WO2013183282A1 - インクジェット装置および有機elデバイスの製造方法 - Google Patents
インクジェット装置および有機elデバイスの製造方法 Download PDFInfo
- Publication number
- WO2013183282A1 WO2013183282A1 PCT/JP2013/003500 JP2013003500W WO2013183282A1 WO 2013183282 A1 WO2013183282 A1 WO 2013183282A1 JP 2013003500 W JP2013003500 W JP 2013003500W WO 2013183282 A1 WO2013183282 A1 WO 2013183282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ink
- inkjet
- preliminary
- voltage
- ejected
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title description 62
- 238000003825 pressing Methods 0.000 claims abstract description 20
- 238000007599 discharging Methods 0.000 claims abstract description 13
- 239000010410 layer Substances 0.000 claims description 174
- 238000006073 displacement reaction Methods 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 30
- 230000000704 physical effect Effects 0.000 claims description 30
- 238000003860 storage Methods 0.000 claims description 30
- 239000002346 layers by function Substances 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 15
- 238000001704 evaporation Methods 0.000 claims description 7
- 238000013016 damping Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 239000000976 ink Substances 0.000 description 711
- 238000005401 electroluminescence Methods 0.000 description 66
- 230000005499 meniscus Effects 0.000 description 35
- 238000005192 partition Methods 0.000 description 32
- 230000001629 suppression Effects 0.000 description 27
- 238000002347 injection Methods 0.000 description 26
- 239000007924 injection Substances 0.000 description 26
- -1 polyethylene Polymers 0.000 description 26
- 230000005525 hole transport Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 21
- 238000000576 coating method Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 239000010408 film Substances 0.000 description 15
- 238000012795 verification Methods 0.000 description 15
- 230000006399 behavior Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920000285 Polydioctylfluorene Polymers 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 2
- 150000003219 pyrazolines Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MAGZFRRCWFGSHK-UHFFFAOYSA-N 1,2,3,4-tetraphenylbenzene Chemical class C1=CC=CC=C1C(C(=C1C=2C=CC=CC=2)C=2C=CC=CC=2)=CC=C1C1=CC=CC=C1 MAGZFRRCWFGSHK-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- FJNCXZZQNBKEJT-UHFFFAOYSA-N 8beta-hydroxymarrubiin Natural products O1C(=O)C2(C)CCCC3(C)C2C1CC(C)(O)C3(O)CCC=1C=COC=1 FJNCXZZQNBKEJT-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910015202 MoCr Inorganic materials 0.000 description 1
- 229910015711 MoOx Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Chemical class 0.000 description 1
- 229910000544 Rb alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- BBEAQIROQSPTKN-UHFFFAOYSA-N antipyrene Natural products C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 229960005057 canrenone Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VPUGDVKSAQVFFS-UHFFFAOYSA-N hexabenzobenzene Natural products C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- AWOORJZBKBDNCP-UHFFFAOYSA-N molybdenum;oxotungsten Chemical compound [Mo].[W]=O AWOORJZBKBDNCP-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04588—Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04581—Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04596—Non-ejecting pulses
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
- H10K71/441—Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
Definitions
- the present invention relates to an inkjet apparatus and a method for manufacturing an organic EL device using the inkjet apparatus.
- inkjet devices have been applied, for example, in the field of household printing equipment. Furthermore, the ink jet apparatus is used in a field where it is required to eject ink droplets precisely and in a short time on a large substrate, as in the manufacturing process of an organic EL (Electro Luminescence) device.
- organic EL Electro Luminescence
- repetition frequency the number of ink ejections per unit time
- the landing accuracy of ejected ink droplets is improved. It is necessary to let The following technical problems can be listed.
- an ink droplet having an ink droplet size smaller than a prescribed droplet size can be ejected. If the ink droplets are made smaller, the ink droplets are likely to diffuse and fly, and the landing accuracy may deteriorate. Furthermore, when the preceding ink droplet adheres to the vicinity of the ejection opening and the subsequent ink droplet comes into contact with the preceding ink droplet, the combined ink droplets fly in a form that is dragged by the surface tension. There is a risk that the accuracy is significantly deteriorated.
- Patent Documents 1 and 2 relating to a piezo-type ink jet apparatus.
- Patent Documents 1 and 2 devise one pulse shape in the applied voltage of the piezoelectric element applied during ink ejection. However, it is difficult to actually solve the above problem by this method.
- Patent Documents 1 and 2 in order to increase the landing accuracy of the ink droplet, the rising speed and falling speed of the pulse of the applied voltage during ink ejection are set to be relatively slow. Furthermore, the pulse width is shortened, the repetition frequency of ink ejection is increased, and the frequency of the drive voltage is set to a high frequency. As described above, the methods disclosed in Patent Documents 1 and 2 require extremely complicated operations. In addition, since the ejection behavior of ink droplets varies depending on the physical properties such as the viscosity of the ink, simply adjusting the pulse of the applied voltage at the time of ejecting ink may not be able to handle each ink having different physical properties.
- the present invention has been made in view of the above problems, and can be applied to ink ejection control using a high-frequency driving voltage, and a method for manufacturing an inkjet device and an organic EL device having high ink landing accuracy.
- the purpose is to provide.
- an ink jet apparatus includes an ink storage unit that stores ink, and a pressure application unit that applies pressure to the ink in the ink storage unit to eject ink droplets.
- a plurality of inkjet heads having a discharge port through which the ink droplets to which pressure is applied are discharged, and at least one of the plurality of inkjet heads is subjected to pressure application by the pressure application unit, It is assumed that a preliminary driving operation of pushing the ink in the ink storage portion to the ejection port side within a range where the ink is not discharged and a main driving operation of discharging the ink droplets after performing the preliminary driving operation are performed.
- a preliminary driving operation of pushing the ink in the ink containing portion to the discharge port side in a range where the ink in the ink containing portion is not discharged After performing the driving operation, the main driving operation for discharging ink droplets is executed. If such a pre-driving operation is executed, kinetic energy can be imparted to the ink droplet in advance before the main driving operation, the preceding ink droplet adheres to the vicinity of the ejection port, and the subsequent ink droplet precedes.
- the ink jet apparatus According to the ink jet apparatus according to one embodiment of the present invention, it is possible to cope with ink ejection control using a high-frequency driving voltage, and provide an ink jet apparatus having high ink landing accuracy and a method for manufacturing an organic EL device can do.
- FIG. 2 is a functional block diagram of the inkjet apparatus 1000.
- FIG. 2 is a diagram schematically showing a schematic configuration of an inkjet head 301 of the inkjet apparatus 1000.
- FIG. 2A is a partially cutaway perspective view showing a schematic configuration of an inkjet head 301.
- FIG. 2B is an enlarged cross-sectional view of a part of the inkjet head 301.
- (A) shows the signal waveform of the drive voltage in the conventional inkjet apparatus exemplarily.
- (I) to (iii) of (b) schematically show the ink droplet ejection behavior when the drive voltage shown in (a) is applied.
- (A) shows the signal waveform of the drive voltage in the inkjet apparatus 1000 exemplarily.
- (I) to (iii) of (b) schematically show the ink droplet ejection behavior when the drive voltage shown in (a) is applied.
- 2 shows an exemplary signal waveform of a driving voltage in the inkjet apparatus 1000.
- (A) shows the signal waveform comprised using this vibration waveform part corresponding to tapping.
- (B) shows the signal waveform comprised without using the damping waveform part.
- (C) shows a signal waveform configured by using a preliminary vibration waveform portion corresponding to pressing. The signal waveform and shape of the drive voltage in the inkjet apparatus 1000 are shown.
- (A) shows the waveform of the drive voltage used in the verification experiment.
- FIG. 10 shows the correlation between the angle variation with respect to the magnitude of viscosity and the volume of ejected ink in the ink shown in FIG. (A) is the result for the ink of (i) of FIG. (B) is the result for the ink of (ii) of FIG. FIG.
- FIG. 10 shows the correlation between the angular variation and the volume of ejected ink with respect to the tail length in the ink shown in FIG. (A) is the result for the ink of (i) of FIG. (B) is the result for the ink of (iii) in FIG.
- It is a fragmentary sectional view showing composition of organic EL device 100 manufactured with a manufacturing method of an organic EL device concerning an embodiment of the invention.
- FIG. 2 is a diagram showing a positional relationship between a substrate to be coated and an inkjet head 301 in a coating process of the manufacturing method of the organic EL device 100.
- the ink droplets smaller than the prescribed ink droplet size scatter and adhere to the vicinity of the ejection port, and the subsequent ink droplets.
- the ink droplet flies in the form of being dragged by the surface tension, and the flying direction is bent.
- the present inventor considered the cause of this process, and it was thought that it was caused by the non-uniform pressing force applied to the ink interface when the ink was ejected from the ink jet apparatus. Therefore, if a method for suppressing the deterioration of the landing accuracy of the ink droplet is studied and the ink is pushed out to the extent that the ink is not ejected from the ejection port before the ink is ejected from the ejection port, the ink liquid having a size smaller than the prescribed size is used. The inventors have found that the generation of ink droplets can be suppressed and ink droplets having a sufficient kinetic energy and a prescribed size can be ejected.
- the shape of the ink interface is a meniscus (bent) shape as a cause of generation of small ink droplets and deterioration of landing accuracy of ink droplets. Therefore, in the present invention, before ejecting ink, the ink is pushed to the ejection port side within a range where ink is not ejected, thereby eliminating the meniscus shape and flattening the ink interface, generating small ink droplets and landing ink droplets. Both deterioration of accuracy is suppressed.
- An inkjet apparatus includes an ink storage unit that stores ink, a pressure application unit that applies pressure to the ink in the ink storage unit to eject ink droplets, and the pressure application unit.
- a plurality of ink jet heads each having an ejection port through which ink droplets are ejected, and at least one of the plurality of ink jet heads is configured such that the ink in the ink storage portion is applied by pressure application of the pressure application portion.
- a preliminary drive operation is selectively performed on an inkjet head in which ink droplets having a predetermined volume are not ejected and a drop in ink droplet landing accuracy is reduced, among a plurality of inkjet heads. To do.
- the ink in the ink containing portion is pushed out to the ejection port side within a range where the ink is not ejected.
- kinetic energy that can sufficiently ignore the surface tension of the ink droplets adhered to the ejection port is given to the subsequent ink droplets, and Bending can be effectively suppressed and the landing accuracy of ink droplets can be improved.
- the preliminary drive operation in one embodiment of the present invention will be described in detail.
- the ink jet method in which pressure is applied to the ink containing portion and ink is ejected applies pressure to the ink containing portion, generates a propagation wave in the ink in the ink containing portion, and ejects ink droplets from the ink interface in the ejection port.
- the ink interface has a meniscus shape in which the pressure in the ink and the surface tension of the ink interface are in an equilibrium state. Therefore, it is considered that the energy of the propagation wave at the ink interface becomes non-uniform, and the amplitude due to vibration near the vertex position of the meniscus shape becomes particularly large.
- the volume of ejected ink droplets does not easily become constant between ejections, and ink droplets smaller than the prescribed ink droplet volume can be ejected or the ejection direction can be diffused. Therefore, according to one aspect of the present invention, by planarizing the meniscus shape by pre-driving operation prior to ejection of ink droplets, even if vibration occurs at the ink interface, the amplitude of the vibration can be suppressed and the ink interface can be suppressed.
- the ink can be discharged well by applying a uniform pressing force to the ink.
- the ink-jet head selected to perform the pre-driving operation has a meniscus apex position at the ink interface of the ejection port for the ink accommodated in the ink-accommodating portion due to the pressure application of the pressure applying portion.
- a pre-driving operation for pushing out to move toward the ejection port side and a main driving operation for ejecting ink droplets after performing the pre-driving operation are executed.
- the ink stored in the ink storage portion is pushed out toward the ejection port side, so that the meniscus shape of the ink interface is planarized.
- a uniform pressing force can be applied to the ink interface, so that ink droplets having a prescribed volume can be ejected to further improve landing accuracy.
- the repetition frequency of pressure application of the pressure application unit for ejecting ink droplets increases, ink droplets may adhere to the ejection ports to some extent even if a preliminary driving operation is performed.
- the kinetic energy that can sufficiently ignore the surface tension of the ink droplet attached to the ejection port is given to the subsequent ink droplet, and the bending of the flying direction of the ink droplet is controlled. Furthermore, it can suppress effectively. Therefore, according to one embodiment of the present invention, it is possible to improve the landing accuracy of an ink droplet even when an ink droplet is ejected by applying a high-frequency driving voltage.
- the pressure application unit in at least one of the ink jet heads includes a piezoelectric element for applying pressure to the ink in the ink storage unit,
- a discharge control unit that controls discharge of the ink droplets by applying a voltage to the piezoelectric element, and the signal waveform of the voltage includes a preliminary vibration waveform unit for executing the preliminary drive operation, and the main drive operation. It can also be set as the structure containing this vibration waveform part for performing.
- the piezo method using a piezoelectric element is a method for controlling the ejection amount of ink droplets and the size of ink droplets according to the deformation amount of the piezoelectric elements, and ejecting ink droplets by adjusting the voltage applied to the piezoelectric element.
- the volume and ink droplet size can be controlled relatively accurately. Therefore, it is expected to be applied to a technical field that particularly requires high-precision and short-time discharge.
- the pressure application unit includes a piezoelectric element, and an ejection control unit that controls an applied voltage to the piezoelectric element is used.
- the ejection control unit controls the pressure applied to the ink in the ink storage unit. .
- the voltage signal waveform in the inkjet head that performs the preliminary driving operation includes a preliminary vibration waveform portion for executing the preliminary driving operation and a main vibration waveform portion for executing the main driving operation.
- the ink droplet landing accuracy can be improved regardless of the frequency of the driving voltage.
- the degree of freedom of the waveform width of the main vibration waveform portion can be increased.
- the waveform width of the vibration waveform portion can be set in order to increase the frequency of the drive voltage.
- the ink containing portion is constituted by a fine tube
- the meniscus shape of the ink interface is a particularly bent shape. For this reason, the ink droplet landing accuracy may deteriorate due to the meniscus shape. Therefore, the above effect can be obtained by including the preliminary vibration waveform portion and the main drive waveform portion in the drive voltage waveform of the ink head that performs the preliminary drive operation.
- the ink ejected from the at least one ink jet head, and the remaining of the plurality of ink jet heads excluding the at least one ink jet head may have a different physical property.
- the ink accommodated in the ink accommodating portion various inks having differences in hue, saturation, brightness and the like are used.
- a plurality of ink jet heads are provided corresponding to each of various inks. Accordingly, the physical properties such as the boiling point, surface tension, and viscosity of the ink contained in each inkjet head are variously different. Different ink physical properties result in different ink droplet ejection behavior. Therefore, the degree of occurrence and the frequency of occurrence of ink droplets that are smaller than the prescribed volume of ink droplets, or the direction in which ink droplets are diffused, which occurs when ink droplets are ejected are also detected. Different.
- a main driving operation for ejecting ink droplets for an ink jet head that stores ink having physical properties that does not eject ink droplets of a predetermined volume and that leads to a decrease in landing accuracy of ink droplets. Performs the pre-drive operation independently. As a result, it corresponds to the case of ejecting ink droplets having various physical properties, and ink droplets smaller than the prescribed volume of ink droplets generated when ejecting ink droplets are ejected or ink It is possible to prevent the problem that the discharge direction of the droplets diffuses. Also, when ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the meniscus shape at the ink interface is also different. Therefore, the degree and frequency of occurrence of problems such as ejection of ink droplets smaller than the volume of the prescribed ink droplets or diffusion of the ink droplet ejection direction, which occurs when ink droplets are ejected. Different. Therefore, by selecting an ink jet head that performs a preliminary driving operation corresponding to the physical properties of the ink, it is possible to effectively suppress problems caused by the meniscus shape of the ink interface. Also, when ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the viscosity of the ink ejected from the at least one ink jet head is relatively higher than the viscosity of the ink ejected from the remaining ink jet head.
- a low configuration can also be achieved.
- both the amount of displacement of the drive voltage required to eject the ink droplet and the volume of the ejected ink droplet are small. For this reason, it is considered that the flying direction is particularly easily bent by the surface tension when a subsequent ink droplet comes into contact with the ink droplet adhering to the vicinity of the ejection opening.
- inks having different viscosities are accommodated in separate ink jet heads, and a preliminary driving operation is performed in the ink jet heads accommodating inks having relatively low viscosities.
- the ink droplet can be given kinetic energy that can sufficiently ignore the surface tension of the ink droplet attached to the ejection port, and the ink droplet can bend in the flight direction. It can be effectively suppressed.
- ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the ink has a property of generating a tail that extends linearly on the rear side in the ejection direction as the physical property.
- the ink droplets ejected from the at least one ink jet head may have a relatively longer tail than the ink droplets ejected from the remaining ink jet heads.
- the ink droplet may cause a so-called “tailing” in which a part of the ink droplet extends linearly toward the rear side in the ejection direction. If the length of the tailing is increased, it is considered that the contact time with the ink adhering to the vicinity of the ejection port is increased and the flight direction is easily bent.
- ink having different tailing physical properties is stored in different ink jet heads, and a preliminary driving operation is performed in the ink jet head storing ink having a relatively long tailing length.
- a preliminary driving operation is performed in the ink jet head storing ink having a relatively long tailing length.
- the ink droplet can be given kinetic energy that can sufficiently ignore the surface tension of the ink droplet attached to the ejection port, and the ink droplet can bend in the flight direction. It can be effectively suppressed.
- ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the pressure application units in the plurality of ink jet heads each include a piezoelectric element for applying pressure to the ink in the ink storage unit,
- the at least one ink jet head and the remaining ink jet head may be configured to have different frequencies of voltages applied to the piezoelectric elements.
- a plurality of inkjet heads are configured such that the frequency of a voltage applied to each piezoelectric element of at least one inkjet head and the remaining inkjet heads is different.
- the flying direction of the ink droplet can be prevented from being bent, and the landing accuracy can be improved.
- the landing accuracy of the ink droplets can be improved.
- the frequency of the voltage applied to the piezoelectric element of at least one of the ink jet heads may be 10 kHz or more.
- the degree of malfunction that the flying direction of the ejected ink is bent increases and the occurrence frequency also increases.
- the driving frequency is 10 kHz or more, a drop in ink droplet landing accuracy due to the flying curve of ink cannot be ignored.
- the frequency of the voltage applied to the piezoelectric element of at least one inkjet head is 10 kHz or more. Therefore, it is possible to prevent the flying direction of the ink droplet from being bent and improve the landing accuracy. Also, when ink droplets are ejected by applying a high-frequency driving voltage, the landing accuracy of the ink droplets can be improved.
- the upper limit of the frequency is not particularly limited. For example, if the upper limit is 20 kHz, it is possible to cope with the higher frequency required in the present situation.
- a voltage displacement amount X in a voltage signal applied to the piezoelectric element to push out ink in the preliminary driving operation is determined in the main driving operation.
- the ratio of the voltage signal applied to the piezoelectric element in order to eject ink droplets with respect to the displacement amount Y of the voltage may be set to satisfy 30% ⁇ X / Y ⁇ 50%.
- X / Y is less than 30%, the ink cannot be pushed out to the ejection port side in the preliminary driving operation so that the effect of improving the landing accuracy of the ink droplets is noticeable.
- the upper limit value of X / Y is better as long as ink is not ejected.
- the displacement amount X in the preliminary driving operation is set to satisfy 30% ⁇ X / Y ⁇ 50%.
- the flying direction of the ink droplet can be prevented from being bent, and the landing accuracy can be improved.
- ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the upper limit of X / Y is preferably as high as possible if ink is not ejected in the preliminary driving operation, but if it is set to 50%, the volume of ink droplets ejected in the main driving operation can be sufficiently secured. However, the effect of the preliminary driving operation can be sufficiently achieved. Therefore, also in a more preferable aspect in consideration of the meniscus shape of the ink interface according to one aspect of the present invention, the displacement amount X in the preliminary driving operation is set to satisfy 30% ⁇ X / Y ⁇ 50%. As a result, the flying direction of the ink droplet can be prevented from being bent, and the landing accuracy can be improved. Also, when ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the signal waveform of the voltage applied to the piezoelectric element is the ink in the ejection port after the main driving operation.
- the discharge control unit executes a vibration suppression operation of the ink interface in the discharge port by applying the voltage of the signal waveform to the piezoelectric element. It can also be configured.
- vibrations associated with the main driving operation remain at the ink interface. It is conceivable that ink droplets scatter from the ink interface and adhere to the vicinity of the ejection port due to residual vibration accompanying this driving operation.
- a vibration suppression operation that suppresses vibration at the ink interface is performed.
- a vibration suppression waveform portion is added after the main vibration waveform portion as the drive voltage waveform.
- the position of the ink interface when the main driving operation is started in the ejection port that performs the preliminary driving operation is the same as the preliminary driving operation.
- the ejection port that is not executed may be positioned downstream in the ejection direction from the position of the ink interface when the execution of the main driving operation is started.
- ⁇ Vibration remains at the ink interface when ink is pushed out in the preliminary drive operation.
- the magnitude of the amplitude toward the ink container cannot be ignored.
- the main driving operation is performed at a position where the magnitude of the amplitude toward the ink container is maximized, In some cases, the effect of pushing ink to the ejection port side in the preliminary driving operation may be suppressed.
- the residual vibration and the vibration associated with the main driving operation may resonate to generate an ink droplet smaller than the prescribed ink droplet volume.
- the position of the ink interface at the start of execution of the main drive operation in the ejection port that performs the preliminary drive operation starts execution of the main drive operation at the ejection port that does not perform the preliminary drive operation. Adjustment is made so that the ink interface is positioned downstream of the ink interface in the discharge direction. As a result, even when the amplitude of the residual vibration at the ink interface accompanying the preliminary driving operation is large, the flying direction of the ink droplet can be prevented from being bent, and the landing accuracy can be improved. Also, when ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the vibration may resonate with the vibration associated with the main driving operation.
- the vibration greatly resonates with the vibration accompanying the main driving operation.
- the position of the ink interface when the main drive operation is started in the ejection port that performs the preliminary drive operation is the position of the ink interface when the main drive operation is started in the ejection port that does not perform the preliminary drive operation. It adjusts so that it may be located in the discharge direction downstream rather than. As a result, it is possible to suppress the residual vibration accompanying the preliminary driving operation from resonating with the vibration accompanying the main driving operation, thereby preventing the flying direction of the ink droplet from being bent and improving the landing accuracy. Also, when ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- a preliminary drive operation is started in a state where the vertex position of the meniscus shape is located closer to the discharge port than the vertex position of the meniscus shape when it is assumed that the state is stationary.
- the preliminary drive operation is executed in a state where the vertex position of the meniscus shape is located closer to the discharge port than the vertex position of the meniscus shape when it is assumed that the state is stationary.
- it is possible to suppress the residual vibration at the ink interface associated with the main driving operation from resonating with the vibration associated with the preliminary driving operation, thereby preventing the flying direction of the ink droplet from being bent and improving the landing accuracy. it can.
- ink droplets are ejected by applying a high-frequency driving voltage, it is possible to improve the landing accuracy of the ink droplets.
- the method for producing an organic EL device includes a step of forming a first electrode on a substrate, a step of forming one or more functional layers including a light emitting layer on the first electrode, and the function. Forming a second electrode on the layer, and in the step of forming the functional layer, the functional layer including at least the light-emitting layer is applied to the functional layer, and an ink including a layer material and a solvent is applied. It is formed by evaporating and drying, and is performed using the ink jet apparatus according to any one of the aspects of the present invention described above.
- an organic EL display panel has attracted attention as a surface light source that can be used for a display or lighting application.
- the organic EL display panel is configured to have a structure in which a plurality of organic EL elements are arranged in a matrix direction on a substrate.
- the organic EL element is a current driven element, and has a structure in which an anode, a functional layer including a light emitting layer, and a cathode are stacked in the same order on a substrate.
- the functional layer is composed of a hole transport layer for improving luminous efficiency.
- the functional layer there are mainly an evaporation method and an ink jet method as a coating method.
- the inkjet method is attracting attention because it is advantageous in terms of cost and does not waste materials as compared with the vapor deposition method.
- the layer using the inkjet method is a light-emitting layer, after applying an ink containing an organic material constituting the light-emitting layer in a plurality of pixels separated by a barrier formed on the substrate by the inkjet method, This is performed by removing the solvent component of the ink by drying or the like.
- Landing is made so that the film thickness is non-uniform, resulting in variation in shape.
- variation in shape causes current to not be applied uniformly to each element, or causes current to concentrate on a thin part of the film, resulting in variations or reductions in light emission characteristics and light emission lifetime, leading to a decrease in product yield.
- the problem of the product yield is a technical problem that is urgently desired to be solved in consideration of the current situation where it is required to eject ink droplets to a large size substrate in a more precise and short time.
- the functional layer including at least the light emitting layer is formed by applying an ink including a layer material and a solvent, and evaporating and drying the solvent.
- the ink jet device according to any one of the above-described aspects of the present invention is used.
- the landing accuracy of the ink droplets can be improved regardless of the type of ink used and the repetition frequency of the ink discharge, so that the variation in the shape of the manufactured product can be suppressed and the manufacturing yield can be improved.
- FIG. 1 is a diagram illustrating a main configuration of an inkjet apparatus 1000 according to an embodiment.
- FIG. 2 is a functional block diagram of the ink jet apparatus 1000.
- the inkjet apparatus 1000 includes an inkjet table 20, a head unit 30, and a control device 15.
- the control device 15 includes a CPU 150, a storage unit 151 (including a large capacity storage unit such as an HDD), a display unit (display) 153, and an input unit 152.
- a personal computer PC
- the storage unit 151 stores a control program and the like for driving the inkjet table 20 and the head unit 30 connected to the control device 15.
- the CPU 150 performs predetermined control based on an instruction input by the operator through the input unit 152 and each control program stored in the storage unit 151.
- the inkjet apparatus 1000 is illustrated as a configuration in which one inkjet head 301 is provided in one head unit 30, the inkjet apparatus 1000 is simply illustrated for explanation, and the inkjet apparatus 1000 includes a plurality of inkjet heads.
- a head 301 is provided.
- a plurality of inkjet heads 301 may be equipped by providing a plurality of inkjet heads 301 on one head unit 30 and a plurality of head units 30 each having one or a plurality of inkjet heads 301.
- Well not particularly limited.
- columnar stands 201A, 201B, 202A, and 202B are disposed at four corners of the upper surface of the plate-like base 200.
- a fixed stage ST for placing a substrate to be coated and ink is ejected immediately before coating to stabilize the ejection characteristics.
- Ink pans (dish-like containers) IP used for each are disposed.
- guide shafts 203A and 203B are supported in parallel on the stands 201A, 201B, 202A and 202B along the longitudinal (Y) direction of the base 200.
- Linear motor portions 204 and 205 are inserted into the guide shafts 203A and 203B, and a gantry portion 210 is mounted so as to bridge the guide shafts 203A and 203B with respect to the linear motor portions 204 and 205.
- the gantry unit 210 reciprocates freely along the longitudinal direction (Y-axis direction) of the guide shafts 203A and 203B. Exercise.
- a moving body (carriage) 220 made of an L-shaped pedestal is disposed in the gantry section 210.
- the moving body 220 is provided with a servo motor unit (moving body motor) 221, and a gear (not shown) is arranged at the tip of the shaft of each motor.
- the gear is fitted in a guide groove 211 formed along the longitudinal direction (X direction) of the gantry unit 210. Inside the guide groove 211, a fine rack is formed along the longitudinal direction. Since the gear meshes with the rack, when the servo motor unit 221 is driven, the moving body 220 moves precisely and reciprocally along the X-axis direction by a so-called pinion rack mechanism.
- the gantry unit 210 is moved along the longitudinal direction of the guide shafts 203A and 203B while the moving body 220 is fixed to the gantry unit 210. Further, by moving the moving body 220 along the longitudinal direction of the gantry unit 210 while the gantry unit 210 is stopped, the head unit 30 can be scanned with respect to the application target substrate.
- the main scanning direction of the head unit 30 is the row (Y-axis) direction
- the sub-scanning direction is the column (X-axis) direction.
- the linear motor units 204 and 205 and the servo motor unit 221 are each connected to a control unit 213 for directly controlling driving, and the control unit 213 is connected to a CPU 150 in the control device 15.
- the CPU 150 reading the control program controls the driving of the linear motor units 204 and 205 and the servo motor unit 221 via the control unit 213 (see FIG. 2).
- the head unit 30 employs a piezo method and includes an inkjet head 301 and a main body 302.
- the inkjet head 301 is fixed to the moving body 220 via the main body 302.
- the main body 302 has a built-in servo motor unit 304 (see FIG. 2), and when the servo motor unit 304 is rotated, the angle formed by the longitudinal direction of the inkjet head 301 and the X axis of the fixed stage ST is adjusted.
- FIG. 3A is a partially cutaway perspective view showing a schematic configuration of the inkjet head 301
- FIG. 3B is an enlarged cross-sectional view of a portion of the inkjet head 301
- FIG. 2 is a cross-sectional view taken along line BB ′ in FIG.
- the ink jet head 301 has an ink container in which an ejection port plate 301i having a plurality of ejection ports 3031 from which droplets D are ejected and a plurality of ejection ports 3031 communicate with each other.
- the container plate 301c has a partition wall 301d that partitions an ink container 301e that communicates with the ejection port 3031 and also has flow paths 301f and 301g for filling the ink container 301e with ink.
- the flow paths 301f and 301g are spaces formed by sandwiching the accommodating portion plate 301c including the partition wall 301d between the discharge port plate 301i and the vibration plate 301h.
- the flow path 301g serves as a reservoir for storing ink.
- Ink is supplied from an ink tank or the like through a pipe, stored in a reservoir through a supply hole 301h1 provided in the vibration plate 301h, and then filled into each ink storage portion 301e through a flow path 301f.
- a piezo element (pressure applying unit) 3010 is a piezoelectric element, and a piezo element body 3013 is sandwiched between a pair of electrodes 3011 and 3012.
- a driving voltage is applied to the pair of electrodes 3011 and 3012 from the outside, the bonded diaphragm 301h is deformed.
- the volume of the ink containing portion 301e partitioned by the partition wall 301d is reduced, the ink 40 filled in the ink containing portion 301e is pressurized, and the liquid material is discharged as droplets D from the discharge ports 3031.
- the vibration plate 301h When the application of the driving voltage is stopped, the vibration plate 301h returns to the original state, and the volume of the ink containing portion 301e is restored. As a result, ink is sucked from the reservoir into the ink containing portion 301e.
- the drive voltage applied to the piezo element 3010 By controlling the drive voltage applied to the piezo element 3010, the amount of ink droplets ejected from the respective ejection ports 3031 and the ejection timing of the ink droplets can be controlled.
- a region F surrounded by a broken line in FIG. 3B shows a cross section of a region including the ink containing portion 301e and the piezo element 3010 corresponding to one ejection port 3031.
- a region F of the inkjet head 301 includes an ink storage portion 301e, a partition wall 301d for forming each ink storage portion 301e, a diaphragm 301h, a discharge port plate 301i, a piezo element 3010, and a discharge port 3031.
- the inkjet head 301 has a plurality of ejection ports 3031.
- the present invention is not limited to this.
- an ink jet head composed only of a portion indicated by a region F corresponding to one ejection port 3031 may be used.
- the inkjet head 301 includes a plurality of ejection ports 3031 on a surface facing the fixed stage ST.
- the ejection ports 3031 are arranged in a line along the longitudinal direction of the inkjet head 301.
- the ink (liquid material) supplied to the inkjet head 301 is discharged as droplets from each discharge port 3031 onto the application target substrate.
- the ink jet apparatus 1000 includes a plurality of ink jet heads 301 each having an ink containing portion 301e for containing ink and a pressure applying unit 3010 for applying pressure to the ink in the ink containing portion 301e.
- the types of ink stored in the plurality of inkjet heads 301 may be the same or different, and are not particularly limited.
- the inkjet heads 301 provided in the plurality of head units 30 may correspond to different inks, and different ink droplets may be ejected from the ejection ports 3031 of the inkjets 301 to the application target substrate.
- the droplet discharge operation at each discharge port 3031 is controlled by the drive voltage applied to the piezo element 3010 included in each discharge port 3031.
- the discharge controller 300 is connected to the inkjet head 301.
- the ejection control unit 300 By controlling the driving voltage applied to each piezo element 3010 by the ejection control unit 300, a predetermined ink droplet is ejected from each ejection port 3031.
- the CPU 150 reads out a predetermined control program from the storage unit 151 and instructs the ejection control unit 300 to apply a specified voltage to the target piezo element 3010.
- the ejection control unit 300 controls the drive voltage applied to the piezo element 3010.
- the vibrator in which the vibration plate 301h and the plate-like piezo element 3010 are stacked is a flexible vibrator configured on one surface of the ink containing portion 301e.
- the structure of the vibrator is not limited to this.
- a longitudinal vibrator that deforms the vibration plate of the ink containing portion in the deformation direction of the piezoelectric element using a rod-shaped piezoelectric element may be used.
- At least one inkjet head 301 among the plurality of inkjet heads 301 pushes the ink 40 in the ink storage unit 301e to the ejection port 3031 side in a range where the ink 40 in the ink storage unit 301e is not ejected by the pressure application of the pressure application unit 3010.
- the preliminary driving operation and the main driving operation for discharging the ink 40 are performed after the preliminary driving operation is performed. Therefore, the waveform configuration of the drive voltage when the preliminary drive operation and the main drive operation are executed will be described in comparison with the waveform configuration of the conventional drive voltage that does not execute the preliminary drive operation.
- FIG. 4A exemplarily shows a signal waveform of a driving voltage in a conventional ink jet apparatus.
- FIG. 4B schematically shows the ejection behavior of ink droplets when the driving voltage shown in FIG.
- FIG. 5A exemplarily shows a signal waveform of a drive voltage in the ink jet apparatus according to the embodiment of the present invention.
- FIG. 5B schematically shows the ink droplet ejection behavior when the drive voltage shown in FIG. 5A is applied.
- FIG. 4B and FIG. 5B show the vicinity of the discharge port 3031 shown in FIG.
- the drive voltage shown in FIG. 4A increases the volume of the ink containing portion to expand the ink containing portion, and then reduces the volume of the ink containing portion to shrink the ink containing portion, thereby causing ink droplets to flow.
- the ink 40 is located in the ink containing portion with the ink interface being separated from the ejection port 3031 ((i) in FIG. 4B).
- this vibration waveform portion 62 when this vibration waveform portion 62 is applied, the pressing force at the ink interface becomes non-uniform, and an ink droplet that is smaller than the prescribed volume of the ink droplet is ejected, or the ejection direction of the ink droplet is There is a case where it diffuses ((ii) in FIG. 4B). Furthermore, there are cases where the subsequent ink droplets come into contact with the ink adhering to the vicinity of the ejection port 3031 and are dragged by surface tension and the flight direction is bent ((iii) in FIG. 4B).
- the waveform of the drive voltage in FIG. 5A is a reserve voltage for performing a pre-driving operation of pushing out ink by increasing the volume of the ink containing portion and expanding the ink containing portion and then reducing the volume of the ink containing portion.
- the vibration waveform section 61 is composed of a main vibration waveform section 62 and a vibration suppression waveform section 63 similar to those shown in FIG. Since the ink 40 is pushed out toward the ejection port 3031 by the preliminary driving operation, the form of (i) in FIG. 5B is changed to the form of (ii) in FIG. 5B.
- the vibration waveform portion 62 when the vibration waveform portion 62 is applied, the pressing force at the ink interface is made uniform, so that a predetermined volume of ink droplets can be ejected with good straightness.
- the kinetic energy increases due to the increase in volume of the ink droplets to be ejected, even when the ink remains in the vicinity of the ejection port 3031, the ink droplets are ejected with good straightness while suppressing the influence of the surface tension. It is possible to prevent the flight direction from being bent ((iii) in FIG. 5B).
- the preliminary vibration waveform section 61 is for performing a preliminary drive operation for extruding ink to flatten the meniscus shape.
- the meniscus shape of the ink interface immediately before the preliminary driving operation is performed by applying the preliminary vibration waveform portion 61 is bent toward the ink containing portion as shown in (i) of FIG.
- the meniscus shape of the ink interface is planarized by performing the preliminary driving operation ((ii) in FIG. 5B). Therefore, when the vibration waveform portion 62 is applied, the meniscus shape at the ink interface immediately before ejection is flattened, so that the pressing force at the ink interface is made uniform.
- the amplitude in the vicinity of the apex position of the ink interface is small, it is possible to eject ink droplets having a specified volume with good straightness. Furthermore, since the kinetic energy increases as the volume of the ejected ink droplet increases, even when it comes into contact with the ink remaining in the vicinity of the ejection port 3031, the effect of the surface tension is suppressed, and the ink droplet advances in a straight line. And can prevent the flight direction from being bent ((iii) in FIG. 5B).
- a drive voltage having the waveform configuration shown in FIG. 5A is applied.
- the waveform is composed of a preliminary vibration waveform section, a main vibration waveform section, and a vibration suppression waveform section.
- the ink jet head 301 when driving an inkjet head that does not perform a pre-driving operation among a plurality of inkjet heads 301, a configuration composed of a main vibration waveform portion and a vibration suppression waveform portion as shown in FIG. 4A is applied.
- the ink jet head 301 with which the preliminary driving operation is executed is targeted for a case where a drop in ink droplet landing accuracy is observed without discharging a predetermined volume of ink droplet. More specifically, for example, as will be described later in ⁇ Various Experiments and Considerations>, the inkjet head 301 performs the preliminary drive operation in consideration of the ink physical properties of the ink accommodated in the inkjet head or the drive frequency of the drive voltage. Decide what to do.
- the main vibration waveform portion adapted to the main driving operation by the striking is used, but the configuration using the main vibration waveform portion adapted to the pushing stroke that causes the ink storage portion to contract without expanding once.
- the waveform of the drive voltage includes a vibration suppression waveform portion.
- the vibration suppression waveform portion is not an essential component, and a spare waveform like the signal waveform illustrated in FIG. You may comprise from a vibration waveform part and this vibration waveform part.
- the preliminary vibration waveform portion adapted to the preliminary drive operation by the strike is used, but the preliminary vibration waveform portion adapted to the pushing stroke that causes the ink storage portion to contract without expanding once is used.
- the present invention is not limited to the waveform configuration of the present embodiment, and the preliminary vibration waveform portion for performing the preliminary drive operation for pushing the ink toward the ejection port side, and the ink droplets applied independently thereafter. Any waveform configuration including the main vibration waveform portion for discharging the gas may be used.
- FIG. 7 shows the signal waveform of the drive voltage used in this embodiment.
- the preliminary vibration waveform unit 61, the main vibration waveform unit 62, and the vibration suppression waveform unit 63 have waveform widths A, C, and D, respectively, and the voltage displacement amount for performing the preliminary drive operation is X, and the main drive operation is performed.
- the voltage displacement amount for performing the vibration control operation is represented by Y, and the voltage displacement amount for performing the damping operation is represented by Z.
- the voltage displacement amount and the waveform width in the preliminary vibration waveform portion, the main vibration waveform portion, and the vibration suppression waveform portion will be described, respectively.
- the preliminary vibration waveform portion is applied to perform a preliminary drive operation.
- the lower limit of the magnitude of the voltage displacement amount X may be a size required to push out ink to such an extent that a predetermined volume of ink droplets can be ejected in this driving operation.
- the upper limit of the magnitude of the voltage displacement amount X may be set so that ink is not ejected in the preliminary driving operation.
- the range of the good voltage displacement amount X is 30% ⁇ X / Y in relation to the voltage displacement amount Y, considering that the voltage displacement amount Y required for ejecting ink droplets varies depending on the ink physical properties.
- the lower limit of the magnitude of the voltage displacement amount X may be set so that the meniscus shape at the ink interface is planarized to such an extent that a predetermined volume of ink droplets can be ejected in this driving operation.
- the range of the good voltage displacement amount X is 30% ⁇ X / in association with the voltage displacement amount Y, considering that the voltage displacement amount Y required for ejecting ink droplets varies depending on the ink physical properties.
- the upper limit of the voltage displacement amount X is set to 50% as described above.
- the waveform width A of the preliminary vibration waveform portion is determined by the residual vibration generated at the ink interface by the main driving operation or the vibration caused by applying the preliminary vibration waveform portion to expand the ink storage portion and the ink storage portion in the preliminary drive operation. Is set so that the vibration accompanying the application of a voltage does not resonate. For example, T / 2, which is half the period T of the Helmholtz resonance frequency in the ink containing portion, is used.
- the preliminary vibration waveform portion in the present embodiment is adapted to the preliminary driving operation by pulling, but may be a preliminary vibration waveform portion corresponding to the pressing shown in FIG. 6C, for example.
- the voltage displacement amount / waveform width set under the same conditions as in this embodiment can be used.
- the pre-driving operation by pulling can push out ink at a lower driving voltage than the pre-driving operation by pushing, so that the amount of voltage displacement can be kept low, and the voltage required for one waveform The application time can be shortened.
- the main vibration waveform portion is applied to perform the main driving operation.
- the voltage displacement amount Y is set according to the ink physical properties of the ink to be used so that ink can be ejected by this driving operation.
- the pressing force to the ink interface due to the application of the vibration waveform portion can be made uniform. Therefore, the voltage displacement amount Y can be kept lower than when the preliminary drive operation is not performed, and the voltage application time required for one waveform can be shortened by this low voltage drive.
- the waveform width C of the main vibration waveform portion is set so that vibration remaining at the ink interface due to application of the preliminary vibration waveform portion and vibration due to the main driving operation do not resonate.
- T / 2 which is half the period T of the Helmholtz resonance frequency in the ink containing portion, is used.
- the vibration waveform portion in the present embodiment is adapted to the main driving operation by striking.
- the present drive waveform portion corresponding to the punching shown in FIG. 6A may be used, and the voltage displacement amount and waveform width set for this may be the same as those in the present embodiment.
- the main driving operation by pulling can discharge ink at a lower driving voltage than the main driving operation by pushing, so that the amount of voltage displacement can be kept low, and the voltage application required for one waveform can be suppressed. It has the advantage of reducing time.
- the vibration suppression waveform section applies a voltage in the opposite direction to the vibration waveform section in order to suppress the magnitude of the vibration amplitude remaining at the ink interface during the main driving operation.
- the favorable range of the voltage displacement amount Z is related to the magnitude of the voltage displacement amount Y of the vibration waveform portion.
- the magnitude of the amplitude of the remaining vibration can be satisfactorily suppressed.
- the upper limit is not particularly limited, an increase in the magnitude of the voltage displacement amount leads to an increase in the time required to apply one waveform, so it is preferable to set Z / Y ⁇ 60%.
- the upper limit value of Z / Y is also defined by the value of the voltage displacement amount X / Y required as the preliminary vibration operation.
- the waveform width D of the vibration suppression waveform portion can further attenuate the amplitude of the residual vibration as much as possible so that the vibration remaining at the ink interface by the application of the vibration waveform portion does not resonate with the vibration due to the vibration suppression operation.
- the period T of the Helmholtz resonance frequency in the ink container is used.
- the vibration suppression waveform portion is included in the waveform configuration, but it is not essential. Further, as shown in FIG. 7, the vibration suppression waveform portion in the present embodiment is applied in such a manner that no voltage displacement is generated between the vibration suppression waveform portion and the preliminary vibration waveform portion.
- the voltage displacement amount Z may be increased stepwise sequentially with respect to the preliminary vibration waveform portion, or the voltage may be increased to be rectangular. The amount of displacement Z may be larger than that shown in FIG. 7 to perform the vibration damping operation, and then the voltage may be applied up to the voltage value immediately before the preliminary vibration waveform portion is applied.
- the waveform of the present embodiment includes a preliminary vibration waveform portion that is independent from the main vibration waveform portion. Therefore, a relay time B is generated between the preliminary vibration waveform portion and the main vibration waveform portion.
- the relay time B is set so that the vibration remaining at the ink interface due to the application of the preliminary vibration waveform portion does not resonate with the vibration caused by applying this vibration waveform portion to expand the ink containing portion. For example, T / 2, which is half the period T of the Helmholtz resonance frequency in the ink containing portion, is used.
- a relay time occurs between the preliminary vibration waveform portion, the main vibration waveform portion, and the vibration suppression waveform portion, including this embodiment, it remains at the ink interface with the waveform portion applied immediately before or before.
- T / 2 that is half of the period T of the Helmholtz resonance frequency in the ink containing portion.
- FIG. 8A shows the waveform configuration of the drive voltage used as the verification experiment
- FIG. 8B shows the drive voltage displacement amount X in the preliminary drive operation with respect to the drive voltage displacement amount Y in the main drive operation
- FIG. 6 is a correlation diagram between the ratio X / Y and the angular variation in the ejection direction related to the volume of the ejected ink and the landing position, respectively.
- the waveform configuration of the drive voltage as the verification experiment is the same as that shown in FIG. 7, the preliminary vibration waveform section for performing the preliminary drive operation, the main vibration waveform section for performing the main drive operation, and the vibration control operation Consists of vibration suppression waveform section.
- the diameter of the ejection port in the ink container of the ink jet head used in the verification experiment is 20 ⁇ m
- the period T of the Helmholtz resonance frequency of the ink container is 6 ⁇ s
- each waveform width and preliminary vibration waveform are matched to the value of the period T.
- the relay time between this part and this vibration waveform part was set.
- the displacement amount Y of the drive voltage is set to approximately 20 V so that the discharge speed becomes a constant value (5 m / s). did.
- the frequency of the drive voltage was set to 10 kHz, which belongs to a high frequency region where the ink droplet landing accuracy is significantly reduced.
- the angle variation and volume shown in FIG. 8 (b) can clearly capture the shape and ejection direction of ink droplets in flight by attaching a high-speed camera to a microscope and performing magnified photography. It measured by carrying out field observation by the said method.
- the angle variation is a value when the angle goes straight from the discharge port toward the substrate to be coated, and the volume is an appropriate threshold value from the horizontal image of the spherical droplet (see the outer periphery of the droplet while viewing the image). This is a value obtained by calculating the area of a darker area and converting it to a three-dimensional volume.
- the ink used in the verification experiment shown in FIG. 8B corresponds to the ink (i) among the various inks used in the verification experiment shown in FIG.
- the verification experiment was performed by ejecting 30 droplets from 10 different ejection ports (the same diameter) for each sample of the experimental sample ink to confirm the reproducibility of the experimental results.
- the verification experiment shows that the landing accuracy of the ink droplet is remarkably improved by applying the preliminary vibration waveform portion, and the remarkable effect is particularly obtained in a high frequency region where the landing accuracy of the ink droplet is deteriorated. Shows that (About the optimum range of voltage displacement in the preliminary vibration waveform section) As shown in the experimental result of FIG. 8B described above, the angle variation of the ejected ink, which indicates the landing accuracy of the ink droplet, is significantly reduced at a certain voltage ratio X / Y or more. Specifically, when the displacement amount X of the drive voltage in the preliminary drive operation is set so that the voltage ratio X / Y is 30% or more, the effect of the preliminary drive operation becomes remarkable.
- the volume of ink to be ejected can be sufficiently secured as shown in FIG. 8B, and the landing accuracy can be sufficiently secured.
- the ink physical properties contribute to the ejection behavior, and more specifically, contribute to the meniscus shape of the ink interface, the ink droplet landing accuracy may be deteriorated. Therefore, the present inventor examined the effect of the preliminary driving operation using inks having various ink physical properties shown in FIG. 9 while paying attention to the viscosity and the tailing length among the ink physical properties.
- the ink was obtained by changing the concentration using F8-F6 (a copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)) as a solute and CHB (cyclohexylbenzine) as a solvent.
- F8-F6 a copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)
- CHB cyclohexylbenzine
- the tail length refers to the length of the tail when a part of the ejected ink droplet has a shape with a tail on the line on the rear side in the ejection direction.
- FIG. 10 shows the correlation between the angular variation and the volume of ejected ink with respect to the magnitude of the viscosity.
- FIG. 10 (a) shows the result for the ink shown in FIG. 9 (i)
- FIG. (Ii) is the result for the ink.
- the measurement method and definition of the angle variation and the volume of the ejected ink are the same as those shown in FIG.
- the ink having a relatively low viscosity has a significantly large angular variation in the high frequency region as compared with the ink having a relatively high viscosity. (Left view of FIG. 10A).
- the volume of ink droplets increases simultaneously with the decrease in angular variation (the right diagram in FIG. 10A).
- Ink with a relatively high viscosity has little angle variation in both the low frequency region and the high frequency region, and it can be said that the ink droplet landing accuracy is good (the left diagram in FIG. 10B).
- Even with high-viscosity ink the volume of the ejected ink increases by performing the preliminary driving operation (the right diagram in FIG. 10B).
- the tailing length is short as compared with the ink (i) having the same magnitude of viscosity and the relatively long tailing length in FIG.
- An experiment was performed on the ink (iii) under the same conditions as the verification experiment described above with reference to FIG. In this verification experiment, the experiment was performed by setting the frequency of the drive voltage in a high frequency region (10 kHz) where ink tends to remain in the ejection port and a low frequency region (1 kHz) where ink hardly remains.
- FIG. 11 shows the correlation between the angle variation and the volume of ejected ink with respect to the tailing length.
- FIG. 11A shows the results for the ink shown in FIG. 9I, and FIG. This is the result for the ink of (iii).
- the measurement method and definition of the angle variation and the volume of the ejected ink are the same as those shown in FIG.
- the ink having a relatively long tail length has a significantly larger angular variation in the high frequency region than the ink having a relatively short tail length (FIG. 11 ( The left figure of a)).
- the contact time with the ink remaining in the vicinity of the ejection port becomes longer, and the flying direction of the ejected ink is particularly easily bent, but the ink remains in the vicinity of the ejection port particularly in a high frequency region. It is considered that the angle variation is remarkably increased because it is easy.
- Y is set to a substantially constant value. Therefore, by increasing the displacement amount X of the drive voltage in the preliminary drive operation, the angular variation in the high frequency region becomes significant. It can be seen that it decreases (the left figure in FIG. 11A). It can also be seen that the volume of the ink droplet increases simultaneously with the decrease in the angular variation (the right diagram in FIG.
- Ink with a relatively short tailing length has a small angle variation in both the low frequency region and the high frequency region, and the ink droplet landing accuracy is good (the left diagram in FIG. 11B). This is presumably because when the tailing length is shortened, the contact time with the ink remaining in the vicinity of the ejection port is shortened, and straightness is ensured without bending the flight direction of the ejected ink. Even for ink with a short tail length, the volume of the ejected ink increases by performing the preliminary drive operation (the right diagram in FIG. 11B).
- FIG. 12 is a partial cross-sectional view showing a configuration of an organic EL device 100 manufactured using the method for manufacturing an organic EL device according to the embodiment of the present invention.
- the organic EL device 100 shown in FIG. 12 is illustrated as an organic EL display panel in which a plurality of organic EL elements 115 are disposed, a single organic EL element can be used as an organic EL device.
- the organic EL device 100 shown in FIG. 12 is merely an example.
- the organic EL device 100 is a so-called top emission type in which the upper side of FIG.
- a TFT (thin film transistor) layer 102, a feeding electrode 103, and a planarizing film 104 are sequentially stacked on the substrate body 101.
- a substrate 105 is composed of the substrate body 101, the TFT layer 102, the feeding electrode 103, and the planarization film 104.
- a pixel electrode 106 and a hole injection layer 109 are sequentially stacked on the substrate 105.
- a partition wall layer 107 in which a plurality of openings 117 serving as a formation region of the light emitting layer 111 is formed is provided. Inside the opening 117, a hole transport layer 110 and a light emitting layer 111 are sequentially stacked.
- an electron transport layer 112, an electron injection layer 113, and a common electrode 114 are sequentially stacked.
- the hole injection layer 109, the hole transport layer 10, the light emitting layer 111, the electron transport layer 112, and the electron injection layer 113 correspond to functional layers.
- the pixel electrode 106 corresponds to the first electrode, and the common electrode 114 corresponds to the second electrode.
- the substrate main body 101 is a rear substrate in the organic EL device 100, and a TFT layer 102 including a TFT (thin film transistor) for driving the organic EL device 100 by an active matrix method is formed on the surface thereof.
- the TFT layer 102 is formed with a power supply electrode 103 for supplying electric power to each TFT from the outside.
- the planarizing film 104 is provided to adjust the surface step generated by the TFT layer 102 and the power supply electrode 103 to be flat, and is made of an organic material having excellent insulation.
- a substrate 105 composed of the substrate body 101, the TFT layer 102, the feeding electrode 103, and the planarization film 104 corresponds to the substrate of the present invention.
- the contact hole 118 is provided to electrically connect the power supply electrode 103 and the pixel electrode 106, and is formed from the front surface to the back surface of the planarization film 104.
- the contact hole 118 is formed so as to be positioned between the openings 117 arranged in the Y direction, and is configured to be covered with the partition wall layer 107. When the contact hole 118 is not covered with the partition wall layer 107, the light emitting layer 111 does not become a flat layer due to the presence of the contact hole 118, which causes light emission unevenness and the like.
- the pixel electrode 106 is an anode, and is formed for each light emitting layer 111 formed in the opening 117. Since the organic EL device 100 is a top emission type, a highly reflective material is selected as the material of the pixel electrode 106. The pixel electrode 6 corresponds to the first electrode of the present invention.
- Partition layer 107 When the light-emitting layer 111 is formed, the partition wall layer 107 is mixed with a light-emitting layer material corresponding to each color of red (R), green (G), and blue (B) and an ink (liquid) containing a solvent. Fulfills the function of preventing.
- the partition layer 107 provided so as to cover the upper part of the contact hole 118 has a trapezoidal cross-sectional shape as a whole along the XZ plane or the YZ plane.
- FIG. 13 is a diagram schematically showing the shape of the partition layer 107 when the organic EL display panel as the organic EL device 100 is viewed from the display surface side.
- a hole transport layer 110, a light emitting layer 111, The state where the electron transport layer 112, the electron injection layer 113, and the common electrode 114 are removed is shown.
- the partial cross-sectional view of FIG. 12 corresponds to the A-A ′ cross-sectional view of FIG. 13.
- the organic EL display panel 100 includes a plurality of organic EL elements 115R corresponding to R, organic EL elements 115G corresponding to G, and a plurality of organic EL elements 115B corresponding to B in the XY direction (in a matrix). Arranged.
- Each of the organic EL elements 115R, 115G, and 115B is a subpixel, and a combination of the three subpixels of the organic EL elements 115R, 115G, and 115B corresponds to one pixel (one pixel).
- a plurality of openings 117 provided in the partition wall layer 107 are arranged in the XY direction corresponding to the organic EL elements 115R, 115G, and 115B.
- the opening 117 is a region where the light emitting layer 111 is formed, and the arrangement and shape of the light emitting layer 111 are defined by the arrangement and shape of the opening 117.
- the opening 117 has a rectangular shape having a long side in the Y direction. For example, the side along the X direction (row direction) is about 30 to 130 [ ⁇ m], and the side along the Y direction (column direction) is about 150. It is formed with a dimension of ⁇ 600 [ ⁇ m].
- the opening 117 has openings 117R, 117G, and 117B corresponding to R, G, and B colors.
- a light emitting layer 111 corresponding to R is formed in the opening 117R, G in the opening 117G, and B in the opening 117B. That is, the opening 117R corresponds to the organic EL element 115R, the opening 117G corresponds to the organic EL element 115G, and the opening 117B corresponds to the organic EL element 115B.
- the openings 117 are arranged for each column in R, G, and B color units, and the openings 117 belonging to the same column are openings corresponding to the same color.
- the contact hole 118 is located between the openings 117 arranged in the Y direction, that is, below the partition wall layer 107. Note that the pixel electrode 106 is formed for each light emitting layer 11 formed in the opening 117, but this means that the pixel electrode 106 is provided for each subpixel. .
- Hole transport layer 110> Returning to the partial sectional view of FIG.
- the hole transport layer 110 has a function of transporting holes injected from the pixel electrode 106 to the light emitting layer 111.
- the light-emitting layer 111 is a portion that emits light by recombination of carriers, and is configured to include a light-emitting layer material corresponding to one of R, G, and B colors.
- a light emitting layer material corresponding to R is formed in the opening 117R
- a light emitting layer material corresponding to G is formed in the opening 117G
- a light emitting layer 111 including a light emitting layer material corresponding to B is formed in the opening 117B.
- the electron transport layer 112 has a function of transporting electrons injected from the common electrode 114 to the light emitting layer 111.
- the electron injection layer 113 has a function of promoting injection of electrons from the common electrode 114 to the light emitting layer 111.
- ⁇ Common electrode 114> The common electrode 114 is a cathode and corresponds to the second electrode in the present invention.
- a light transmissive material is selected as the material of the common electrode 114.
- a sealing layer is provided on the common electrode 114 for the purpose of suppressing the light emitting layer 111 from being deteriorated by contact with moisture, air, or the like.
- a light transmissive material such as SiN (silicon nitride) or SiON (silicon oxynitride) is selected as the material of the sealing layer.
- an ITO layer indium tin oxide layer
- an IZO layer indium zinc oxide layer
- the light emitting layers 111 formed in the openings 117 can be all organic light emitting layers of the same color.
- Substrate body 101 alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, Insulating material such as alumina Planarizing film 104: polyimide resin, acrylic resin Pixel electrode 106: Ag (silver), Al (aluminum), an alloy of silver, palladium and copper, an alloy of silver, rubidium and gold, MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium) Partition layer 107: acrylic resin, polyimide resin, novolak type phenol resin Hole injection layer 109: metal oxide such as MoOx (molybdenum oxide), WOx (tungsten oxide) or MoxWyOz (molybdenum-tungsten oxide), metal nitriding Or metal oxynitride hole transport layer 110: triazole derivative, oxadia
- Electron transport layer 112 barium, phthalocyanine, lithium fluoride
- Electron injection layer 113 Nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, diphequinone derivatives, perylene tetracarboxyl derivatives, anthraquinodimethane derivatives, fluorenylidenemethane Derivatives, anthrone derivatives, oxadiazole derivatives, perinone derivatives, quinoline complex derivatives (all described in JP-A-5-163488)
- a planarizing film 104 having a thickness of about 4 [ ⁇ m] is formed on the TFT layer 102 and the feeding electrode 103 using an organic material having excellent insulating properties based on a photoresist method.
- the contact hole 118 is formed in accordance with the position between the openings 117 adjacent in the Y direction (FIG. 14B).
- the planarization film 104 and the contact hole 118 can be formed simultaneously by a photoresist method using a desired pattern mask.
- the method of forming the contact hole 118 is not limited to this.
- the planarization film 104 at a predetermined position can be removed to form the contact hole 118.
- the manufacturing process so far is the process of forming the substrate 105.
- the pixel electrode 106 made of a metal material having a thickness of about 150 [nm] is formed on the substrate 105 for each sub-pixel using the vacuum deposition method or the sputtering method while being electrically connected to the power supply electrode 103.
- the step of forming the pixel electrode 106 on the substrate 105 corresponds to the step of forming the first electrode of the present invention.
- the hole injection layer 109 is formed by reactive sputtering (FIG. 14C).
- the partition layer 107 is formed using a photolithography method.
- a pasty partition layer material containing a photosensitive resist is prepared as the partition layer material. This partition wall layer material is uniformly applied on the hole injection layer 109. A mask formed in the pattern of the opening 117 shown in FIG.
- exposure is performed on the mask to form a partition wall layer pattern.
- excess partition wall layer material is washed out with an aqueous or non-aqueous etching solution (developer). Thereby, patterning of the partition wall layer material is completed.
- the opening 117 serving as the light emitting layer forming region is defined, and the partition wall layer 107 whose surface is at least water-repellent is completed (FIG. 14D).
- the contact angle of the partition layer 107 with respect to the hole transport layer ink and the organic light emitting layer ink applied to the opening 117 in the subsequent step is adjusted, or the surface of the partition layer 107 is formed on the surface.
- the surface of the partition layer 107 may be surface-treated with a predetermined alkaline solution, water, an organic solvent, or the like, or may be subjected to plasma treatment.
- an organic material constituting the hole transport layer 110 and a solvent are mixed at a predetermined ratio to prepare a hole transport layer ink.
- This ink is supplied to each inkjet head 301, and droplets D made of ink for hole transport layer are ejected from ejection ports 3031 (see FIG. 3) corresponding to the respective openings 117 based on the coating process (FIG. 14). (E)). Thereafter, the solvent contained in the ink is evaporated and dried, and heated and fired as necessary to form the hole transport layer 110 (FIG. 15A).
- the organic material constituting the light emitting layer 111 and the solvent are mixed at a predetermined ratio to prepare an organic light emitting layer ink.
- This ink is supplied to the inkjet head 301, and droplets D made of organic light emitting layer ink are ejected from the ejection port 3031 corresponding to the opening 117 based on the coating process (FIG. 15B).
- the solvent contained in the ink is evaporated and dried, and when heated and fired as necessary, the light emitting layer 111 is formed (FIG. 15C).
- a material for forming the electron transport layer 112 is formed on the surface of the light emitting layer 111 using a vacuum deposition method. Thereby, the electron transport layer 112 is formed. Subsequently, a material for forming the electron injection layer 113 is formed using a method such as an evaporation method, a spin coating method, or a casting method, so that the electron injection layer 113 is formed.
- the steps of forming the hole injection layer 109, the hole transport layer 110, the light emitting layer 111, the electron transport layer 112, and the electron injection layer 113 described so far correspond to the step of forming the functional layer in the present invention.
- a material constituting the common electrode 114 is formed on the surface of the electron injection layer 113 by using a vacuum deposition method, a sputtering method, or the like. Thereby, the common electrode 114 is formed (FIG. 15D).
- the step of forming the common electrode 114 corresponds to the step of forming the second electrode in the present invention.
- a sealing layer is formed on the surface of the common electrode 114 by forming a light transmissive material such as SiN or SiON using a sputtering method, a CVD method, or the like.
- each of the hole transport layer 110 and the light emitting layer 111 is formed by adjusting and applying the layer material constituting the layer and an ink containing a solvent, and evaporating and drying the solvent or further heating and baking the solvent.
- the coating process when forming the light emitting layer 111 will be described in detail.
- Application in the application step is performed using the inkjet apparatus according to the present invention described in the first embodiment.
- the configuration of the ink jet apparatus is as described above with reference to FIGS.
- the ink jet apparatus 1000 shown in FIG. 1 is used to perform the coating process by the ink jet method.
- the ink jet apparatus 100 is equipped with a plurality of head units 30 (not shown), and each head unit 30 corresponds to a different ink.
- Inkjet head 301 is provided.
- each head unit 30 includes a plurality of inkjet heads 301.
- the long sides of the long openings 117 are arranged so as to intersect at a predetermined angle with respect to the scanning direction (row (Y) direction) of the head unit 30 (inkjet head 301). Will be described.
- FIG. 16 is a diagram showing a positional relationship between the application target substrate and the head unit 30 in the manufacturing process of the organic EL display panel.
- a substrate to be coated is arranged on the right side of the paper surface of the head unit 30, and a substrate in a state before the coating process, that is, a partition wall in which a plurality of openings 117 are formed in a matrix form in units of pixels.
- the substrate in a state where the layer 107 is provided is shown.
- a plurality of ejection ports 3031 for ejecting ink droplets are arranged at a predetermined pitch in the column (X) direction. At this time, the coating pitch from the discharge ports 3031 can be adjusted by changing the longitudinal inclination angle of the inkjet head 301.
- one inkjet head 301 has six ejection ports 3031 arranged in a line along the longitudinal direction, of which five ejection ports.
- 3031 corresponds to one opening 117 (one of 117R, 117G, and 117B).
- the head unit 30 in the ink jet apparatus shown in FIG. 16 corresponds to one opening 117 (one of 117R, 117G, and 117B), and although not shown, the head unit 30 of the same form remains.
- the hole transport layer 110 is formed by the same coating process as the light emitting layer 111, but unlike the light emitting layer 111, the coating process is performed using one kind of ink. Therefore, as shown in FIG. 16, the coating process is performed by scanning only a plurality of inkjet heads 301 in which the same type of ink is contained in one head unit 30 and discharging droplets. (Drive voltage)
- the layer material constituting the light emitting layer 111 corresponds to the emission color (R, G, B). Therefore, in the coating process for forming each light emitting layer 111 corresponding to each light emission color, the ink jet head 301 containing ink corresponding to each light emission color is scanned and applied. Naturally, the ink physical properties of the ink corresponding to each emission color are different.
- the drive voltage applied to the piezoelectric element of the ink jet head 301 containing the ink corresponding to the color R has a waveform configuration including the preliminary vibration waveform portion and the main vibration waveform portion (for example, FIG. 8A).
- a waveform configuration for example, FIG. 4A that does not perform the preliminary drive operation and does not include the preliminary vibration waveform section is used.
- the preliminary vibration waveform section includes the waveform configuration of the drive voltage to be applied in accordance with the ink physical properties of the ink stored in the inkjet head 301.
- the waveform configuration of the drive voltage to be applied in accordance with the ink physical properties of the ink stored in the inkjet head 301 As described above (with respect to the relationship between the ink physical properties and the pre-driving operation), it is possible to improve the landing accuracy of the ink droplets, thereby improving the manufacturing yield. Further, the higher the drive frequency of the drive voltage, the higher the production efficiency, but at the same time, the ink droplet landing accuracy tends to be lowered.
- the drive voltage applied to the piezoelectric element has a waveform configuration including a preliminary vibration waveform portion and a main vibration waveform portion (for example, 8A), and the other inkjet head 301 has a waveform configuration (for example, FIG. 4A) that does not perform the preliminary driving operation and does not include the preliminary vibration waveform portion.
- the driving voltage of the hole transport layer 110 has a waveform configuration including a preliminary vibration waveform portion and a main vibration waveform portion according to the ink physical properties of the ink used.
- the viscosity of the ink containing the layer material constituting the hole transport layer 110 is lower than that of each ink corresponding to the emission color (R, G, B), and the ink droplet landing accuracy is deteriorated. If so, the drive voltage applied to the piezoelectric element of the inkjet head 301 containing the ink has a waveform configuration including the preliminary vibration waveform portion and the main vibration waveform portion (for example, FIG. 8A).
- the waveform configuration including the preliminary vibration waveform portion and the main vibration waveform portion (for example, FIG. 8A). Use things. As a result, it is possible to improve the landing accuracy of the ink droplets, and consequently improve the manufacturing yield.
- the drive voltage applied to the piezoelectric element according to the ink physical properties of the ink contained in the light emitting layer 111 and the hole transport layer 110 or the frequency of the drive voltage includes the preliminary vibration waveform portion and the main vibration waveform portion.
- the waveform configuration includes (for example, FIG. 8A).
- the film thickness of the light emitting layer is on the order of several tens of nanometers, when an ink droplet smaller than a prescribed volume of the ejected droplet is ejected or the direction of flight is bent and ejected The film thickness is likely to be non-uniform, and as a result, the production yield is significantly reduced due to the difference in light emission luminance.
- the hole transport layer Therefore, as shown in the present embodiment, by performing the coating process using the ink jet apparatus according to the present invention, it is possible to improve the manufacturing yield in manufacturing the organic EL device.
- the hole transport layer and each light emitting layer corresponding to each light emission color are applied by applying the same driving voltage from the start to the end of the coating by each ink jet head.
- the present invention is not limited to this, and when the amount of ink adhering to the ejection port increases after a lapse of a certain time from the start of application, a preliminary drive operation is executed at that time, and the drive applied to the piezoelectric element
- the voltage is set to a waveform configuration including a preliminary vibration waveform portion and a main vibration waveform portion (for example, FIG. 8A), and a certain time within the application time from the start to the end of application is defined as the preliminary vibration waveform portion.
- the ink jet apparatus includes a plurality of ink jet heads, but the plurality of ink jet heads may contain inks having the same ink physical properties or may contain inks having different ink physical properties.
- a plurality of head units 30 shown in FIG. 1 are provided, and a gantry unit 210 and a moving body 220 corresponding to each head unit 30 are respectively installed and a control device. 15 may be connected.
- one inkjet head may have a plurality of ejection openings.
- an inkjet head having one ejection opening corresponding to one piezoelectric element may be used.
- a drive voltage having a waveform configuration including the pre-vibration waveform portion and the main vibration waveform portion is applied to at least one of the plurality of ink-jet heads, but the pre-driving operation should be performed for the remaining ink-jet heads. Instead, a drive voltage having a waveform configuration including the vibration waveform portion may be applied, or a preliminary drive operation may be executed.
- the pressure application unit which is a means for applying pressure to the ink storage unit to eject ink, is not limited to the one corresponding to the piezo method including the piezoelectric element shown in the present embodiment, and may be an ink such as a thermal method or a pump method. Any device corresponding to a method of ejecting ink by applying a pressing force to the interface may be used.
- a thermal method pressure is applied by bubbles generated by evaporating the ink in the ink containing portion.
- a heater may be used as the pressure applying portion.
- a flexural vibrator is used as a piezo method, but a pressure application unit corresponding to a method such as a longitudinal vibrator may be used.
- the pressure applying unit may be configured as a pressure applying unit including not only a piezoelectric element that is a piezoelectric element but also a diaphragm in which the piezoelectric elements are stacked.
- the drive voltage waveform is composed of a preliminary vibration waveform portion and a main vibration waveform portion corresponding to beating, and a vibration suppression waveform portion. It is also possible to adopt a waveform configuration (FIG. 6 (a)) as a main vibration waveform portion corresponding to hitting and a waveform configuration (FIG. 6 (c)) as a preliminary vibration waveform portion corresponding to pressing. It is also possible to adopt a waveform configuration that does not include a waveform portion (FIG. 6B).
- the device structure of the organic EL device has been described using the top emission type. Therefore, the cathode is made of ITO or IZO as a transparent conductive material.
- the device structure of the organic EL device targeted by the present invention is not limited thereto, and may be a bottom emission type, and the cathode may be made of a metal material such as aluminum.
- the configuration of the functional layer is not limited to a mode including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, as long as it includes at least a light emitting layer formed by coating. Good.
- the target organic EL device in the method for manufacturing an organic EL device has been described as an organic EL display panel.
- the organic EL device targeted by the present invention is not limited to this. Any organic EL device such as a single organic EL element may be used.
- the ink jet apparatus of the present invention can be used for an organic film coating process such as an organic imaging element and an organic EL element which is an organic EL device. It can use suitably for the application
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Coating Apparatus (AREA)
Abstract
Description
上記したように、インク液滴の着弾精度が悪化するプロセスと一つとして、規定のインク液滴サイズよりも小さいインク液滴が飛散し、吐出口付近に付着した状態において、後続のインク液滴が吐出口付近の小さいインク液滴と一体化した場合にインク液滴が表面張力によりひきずられる形で飛翔し、飛翔方向が曲げられることが挙げられる。
[本発明の一態様の概要]
本発明の一態様に係るインクジェット装置は、インクを収容するインク収容部と、前記インク収容部内の前記インクに圧力を印加してインク液滴を吐出する圧力印加部と、圧力を印加された前記インク液滴が吐出される吐出口とを有するインクジェットヘッドを複数備え、前記複数のインクジェットヘッドの内、少なくとも一つの前記インクジェットヘッドは、前記圧力印加部の圧力印加により、前記インク収容部内の前記インクを吐出しない範囲で前記吐出口側に押し出す予備駆動動作と、前記予備駆動動作を行った後に、前記インク液滴を吐出する本駆動動作とを実行する。
前記少なくとも一つの前記インクジェットヘッドから吐出されるインク液滴は、前記残余のインクジェットヘッドから吐出されるインク液滴よりも、前記尾引きが相対的に長い構成とすることもできる。
〔実施の形態1〕
本実施の形態に係るインクジェット装置について、図面を用いて説明する。
≪インクジェット装置1000≫
図1は、実施の形態に係るインクジェット装置1000の主要構成を示す図である。図2は、インクジェット装置1000の機能ブロック図である。
<インクジェットテーブル20>
図1に示すように、インクジェットテーブル20はいわゆるガントリー式の作業テーブルであり、基台のテーブルの上をガントリー部(移動架台)が一対のガイドシャフトに沿って移動可能に配されている。
<インクジェットヘッド301>
ヘッド部30はピエゾ方式を採用し、インクジェットヘッド301及び本体部302で構成されている。インクジェットヘッド301は本体部302を介して移動体220に固定される。本体部302はサーボモータ部304(図2参照)を内蔵しており、サーボモータ部304を回転させると、インクジェットヘッド301の長手方向と固定ステージSTのX軸とのなす角度が調節される。
<駆動電圧>
(波形構成)
本実施の形態では、複数のインクジェットヘッド301の内の少なくとも一つのインクジェットヘッド301が、圧力印加部3010の圧力印加により、インク収容部301e内のインク40を吐出しない範囲で吐出口3031側に押し出す予備駆動動作と、予備駆動動作を行った後に、インク40を吐出する本駆動動作とを実行する。そこで、予備駆動動作と本駆動動作とを実行する場合の駆動電圧の波形構成について、予備駆動動作を実行しない従来の駆動電圧の波形構成と比較して説明する。
(電圧変位量・波形幅)
図7は、本実施の形態にて用いる駆動電圧の信号波形を示すものである。それぞれ予備振動波形部61、本振動波形部62および制振波形部63の波形幅の大きさをA、C、Dとして、予備駆動動作を行うための電圧変位量をX、本駆動動作を行うための電圧変位量をY、制振動作を行うための電圧変位量をZとする。
以下、それぞれ予備振動波形部、本振動波形部および制振波形部における電圧変位量・波形幅について述べる。
〔予備振動波形部〕
予備振動波形部は、予備駆動動作を行うために印加する。電圧変位量Xの大きさの下限は、本駆動動作において規定の体積のインク液滴を吐出できる程度に、インクを押し出すために要する大きさとすればよい。また、電圧変位量Xの大きさの上限は、予備駆動動作にてインクが吐出しない大きさとすればよい。そのための良好な電圧変位量Xの範囲は、インク物性によってインク液滴を吐出するのに必要な電圧変位量Yが変化することを考慮し、電圧変位量Yと関連付けて30%≦X/Y≦50%となる範囲にて設定する。
〔本振動波形部〕
本振動波形部は、本駆動動作を行うために印加する。電圧変位量Yは、本駆動動作によりインクを吐出できるように、用いるインクのインク物性に応じて設定する。本実施の形態では、予備駆動動作を本駆動動作に先立ち行うため、本振動波形部の印加によるインク界面への押圧力を均一化できる。そのため、電圧変位量Yは、予備駆動動作を行わない場合に比して低く抑えることが可能であり、この低電圧駆動により、一波形に要する電圧印加の時間を短縮できる。
〔制振波形部〕
制振波形部は、本駆動動作に伴いインク界面に残留する振動の振幅の大きさを抑制するために、本振動波形部とは逆向きの電圧を印加するものである。電圧変位量Zの良好な範囲は、本振動波形部の電圧変位量Yの大きさに関係するところ、30%≦Z/Yとなるように設定することにより、本駆動動作に伴いインク界面に残留する振動の振幅の大きさを良好に抑制できる。上限は特に限定されないが、電圧変位量の大きさの増加は、一波形を印加するのに要する時間の増加に繋がることから、Z/Y≦60%となるように設定することがよい。
〔その他〕
本実施の形態の波形は、本振動波形部とは独立した予備振動波形部を構成要素とする。そのため、予備振動波形部と本振動波形部との間にリレータイムBが生じる。リレータイムBは、予備振動波形部の印加によりインク界面に残留する振動と、インク収容部を膨張させるために本振動波形部を印加することによる振動とが共振しないように設定する。例えば、インク収容部におけるヘルムホルツ共振周波数の周期Tの半分のT/2とする。
<各種実験と考察>
(予備駆動動作に伴うインク着弾精度の向上性について)
本発明者は、上述したように、インクを吐出させる駆動動作に先立ち、インクを吐出口側に押し出すことにより、より詳細にはインク界面のメニスカス形状を平面化することにより、規定のインク液滴サイズよりも小さいインク液滴の発生は抑制され、当該液滴よりも体積が大きい規定のインク液滴を吐出できるという知見を得た。そして、インク液滴の体積を制御して、吐出口に付着したインク液滴の表面張力を十分に無視できる運動エネルギーをインク液滴に与えることが可能であり、飛翔方向の曲がりを効果的に抑制できるという帰結に至った。以下、当該帰結に至った実験結果を図8を用いて説明する。
(予備振動波形部の電圧変位量の最適範囲について)
上記した図8(b)の実験結果が示すように、インク液滴の着弾精度を指標する吐出インクの角度バラツキは、一定の電圧比X/Yの値以上で顕著に減少する。具体的には、予備駆動動作における駆動電圧の変位量Xを電圧比X/Yが30%以上となるように設定した場合、予備駆動動作の効果が顕著になることを示す。また、電圧比X/Yの上限値は50%としておけば、図8(b)に示すように吐出するインクの体積も十分に確保でき、着弾精度も十分に確保できる。
(インク物性と予備駆動動作との関係性について)
インク物性は、吐出挙動に寄与するため、より詳細にはインク界面のメニスカス形状に寄与するため、インク液滴の着弾精度の悪化を生じさせる場合がある。そこで、本発明者は、インク物性の内、粘度および尾引き長さに注目して、図9に示す種々のインク物性のインクを用いて、予備駆動動作の効果を検証した。インクは、溶質としてF8-F6(F8(ポリジオクチルフルオレン)とF6(ポリジヘキシルフルオレン)との共重合体)、溶媒としてCHB(シクロヘキシルベンジン)を用いて濃度を変化させたものであり、図中の斜線三角印は、溶質の重量平均分子量が200000のものであり、斜線四角印は、溶質の重量平均分子量が400000のものである。尾引き長さは、吐出されたインク液滴の一部が吐出方向の後方側に線上に尾を引く形状をなす場合の当該尾の長さをいうが、図8(b)における角度バラツキおよび体積と同様にして、高速度カメラを顕微鏡に取り付け拡大撮影を行うことで飛翔中のインク液滴の形状を現場観察することにより測定した。粘度は、ティー・エイ・インスツルメント社製のレオメータAR-G2を用い、20℃の条件で測定した。
〔粘度について〕
インク粘度の大きさに対する予備駆動動作の効果を検証するために、図9における尾引き長さが同程度であり相対的に粘度が低いインク(i)と粘度が高いインク(ii)に対して、図8(a)を用いて上述した検証実験と同条件にて実験を行った。本検証実験では、吐出口にインクが残留しやすい高周波数領域(10kHz)と残留しにくい低周波数領域(1kHz)に駆動電圧の周波数をそれぞれ設定して実験を行った。
〔尾引き長さについて〕
インクの尾引き長さに対する予備駆動動作の効果を検証するために、図9における粘度の大きさが同程度であり相対的に尾引き長さが長いインク(i)と尾引き長さが短いインク(iii)に対して、図8(a)を用いて上述した検証実験と同条件にて実験を行った。本検証実験では、吐出口にインクが残留しやすい高周波数領域(10kHz)と残留しにくい低周波数領域(1kHz)に駆動電圧の周波数をそれぞれ設定して実験を行った。
(駆動電圧の駆動周波数と予備駆動動作との関係性について)
図10(a)および図11(a)が示すように、駆動電圧の駆動周波数が高周波数領域に属する場合、角度バラツキは顕著に大きくなりインク液滴の着弾精度は著しく悪化する。高周波数領域では、インク液滴を吐出する時間当たりの間隔が短くなるために吐出口近傍にインクが残留しやすくなるとともに、当該残留したインクと接触する時間当たりの回数が増加する。しかしながら、図10(a)および図11(a)に示すように、予備駆動動作を行うことにより、吐出するインクの体積を安定的に確保できるため、角度バラツキは劇的に小さくなり、インク液滴の着弾精度は格段に向上する。本検証実験は、高周波数領域として10kHz、低周波数領域として1kHzを設定して行った。本検証実験からは、少なくとも10kHz以上の高周波数領域では、予備駆動動作を行うことにより、インク液滴の着弾精度を特に向上できる。また、上限を特に限定する理由はないが、例えば、20kHzを上限値としておけば、現状において求められる高周波数化には対応できる。
[実施の形態2]
先ず、本実施の形態に係る有機ELデバイスの製造方法の説明に入る前に、本実施の形態に係る方法を用いて製造しようとする有機ELデバイスの構成について説明する。
≪有機ELデバイス100の構成≫
図12は、本発明の実施の形態に係る有機ELデバイスの製造方法を用いて製造した有機ELデバイス100の構成を示す部分断面図である。尚、図12に示す有機ELデバイス100は、複数の有機EL素子115を配設した有機EL表示パネルとして図示されているが、単体の有機EL素子を有機ELデバイスとすることも可能であり、図12に示す有機ELデバイス100は例示にすぎない。
<基板>
基板本体部101は有機ELデバイス100における背面基板であり、その表面には有機ELデバイス100をアクティブマトリクス方式で駆動するためのTFT(薄膜トランジスタ)を含むTFT層102が形成されている。TFT層102には、各TFTに対して外部から電力を供給するための給電電極103が形成されている。
<コンタクトホール118>
コンタクトホール118は、給電電極103と画素電極106とを電気的に接続するために設けられ、平坦化膜104の表面から裏面にわたって形成されている。コンタクトホール118は、Y方向に配列されている開口部117の間に位置するように形成されており、隔壁層107により覆われた構成となっている。コンタクトホール118が隔壁層107により覆われていない場合には、コンタクトホール118の存在により、発光層111が平坦な層とはならず、発光ムラ等の原因となる。これを避けるため、上記のような構成としている。
<画素電極106>
画素電極106は陽極であり、開口部117に形成される一の発光層111毎に形成されている。有機ELデバイス100はトップエミッション型であるため、画素電極106の材料としては高反射性材料が選択されている。画素電極6は本発明の第1電極に相当する。
<正孔注入層109>
正孔注入層109は、画素電極106から発光層111への正孔の注入を促進させる目的で設けられている。
<隔壁層107>
隔壁層107は、発光層111を形成する際、赤色(R)、緑色(G)、青色(B)の各色に対応する発光層材料と溶媒を含むインク(液状体)が互いに混入することを防止する機能を果たす。
<正孔輸送層110>
図12の部分断面図に戻り説明する。正孔輸送層110は、画素電極106から注入された正孔を発光層111へ輸送する機能を有する。
<発光層111>
発光層111は、キャリアの再結合による発光を行う部位であり、R、G、Bのいずれかの色に対応する発光層材料を含むように構成されている。開口部117RにはRに対応する発光層材料、開口部117GにはGに対応する発光層材料、開口部117BにはBに対応する発光層材料をそれぞれ含む発光層111が形成される。
<電子輸送層112>
電子輸送層112は、共通電極114から注入された電子を発光層111へ輸送する機能を有する。
<電子注入層113>
電子注入層113は、共通電極114から発光層111への電子の注入を促進させる機能を有する。
<共通電極114>
共通電極114は陰極であり、本発明における第2電極に相当する。有機EL表示パネル100はトップエミッション型であるため、共通電極114の材料としては光透過性材料が選択されている。
<その他>
図12には図示しないが、共通電極114の上には、発光層111が水分や空気等に触れて劣化することを抑制する目的で封止層が設けられる。有機ELデバイス100はトップエミッション型であるため、封止層の材料としては、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の光透過性材料を選択する。
<各層の材料>
次に、上記で説明した各層の材料を例示する。言うまでもなく、以下に記載した材料以外の材料を用いて各層を形成することも可能である。
平坦化膜104:ポリイミド系樹脂、アクリル系樹脂
画素電極106:Ag(銀)、Al(アルミニウム)、銀とパラジウムと銅との合金、銀とルビジウムと金との合金、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)
隔壁層107:アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂
正孔注入層109:MoOx(酸化モリブデン)、WOx(酸化タングステン)又はMoxWyOz(モリブデン-タングステン酸化物)等の金属酸化物、金属窒化物又は金属酸窒化物
正孔輸送層110:トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体(いずれも特開平5-163488号公報に記載)
発光層111:F8-F6(F8(ポリジオクチルフルオレン)とF6(ポリジヘキシルフルオレン)との共重合体)のほか、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質
電子輸送層112:バリウム、フタロシアニン、フッ化リチウム
電子注入層113:ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体(いずれも特開平5-163488号公報に記載)
共通電極114:ITO、IZO
≪有機ELデバイス100の製造方法≫
先ず、有機ELデバイス100とされる有機EL表示パネルの全体的な製造方法を例示する。その後、製造方法中の機能層形成工程における塗布工程について詳細を説明する。
<概略>
TFT層102および給電電極103が形成された基板本体部101を準備する(図14(a))。
次に、隔壁層107をフォトリソグラフィー法を用いて形成する。まず隔壁層材料として、感光性レジストを含むペースト状の隔壁層材料を用意する。この隔壁層材料を正孔注入層109上に一様に塗布する。この上に、図12に示した開口部117のパターンに形成されたマスクを重ねる。続いてマスクの上から感光させ、隔壁層パターンを形成する。その後は、余分な隔壁層材料を水系もしくは非水系エッチング液(現像液)で洗い出す。これにより、隔壁層材料のパターニングが完了する。以上で発光層形成領域となる開口部117が規定されるとともに、表面が少なくとも撥水性の隔壁層107が完成する(図14(d))。
<塗布工程>
上記のように、それぞれ正孔輸送層110および発光層111は、層を構成する層材料と溶媒を含むインクを調整して塗布するとともに、当該溶媒を蒸発乾燥又は更に加熱焼成させて形成する。以下、特に発光層111を形成する際の塗布工程について詳細に説明する。
(インクジェット装置1000について)
塗布工程における塗布は、実施の形態1にて示した本発明に係るインクジェット装置を用いて行う。インクジェット装置の構成は、図1ないし図3を用いて上述したとおりである。図1に示すインクジェット装置1000を用い、インクジェット方式による塗布工程を行うが、本実施の形態では、インクジェット装置100には図示されない複数のヘッド部30が装備され、各ヘッド部30は異なるインクに対応したインクジェットヘッド301を備える。さらに、各ヘッド部30は複数のインクジェットヘッド301を備える。ここでは、長尺状の各開口部117の長辺が、ヘッド部30(インクジェットヘッド301)の走査方向(行(Y)方向)に対して所定の角度で交差するように配置されている場合について説明する。
(ヘッド部30と塗布対象基板の開口部との位置関係)
図16は有機EL表示パネルの製造工程における、塗布対象基板とヘッド部30の位置関係を示す図である。
(駆動電圧)
発光層111を構成する層材料は、発光色(R、G、B)に対応したものとなる。そのため、それぞれの発光色に対応した各発光層111を形成するための塗布工程では、それぞれの発光色に対応したインクを収容したインクジェットヘッド301を走査して塗布を行う。各発光色に対応するインクのインク物性は、当然に異なる。例えば、発光色Rに対応したインクの尾引き長さが相対的に他の発光色に対応したインクのものに比して長く、インク液滴の着弾精度の悪化を招くものであれば、発光色Rに対応したインクを収容するインクジェットヘッド301の圧電素子に印加する駆動電圧は、予備振動波形部と本振動波形部を含む波形構成(例えば、図8(a))のものを用い、その他の発光色に対応したインクを収容するインクジェットヘッド301では、予備駆動動作を行わず、予備振動波形部を含まない波形構成(例えば、図4(a))のものを用いる。この様に、インクジェットヘッド301に収容するインクのインク物性に応じて、印加する駆動電圧の波形構成を予備振動波形部が含むものにする。その結果、上記(インク物性と予備駆動動作との関係性について)で示したように、インク液滴の着弾精度の向上を図ることが可能となり、ひいては製造歩留まりの向上を図ることができる。また、駆動電圧の駆動周波数が高いほど製造効率は高まるが、同時にインク液滴の着弾精度の低下を招きやすい。そこで、高周波数領域においてインク液滴の着弾精度の低下を招くインクを収容するインクジェットヘッド301については、圧電素子に印加する駆動電圧は、予備振動波形部と本振動波形部を含む波形構成(例えば、図8(a))のものとし、その他のインクジェットヘッド301については、予備駆動動作を行わず、予備振動波形部を含まない波形構成(例えば、図4(a))のものを用いる。その結果、上記(駆動電圧の駆動周波数と予備駆動動作との関係性について)で示したように、インク液滴の着弾精度の向上を図ることが可能となり、ひいては製造歩留まりの向上を図ることができる。
<その他>
以上、本発明の実施の形態に係るインクジェット装置および有機ELデバイスの製造方法について具体的に説明してきたが、上記実施の形態は、本発明の構成および作用・効果を分かり易く説明するために用いた例示であって、本発明の内容は、上記の実施の形態に限定されない。
20 インクジェットテーブル
30 ヘッド部
40 インク
100 有機ELデバイス
101 基板本体部
102 TFT層
103 給電電極
104 平坦化膜
105 基板
106 画素電極
107 障壁層
109 正孔注入層
110 正孔輸送層
111 発光層
112 電子輸送層
113 電子注入層
114 共通電極
115 有機EL素子
210 ガントリー部
213 制御部
220 移動体
300 吐出制御部
301 インクジェットヘッド
301e インク収容部
301h 振動板
302 本体部
1000 インクジェット装置
3010 圧力印加部
3031 吐出口
Claims (11)
- インクを収容するインク収容部と、前記インク収容部内の前記インクに圧力を印加してインク液滴を吐出する圧力印加部と、圧力を印加された前記インク液滴が吐出される吐出口とを有するインクジェットヘッドを複数備え、
前記複数のインクジェットヘッドの内、少なくとも一つの前記インクジェットヘッドは、
前記圧力印加部の圧力印加により、前記インク収容部内の前記インクを吐出しない範囲で前記吐出口側に押し出す予備駆動動作と、前記予備駆動動作を行った後に、前記インク液滴を吐出する本駆動動作と、を実行する
インクジェット装置。 - 前記少なくとも一つの前記インクジェットヘッドにおける前記圧力印加部は、前記インク収容部内のインクに圧力を印加するための圧電素子を有し、
前記圧電素子に電圧を印加して前記インク液滴の吐出を制御する吐出制御部を備え、
前記電圧の信号波形は、前記予備駆動動作を実行するための予備振動波形部と、前記本駆動動作を実行するための本振動波形部とを含む、
請求項1に記載のインクジェット装置。 - 前記少なくとも一つの前記インクジェットヘッドから吐出されるインクと、
複数の前記インクジェットヘッドの内、前記少なくとも一つの前記インクジェットヘッドを除く残余のインクジェットヘッドから吐出されるインクとは、互いに物性が異なる
請求項1または2に記載のインクジェット装置。 - 前記物性は粘度であり、
前記少なくとも一つの前記インクジェットヘッドから吐出されるインクの粘度が、前記残余のインクジェットヘッドから吐出されるインクの粘度よりも相対的に低い
請求項3に記載のインクジェット装置。 - 前記インクは前記物性として、その一部が吐出方向の後方側に線状に伸びる尾引きを発生する特性を有し、
前記少なくとも一つの前記インクジェットヘッドから吐出されるインク液滴は、前記残余のインクジェットヘッドから吐出されるインク液滴よりも、前記尾引きが相対的に長い
請求項3に記載のインクジェット装置。 - 複数の前記インクジェットヘッドにおける前記圧力印加部は、いずれも前記インク収容部内のインクに圧力を印加するための圧電素子を有し、
前記少なくとも一つの前記インクジェットヘッドと、前記残余のインクジェットヘッドとは、それぞれ前記圧電素子に印加する電圧の周波数が異なる
請求項2に記載のインクジェット装置。 - 前記少なくとも一つの前記インクジェットヘッドの前記圧電素子に印加する電圧の周波数が10kHz以上である
請求項6に記載のインクジェット装置。 - 前記予備駆動動作にてインクを押し出すために前記圧電素子に印加する電圧信号における電圧の変位量Xは、前記本駆動動作にてインク液滴を吐出するために前記圧電素子に印加する電圧信号における電圧の変位量Yに対する比率が30%≦X/Y≦50%となるように設定されている
請求項2に記載のインクジェット装置。 - 前記少なくとも一つの前記インクジェットヘッドにおいて、前記圧電素子に印加する前記電圧の信号波形は、前記本駆動動作の後に前記吐出口内のインク界面の振動を抑制するための制振波形部を含み、
前記吐出制御部は、前記信号波形の前記電圧を前記圧電素子に印加することで、前記吐出口内のインク界面の制振動作を実行する
請求項8に記載のインクジェット装置。 - 前記予備駆動動作を実行する前記吐出口内において、前記本駆動動作を実行開始する際におけるインク界面の位置が、
前記予備駆動動作を実行しない前記吐出口において、前記本駆動動作を実行開始する際におけるインク界面の位置よりも吐出方向下流側に位置している
ことを特徴とする請求項8又は9に記載のインクジェット装置。 - 基板上に第一電極を形成する工程と、
前記第一電極上に発光層を含む1以上の機能層を形成する工程と、
前記機能層上に第二電極を形成する工程とを有し、
前記機能層を形成する工程では、
少なくとも前記発光層を含む前記機能層を、層材料と溶媒とを含むインクを塗布し、前記溶媒を蒸発乾燥させることにより形成し、
前記塗布は、請求項1~10のいずれかに記載のインクジェット装置を用いて行う、
有機ELデバイスの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014519838A JPWO2013183282A1 (ja) | 2012-06-06 | 2013-06-04 | インクジェット装置および有機elデバイスの製造方法 |
US14/400,949 US9555628B2 (en) | 2012-06-06 | 2013-06-04 | Inkjet device, and method for manufacturing organic EL device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-129268 | 2012-06-06 | ||
JP2012129268 | 2012-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183282A1 true WO2013183282A1 (ja) | 2013-12-12 |
Family
ID=49711688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003500 WO2013183282A1 (ja) | 2012-06-06 | 2013-06-04 | インクジェット装置および有機elデバイスの製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9555628B2 (ja) |
JP (1) | JPWO2013183282A1 (ja) |
WO (1) | WO2013183282A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016090287A (ja) * | 2014-10-30 | 2016-05-23 | 東京エレクトロン株式会社 | 検査装置および検査方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102400483B1 (ko) * | 2015-10-02 | 2022-05-23 | 삼성디스플레이 주식회사 | 유기 발광 디스플레이 장치용 제조 장치와, 이를 이용한 유기 발광 디스플레이 장치의 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296420A (ja) * | 2000-04-13 | 2001-10-26 | Canon Inc | カラーフィルタの製造方法、その製造装置、カラーフィルタを備えた液晶表示装置の製造方法、液晶表示装置を備えた装置の製造方法及びインク吐出装置 |
JP2004275956A (ja) * | 2003-03-18 | 2004-10-07 | Seiko Epson Corp | 機能液滴吐出ヘッドの駆動制御方法、機能液滴吐出装置、電気光学装置、液晶表示装置の製造方法、有機el装置の製造方法、電子放出装置の製造方法、pdp装置の製造方法、電気泳動表示装置の製造方法、カラーフィルタの製造方法、有機elの製造方法、スペーサ形成方法、金属配線形成方法、レンズ形成方法、レジスト形成方法および光拡散体形成方法 |
JP2010142676A (ja) * | 2008-12-16 | 2010-07-01 | Seiko Epson Corp | 液滴吐出装置、液滴吐出装置の駆動制御方法、パターン膜形成部材、パターン膜形成部材の製造方法、電気光学装置、電子機器 |
JP2010142675A (ja) * | 2008-12-16 | 2010-07-01 | Seiko Epson Corp | 液滴吐出装置、液滴吐出装置の駆動制御方法、パターン膜形成部材、パターン膜形成部材の製造方法、電気光学装置、電子機器 |
JP2011008228A (ja) * | 2009-05-28 | 2011-01-13 | Seiko Epson Corp | 液滴吐出装置の制御方法、液滴吐出装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2593940B2 (ja) | 1988-10-14 | 1997-03-26 | 富士電機株式会社 | インクジェット記録ヘッドの駆動方法 |
US5443922A (en) | 1991-11-07 | 1995-08-22 | Konica Corporation | Organic thin film electroluminescence element |
JPH05163488A (ja) | 1991-12-17 | 1993-06-29 | Konica Corp | 有機薄膜エレクトロルミネッセンス素子 |
EP0810097B1 (en) * | 1995-11-21 | 1999-03-31 | Citizen Watch Co., Ltd. | Drive circuit and drive method for ink jet head |
JP3500831B2 (ja) | 1996-02-22 | 2004-02-23 | セイコーエプソン株式会社 | インクジェット式記録装置 |
EP2184168B1 (en) * | 2008-11-07 | 2012-02-15 | Konica Minolta IJ Technologies, Inc. | Inkjet recording apparatus |
JP5003775B2 (ja) * | 2010-02-19 | 2012-08-15 | ブラザー工業株式会社 | 液滴吐出装置 |
JPWO2013183280A1 (ja) * | 2012-06-06 | 2016-01-28 | パナソニック株式会社 | インクジェット装置および有機elデバイスの製造方法 |
-
2013
- 2013-06-04 US US14/400,949 patent/US9555628B2/en active Active
- 2013-06-04 WO PCT/JP2013/003500 patent/WO2013183282A1/ja active Application Filing
- 2013-06-04 JP JP2014519838A patent/JPWO2013183282A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296420A (ja) * | 2000-04-13 | 2001-10-26 | Canon Inc | カラーフィルタの製造方法、その製造装置、カラーフィルタを備えた液晶表示装置の製造方法、液晶表示装置を備えた装置の製造方法及びインク吐出装置 |
JP2004275956A (ja) * | 2003-03-18 | 2004-10-07 | Seiko Epson Corp | 機能液滴吐出ヘッドの駆動制御方法、機能液滴吐出装置、電気光学装置、液晶表示装置の製造方法、有機el装置の製造方法、電子放出装置の製造方法、pdp装置の製造方法、電気泳動表示装置の製造方法、カラーフィルタの製造方法、有機elの製造方法、スペーサ形成方法、金属配線形成方法、レンズ形成方法、レジスト形成方法および光拡散体形成方法 |
JP2010142676A (ja) * | 2008-12-16 | 2010-07-01 | Seiko Epson Corp | 液滴吐出装置、液滴吐出装置の駆動制御方法、パターン膜形成部材、パターン膜形成部材の製造方法、電気光学装置、電子機器 |
JP2010142675A (ja) * | 2008-12-16 | 2010-07-01 | Seiko Epson Corp | 液滴吐出装置、液滴吐出装置の駆動制御方法、パターン膜形成部材、パターン膜形成部材の製造方法、電気光学装置、電子機器 |
JP2011008228A (ja) * | 2009-05-28 | 2011-01-13 | Seiko Epson Corp | 液滴吐出装置の制御方法、液滴吐出装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016090287A (ja) * | 2014-10-30 | 2016-05-23 | 東京エレクトロン株式会社 | 検査装置および検査方法 |
Also Published As
Publication number | Publication date |
---|---|
US9555628B2 (en) | 2017-01-31 |
US20150132879A1 (en) | 2015-05-14 |
JPWO2013183282A1 (ja) | 2016-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013183280A1 (ja) | インクジェット装置および有機elデバイスの製造方法 | |
JP6108241B2 (ja) | インクジェット装置および有機elデバイスの製造方法 | |
JP5624047B2 (ja) | 有機el表示パネルとその製造方法 | |
JP5785935B2 (ja) | 有機el表示パネルの製造方法、および有機el表示パネルの製造装置 | |
JP6142324B2 (ja) | 有機el表示パネルとその製造方法 | |
JP5543597B2 (ja) | 有機el表示パネルの製造方法 | |
WO2013183282A1 (ja) | インクジェット装置および有機elデバイスの製造方法 | |
JP2012252983A (ja) | 有機el表示パネルの製造方法、カラーフィルターの製造方法、有機el表示パネルの製造装置および有機el表示パネル | |
JP2009247918A (ja) | 液状体の吐出方法、カラーフィルタの製造方法、有機el装置の製造方法 | |
JP2011044340A (ja) | 有機el素子の製造方法 | |
JP6083589B2 (ja) | インクジェット装置および有機el表示パネルの製造方法 | |
JP2018022594A (ja) | インクジェット装置、有機el素子の製造装置、及び有機el素子の製造方法 | |
JP2017094235A (ja) | 液滴吐出方法および液滴吐出プログラム | |
JP2016006746A (ja) | インクジェット装置、および、インクジェット装置を用いて電子デバイスを製造する方法 | |
JP5919535B2 (ja) | 液滴吐出方法、有機el素子の製造方法、有機el表示パネル、および有機el表示装置 | |
JP2016005828A (ja) | インクジェット装置、および、インクジェット装置を用いて電子デバイスを製造する方法 | |
JP2019014089A (ja) | ノズルプレート、インクジェットプリントヘッド、インクジェット装置及びノズルプレートの製造方法 | |
JP2009050785A (ja) | 液状体の吐出方法、カラーフィルタの製造方法、有機el素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13800214 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014519838 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14400949 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13800214 Country of ref document: EP Kind code of ref document: A1 |