, a CPU, a memory, and the like in which a program for executing this processing and an OS are stored.
- FIG. 3A shows a laminar flow L that flows through the flow path C and a laser spot S of the excitation light 1 that is irradiated onto the fine particles P in the laminar flow L.
- the irradiation direction of the excitation light 1 with respect to the fine particles P is the X-axis direction
- the liquid feeding direction of the laminar flow L is the Y-axis direction
- the X-axis direction and the direction perpendicular to the Y-axis direction are the Z-axis direction.
- the laminar flow L is formed so that the fine particles P flow in the approximate center of the flow path C, but the flow positions of the fine particles P vary in the Z-axis direction.
- the intensity of the laser spot S takes a Gaussian distribution (B) or a top flat distribution (C) as shown in FIGS. 3B and 3C, and is highest at the center and low at the periphery in the Z-axis direction.
- the irradiation intensity of the fine particle P by the excitation light 1 is the highest. Get higher.
- the irradiation of the fine particle P with the excitation light 1 is performed. Strength is lower. Accordingly, the irradiation intensity of the excitation light 1 is different between the microparticles P, and the intensity of the scattered light 2 and the fluorescence 3 generated from the microparticles P is also different, which causes a measurement error.
- the top flat optical system of FIG. 3C is designed so that the change in irradiation intensity due to the position shift is small near the center of the laminar flow L, the influence is small as compared with the Gaussian optical system of FIG. 3B. A similar measurement error also occurs due to variations in the flow position of the fine particles P in the X-axis direction.
- the shift of the optical position between the microparticle P and the light irradiation unit due to the variation in the flow position of the microparticle P causes the wavelength range of the fluorescence 3 incident on each of the PMTs 1 to 32 of the fluorescence detector 32 to shift between the microparticles P. It becomes a factor.
- the detection channel k when the wavelength range of the fluorescence 3 projected from the fine particles P k is ⁇ k ⁇ ⁇ k + 1, flowing position in the channel C and the fine particles P k
- the wavelength range of the fluorescence 3 projected from the different microparticles P 1 becomes ⁇ l to ⁇ l + 1 , and the values of ( ⁇ k , ⁇ k + 1 ) and ( ⁇ l , ⁇ l + 1 ) may be different.
- a measurement error due to a shift in the wavelength range of the fluorescence 3 incident on the detection channel k occurs in the fluorescence spectrum detected by each microparticle P (see FIG. 5 described later).
- the calculation unit calculates the measurement error caused by the variation in the intensity of the fluorescence 3 caused by the variation in the flow position of the fine particles P and the variation in the wavelength range of the fluorescence 3 incident on each PMT of the fluorescence detector 32. Is corrected based on the position information of the fine particles P.
- the calculation unit first obtains a difference in detection values between a plurality of regions provided on the light receiving surface of the S polarization detector 51. Specifically, the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) for the detection values in the regions A, B, C, and D of the quadrant photodiode shown in FIG. Take.
- the fine particle P indicates the center position of the laser spot S in FIG. 3A.
- the imaging pattern is a solid line in FIG. It becomes the image shown by.
- the imaging pattern of the S-polarized component 5 changes corresponding to the flow position of the fine particles P, and the ratio of the S-polarized component 5 projected onto the areas A to D corresponds to the flow position of the fine particles P. And change. For this reason, the pattern of detection values of the S-polarized component 5 in the regions A to D directly reflects the flow position of the microparticles P.
- the present inventors can acquire the positional information of the microparticles P in the Z-axis direction in FIG. 3A from the difference ⁇ 1 (AC), and from the difference ⁇ 2 ((A + C) ⁇ (B + D)) in FIG. It has been found that the position information of the microparticles P in the axial direction can be acquired.
- the fine particles P increase as the movement amount increases as shown in FIG.
- the intensity decreases, the dispersion increases, and the shape of the fluorescence spectrum also changes.
- the horizontal axis represents wavelength
- the vertical axis represents intensity (fluorescence intensity per wavelength)
- the frequency is represented by a color scale.
- the numbers at the top of the graph indicate the amount of movement of the stepping motor by the number of pulses.
- an average spectrum is calculated for the fluorescence spectrum measured as shown in FIG. 5B, smoothed by the kernel smoothing method, and the maximum and maximum values are obtained for the resulting curve.
- the wavelength was acquired.
- the relationship between the pulse movement amount and the fluorescence peak wavelength is plotted in FIG. 4A
- the relationship between the pulse movement amount and the fluorescence peak intensity is plotted in FIG. 4B. It is.
- the horizontal axis indicates the amount of pulse movement
- the vertical axis indicates the fluorescence peak wavelength in FIG. 4A and the fluorescence intensity in FIG. 4B. From these results, it can be confirmed that the peak wavelength and intensity of the fluorescence spectrum detected by the positional deviation of the microparticles P in the Z-axis direction change.
- FIG. 6 shows changes in the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the Z-axis direction by the stepping motor.
- the difference ⁇ 1 changes in correlation with the movement amount. From this, it can be seen that the positional information of the microparticles P in the Z-axis direction can be obtained from the difference ⁇ 1 (AC).
- FIG. 7 shows the relationship between the difference ⁇ 1 (AC) and the peak wavelength and peak intensity of the detected fluorescence spectrum.
- the difference ⁇ 1 (AC) as the position information of the microparticles P in the Z-axis direction, the wavelength and intensity distortion of the fluorescence 3 incident on the PMT caused by the position shift in the Z-axis direction can be corrected. Is possible.
- FIG. 8 shows the result of analyzing the fluorescence spectrum when the flow cell is moved in the X-axis direction by the same method as in FIG. 4.
- FIG. 8A shows the result when the flow cell is moved in the X-axis direction by a stepping motor.
- FIG. 8B shows the relationship between the amount of movement and the fluorescence peak wavelength
- FIG. 8B shows the relationship between the amount of movement and the fluorescence peak intensity.
- the horizontal axis in FIG. 8 indicates the amount of movement of the stepping motor by the number of pulses. From the figure, it can be seen that for the movement of the flow cell in the X direction, the change in the fluorescence peak wavelength is small compared to the Z-axis direction, but the fluorescence peak intensity changes greatly.
- FIG. 9 shows changes in the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the X-axis direction by the stepping motor.
- the difference ⁇ 2 changes in correlation with the movement amount. From this, it can be seen that the positional information of the microparticles P in the X-axis direction can be obtained from the difference ⁇ 2 ((A + C) ⁇ (B + D)).
- the calculation unit uses the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) described above as the position information of the microparticles P, and uses the intensity information of the fluorescence 3 and the P polarization component 4.
- the correction process is performed.
- the correction process is performed by creating a regression curve from the relationship shown in FIGS. 7 and 10 and correcting the intensity information according to the values of the differences ⁇ 1 and ⁇ 2 using a calibration formula representing the regression curve. Is called.
- the differences ⁇ 1 and ⁇ 2 are acquired as position information together with the intensity information of the fluorescence 3. Then, for each microparticle P, using the above calibration calculation formula, the amount of distortion of the fluorescence wavelength and the fluorescence intensity caused by the deviation of the flow position of the microparticle P is calculated from the values of the differences ⁇ 1 and ⁇ 2, Correct the amount of distortion.
- the distortion amount (change amount) of the wavelength range of the fluorescence 3 incident on each PMT of the fluorescence detector 32 is calculated from the values of the differences ⁇ 1 and ⁇ 2, and each PMT is detected by the calculated distortion amount. This is done by shifting the wavelength range.
- the correction of the fluorescence intensity is performed by calculating a distortion rate (change rate) of the intensity value of the fluorescence 3 incident on each PMT from the values of the differences ⁇ 1 and ⁇ 2, and dividing the intensity value of each PMT by the calculated distortion rate.
- FIG. 11 shows an example of the fluorescence spectrum before and after correction.
- FIG. 11A shows a spectrum chart before correction, where the horizontal axis indicates the wavelength, the vertical axis indicates the fluorescence intensity, and the color scale indicates the frequency.
- FIG. 11B shows the result of correcting the wavelength shift effect due to the positional shift using this difference ⁇ 1 for this data.
- the detection channel 10 (PMT10) of the fluorescence detector 32 is designed to detect fluorescence having a wavelength of 540.0 nm to 546.0 nm.
- a wavelength shift of 1.5 nm occurs in the detection wavelength range of the detection channel No. 10 from the value of the difference ⁇ 1 for a certain fine particle P.
- the correction deals with the measurement result of the detection channel 10 for the fine particle P as the measurement result in the wavelength range of 541.5 nm to 547.5 nm.
- the spectrum has a shape in which the dispersion is large and distorted due to the measurement error caused by the variation in the flow position of the fine particles P.
- the corrected B the spectrum has a smooth shape with small dispersion.
- regression curve and calibration calculation formula are preferably obtained before measurement of the microparticles P used as a sample by using calibration microbeads.
- the regression curve and the calibration calculation formula can be more simply obtained as follows.
- FIG. 12 illustrates a bead population surrounded by Gate1 and Gate2.
- a feature amount of the fluorescence spectrum is calculated for the extracted beads or a group thereof, and a regression curve and a calibration formula that relate the values of the differences ⁇ 1 and ⁇ 2 to the feature amount are obtained.
- the feature amount the peak wavelength and peak intensity of fluorescence incident on each PMT of the fluorescence detector 32 can be used.
- the difference ⁇ 1 and / or the above-described difference such as Gate1 and Gate2 shown in FIG.
- the microparticle measurement apparatus by acquiring the position information of each microparticle P and correcting the intensity information of the scattered light 2 and the fluorescence 3 of the microparticle P, It is possible to accurately measure the intensity and spectrum of the scattered light 2 and the fluorescence 3 by compensating the measurement error caused by the positional deviation of the fine particles P.
- a fluorescence spectrum having a smooth shape with small dispersion can be obtained, so that the fluorescence spectrum of the microparticle P as a sample can be more intuitively recognized, and the fluorescence spectrophotometer Data comparison with a fluorescence spectrum obtained using a meter or the like can be easily performed.
- the light detection unit is configured by combining the spectroscopic element 31 and the fluorescence detector 32 that is a light receiving element array or a two-dimensional light receiving element, An example in which the fluorescence 3 generated from the fine particles P is acquired as a spectrum has been described.
- the light detection unit uses a plurality of wavelength selection elements (here, three of reference numerals 31a, 31b, and 31c) to obtain a desired wavelength from the fluorescence 3, as shown in FIG.
- a configuration may be adopted in which only a region is selected and detected by a fluorescence detector (here, three reference numerals 32a, 32b, and 32c).
- a fluorescence detector here, three reference numerals 32a, 32b, and 32c.
- a dichroic mirror or the like that reflects only light in a specific wavelength range and transmits other light may be used.
- PD Photo diode
- CCD Charge Coupled Device
- PMT Photo-Multiplier Tube
- the combination of a wavelength selection element and a fluorescence detector is not restricted to three shown here, It can be made into 1 or 2 or more.
- a quadrant photodiode is used as the position detection unit, and an image is formed on the light receiving surface of the polarization detector 51 of the S-polarized light component 5 that causes astigmatism.
- the example which acquires a pattern (light reception position) as the positional information on the microparticle P was demonstrated.
- Data correction method and data correction program corresponds to the correction processing executed by the calculation unit of the above-described microparticle measurement apparatus.
- a data correction program for executing this data correction is stored in the calculation unit of the fine particle measuring apparatus.
- the program is stored and held in the hard disk, read into the memory under the control of the CPU and OS, and executes the above-described correction processing.
- the program can be recorded on a computer-readable recording medium.
- the recording medium is not particularly limited as long as it is a computer-readable recording medium. Specifically, for example, a disk-shaped recording medium such as a flexible disk or a CD-ROM is used. A tape-type recording medium such as a magnetic tape may be used.
- the data correction method in the microparticle measurement apparatus can also have the following configuration. (1) It is possible to detect light generated from the microparticles by irradiating the microparticles flowing through the flow path, and to obtain intensity information of the light, and to acquire the position information of the microparticles.
- a data correction method in a microparticle measurement apparatus comprising: a possible position detection procedure; and a correction procedure for correcting the intensity information based on the position information.
- the position information the position information of the microparticles in the X-axis direction that is the irradiation direction of light to the microparticles and / or the Y-axis that is the flow direction of the microparticles
- the data correction method according to (1) wherein position information of the microparticles in the Z-axis direction perpendicular to the direction and the X-axis direction is acquired.
- the S-polarized component separated from the scattered light generated from the microparticles and given astigmatism is received by a detector, and the light-receiving position of the S-polarized component in the detector is determined.
- the data correction method according to (1) or (2) which is acquired as the position information.
- the microparticle measuring apparatus can also be configured as follows. (1) a light irradiation unit that irradiates light to the microparticles flowing through the flow path, a light detection unit that detects light generated from the microparticles, a position detection unit that acquires position information of the microparticles, A microparticle measurement apparatus comprising: an arithmetic unit that corrects intensity information of light generated from the microparticles acquired by the light detection unit based on the position information.
- the position detection unit includes: a first spectroscopic element that separates scattered light generated from the microparticles into an S-polarized component and a P-polarized component; an S-polarized light detector that receives the S-polarized component; An astigmatism element that is disposed between one spectroscopic element and the S-polarization detector and gives astigmatism to the S-polarization component, and a light receiving position of the S-polarization component in the S-polarization detector.
- the fine particle measuring apparatus according to (1), wherein the position information is acquired.
- the microparticle measuring apparatus wherein the light receiving surface of the S-polarized light detector is divided into four regions of region A, region B, region C, and region D in a lattice shape.
- the calculation unit may detect a difference ⁇ 1 (AC) between the area A and the area C that is not adjacent to the area A, and / or a detection value between the area A and the area C.
- the intensity information is corrected based on the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum of the detected values (A + C) and the sum of the detected values of the regions B and D (B + D) (4)
- the calculation unit may detect a difference ⁇ 1 (AC) between the area A and the area C that is not adjacent to the area A, and / or a detection value between the area A and the area C.
- the intensity information of the microparticles in which the difference ⁇ 2 ((A + C) ⁇ (B + D)) between the sum (A + C) and the sum (B + D) of the detection values of the region B and the region D is within a predetermined range
- the microparticle measurement apparatus according to any one of (2) to (7), wherein the astigmatism element is a cylindrical lens.
- a second spectroscopic element that separates the light generated from the microparticles into the scattered light and fluorescence, and a P-polarization detector that detects the P-polarized component in the light detection unit, and the fluorescence is detected.
- the fine particle measuring device according to any one of (2) to (7), further comprising: (10) A plurality of independent light receiving elements that have a third spectroscopic element that splits the fluorescence in the light detection unit, and that detect the fluorescence split by the third spectroscopic element in the fluorescence detector.
- the microparticle measurement apparatus according to any one of the above (1) to (10), in which are arranged.
- the present technology it is possible to effectively correct measurement errors caused by variations in the flow positions of minute particles in the flow path, and to measure the intensity and spectrum of fluorescence and scattered light with high accuracy. Therefore, the present technology is preferably applied to a microparticle measuring apparatus for analyzing the optical characteristics of microparticles such as cells in more detail, and can be particularly preferably applied to a spectral flow cytometer.
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
このデータ補正方法では、前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得してもよい。
このデータ補正方法では、前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得してもよい。
このデータ補正方法では、前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いてもよい。より具体的には、前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用いる。そして、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得してもよい。また、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得してもよい。
このデータ補正方法では、前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正してもよい。あるいは、前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出してもよい。
このデータ補正方法の前記強度検出手順において、前記微小粒子から発生する前記光を複数の異なる波長域において検出し、前記強度情報を前記光のスペクトル情報として取得する場合には、前記補正手順では、このスペクトル情報を前記位置情報に基づいて補正することもできる。
この微小粒子測定装置において、前記位置検出部は、前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得してもよい。
この微小粒子測定装置において、前記S偏光検出器は、受光面が複数領域に分割されており、領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されていてもよい。
この微小粒子測定装置において、前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、に基づいて前記強度情報を補正してもよい。あるいは、前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、が所定範囲内である前記微小粒子の前記強度情報のみを抽出してもよい。
この微小粒子測定装置は、前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有していてもよい。
また、微小粒子測定装置は、前記光検出部に、前記蛍光を分光する第三分光素子を有し、前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されていてもよい。
1.微小粒子測定装置の構成
(1)測定部
(1-1)光照射部
(1-2)光検出部
(1-3)位置検出部
(2)演算部
2.微小粒子測定装置におけるデータ補正処理
(1)補正対象
(2)補正処理
3.変形例
(1)光検出部
(2)位置検出部
4.データ補正方法及びデータ補正プログラム
(1)測定部
図1は、本技術に係る微小粒子測定装置の測定部の構成を説明する図である。本技術に係る微小粒子測定装置は、大略、図に示される測定部と、不図示の演算部とから構成されている。測定部は、流路Cを通流する微小粒子Pに励起光1を照射する光照射部と、微小粒子Pから発生する散乱光2及び蛍光3を検出する光検出部と、微小粒子Pの位置情報を取得する位置検出部と、を含む。
光照射部は、励起光1を出射する光源11と、フローセル及びマイクロチップなどに形成された流路Cを通流する微小粒子Pに対して励起光1を集光する対物レンズ12とを含んで構成されている。光源11は、測定の目的に応じてレーザダイオード、SHG(Second Harmonic Generation)レーザ、固体レーザ、ガスレーザ及び高輝度LED(Light Emitting Diode:発光ダイオード)などから適宜選択される。光照射部には、必要に応じて、光源11及び対物レンズ12以外の光学素子が配されていてもよい。
光検出部は、集光レンズ21、分光素子22、分光素子31、蛍光検出器32とP偏光検出器41とを含んで構成されている。
位置検出部は、分光素子23、S偏光検出器51と非点収差素子52とを含んで構成されている。
演算部は、光検出部の蛍光検出器32及びP偏光検出器41から入力される蛍光3及びP偏光成分4の強度情報を、位置検出部から入力される微小粒子Pの位置情報に基づいて補正する処理を行う。演算部は、この処理を実行するためのプログラムとOSが格納されたハードディスク、CPU及びメモリなどにより構成される。
次に、演算部による蛍光3及びP偏光成分4の強度情報の補正処理について詳細に説明する。
図3Aに、流路Cを通流するラミナーフローLと、ラミナーフローL中の微小粒子Pに照射される励起光1のレーザスポットSを示す。図中、微小粒子Pに対する励起光1の照射方向をX軸方向、ラミナーフローLの送液方向をY軸方向、X軸方向及びY軸方向に垂直な方向をZ軸方向とする。
演算部は、微小粒子Pの通流位置がばらつくことによって生じる蛍光3の強度のばらつき及び蛍光検出器32の各PMTに入射する蛍光3の波長範囲のばらつきに起因した測定誤差を、微小粒子Pの位置情報に基づいて補正する処理を行う。
(1)光検出部
上述の実施形態に係る微小粒子測定装置では、分光素子31と、受光素子アレイ又は2次元受光素子とした蛍光検出器32とを組み合わせて光検出部を構成し、微小粒子Pから発生する蛍光3をスペクトルとして取得する例を説明した。本技術に係る微小粒子測定装置において、光検出部は、図13に示すように、複数の波長選択素子(ここでは符号31a、31b、31cの3つ)を用いて、蛍光3から所望の波長域のみを選択して蛍光検出器(ここでは符号32a、32b、32cの3つ)によって検出する構成であってもよい。波長選択素子31a、31b、31cには、特定の波長域の光のみを反射し、それ以外の光を透過するダイクロイックミラー等を使用すればよい。また、蛍光検出器32a、32b、32cには、PD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。なお、波長選択素子及び蛍光検出器の組み合わせはここで示した3つに限られず、1又は2以上とできる。
上述の実施形態に係る微小粒子測定装置では、位置検出部として4分割フォトダイオードを用い、非点収差を生じたS偏光成分5の偏光検出器51の受光面における結像パターン(受光位置)を微小粒子Pの位置情報として取得する例を説明した。本技術に係る微小粒子測定装置では、位置検出部に高速カメラを用いて、流路Cを通流する微小粒子Pを直接撮影し、画像処理によって微小粒子Pの位置情報を取得することも考えられる。
本技術に係るデータ補正方法は、上述の微小粒子測定装置の演算部によって実行される補正処理に対応するものである。また、微小粒子測定装置の演算部には、このデータ補正を実行するためのデータ補正プログラムが格納されている。
(1)流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、前記微小粒子の位置情報を取得可能な位置検出手順と、前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、微小粒子測定装置におけるデータ補正方法。
(2)前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得する上記(1)記載のデータ補正方法。
(3)前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得する上記(1)又は(2)記載のデータ補正方法。
(4)前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる上記(3)記載のデータ補正方法。
(5)前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得する上記(4)記載のデータ補正方法。
(6)前記位置検出手順において、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得する上記(5)記載のデータ補正方法。
(7)前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正する上記(6)記載のデータ補正方法。
(8)前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出する上記(6)記載のデータ補正方法。
(9)前記検出器として、4分割フォトダイオードを用いる上記(4)~(7)のいずれかに記載のデータ補正方法。
(1)流路を通流する微小粒子に光を照射する光照射部と、前記微小粒子から発生する光を検出する光検出部と、前記微小粒子の位置情報を取得する位置検出部と、前記光検出部により取得された前記微小粒子から発生する光の強度情報を、前記位置情報に基づいて補正する演算部と、を備える微小粒子測定装置。
(2)前記位置検出部は、前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得する上記(1)記載の微小粒子測定装置。
(3)前記S偏光検出器の受光面が複数領域に分割されている上記(2)記載の微小粒子測定装置。
(4)前記S偏光検出器の受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されている上記(3)記載の微小粒子測定装置。
(5)前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、に基づいて前記強度情報を補正する上記(4)記載の微小粒子測定装置。
(6)前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、が所定範囲内である前記微小粒子の前記強度情報のみを抽出する上記(4)記載の微小粒子測定装置。
(7)前記S偏光検出器が4分割フォトダイオードである上記(3)~(6)のいずれかに記載の微小粒子測定装置。
(8)前記非点収差素子がシリンドリカルレンズである上記(2)~(7)のいずれかに記載の微小粒子測定装置。
(9)前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有する上記(2)~(7)のいずれかに記載の微小粒子測定装置。
(10)前記光検出部に、前記蛍光を分光する第三分光素子を有し、前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている上記(1)~(10)のいずれかに記載の微小粒子測定装置。
Claims (19)
- 流路を通流する微小粒子に光を照射して該微小粒子から発生する光を検出可能で、該光の強度情報を取得する強度検出手順と、
前記微小粒子の位置情報を取得可能な位置検出手順と、
前記位置情報に基づいて前記強度情報を補正する補正手順と、を含む、
微小粒子測定装置におけるデータ補正方法。 - 前記位置検出手順において、前記位置情報として、前記微小粒子に対する光の照射方向であるX軸方向における前記微小粒子の位置情報、及び/又は、前記微小粒子の通流方向であるY軸方向と前記X軸方向とに垂直なZ軸方向における前記微小粒子の位置情報、を取得する請求項1記載のデータ補正方法。
- 前記位置検出手順において、前記微小粒子から発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置を前記位置情報として取得する請求項2記載のデータ補正方法。
- 前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる請求項3記載のデータ補正方法。
- 前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、
前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)から、前記Z軸方向における前記微小粒子の前記位置情報を取得する請求項4記載のデータ補正方法。 - 前記位置検出手順において、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))から、前記X軸方向における前記微小粒子の前記位置情報を取得する請求項5記載のデータ補正方法。
- 前記補正手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて前記強度情報を補正する請求項6記載のデータ補正方法。
- 前記補正手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲内である前記微小粒子の前記強度情報のみを抽出する請求項6記載のデータ補正方法。
- 前記検出器として、4分割フォトダイオードを用いる請求項7記載のデータ補正方法。
- 流路を通流する微小粒子に光を照射する光照射部と、
前記微小粒子から発生する光を検出する光検出部と、
前記微小粒子の位置情報を取得する位置検出部と、
前記光検出部により取得された前記微小粒子から発生する光の強度情報を、前記位置情報に基づいて補正する演算部と、を備える微小粒子測定装置。 - 前記位置検出部は、
前記微小粒子から発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、
前記S偏光成分を受光するS偏光検出器と、
前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、を有し、
前記S偏光検出器における前記S偏光成分の受光位置を前記位置情報として取得する請求項10記載の微小粒子測定装置。 - 前記S偏光検出器の受光面が複数領域に分割されている請求項11記載の微小粒子測定装置。
- 前記S偏光検出器の受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割されている請求項12記載の微小粒子測定装置。
- 前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、
前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、
に基づいて前記強度情報を補正する請求項13記載の微小粒子測定装置。 - 前記演算部は、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)、及び/又は、
前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))、
が所定範囲内である前記微小粒子の前記強度情報のみを抽出する請求項13記載の微小粒子測定装置。 - 前記S偏光検出器が4分割フォトダイオードである請求項14記載の微小粒子測定装置。
- 前記非点収差素子がシリンドリカルレンズである請求項16記載の微小粒子測定装置。
- 前記微小粒子から発生する前記光を前記散乱光と蛍光に分離する第二分光素子を備え、
前記光検出部に、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を有する請求項17記載の微小粒子測定装置。 - 前記光検出部に、前記蛍光を分光する第三分光素子を有し、
前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている請求項18記載の微小粒子測定装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/404,196 US10371632B2 (en) | 2012-06-06 | 2013-04-03 | Data correction method in fine particle measuring device and fine particle measuring device |
CN201380028501.4A CN104321635B (zh) | 2012-06-06 | 2013-04-03 | 微粒测量装置中的数据校正方法和微粒测量装置 |
JP2014519863A JP6206404B2 (ja) | 2012-06-06 | 2013-04-03 | 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 |
EP13800843.8A EP2860511B1 (en) | 2012-06-06 | 2013-04-03 | Data correction method in fine particle measuring device and fine particle measuring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012129080 | 2012-06-06 | ||
JP2012-129080 | 2012-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183345A1 true WO2013183345A1 (ja) | 2013-12-12 |
Family
ID=49711746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060164 WO2013183345A1 (ja) | 2012-06-06 | 2013-04-03 | 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10371632B2 (ja) |
EP (1) | EP2860511B1 (ja) |
JP (2) | JP6206404B2 (ja) |
CN (2) | CN104321635B (ja) |
WO (1) | WO2013183345A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104677826A (zh) * | 2015-01-22 | 2015-06-03 | 中国农业大学 | 一种高度校正系统及方法 |
WO2017191699A1 (ja) | 2016-05-06 | 2017-11-09 | ソニー株式会社 | 情報処理装置、情報処理方法、プログラム及び情報処理システム |
JPWO2019031048A1 (ja) * | 2017-08-08 | 2020-07-02 | ソニー株式会社 | 情報処理装置、情報処理方法及びプログラム |
JP2023517238A (ja) * | 2020-03-16 | 2023-04-24 | イングラン, エルエルシー | 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2889603B1 (en) | 2012-10-15 | 2018-08-01 | Sony Corporation | Microparticle measuring device |
BE1022048B1 (nl) | 2014-04-11 | 2016-02-10 | Ugentec Bvba | Methoden voor fluorescentie data correctie |
KR102356454B1 (ko) * | 2015-02-17 | 2022-01-27 | 삼성전자주식회사 | 이중 커플러 소자, 상기 이중 커플러를 포함하는 분광기, 및 상기 분광기를 포함하는 비침습형 생체 센서 |
WO2017090210A1 (ja) * | 2015-11-27 | 2017-06-01 | 株式会社ニコン | 顕微鏡、観察方法、及び画像処理プログラム |
CN105891066A (zh) * | 2016-04-11 | 2016-08-24 | 中国计量学院 | 一种颗粒粒度检测装置及检测方法 |
CN107290253B (zh) * | 2017-06-27 | 2019-06-04 | 迈克医疗电子有限公司 | 样本检测数据的处理方法及装置 |
CN111602052B (zh) | 2018-04-28 | 2021-10-12 | 深圳迈瑞生物医疗电子股份有限公司 | 一种血液检测方法及血液分析系统 |
WO2020017183A1 (ja) * | 2018-07-20 | 2020-01-23 | ソニー株式会社 | 微小粒子測定用スペクトロメータ、該微小粒子測定用スペクトロメータを用いた微小粒子測定装置及び微小粒子測定用光電変換システムの校正方法 |
US20220146469A1 (en) * | 2019-03-13 | 2022-05-12 | Shimadzu Corporation | Liquid chromatograph |
DE102019209213A1 (de) * | 2019-06-26 | 2020-12-31 | Q.ant GmbH | Sensoranordnung zur Charakterisierung von Partikeln |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6129738A (ja) * | 1984-07-20 | 1986-02-10 | Canon Inc | 粒子解析装置及び粒子解析方法 |
JPH02304333A (ja) * | 1989-05-18 | 1990-12-18 | Hitachi Ltd | 流動細胞分析装置 |
JPH09166541A (ja) | 1995-12-18 | 1997-06-24 | Sumitomo Electric Ind Ltd | 流動粒子分析装置 |
JP2009162650A (ja) * | 2008-01-08 | 2009-07-23 | Sony Corp | 光学的測定装置 |
JP2009244080A (ja) * | 2008-03-31 | 2009-10-22 | Mitsui Eng & Shipbuild Co Ltd | 蛍光検出装置 |
JP2011149822A (ja) | 2010-01-21 | 2011-08-04 | Sony Corp | 光学的測定装置及び光学的測定方法 |
JP2012047464A (ja) * | 2010-08-24 | 2012-03-08 | Sony Corp | 微小粒子測定装置及び光軸補正方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4643566A (en) | 1984-07-20 | 1987-02-17 | Canon Kabushiki Kaisha | Particle analyzing apparatus |
US5258791A (en) * | 1990-07-24 | 1993-11-02 | General Electric Company | Spatially resolved objective autorefractometer |
US5436464A (en) * | 1992-04-13 | 1995-07-25 | Nikon Corporation | Foreign particle inspecting method and apparatus with correction for pellicle transmittance |
JP3805565B2 (ja) * | 1999-06-11 | 2006-08-02 | 株式会社日立製作所 | 電子線画像に基づく検査または計測方法およびその装置 |
US20140226158A1 (en) * | 2004-03-06 | 2014-08-14 | Michael Trainer | Methods and apparatus for determining particle characteristics |
US20090323061A1 (en) * | 2006-02-28 | 2009-12-31 | Lukas Novotny | Multi-color hetereodyne interferometric apparatus and method for sizing nanoparticles |
JP4504946B2 (ja) * | 2006-05-16 | 2010-07-14 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
JP4509163B2 (ja) | 2007-10-26 | 2010-07-21 | ソニー株式会社 | 微小粒子の測定方法 |
JP4489146B2 (ja) | 2008-02-07 | 2010-06-23 | 三井造船株式会社 | 蛍光検出装置及び蛍光検出方法 |
JP5272823B2 (ja) * | 2009-03-17 | 2013-08-28 | ソニー株式会社 | 焦点情報生成装置及び焦点情報生成方法 |
JP5016705B2 (ja) * | 2009-06-09 | 2012-09-05 | エーエスエムエル ネザーランズ ビー.ブイ. | 流体ハンドリング構造 |
JP2012026754A (ja) * | 2010-07-20 | 2012-02-09 | Sony Corp | 微小粒子測定装置及び光照射装置 |
-
2013
- 2013-04-03 JP JP2014519863A patent/JP6206404B2/ja active Active
- 2013-04-03 CN CN201380028501.4A patent/CN104321635B/zh active Active
- 2013-04-03 WO PCT/JP2013/060164 patent/WO2013183345A1/ja active Application Filing
- 2013-04-03 EP EP13800843.8A patent/EP2860511B1/en active Active
- 2013-04-03 US US14/404,196 patent/US10371632B2/en active Active
- 2013-04-03 CN CN201810439504.1A patent/CN108593529A/zh active Pending
-
2017
- 2017-09-07 JP JP2017172191A patent/JP6428883B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6129738A (ja) * | 1984-07-20 | 1986-02-10 | Canon Inc | 粒子解析装置及び粒子解析方法 |
JPH02304333A (ja) * | 1989-05-18 | 1990-12-18 | Hitachi Ltd | 流動細胞分析装置 |
JPH09166541A (ja) | 1995-12-18 | 1997-06-24 | Sumitomo Electric Ind Ltd | 流動粒子分析装置 |
JP2009162650A (ja) * | 2008-01-08 | 2009-07-23 | Sony Corp | 光学的測定装置 |
JP2009244080A (ja) * | 2008-03-31 | 2009-10-22 | Mitsui Eng & Shipbuild Co Ltd | 蛍光検出装置 |
JP2011149822A (ja) | 2010-01-21 | 2011-08-04 | Sony Corp | 光学的測定装置及び光学的測定方法 |
JP2012047464A (ja) * | 2010-08-24 | 2012-03-08 | Sony Corp | 微小粒子測定装置及び光軸補正方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104677826A (zh) * | 2015-01-22 | 2015-06-03 | 中国农业大学 | 一种高度校正系统及方法 |
CN104677826B (zh) * | 2015-01-22 | 2017-11-24 | 中国农业大学 | 一种高度校正系统及方法 |
WO2017191699A1 (ja) | 2016-05-06 | 2017-11-09 | ソニー株式会社 | 情報処理装置、情報処理方法、プログラム及び情報処理システム |
JPWO2019031048A1 (ja) * | 2017-08-08 | 2020-07-02 | ソニー株式会社 | 情報処理装置、情報処理方法及びプログラム |
JP7010293B2 (ja) | 2017-08-08 | 2022-01-26 | ソニーグループ株式会社 | 情報処理装置、情報処理方法及びプログラム |
US11561161B2 (en) | 2017-08-08 | 2023-01-24 | Sony Corporation | Information processing apparatus, information processing method, and program |
JP2023517238A (ja) * | 2020-03-16 | 2023-04-24 | イングラン, エルエルシー | 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法 |
JP7416972B2 (ja) | 2020-03-16 | 2024-01-17 | イングラン, エルエルシー | 流体カラム内の物体から検出された位置依存性電磁放射線を補正するシステム及び方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150112627A1 (en) | 2015-04-23 |
CN104321635A (zh) | 2015-01-28 |
CN104321635B (zh) | 2018-06-05 |
JP2018025559A (ja) | 2018-02-15 |
EP2860511B1 (en) | 2020-02-19 |
CN108593529A (zh) | 2018-09-28 |
EP2860511A1 (en) | 2015-04-15 |
JP6428883B2 (ja) | 2018-11-28 |
JP6206404B2 (ja) | 2017-10-04 |
JPWO2013183345A1 (ja) | 2016-01-28 |
EP2860511A4 (en) | 2016-01-27 |
US10371632B2 (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6428883B2 (ja) | 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置 | |
JP6299600B2 (ja) | 微小粒子測定装置 | |
USRE49543E1 (en) | Fine particle measuring apparatus | |
JP5381741B2 (ja) | 光学的測定装置及び光学的測定方法 | |
JP6274104B2 (ja) | 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置 | |
JP2012047464A (ja) | 微小粒子測定装置及び光軸補正方法 | |
KR20170052256A (ko) | 라만 산란을 이용한 물질의 농도 측정 장치 및 방법 | |
WO2019021621A1 (ja) | 試料観察装置及び試料観察方法 | |
US20220107271A1 (en) | Microparticle analysis device, analysis device, analysis program, and microparticle analysis system | |
JP2021121803A (ja) | 微小粒子測定システム及び微小粒子測定方法 | |
JP2021051074A (ja) | 分光分析装置 | |
JP2009250900A (ja) | 表面プラズモンセンサー | |
JP6350626B2 (ja) | データ解析方法 | |
JP5274031B2 (ja) | 分析方法および分析装置 | |
JP2005055299A (ja) | 微粒子計測装置及び計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13800843 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014519863 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013800843 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14404196 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |