WO2013181937A1 - 强化冷凝传热管 - Google Patents

强化冷凝传热管 Download PDF

Info

Publication number
WO2013181937A1
WO2013181937A1 PCT/CN2013/070226 CN2013070226W WO2013181937A1 WO 2013181937 A1 WO2013181937 A1 WO 2013181937A1 CN 2013070226 W CN2013070226 W CN 2013070226W WO 2013181937 A1 WO2013181937 A1 WO 2013181937A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
fins
transfer tube
axial direction
fin
Prior art date
Application number
PCT/CN2013/070226
Other languages
English (en)
French (fr)
Inventor
武永强
王志军
孙新春
王晨辉
张小广
李前方
Original Assignee
金龙精密铜管集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙精密铜管集团股份有限公司 filed Critical 金龙精密铜管集团股份有限公司
Priority to US14/125,546 priority Critical patent/US20140224464A1/en
Publication of WO2013181937A1 publication Critical patent/WO2013181937A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces

Definitions

  • the present invention relates to the field of heat transfer tubes, and more particularly to an enhanced condensation heat transfer tube. Background technique
  • condenser design requires a gradual increase in heat transfer performance, and high-efficiency heat exchange tubes are the core factors affecting the heat transfer performance of the condenser.
  • a copper heat exchange tube disclosed in Chinese Patent Publication No. CN1982829A which has a triangular-shaped smooth fin outside the tube, which can increase the heat exchange area and can be used for reducing the condensate film in the condenser. Speed up the dripping of the condensate, which is more efficient than the heat transfer of the light pipe.
  • the condensate between the smooth fins is easy to "bridge", so that the condensate flow is not smooth, and the condensation heat resistance on the fins increases to reduce the heat exchange efficiency.
  • a condensing heat transfer tube disclosed in Chinese Patent Publication No. CN101813433A which uses a fin-and-grooved fin structure, the sawtooth structure can pierce the condensate film, and the fin-on platform can enhance the condensation exchange to some extent. Thermal performance.
  • FIG. 3 is a front view view thereof
  • fins are distributed on the outer surface of the heat transfer tube main body, which can be improved to some extent.
  • the heat transfer performance on the condensing side but due to the uniform fin height, uniform fin spacing, and uniform distribution, can not fully utilize the surface tension of the condensate to improve heat transfer performance, therefore, the heat transfer efficiency of the heat transfer tube is relatively low, The requirements of the refrigeration equipment for the heat transfer performance of the condenser cannot be fully satisfied.
  • the technical problem to be solved by the present invention is to provide an enhanced condensation heat transfer tube, which improves the heat exchange performance of the heat transfer tube for the condenser by the enhanced heat exchange technology, and solves the problem that the heat transfer performance of the existing condenser is not high.
  • the present invention discloses a condensing heat transfer tube, the outer surface of the heat transfer tube is provided with a spiral fin, and the spacing between the fins is regularly varied in width and width. .
  • the spiral fins are smooth fins; or the spiral fins are slotted fins on the top of the smooth fins or on both sides of the groove.
  • the pitch of the axial fins is 0. 4 lmm.
  • the spacing between the fins varies in a width and a narrowness in the axial direction; or, the spacing between the fins varies in the axial direction by a width and a narrowness; or The spacing between the fins varies in the axial direction from two widths to one narrow.
  • the height of the spiral fin changes regularly in the axial direction.
  • the thickness of the spiral fin is 0. 1 0. 4 height is 0. 4 1. 5
  • the height of the spiral fin changes regularly in the axial direction; or the height of the spiral fin changes in the axial direction by a height of two degrees; or The height of the spiral fin varies in the axial direction from two high to one low.
  • the helix angle of the spiral fin is 0. 3 1. 5 °
  • the inner surface of the heat transfer tube is provided with threaded internal teeth.
  • the fin outer surface fin of the condensing heat transfer tube disclosed in the preferred embodiment of the present invention has a wide and narrow fin pitch, and the fin height is high and low, and the surface tension of the condensate can be fully utilized to be thinned.
  • the thickness of the liquid film makes the unequal thickness of the condensate film reduce the average thermal resistance and enhance the "Gregorig” effect, thereby increasing the heat transfer coefficient of the outer surface of the heat transfer tube; at the same time, the uniform change of surface tension and the change of curvature, the condensate
  • the holding force is deteriorated, the condensate dripping can be accelerated, the condensation heat transfer performance is enhanced, and the "tube bundle effect" can be weakened; the heat exchange efficiency inside and outside the tube is optimized, and the overall heat transfer of the enhanced heat transfer tube for condensation is improved. effectiveness.
  • Figure 1 is a schematic view of the structure of a conventional enhanced condensation heat transfer tube 1;
  • FIG. 2 is a schematic structural view of a conventional condensing heat transfer tube 2
  • FIG. 3 is a front view of a conventional condensing heat transfer tube
  • Figure 4 is a front elevational view of a first embodiment of the enhanced condensation heat transfer tube of the present invention.
  • Figure 5 is a front elevational view showing a second embodiment of the enhanced condensation heat transfer tube of the present invention.
  • Figure 6 is a front elevational view of a third embodiment of the enhanced condensation heat transfer tube of the present invention.
  • Figure 7 is a front elevational view showing a fourth embodiment of the enhanced condensation heat transfer tube of the present invention.
  • Figure 8 is a front elevational view showing a fifth embodiment of the enhanced condensation heat transfer tube of the present invention.
  • Figure 9 is a front elevational view showing a sixth embodiment of the enhanced condensation heat transfer tube of the present invention.
  • FIG. 10 is a schematic structural view of a seventh embodiment of the enhanced condensation heat transfer tube of the present invention. detailed description
  • the outer surface of the heat transfer tube has helical fins between the fins. 4 ⁇ lmm ⁇ 0. 1 ⁇ lmm, fin thickness 0. 1 ⁇ lmm, the fin thickness is 0. 1 ⁇ lmm, the fin thickness is 0. 1 ⁇ 4.
  • the spiral fins may be in the range of 0. 3 ⁇ 1. 5 °, the fin height is in the range of 0. 4 ⁇ 1. 5
  • the spiral fins may be smooth or smooth fins.
  • the outer fins of this structure have a wide and narrow distribution of fin spacing, so that the surface tension of the condensate between the fins changes uniformly, and the thickness of the liquid film changes uniformly.
  • the average thermal resistance can be reduced, so that the "Gregogrig" effect is enhanced, thereby increasing the heat transfer coefficient of the outer surface of the heat exchange tube; at the same time, the uniform change of the surface tension and the change of the surface curvature make the condensate maintain the force between the fins. , can quickly flow to the bottom of the fin and drip down, also make condensation heat transfer You can enhance and weakened "bundle effect.”
  • This type of structural fin can be formed by a combination of cutters without increasing metal consumption.
  • FIG. 5 a front view of a second embodiment of the enhanced condensation heat transfer tube of the present invention is shown.
  • the spacing between the fins is a width and a narrow variation, and the other The first embodiment is the same.
  • FIG. 6 is a front perspective view showing a third embodiment of the condensing heat transfer tube of the present invention.
  • the spacing between the fins is two widths and one narrow, and the other The first embodiment is the same.
  • FIG. 7 a front view of a fourth embodiment of the enhanced condensation heat transfer tube of the present invention is shown.
  • the outer surface of the heat transfer tube is provided with fins, and the fin height is axially a regular distribution of high and low, of which lower fins The height of the fin is 0. 6 ⁇ 1. 5mm.
  • the high and low distribution fins of the structure outside the tube make the surface tension of the condensate between the fins uniformly change, and the thickness of the liquid film is inconsistent and uniform, which can reduce the average thermal resistance, thereby enhancing the "Gregorig” effect, thereby improving the
  • the heat transfer coefficient of the outer surface of the heat exchange tube, as well as the uniform change of the surface tension and the change of the surface curvature make the condensate maintain the force between the fins, and can quickly flow to the bottom of the fin and drip down, also Condensation heat transfer performance is enhanced and the "tube bundle effect" is attenuated.
  • the structural fins can be formed by a combination of cutters without increasing metal consumption.
  • FIG. 8 a front view of a fifth embodiment of the enhanced condensation heat transfer tube of the present invention is shown.
  • the height of the fin is a high and a low, and the other is fourth.
  • the examples are the same.
  • FIG. 9 a front view of a sixth embodiment of the enhanced condensation heat transfer tube of the present invention is shown.
  • the height of the fin is two high and one low, and the other is fourth.
  • the examples are the same.
  • the threaded internal teeth 1 can be processed in the tube by using special equipment to strengthen the heat transfer coefficient in the tube; wherein the threaded internal teeth 1 and the axial angle are included
  • the range is 30 ⁇ 60°, the number of internal threads
  • the threaded internal tooth 1 can destroy the boundary layer of the fluid in the tube, increase the fluid disturbance in the tube, thereby enhancing the heat transfer inside the tube and increasing the heat transfer coefficient inside the tube.
  • FIG. 10 a schematic structural view of a seventh embodiment of the enhanced condensation heat transfer tube of the present invention is shown.
  • the height of the fin is changed from high to low in the axial direction, and between the fins.
  • the spacing is a wide and narrow variation along the axial direction.
  • the singularity of the tube is 19 mm, the wall thickness is 1.13 mm, and the tube is made of a copper, a copper alloy or other metal material.
  • the special pipe rolling machine is processed by spinning and the inner tube is integrated at the same time. 5 ⁇
  • the outer surface of the tube body is formed with a spiral fin in the circumferential direction, the spacing between the fins dl is 0. 53mm, the d2 is 0. 61mm, the fin height hi is 0. 75mm, h2 is 0. 9mm.
  • the top of the fin is rolled to form a fin groove, and 120 fin grooves are opened in the circumferential direction.
  • the threaded internal teeth 1 are machined in the tube by special equipment to enhance the heat transfer coefficient in the tube.
  • the height of the threaded internal teeth 1 is 0.38 mm
  • the angle with the axial direction is 42°
  • the number of threaded heads is 45.
  • the present invention has a condensation heat transfer performance of 12% higher than that of the prior art when the refrigerant R134a is used.
  • the heat transfer tube for condensation is preferably made of a copper material, and may also be a copper alloy, aluminum, aluminum alloy, low carbon steel, or copper. Metal materials such as aluminum composite.

Abstract

一种强化冷凝传热管,该传热管的外表面设置有螺旋状翅片,所述翅片沿轴向的间距呈有规律的宽窄变化。该传热管能够使管外翅片间冷凝液膜的表面张力变化,提高管外冷凝换热效果。

Description

强化冷凝传热管 技术领域
[0001 ] 本发明涉及传热管技术领域,特别是涉及一种强化冷凝传热管。 背景技术
[0002] 随着节能、高效理念的倡导,冷凝器设计要求换热性能逐步提高,而高效换热管正 是影响冷凝器换热性能的核心因素。 公开号为 CN1982829A的中国专利文献公开的一种铜 热交换管,管外为三角形截面的光滑翅片,这种光滑翅片可增大换热面积,用于冷凝器中能 减少冷凝液膜,加快冷凝液下滴的速度,比光管的换热效率高。但是这种光滑翅片之间的冷 凝液容易"搭桥",从而使冷凝液流动不顺畅,翅片上冷凝热阻增大降低换热效率。公开号为 CN101813433A的中国专利文献公开的一种冷凝传热管,使用了翅顶开槽翅片结构,其锯齿 状结构能够刺穿冷凝液膜,而翅上平台可在一定程度上增强冷凝换热性能。
[0003] 上述现有冷凝器传热管的结构如图 1、图 2所示(图 3是其主视投影图),在传热 管主体外表面分布有翅片,能够在一定程度上改善冷凝侧的换热性能,但由于翅片高度一 致,翅片间距一致,且呈均匀分布,不能充分利用冷凝液的表面张力改善换热性能,因此,传 热管的换热效率相对不高,不能充分满足制冷设备对冷凝器换热性能的要求。 发明内容
[0004] 本发明所要解决的技术问题是提供一种强化冷凝传热管,通过强化换热技术提高 冷凝器用传热管的换热性能,解决现有冷凝器换热性能不高的问题。
[0005] 为了解决上述问题,本发明公开了一种强化冷凝传热管,所述传热管外表面设置 有螺旋状翅片,所述翅片间的间距沿轴向呈有规律的宽窄变化。
[0006] 优选的,所述螺旋状翅片是光滑翅片;或,所述螺旋状翅片是在光滑翅片顶部或两 侧压槽的开槽翅片。
[0007] 优选的,所述螺旋状翅片沿轴向每英寸设置 26 60翅,轴向翅片间的间距为 0. 4 lmm
[0008] 优选的,所述翅片间的间距沿轴向呈一宽一窄的规律变化;或,所述翅片间的间距 沿轴向呈一宽两窄的规律变化;或,所述翅片间的间距沿轴向呈两宽一窄的规律变化。
[0009] 优选的,所述螺旋状翅片的高度沿轴向呈有规律的高低变化。
[0010] 优选的,所述螺旋状翅片的厚度为 0. 1 0. 4 高度为 0. 4 1. 5
[001 1 ] 优选的,所述螺旋状翅片的高度沿轴向呈一高一低的规律变化;或,所述螺旋状翅 片的高度沿轴向呈一高两低的规律变化;或,所述螺旋状翅片的高度沿轴向呈两高一低的 规律变化。
[0012] 优选的,所述螺旋状翅片的螺旋角范围是 0. 3 1. 5°
[0013] 优选的,所述传热管的内表面设置有螺纹状内齿。
[0014] 优选的,所述螺纹状内齿与轴向夹角范围为 30 60° ;所述螺纹状内齿的内螺纹 头数为 6 60头,高度 0. 1 0. 6mm [0015] 与现有技术相比,本发明具有以下优点:
[0016] 本发明优选实施例公开的强化冷凝传热管的管外表面翅片的翅片间距有宽有窄, 翅片高度有高有低,能够充分利用冷凝液均匀变化的表面张力减薄液膜厚度,使冷凝液膜 厚度不一致分布可减小平均热阻,增强 "Gregorig"效应,从而提高传热管外表面的换热系 数;同时表面张力的均匀变化及曲率的变化,对冷凝液保持力变差,能加快冷凝液下滴,也 使冷凝换热性能增强,并可减弱"管束效应" ;管内和管外换热效率得到优化组合,提高冷凝 用强化传热管的整体换热效率。 附图说明
[001 7] 图 1是现有强化冷凝传热管的结构示意图 1;
[0018] 图 2是现有强化冷凝传热管的结构示意图 2
[0019] 图 3是现有强化冷凝传热管的主视图;
[0020] 图 4是本发明强化冷凝传热管第一实施例的主视图;
[0021 ] 图 5是本发明强化冷凝传热管第二实施例的主视图;
[0022] 图 6是本发明强化冷凝传热管第三实施例的主视图;
[0023] 图 7是本发明强化冷凝传热管第四实施例的主视图;
[0024] 图 8是本发明强化冷凝传热管第五实施例的主视图;
[0025] 图 9是本发明强化冷凝传热管第六实施例的主视图;
[0026] 图 10是本发明强化冷凝传热管第七实施例的结构示意图。 具体实施方式
[0027] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实 施方式对本发明作进一步详细的说明。
[0028] 参照图 4,示出了本发明强化冷凝传热管第一实施例的主视投影图,在本优选实施 例中,传热管外表面带有螺旋状翅片,翅片间的间距沿轴向呈一宽一窄的变化规律;其中, 螺旋状翅片沿轴向每英寸设置 26〜 60翅,轴向翅片间的间距为 0. 4〜 lmm,翅片厚度 0. 1〜 0. 4 螺旋翅片螺旋角范围是 0. 3〜 1. 5 ° ,翅片高度范围为 0. 4〜 1. 5 另外,螺旋状 翅片可以是光滑的,也可以是在光滑翅片顶部或两侧压槽的开槽翅片;这种结构的管外翅 片,由于翅片间距呈宽窄分布,使得翅片间冷凝液的表面张力均匀变化,液膜的厚度相应也 均匀变化,可减小平均热阻,使得" Gregorig"效应增强,从而提高了换热管外表面的换热系 数;同时表面张力的均匀变化和表面曲率的变化,使得冷凝液在翅片间保持力变差,能够很 快流动到翅片底部及向下滴落,也使冷凝换热性能增强,并减弱"管束效应"。该种结构翅片 可通过刀具组合挤压形成,不会增加金属耗量。
[0029] 参照图 5,示出了本发明强化冷凝传热管第二实施例的主视投影图,在本优选实施 例中,翅片间的间距为一宽两窄的变化规律,其他与第一实施例相同。
[0030] 参照图 6,示出了本发明强化冷凝传热管第三实施例的主视投影图,在本优选实施 例中,翅片间的间距为两宽一窄的变化规律,其他与第一实施例相同。
[0031 ] 参照图 7,示出了本发明强化冷凝传热管第四实施例的主视投影图,在本优选实施 例中,传热管外表面带有翅片,翅片高度沿轴向呈一高一低的规律分布,其中,较低的翅片 高度范围为 0. 4〜 1. 0mm,较高的翅片高度范围为 0. 6〜 1. 5mm。 这种结构的管外高低分布 翅片,使翅片间冷凝液的表面张力均匀变化,液膜的厚度相应不一致,均匀变化,可减小平 均热阻,使得 "Gregorig"效应增强,从而提高了换热管外表面的换热系数,同时表面张力的 均匀变化和表面曲率的变化,使得冷凝液在翅片间保持力变差,能够很快流动到翅片底部 及向下滴落,也使冷凝换热性能增强,并减弱 "管束效应"。该种结构翅片可通过刀具组合挤 压形成,不会增加金属耗量。
[0032] 参照图 8,示出了本发明强化冷凝传热管第五实施例的主视投影图,在本优选实施 例中,翅片高度为一高两低的变化规律,其他与第四实施例相同。
[0033] 参照图 9,示出了本发明强化冷凝传热管第六实施例的主视投影图,在本优选实施 例中,翅片高度为两高一低的变化规律,其他与第四实施例相同。
[0034] 本发明以上各实施例可以相互结合,形成变间距高低翅的翅片形状。
[0035] 另外,在本发明上述各优选实施例中,还可利用专用设备,在管内加工出螺纹状内 齿 1,以强化管内换热系数;其中,螺纹状内齿 1与轴向夹角范围是 30〜 60° ,内螺纹头数
6〜 60头,内齿高度 0. 1〜 0. 6mm。 螺纹状内齿 1可破坏管内流体的边界层,增加管内流体 扰动,从而强化管内换热,提高管内换热系数。
[0036] 参照图 10,示出了本发明强化冷凝传热管第七实施例的结构示意图,在本优选实 施例中,翅片高度沿轴向为一高一低的变化规律,翅片间的间距沿轴向为一宽一窄的变化 规律。
[0037] 下面结合具体实施例说明本发明降膜冷凝器用强化传热管的具体结构:
[0038] 按图 10所示的结构加工和制造本发明强化冷凝传热管时,管主体可选用铜、铜合 金材料或其它金属材料,管外径为 19mm,壁厚为 1. 13mm,采用专用的轧管机,用旋压加工方 式,管内管外同时一体化加工。管主体外表面上加工出沿周向的螺旋翅片,翅片间的间距 dl 为 0. 53mm, d2为 0. 61mm,翅片高度 hi为 0. 75mm, h2为 0. 9mm。 翅片顶部滚压开设翅槽,沿 周向开设 120个翅槽。
[0039] 另外,利用专用设备,在管内加工出螺纹状内齿 1,以强化管内管内换热系数。 在 本发明的第七实施例中,螺纹状内齿 1的高度是 0. 38mm,与轴向的角度为 42° ,螺纹头数为 45头。
[0040] 根据实际测试数据统计,本发明与现有技术相比,采用冷媒 R134a时,冷凝传热性 能提高 12 %。
[0041 ] 上述本发明实施例中,考虑到金属材料的传热性能和性价比,该冷凝用传热管优 选采用铜材料制成,也可以选用铜合金、铝、铝合金、低碳钢、铜铝复合等金属材料。
[0042] 本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与 其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
[0043] 以上对本发明所提供的一种强化冷凝传热管进行了详细介绍,本文中应用了具体 个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明 的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应 用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

WO 2013/181937 权 利 要 求 书 PCT/CN2013/070226
1. 一种强化冷凝传热管,所述传热管外表面设置有螺旋状翅片,其特征在于,所述翅片 间的间距沿轴向呈有规律的宽窄变化。
2. 根据权利要求 1所述的强化冷凝传热管,其特征在于:
所述螺旋状翅片是光滑翅片;或,
所述螺旋状翅片是在光滑翅片顶部或两侧压槽的开槽翅片。
3. 根据权利要求 1所述的强化冷凝传热管,其特征在于,所述螺旋状翅片沿轴向每英 寸设置 26 60翅,轴向翅片间的间距为 0. 4 1
4. 根据权利要求 1所述的强化冷凝传热管,其特征在于:
所述翅片间的间距沿轴向呈一宽一窄的规律变化;或,
所述翅片间的间距沿轴向呈一宽两窄的规律变化;或,
所述翅片间的间距沿轴向呈两宽一窄的规律变化。
5. 根据权利要求 1所述的强化冷凝传热管,其特征在于,所述螺旋状翅片的高度沿轴 向呈有规律的高低变化。
6. 根据权利要求 5所述的强化冷凝传热管,其特征在于,所述螺旋状翅片的厚度为 0. 1 0. 4mm,高度为 0. 4 1. 5mm
7. 根据权利要求 5所述的强化冷凝传热管,其特征在于:
所述螺旋状翅片的高度沿轴向呈一高一低的规律变化;或,
所述螺旋状翅片的高度沿轴向呈一高两低的规律变化;或,
所述螺旋状翅片的高度沿轴向呈两高一低的规律变化。
8. 根据权利要求 1所述的强化冷凝传热管,其特征在于,所述螺旋状翅片的螺旋角范 围是 0. 3 1. 5°
9.根据权利要求 1或 5所述的强化冷凝传热管,其特征在于,所述传热管的内表面设置 有螺纹状内齿。
10. 根据权利要求 9所述的强化冷凝传热管,其特征在于,所述螺纹状内齿与轴向夹角 范围为 30 60° ;所述螺纹状内齿的内螺纹头数为 6 60头,高度 0. 1 0. 6
PCT/CN2013/070226 2012-06-05 2013-01-08 强化冷凝传热管 WO2013181937A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/125,546 US20140224464A1 (en) 2012-06-05 2013-01-08 Enhanced condensation heat-transfer tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210181289.2 2012-06-05
CN201210181289.2A CN102679790B (zh) 2012-06-05 2012-06-05 强化冷凝传热管

Publications (1)

Publication Number Publication Date
WO2013181937A1 true WO2013181937A1 (zh) 2013-12-12

Family

ID=46812088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070226 WO2013181937A1 (zh) 2012-06-05 2013-01-08 强化冷凝传热管

Country Status (2)

Country Link
CN (1) CN102679790B (zh)
WO (1) WO2013181937A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679790B (zh) * 2012-06-05 2014-12-31 金龙精密铜管集团股份有限公司 强化冷凝传热管
WO2014184964A1 (ja) * 2013-05-17 2014-11-20 株式会社日立製作所 熱交換器
CN103471442A (zh) * 2013-09-29 2013-12-25 江苏创兰太阳能空调有限公司 太阳能空调用铜盘管
CN109373797A (zh) * 2018-12-03 2019-02-22 珠海格力电器股份有限公司 换热管、换热器及空调器
CN110425778A (zh) * 2019-07-26 2019-11-08 江苏萃隆精密铜管股份有限公司 一种高低翅强化冷凝换热管
CN111854502A (zh) * 2020-07-08 2020-10-30 珠海格力电器股份有限公司 换热管及空调机组
EP3967994A1 (en) 2020-09-09 2022-03-16 Endress+Hauser Wetzer GmbH+CO. KG Protective tube for insertion into a pipe or vessel with reduced sensitivity to vortex induced vibrations
CN113566636A (zh) * 2021-07-22 2021-10-29 上海应用技术大学 一种强化珠状冷凝换热的slips定向输运传热管及其制备方法
CN114152119B (zh) * 2021-11-15 2024-04-09 南通山剑石墨设备有限公司 波浪形石墨翅片换热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440803A (en) * 1945-07-07 1948-05-04 Doyle & Roth Company Finned tube
JPS5534116U (zh) * 1978-08-19 1980-03-05
JPS6048496A (ja) * 1983-08-25 1985-03-16 Kobe Steel Ltd 二重管式凝縮器用伝熱管
SU1725062A1 (ru) * 1990-05-07 1992-04-07 Научно-Производственное Объединение По Кузнечно-Прессовому Оборудованию И Гибким Производственным Системам Для Обработки Давлением "Эникмаш" Теплообменна труба
JPH07280481A (ja) * 1994-04-13 1995-10-27 Nippondenso Co Ltd 熱交換器
CN102679790A (zh) * 2012-06-05 2012-09-19 金龙精密铜管集团股份有限公司 强化冷凝传热管
CN202630770U (zh) * 2012-06-05 2012-12-26 金龙精密铜管集团股份有限公司 强化冷凝传热管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547976Y2 (zh) * 1988-05-23 1993-12-17
CN2831021Y (zh) * 2005-09-28 2006-10-25 金龙精密铜管集团股份有限公司 一种内螺纹传热管
JP4665713B2 (ja) * 2005-10-25 2011-04-06 日立電線株式会社 内面溝付伝熱管
CN101338987B (zh) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 一种冷凝用传热管
JP2010038502A (ja) * 2008-08-08 2010-02-18 Mitsubishi Electric Corp 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
CN101498560B (zh) * 2009-03-10 2011-09-21 华北电力大学 用于电站空冷凝汽器的倾斜不等间距波形翅片扁平管装置
CN201514145U (zh) * 2009-08-27 2010-06-23 宁波广厦热力成套设备有限公司 一种波纹低翅片管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440803A (en) * 1945-07-07 1948-05-04 Doyle & Roth Company Finned tube
JPS5534116U (zh) * 1978-08-19 1980-03-05
JPS6048496A (ja) * 1983-08-25 1985-03-16 Kobe Steel Ltd 二重管式凝縮器用伝熱管
SU1725062A1 (ru) * 1990-05-07 1992-04-07 Научно-Производственное Объединение По Кузнечно-Прессовому Оборудованию И Гибким Производственным Системам Для Обработки Давлением "Эникмаш" Теплообменна труба
JPH07280481A (ja) * 1994-04-13 1995-10-27 Nippondenso Co Ltd 熱交換器
CN102679790A (zh) * 2012-06-05 2012-09-19 金龙精密铜管集团股份有限公司 强化冷凝传热管
CN202630770U (zh) * 2012-06-05 2012-12-26 金龙精密铜管集团股份有限公司 强化冷凝传热管

Also Published As

Publication number Publication date
CN102679790A (zh) 2012-09-19
CN102679790B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2013181937A1 (zh) 强化冷凝传热管
US20090008069A1 (en) Finned tube with stepped peaks
WO2019210690A1 (zh) 换热管、换热器及热泵机组
US20070000651A1 (en) An enhanced heat transfer tube with discrete bidirectionally inclined ribs
CN203704751U (zh) 管外双重强化冷凝传热管
WO2018099086A1 (zh) 一种换热管及具有其的换热器
CN204830966U (zh) 一种火力发电凝汽器用高效冷凝管
CN202630770U (zh) 强化冷凝传热管
US9683791B2 (en) Condensation enhancement heat transfer pipe
JP5642462B2 (ja) 熱交換器用伝熱管、及びこれを用いた熱交換器
EP2959251A1 (en) Tube structures for heat exchanger
CN103339460B (zh) 用于换热器的载流管
CN208901951U (zh) 焊接麻面管
CN101949662B (zh) 一种电制冷机组冷凝器用换热管
CN201803634U (zh) 一种电制冷机组冷凝器用新型高效换热管
JP2013096651A (ja) 内面溝付伝熱管及び内面溝付伝熱管を備えた熱交換器及びその製造方法
CN203454886U (zh) 螺旋波纹管
CN208296666U (zh) 一种螺旋翅片管及包含其的kl型翅片热交换器
CN209069083U (zh) 带内螺纹的压花外翅管
CN206832108U (zh) 一种异型热交换管路结构
CN201803631U (zh) 一种电制冷机组冷凝器用高效换热管
CN209069081U (zh) 麻面管
CN206257834U (zh) 旋翅冷凝器及具有其的冰箱
CN216245777U (zh) 一种翅片带过渡表面的传热管
CN201803635U (zh) 电制冷机组冷凝器用高效换热管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14125546

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801248

Country of ref document: EP

Kind code of ref document: A1