WO2013179594A1 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
WO2013179594A1
WO2013179594A1 PCT/JP2013/003074 JP2013003074W WO2013179594A1 WO 2013179594 A1 WO2013179594 A1 WO 2013179594A1 JP 2013003074 W JP2013003074 W JP 2013003074W WO 2013179594 A1 WO2013179594 A1 WO 2013179594A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
selection line
semiconductor memory
memory device
Prior art date
Application number
PCT/JP2013/003074
Other languages
English (en)
French (fr)
Inventor
白濱 政則
利昭 川崎
和浩 竹村
泰宏 縣
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014518257A priority Critical patent/JPWO2013179594A1/ja
Publication of WO2013179594A1 publication Critical patent/WO2013179594A1/ja
Priority to US14/516,380 priority patent/US20150036411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/027Detection or location of defective auxiliary circuits, e.g. defective refresh counters in fuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C29/32Serial access; Scan testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/785Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information

Definitions

  • the present disclosure relates to a semiconductor memory device including a nonvolatile device such as an electric fuse.
  • a fuse element (hereinafter referred to as an “electric fuse”) having a laminated structure of a polysilicon layer and a silicide layer is often used.
  • an electric fuse As a method for cutting the electric fuse, a predetermined program potential is applied to both ends and a current is passed through the silicide layer to agglomerate the silicide to increase the resistance of the electric fuse (for example, see Patent Document 1). )It has been known.
  • Electrical fuses used in these semiconductor devices are required to have a larger number of bits than before, and sufficient quality is required in a set after the semiconductor devices are shipped.
  • an electrical fuse array in which electrical fuses are arranged in a matrix is often formed.
  • a conventional inspection circuit decodes an address signal, outputs an address decode signal to a word line, and selects either an address decode signal or a test data input signal by a test selection signal,
  • a word line control circuit that outputs an address decode signal or a level setting signal and sequentially outputs a test data output signal via a test clock signal in response to the test data input signal, and an address decode signal or a level setting signal,
  • a semiconductor memory device includes a nonvolatile device array in which nonvolatile devices that can be rewritten only once are arranged in a matrix, one or more row selection lines corresponding to columns of the nonvolatile device array, and one end side of the row selection line
  • a row control circuit connected to the non-volatile device array, one or more column selection lines corresponding to a row of the non-volatile device array, a column control circuit connected to one end of the column selection line
  • a flip-flop circuit provided on at least one of the opposite side of the row control circuit and the opposite side of the column control circuit, and one of the row selection line and the column selection line is made non-conductive based on a first control signal.
  • an inactivating means for bringing the active state into effect.
  • a cutting operation in a normal use state of a nonvolatile device made of, for example, an electrical fuse, a cutting operation can be performed by activating the row selection line and the column selection line.
  • the cutting operation is not performed by inactivating one of the column selection lines. That is, the non-volatile property of the non-volatile device is not destroyed at the time of inspection. Therefore, either the row selection line or the column selection line in the actual use state is activated, and the potential state of any selection line can be confirmed by the flip-flop circuit.
  • the flip-flop circuit is arranged on at least one of the column selection line on the opposite side of the column control circuit and the row selection line on the opposite side of the row control circuit.
  • the flip-flop circuit can inspect the path from at least one of these control circuits to the flip-flop circuit via the nonvolatile device array. This makes it possible to externally detect a short circuit between wirings generated inside the nonvolatile device array, thereby reducing the cost of the inspection and maintaining the quality of the semiconductor memory device high. Further, since the deactivating means and the flip-flop circuit can be realized with a relatively small circuit and area, a semiconductor memory device can be manufactured at low cost.
  • the deactivating means deactivates either the row selection line or the column selection line by deactivating a predecode signal that undergoes a logic transition based on the first control signal.
  • a predecode signal generation circuit may be provided.
  • the deactivating means has the predecode signal generation circuit.
  • the predecode signal output from the predecode signal generation circuit undergoes a logic transition based on the first control signal, and the predecode signal becomes inactive, so that either the row selection line or the column selection line is One of them becomes inactive. Therefore, there is no need to provide a dedicated circuit or the like for deactivating these selection lines in the driver circuit portion of the row selection line or column selection line around the nonvolatile device array. That is, an unnecessary area does not occur in the test circuit, and the semiconductor memory device can be manufactured at low cost.
  • the predecode signal generation circuit may deactivate the predecode signal based on the first control signal and a second control signal for selecting the nonvolatile device array.
  • the predecode signal generation circuit can inactivate the predecode signal by logically synthesizing two control signals.
  • the second control signal is a control signal for selecting the nonvolatile device array, it is not necessary to provide a circuit or the like for further deactivating the signal predecoded by the second control signal. .
  • the circuit area can be further reduced and the circuit configuration can be simplified, and in particular, the circuit can be configured at the initial input stage of the control signal.
  • the predecode signal generation circuit may deactivate the predecode signal based on the first synchronization signal and the first control signal.
  • the predecode signal is generated from the clock input when the control method of the synchronous memory array with the clock input is generalized and the predecode signal is not generated only by the input of the first control signal. It is applicable to the technique for making it happen. That is, by logically synthesizing the first control signal and the first synchronization signal as a clock input, either the row selection line or the column selection line can be deactivated. Therefore, there is no need to provide a circuit or the like for further inactivating the signal predecoded by the clock input.
  • the semiconductor memory device further includes an opening means for opening any one of the row selection line and the column selection line other than the non-inactive state.
  • either the row selection line or the column selection line can be deactivated and the cutting operation can be stopped.
  • one of the selection lines that are not inactive It can be in an open state.
  • the other row selection line in the inactive state can be temporarily released from the low level.
  • the nonvolatile device array when one selection line cannot be brought to the low level due to a short circuit having a wiring resistance value, or the inactive row selection line that should originally be at the low level becomes the high level. Even if it is not possible, by reading out the potentials of all the row selection lines to the flip-flop circuit, it becomes possible to detect abnormality of the nonvolatile device array, which contributes to quality maintenance.
  • the opening means has an N-type MIS transistor having a drain connected to the row selection line and receiving a signal obtained by logically synthesizing the first synchronization signal and the third control signal at the gate.
  • the row selection line in the active state among the row selection lines is at the high level, and the row selection line is in the inactive state. Since the selection line can be opened during the access to the non-volatile device array after its potential once becomes low level, the opening means can be made simpler.
  • the release means may open other than one of the row selection lines in an active state by setting the gate potential of the N-type MIS transistor to a low level.
  • the active row selection line is at a high level, and the inactive row selection line is released only during access to the nonvolatile device array after the potential has once been at a low level. State.
  • the open means has an N-type MIS transistor having a drain connected to the column selection line and receiving a signal obtained by logically synthesizing the first synchronization signal and the third control signal at the gate.
  • the opening means can be configured in a simpler manner.
  • the opening means may open other than one of the column selection lines in an active state by setting the gate potential of the N-type MIS transistor to a low level.
  • the column selection line in the active state among the column selection lines is set to the high level, and the column selection line in the inactive state is temporarily set to the low level before the nonvolatile device array is being accessed. It can be in an open state.
  • the flip-flop circuit may capture the potential of at least one of the row selection line and the column selection line based on a fourth control signal.
  • the flip-flop circuit causes the nonvolatile device array to It is possible to detect the state of at least one of the selection line and the column selection line.
  • the flip-flop circuit may be provided on both the opposite side of the row control circuit and the opposite side of the column control circuit as viewed from the nonvolatile device array.
  • the states of both the row selection line and the column selection line can be detected by the flip-flop circuit.
  • the non-volatile device may be an electric fuse composed of a gate material of a transistor.
  • an electric fuse that changes its state when a current flows can be formed of a gate material of a transistor, so that the non-volatile device can be easily manufactured. And cost reduction can be achieved.
  • the present disclosure it is possible to reduce the area of a semiconductor memory device including a non-volatile device array due to demands for advanced processes that are becoming finer and security that is becoming more advanced and more sophisticated.
  • the increase in circuit scale is suppressed.
  • the manufacturing cost of the semiconductor memory device can be reduced, and the quality can be maintained and improved.
  • FIG. 1 is a diagram illustrating a configuration example of a semiconductor memory device according to an embodiment.
  • FIG. 2 is a diagram showing a first configuration example of the predecode signal generation circuit constituting the row control circuit in FIG.
  • FIG. 3 is a diagram showing a second configuration example of the predecode signal generation circuit constituting the row control circuit in FIG.
  • FIG. 4 is a diagram showing a third configuration example of the predecode signal generation circuit constituting the row control circuit in FIG.
  • FIG. 5 is a diagram showing a configuration example of the column selection line releasing means in FIG.
  • FIG. 6 is a diagram showing a configuration example of the row selection line releasing means in FIG.
  • FIG. 7 is a waveform diagram showing a first operation of the semiconductor memory device of FIG.
  • FIG. 8 is a waveform diagram showing a second operation of the semiconductor memory device of FIG.
  • FIG. 1 is a diagram illustrating a configuration example of a semiconductor memory device according to an embodiment.
  • a semiconductor memory device 10 shown in FIG. 1 is a semiconductor memory device including a memory cell array having a nonvolatile device array in which nonvolatile devices that can be rewritten only once are arranged in a matrix.
  • a case where an electric fuse formed of a gate material of a transistor is used as the nonvolatile device will be described.
  • the semiconductor memory device 10 includes a memory cell array 101 having an electric fuse array in which electric fuses are arranged in a matrix, a row control circuit 102 connected to the memory cell array 101 by a row selection line WL, and a memory cell array 101.
  • the control circuit 100 is connected, the row selection scan flip-flop circuit 112 is connected to the memory cell array 101, and the column selection scan flip-flop circuit 113 is connected to the memory cell array 101.
  • the control circuit 100 includes a chip enable signal CE, a program enable signal PG, and a test mode enable signal TE [0: 1] (TE [0: 1], which are selection signals for selecting the memory cell array 101, TE [0], The abbreviation of TE [1] (this notation is used hereinafter) is used as an input signal, and a synchronization signal FCLK as a first synchronization signal is used as a clock input.
  • the control circuit 100 controls each of the row control circuit 102 and the column / input / output control circuit 103 by an output signal. In the present embodiment, when the memory cell array 101 is selected, an electrical fuse array provided therein is selected.
  • the row control circuit 102 receives an input address signal AX [0: m] (m is a positive integer) and is controlled by an output signal from the control circuit 100.
  • the row control circuit 102 decodes an address for the memory cell array 101 and outputs a row selection signal 115 to the row selection line WL. As a result, the electrical fuse array in the memory cell array 101 is selected.
  • the column / input / output control circuit 103 receives the input address signal AY [0: n] (n is a positive integer), and reads and writes data from and to the memory cells included in the memory cell array 101.
  • the column / input / output control circuit 103 When reading data, the column / input / output control circuit 103 generates a column signal 114, and the data output to the column selection line BL as a read result of the memory cell (electric fuse) is a data output signal DO [0: p]. (P is a positive integer).
  • the column / input / output control circuit 103 outputs a signal / COLSEL [0: p] to the cutting drive circuit 111 when writing data.
  • the memory cell array 101 has a plurality of memory cells including an electric fuse formed by the gate of the MIS transistor and an N-type MIS transistor receiving the row selection signal 115 at the gate. Each memory cell is connected to a row selection line WL and a column selection line BL.
  • the disconnection drive circuit 111 selects the column selection line of the memory cell based on the signal / COLSEL [0: p]. A potential necessary for cutting the electric fuse is driven to BL.
  • the row selection scan flip-flop circuit 112 takes in the decoded potential of the row selection line WL.
  • the column selection scan flip-flop circuit 113 takes in the decoded potential of the column selection line BL.
  • the row selection scan flip-flop circuit 112 and the column selection scan flip-flop circuit 113 are configured such that the output of the row selection scan flip-flop circuit 112 is connected to the input of the column selection scan flip-flop circuit 113. It has the structure which was made.
  • the row selection scan flip-flop circuit 112 captures the row selection signal 115 of the row selection line WL, and the column selection scan flip-flop circuit 113 captures the column signal 114 of the column selection line BL into the flip-flop circuit 116, respectively. Therefore, the control signal RST is input. In addition, a synchronization signal SCLK is input to externally output the data taken in.
  • the flip-flop circuit 116 as a unit constituting the row selection scan flip-flop circuit 112 and the column selection scan flip-flop circuit 113 will be described in detail.
  • the flip-flop circuit 116 receives an I terminal as a data input, an R terminal to which a control signal RST is input, an S terminal to which the potential of the row selection line WL or the column selection line BL is input, and a synchronization signal SCLK.
  • C terminal an O terminal as a data output, an inverter circuit 117, a selector circuit composed of NAND circuits 118, 119, and 120, and a DQ flip-flop circuit 121.
  • the inverter circuit 117 inverts and outputs the control signal RST.
  • NAND circuit 118 receives the output of inverter circuit 117 and the output from the O terminal of flip-flop circuit 116 at the previous stage.
  • NAND circuit 119 receives the input of S terminal and control signal RST.
  • NAND circuit 120 receives outputs from NAND circuits 118 and 119.
  • the DQ flip-flop circuit 121 is a C terminal of the flip-flop circuit 116, and an input signal from the D terminal which is an input is input to the Q terminal which is an output by a synchronization signal SCLK which is a CK terminal input of the DQ flip-flop circuit 121. Forward.
  • the S terminal of the flip-flop circuit 116 is connected to the end portions of the row selection line WL and the column selection line BL, but the flip-flop circuit 116 is connected to the row control circuit 102 as viewed from the memory cell array 101. It only needs to be connected to the opposite side and the opposite side of the column / input / output control circuit 103.
  • the flip-flop circuit 116 transmits the signal of the S terminal input to the DQ flip-flop circuit 121 when the control signal RST that is the R terminal input becomes high level, and stores the potential in the DQ flip-flop circuit 121.
  • each flip-flop circuit 116 receives an output from the O terminal of the preceding flip-flop circuit 116 as an input to its own I terminal.
  • the synchronization signal SCLK is input to the clock circuit 116, it is sequentially transferred to the next stage.
  • the signal SO is output from the final flip-flop circuit 116 to the outside by using the input to the first flip-flop circuit 116 as the signal FD.
  • the row selection signal 115 of the row selection line WL and the column selection line BL can be controlled even when the memory cell array 101 is in a read operation and a write operation or is in a stopped state.
  • the signal SO can be output to the outside.
  • FIG. 2 is a diagram showing a first configuration example of the predecode signal generation circuit constituting the row control circuit in the semiconductor memory device shown in FIG.
  • the predecode signal generation circuit 20 includes an inverter circuit 201, a NAND circuit 202, and a NOR circuit 203.
  • an input address signal AX [0] is a signal corresponding to the array 0 among the input address signals AX [0: m] input to the row control circuit 102 in FIG. 1] is a signal corresponding to array 1.
  • an inversion potential is generated by the inverter circuit 201 in order to decode the input address signals AX [0] and AX [1]. Then, positive and negative signals are input to the NAND circuit 202 so that they can be decoded, and the output of the NAND circuit 202 is input to the corresponding NOR circuit 203.
  • a test mode enable signal TE [0] (first control signal) in the semiconductor memory device is commonly input to the NOR circuit 203.
  • the row predecode signal generation circuit is configured by implementing the above configuration for all of the input address signals AX [0: m].
  • the predecode signal PX is obtained by decoding the address specified by the input address signal AX [0: m].
  • the test mode enable signal TE [0] is at a high level, all the predecode signals PX are at a low level and become inactive.
  • FIG. 3 is a diagram showing a second configuration example of the predecode signal generation circuit constituting the row control circuit in the semiconductor memory device shown in FIG.
  • the test mode enable signal TE [0] is directly input to one side of the NOR circuit 203.
  • a chip enable signal CE second control signal
  • a test is applied to one side of the NOR circuit 203.
  • an output signal from the logic circuit 304 that receives the mode enable signal TE [0] is input.
  • the same reference numerals as those in FIG. 2 are assigned to the components having the same role as in the first configuration example shown in FIG.
  • the predecode signal generation circuit 20 is configured such that the predecode signal PX [0: 3] is generated by a chip enable signal CE which is a selection signal of the memory cell array 101.
  • the logic circuit 304 receives the inverter circuit 301 that receives the chip enable signal CE, and a signal obtained by inverting the chip enable signal CE that is output from the inverter circuit 301 and the test mode enable signal TE [0]. And an inverter circuit 303 that receives a signal output from the NOR circuit 302 as an input.
  • the inverter circuit 303 outputs a signal obtained by inverting the output signal of the NOR circuit 302, and this inverted signal becomes one input signal of the NOR circuit 203.
  • a predecode signal is generated by the chip enable signal CE
  • an inverted signal of the chip enable signal CE is input to one input of the NOR circuit 203, thereby generating a predecode signal.
  • the predecode signal PX [0: 3] is deactivated by logic synthesis of the test mode enable signal TE [0] and the chip enable signal CE.
  • the logic circuit 304 has a configuration as shown.
  • the logic circuit 304 may be provided in the row control circuit 102, or may be provided in the control circuit 100, for example. When provided in the control circuit 100, the output from the logic circuit 304 is supplied to the row control circuit 102, so that the area required for forming the row control circuit 102 can be reduced.
  • FIG. 4 is a diagram showing a third configuration example of the predecode signal generation circuit constituting the row control circuit in the semiconductor memory device shown in FIG.
  • the chip enable signal CE is input to the inverter circuit 301.
  • the third configuration example shown in FIG. 4 is different in that the synchronizing signal FCLK is input to the inverter circuit 301 instead of the chip enable signal CE in FIG.
  • the predecode signal generation circuit 20 is configured such that the predecode signal PX [0: 3] is generated by a synchronization signal FCLK supplied to the control circuit 100.
  • the logic circuit 404 receives the inverter circuit 301 that receives the synchronization signal FCLK, the inverted signal of the synchronization signal FCLK that is output from the inverter circuit 301, and the test mode enable signal TE [0].
  • the circuit includes a NOR circuit 302 and an inverter circuit 303 that receives a signal output from the NOR circuit 302.
  • the inverter circuit 303 outputs a signal obtained by inverting the output signal of the NOR circuit 302, and this inverted signal becomes one input signal of the NOR circuit 203.
  • a predecode signal is generated by the synchronization signal FCLK
  • an inverted signal of the synchronization signal FCLK is input to one input of the NOR circuit 203, thereby generating a predecode signal.
  • the predecode signal PX [0: 3] is deactivated by logic synthesis of the test mode enable signal TE [0] and the synchronization signal FCLK.
  • the logic circuit 404 is configured as described above.
  • the logic circuit 404 may be provided in the row control circuit 102 or may be provided in the control circuit 100, for example. When the circuit is provided in the control circuit 100, the output from the logic circuit 404 is supplied to the row control circuit 102, so that the area required for forming the row control circuit 102 can be reduced.
  • FIG. 2 to FIG. 4 show a part of the row predecode signal generation circuit
  • these configurations can be applied to the column predecode signal generation circuit.
  • the input address signals AX [0] and AX [1] are set as the input address signals AY [0] and AY [1], respectively
  • the predecode signal PX [0: 3] is predecoded signal PY [0]. : 3].
  • the predecode signal PY [0] corresponds to, for example, COLSEL [0] (see FIG. 6 and the like).
  • the test mode enable signal TE [1] may be used as the first control signal.
  • one of the column selection line BL and the row selection line WL can be inactivated by the configuration shown in FIGS. Therefore, when the semiconductor memory device 10 is inspected, one of the row selection line WL and the column selection line BL is deactivated so that the memory cells included in the memory cell array 101 are not activated. That is, the inspection can be performed without cutting the electric fuse.
  • the row selection scan flip-flop circuit 112 is arranged on the opposite side of the row control circuit 102 when viewed from the memory cell array 101, the row selection scan flip-flop circuit 112 is connected to the row selection circuit 102 and the memory cell array 101 from the control circuit 100. Whether there is an abnormality in the path to the scan flip-flop circuit 112 can be inspected.
  • the control circuit 100 starts the column / input / output control circuit 103 and the memory cell array 101. It is possible to check whether or not there is an abnormality in the path to the column selection scan flip-flop circuit 113 via.
  • the inspection can be performed using the scan flip-flop circuits 112 and 113 having a relatively small circuit area, the area of the inspection circuit can be reduced.
  • the inspection result can be confirmed by externally monitoring the outputs of the scan flip-flop circuits 112 and 113.
  • a deactivation means for deactivating either a row selection line or a column selection line connected to a memory cell array having an electrical fuse array, and a row selection line or column selection By using a means for detecting the potential of the line, inspection can be performed with a smaller area, and quality can be maintained and improved.
  • FIG. 5 is a diagram showing a configuration example of an opening means for opening the column selection line in the semiconductor memory device shown in FIG.
  • the column selection lines BL that are not active among the column selection lines BL can be opened while all the row selection lines WL are inactive. That is, the column selection line opening means 50 can open any one column selection line BL other than one.
  • each memory cell 501a of the memory cell group 501 includes an electric fuse 505 and an N-type MIS transistor 503.
  • the electric fuse 505 has one end connected to the column selection line BL and the other end connected to the drain of the N-type MIS transistor 503 for cutting the electric fuse 505.
  • the N-type MIS transistor 503 has a gate connected to the row selection line WL and a source grounded.
  • the column selection line release means 50 includes a cutting drive circuit 504, an N-type MIS transistor 502, and a column selection line release circuit 509.
  • the cutting drive circuit 504 is composed of, for example, a P-type MIS transistor 504a.
  • the P-type MIS transistor 504a has a source connected to the power supply VDDHE on the high voltage side, a drain connected to the column selection line BL, and a gate connected to an inverted signal / COLSEL [p] obtained by inverting the decode signal COLSEL [p]. ing.
  • the drain of the N-type MIS transistor 502 is connected to the drain of the P-type MIS transistor 504a.
  • the N-type MIS transistor 502 has a drain connected to the column selection line BL, a source grounded, and a gate connected to the output signal AT from the column selection line open circuit 509.
  • the column selection line opening circuit 509 includes an inverter circuit 506, a NAND circuit 507, and an inverter circuit 508.
  • the output signal AT from the column selection line opening circuit 509 receives the signal obtained by inverting the synchronization signal FCLK by the inverter circuit 506 and the test mode enable signal TE [0] as the third control signal as inputs to the NAND circuit 507.
  • the output from the NAND circuit 507 is generated by being inverted by the inverter circuit 508.
  • the test mode enable signal TE [0] may be used as the first and third control signals.
  • the row control circuit 102 holds all the potentials of the row selection lines WL at the low level.
  • both of the two input terminals of the NAND circuit 507 are at a high level by the inverter circuit 506 that inverts the potential of the synchronization signal FCLK.
  • the output of the NAND circuit 507 is at a low level and the output signal AT from the inverter circuit 508 is once at a high level, so that the potential of the column selection line BL is once at a low level.
  • the output signal AT becomes low level, and the inactive state of the column selection line BL that has been lowered to low level, that is, one column selection line BL that is in the active state is in an open state. It becomes.
  • the gate potential of the cutting drive circuit 504 becomes low level, and the column selection line BL in the active state is connected to the power supply VDDHE. High potential.
  • the chip select signal CE which is a signal for selecting the memory cell array 101, may be used in the column selection line opening means 50 in place of the synchronization signal FCLK. Further, when the test mode enable signal TE [0] is at a low level, the output signal AT is at a low level, and normal operation is not hindered.
  • FIG. 6 is a diagram showing a configuration example of an opening means for opening the row selection line in the semiconductor memory device shown in FIG.
  • this row selection line release means 60 among all the row selection lines WL, the row selection lines WL that are not active can be opened while all the column selection lines BL are inactive.
  • a test mode enable signal TE [1] is used as a signal for inactivating the column selection line BL, that is, a first control signal to the column predecode signal generation circuit. Shall be used.
  • each memory cell 501a of the memory cell group 501 includes an electric fuse 505 and an N-type MIS transistor 503.
  • the electric fuse 505 has one end connected to the column selection line BL and the other end connected to the drain of the N-type MIS transistor 503 for cutting the electric fuse 505.
  • the N-type MIS transistor 503 has a gate connected to the row selection line WL and a source grounded.
  • the cutting drive circuit 504 includes a P-type MIS transistor 504a.
  • the P-type MIS transistor 504a has a source connected to the power supply VDDHE, a drain connected to the column selection line BL, and a gate connected to an inverted signal / COLSEL [p] obtained by inverting the decode signal COLSEL [p].
  • the row selection line release means 60 includes a driver circuit 606 and a row selection line release circuit 609 including a selector circuit 607 and a logic circuit 608.
  • the driver circuit 606 includes a P-type MIS transistor 606p and an N-type MIS transistor 606n, and generates a potential of the row selection line WL.
  • the source is connected to the power supply VDDHE that is the write potential of the memory cell array 101
  • the drain is connected to the row selection line WL
  • the gate is an inversion of the decode signal ROWSEL [x] of the row selection line WL It is connected to the signal / ROWSEL [x].
  • the N-type MIS transistor 606n has a drain connected to the row selection line WL, a source grounded, and a gate connected to the output signal BT of the selector circuit 607.
  • the logic circuit 608 includes an inverter circuit 610, a NAND circuit 611, and an inverter circuit 612.
  • the output signal from the logic circuit 608 receives the signal obtained by inverting the synchronization signal FCLK by the inverter circuit 610 and the test mode enable signal TE [1] as the third control signal as inputs to the NAND circuit 611.
  • the output is inverted by the inverter circuit 612 and generated.
  • the test mode enable signal TE [1] may be used as the first and third control signals.
  • the selector circuit 607 includes an inverter circuit 613 to which the test mode enable signal TE [1] is input, a signal output from the inverter circuit 613 (an inverted signal of the test mode enable signal TE [1]), and a decode signal ROWSEL [x].
  • NAND circuit 614 receiving an inverted signal / ROWSEL [x] obtained by inverting the signal
  • NAND circuit 615 receiving a test mode enable signal TE [1] and a signal output from the inverter circuit 612 in the logic circuit 608, NAND circuit 614 and NAND circuit 616 that receives each signal output from NAND circuit 615 as an input, and output signal BT is output from NAND circuit 616.
  • a test mode enable signal TE [1] is input as a signal for performing selection control.
  • an inverted signal / ROWSEL of the decode signal ROWSEL [x]. [X] is output as the output signal BT.
  • the test mode enable signal TE [1] is at a high level, the result of combining AND logic between the test mode enable signal TE [1] and the inverted signal of the synchronization signal FCLK is output as the output signal BT. It is configured as follows.
  • test mode enable signal TE [1] When the test mode enable signal TE [1] is at a low level as the output signal BT input to the gate of the N-type MIS transistor 606n in the driver circuit 606, the inverted signal / ROWSEL [x] of the decode signal ROWSEL [x] Therefore, a normal decoding operation is performed.
  • the test mode enable signal TE [1] when the test mode enable signal TE [1] is at a high level, an inverted signal of the synchronization signal FCLK is supplied. Therefore, when the synchronization signal FCLK is at a low level, the output signal BT is at a high level.
  • the row selection line WL is at a low level.
  • the active row selection line WL becomes the potential of the power supply VDDHE because the P-type MIS transistor 606p of the driver circuit 606 receives the inverted signal / ROWSEL [x] of the decode signal ROWSEL [x] at the gate. Accordingly, since the potential of the row selection line WL in the active state is approximately the same as that of the power supply VDDHE, the row selection line other than the row selection line WL in the inactive state, that is, one row selection line in the active state. WL is opened. As a result, even if a short circuit having a constant resistance value inside the memory cell array 101 is detected by detecting the potential externally regardless of whether the row selection line WL is active or inactive. It becomes possible to confirm.
  • FIG. 7 is a waveform diagram showing a first operation of the semiconductor memory device according to the embodiment.
  • it is a waveform diagram showing an operation when the test mode enable signal TE [0] is at a high level, the row selection line WL is inactivated, and an abnormality of the column selection line BL is detected.
  • 7 is based on the premise that the predecode signal generation circuit 20 shown in FIG. 4 and the column selection line opening means 50 shown in FIG. 5 are used in the semiconductor memory device shown in FIG. Is. Since the names of the signals in FIG. 7 have already been described, they are omitted here.
  • the chip enable signal CE which is a selection signal for the memory cell array 101 (electrical fuse array), becomes high level indicating the selection state of the memory cell array 101, and at the same time, the program enable signal PG becomes high level to start the write operation.
  • the input address signal AY [0: n] and the input address signal AX [0: m] indicating the address of the memory cell to be written are designated and input. Further, when the test mode enable signal TE [0] becomes a high level, the row selection line WL is deactivated.
  • the synchronization signal FCLK becomes high level
  • the output signal AT becomes low level
  • the potential of the column selection line BL remains in low level and becomes an open state.
  • the control signal RST shown in FIG. 1 is set to the high level
  • the potentials of the row selection line WL and the column selection line BL are taken into the scan flip-flop circuits 112 and 113.
  • the potentials of the row selection lines WL and the column selection lines BL are output as the signal SO from the O terminal of the flip-flop circuit 116 at the final stage. .
  • FIG. 8 is a waveform diagram showing a second operation of the semiconductor memory device according to the embodiment of the present invention.
  • it is a waveform diagram showing an operation when the test mode enable signal TE [1] is at a high level and the column selection line BL is inactivated to detect an abnormality in the row selection line WL.
  • the waveform diagram shown in FIG. 8 is obtained by applying the predecode signal generating circuit 20 shown in FIG. 4 to the column predecode signal generating circuit in the semiconductor memory device shown in FIG. It is premised on the configuration using Since each signal in FIG. 8 has already been described, it is omitted here.
  • the chip enable signal CE which is a selection signal for the memory cell array 101 (electrical fuse array), becomes high level indicating the selection state of the memory cell array 101, and at the same time, the program enable signal PG becomes high level to start the write operation.
  • the input address signal AY [0: n] and the input address signal AX [0: m] indicating the address of the memory cell to be written are designated and input. Further, when the test mode enable signal TE [1] becomes high level, the column selection line BL is deactivated.
  • the control signal RST shown in FIG. 1 is set to the high level, and the potentials of the row selection line WL and the column selection line BL are taken into the scan flip-flop circuits 112 and 113. Then, by inputting the synchronization signal SCLK to the scan flip-flop circuits 112 and 113, the potentials of the row selection lines WL and the column selection lines BL are output as the signal SO from the O terminal of the flip-flop circuit 116 at the final stage. .
  • the scan flip-flop circuit 112 since the row control circuit 102 and the scan flip-flop circuit 112 are connected by the row selection line WL with the memory cell array 101 interposed therebetween, the scan flip-flop from the control circuit 100 is connected. It is possible to detect an anomaly that occurs at any point in the path to the circuit 112.
  • the case where the two scan flip-flop circuits 112 and 113 are provided has been described.
  • at least one scan flip-flop circuit may be provided.
  • an abnormality that can occur in the row selection line WL can be detected, and when only the scan flip-flop circuit 113 is provided, it can occur in the column selection line BL. Abnormality can be detected.
  • any nonvolatile device that can be rewritten only once may be used.
  • a metal wire blown fuse, a fuse that breaks a contact between metal wire layers, an antifuse that breaks the gate of a transistor, and a transistor deterioration type fuse that deteriorates by passing an excessive current to the transistor may be used.
  • An EEPROM (Electrically Erasable Programmable Read Only Memory) type cell having the above may be used.
  • the present disclosure realizes a nonvolatile device having a particularly large capacity in an array type as a circuit technology of a system LSI equipped with an ID code for security, a processor, a memory, a PLL circuit, etc., in an advanced process that is becoming finer. Useful for maintaining and improving quality in technical fields.

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

 半導体記憶装置(10)は、一度だけ書き換え可能な不揮発デバイス(505)が行列状に配置された不揮発デバイスアレイ(101)と、ロウ選択線(WL)と、ロウ選択線に接続されるロウ制御回路(102)と、コラム選択線(BL)と、コラム選択線に接続されるコラム制御回路(103)と、不揮発デバイスアレイからみて、ロウ制御回路およびコラム制御回路の反対側の少なくとも一方に設けられたフリップフロップ回路(112,113)と、第1の制御信号に基づいて、ロウ選択線およびコラム選択線のいずれか一方を非活性状態にする非活性化手段(50,60)とを備えている。

Description

半導体記憶装置
 本開示は、電気ヒューズなどの不揮発デバイスを備えた半導体記憶装置に関する。
 近年、各種機器にはより一層の高機能化や高性能化が図られている。さらに、情報機器には、高いセキュリティーが求められる。高性能化や高機能化を実現するために、最先端の半導体デバイスでは、プロセスのさらなる微細化が行われている。特にシステムLSI(Large Scale Integration)のような最先端の半導体デバイスの分野では高度なセキュリティーへの需要があり、半導体デバイス内部に比較的ビット数が多いセキュリティー用のIDコードを埋め込む傾向がある。
 これらの分野においては、高性能化の観点から、特に、そのアナログ量の高精度化が求められる。例えば、搭載されている要素技術である、メモリ、PLL(Phase Locked Loop)回路、およびアナログ回路等では、それぞれ、メモリ欠陥救済回路、PLL、アナログ量のチューニング等が実施される。これらのチューニングは、その精度向上の観点から半導体メーカーで、半導体デバイス内部の検査が行われた後、出荷後のセットに対しても検査が実施される傾向にある。
 簡易なプログラム素子としてポリシリコン層とシリサイド層との積層構造からなるヒューズ素子(以下、「電気ヒューズ」と記す。)が多用される。この電気ヒューズの切断方法としては、両端に所定のプログラム電位を印加してシリサイド層に電流を流すことでシリサイドを凝集させて電気ヒューズの抵抗を増大させる方法等(例えば、特許文献1を参照。)が知られている。
 これら半導体デバイスに用いられる電気ヒューズには、従来よりも多くのビット数であることが求められる上、半導体デバイスを出荷した後のセットにおいて、充分な品質の確保が求められる。電気ヒューズのビット数が増加することにより、半導体デバイスの面積が増大するのを抑制するために、電気ヒューズを行列状に配置した電気ヒューズアレイを形成することが多い。一方、半導体デバイスを出荷した後のセットにおいて充分な品質を確保するためには、電気ヒューズの切断で生じる故障以外に、その周辺回路の故障検査が必要となる。つまり、電気ヒューズを切断せずに、如何にして、周辺回路の故障を検査するかという課題が存在する。
特表平11-512879号公報 特開平07-045097号公報
 この課題に対して、以下に示すような検査回路が提案されている(例えば、特許文献2を参照。)。従来の検査回路は、アドレス信号をデコードし、アドレスデコード信号をワード線に出力するアドレスデコード回路と、テスト選択信号により、アドレスデコード信号またはテストデータ入力信号の何れかを選択して、ワード線にアドレスデコード信号またはレベル設定信号を出力するとともに、テストデータ入力信号に対応して、テストクロック信号を介してテストデータ出力信号を順次出力するワード線制御回路と、アドレスデコード信号またはレベル設定信号によって、内部に含まれるメモリセルが選択されるメモリセルアレイと、メモリセルアレイに対応したビット線を経由して、データ信号を書き込む、またはデータ信号を読み出す入出力制御回路とで構成される。
 しかしながら、この検査回路を動作させると、電流を流すことにより一度だけその状態を変える不揮発デバイスとしての電気ヒューズの状態が変わってしまい、電気ヒューズが切断されるという課題がある。
 かかる点に鑑みて、本開示は、行列状に配置された不揮発デバイスの不揮発性を破壊することなく検査をすることができる半導体記憶装置を提供することを課題とする。
 上記課題を解決するため本開示によって次のような解決手段を講じた。例えば、半導体記憶装置は、一度だけ書き換え可能な不揮発デバイスが行列状に配置された不揮発デバイスアレイと、前記不揮発デバイスアレイの列に対応する1以上のロウ選択線と、前記ロウ選択線の一端側に接続されるロウ制御回路と、前記不揮発デバイスアレイの行に対応する1以上のコラム選択線と、前記コラム選択線の一端側に接続されるコラム制御回路と、前記不揮発デバイスアレイからみて、前記ロウ制御回路の反対側および前記コラム制御回路の反対側の少なくとも一方に設けられたフリップフロップ回路と、第1の制御信号に基づいて、前記ロウ選択線および前記コラム選択線のいずれか一方を非活性状態にする非活性化手段とを備えていることを特徴とする。
 以上の構成によれば、例えば電気ヒューズからなる不揮発デバイスの通常の使用状態では、ロウ選択線およびコラム選択線を活性化することで切断動作が可能となるが、検査時において、ロウ選択線あるいはコラム選択線のいずれか一方を非活性化状態とすることで切断動作が行われなくなる。つまり、検査時において不揮発デバイスの不揮発性を破壊することがない。そのため、実使用状態でのロウ選択線あるいはコラム選択線のいずれか一方が活性化し、いずれかの選択線の電位状態をフリップフロップ回路で確認することが可能となる。ここで、フリップフロップ回路は、コラム選択線におけるコラム制御回路と反対側およびロウ選択線におけるロウ制御回路の反対側の少なくとも一方に配置されている。したがって、フリップフロップ回路では、これら制御回路の少なくとも一方から不揮発デバイスアレイを介してフリップフロップ回路までの経路の検査が可能となる。これにより、不揮発デバイスアレイ内部において発生する配線間ショート等も外部検出可能となるため、検査の低コスト化を図ることができ、半導体記憶装置の品質を高く維持することができる。また、非活性化手段およびフリップフロップ回路等は、比較的小規模な回路及び面積で実現可能であるため、半導体記憶装置を低コストで製造可能となる。
 また、前記非活性化手段は、前記第1の制御信号に基づいて論理遷移するプリデコード信号を非活性状態にすることによって、前記ロウ選択線および前記コラム選択線のいずれか一方を非活性状態にするプリデコード信号発生回路を有していてもよい。
 この構成によれば、非活性化手段は、プリデコード信号発生回路を有している。そして、プリデコード信号発生回路から出力されるプリデコード信号は、第1の制御信号に基づいて論理遷移し、このプリデコード信号が非活性状態となることによって、ロウ選択線およびコラム選択線のいずれか一方が非活性状態となる。したがって、不揮発デバイスアレイの周辺に、ロウ選択線やコラム選択線のドライバ回路部に、これら選択線を非活性状態にするための専用の回路等を設ける必要が無い。すなわち、テスト回路に不要な面積が生じず、半導体記憶装置を低コストで製造することができる。
 また、前記プリデコード信号発生回路は、前記第1の制御信号および前記不揮発デバイスアレイを選択する第2の制御信号に基づいて前記プリデコード信号を非活性状態にしてもよい。
 この構成によれば、プリデコード信号発生回路は、2つの制御信号を論理合成することによってプリデコード信号を非活性状態とすることが可能となる。ここで、第2の制御信号は不揮発デバイスアレイを選択するための制御信号であるため、第2の制御信号によりプリデコードされた信号をさらに非活性状態にするための回路等を設ける必要がない。そのため、回路面積のさらなる削減と回路構成の容易化とを図ることができ、特に制御信号の入力初段の段階で構成することが可能になる。
 また、前記プリデコード信号発生回路は、第1の同期信号および前記第1の制御信号に基づいて前記プリデコード信号を非活性状態としてもよい。
 この構成によれば、クロック入力を伴う同期式メモリアレイの制御手法が一般化する中で、第1の制御信号の入力だけではプリデコード信号が発生しない場合において、クロック入力からプリデコード信号を発生させるための手法に適用可能である。つまり、第1の制御信号と、クロック入力としての第1の同期信号とを論理合成することによって、ロウ選択線およびコラム選択線のいずれか一方を非活性状態にすることができる。したがって、クロック入力によりプリデコードされた信号をさらに非活性状態にするための回路等を設ける必要がない。
 また、上記半導体記憶装置は、前記ロウ選択線および前記コラム選択線のうち非活性状態でない方のいずれか1本以外を開放状態にする開放手段を備えている。
 この構成によれば、ロウ選択線かあるいはコラム選択線のいずれか一方を非活性状態として切断動作の停止が可能であるが、非活性状態でない方の選択線のうちの1本を除いて、開放状態とすることができる。例えば、ロウ選択線のうちの1本が、活性状態でハイレベルであるとき、他の非活性状態のロウ選択線を、一旦、ロウレベルから開放状態とすることができる。これにより、不揮発デバイスアレイ内部において、配線の抵抗値を有するショート等により、1本の選択線がロウレベルになりきらない場合や、本来ロウレベルであるべき非活性状態のロウ選択線がハイレベルになりきらない場合であっても、全てのロウ選択線の電位をフリップフロップ回路に読み出すことで、不揮発デバイスアレイの異常を検知することが可能になり、品質維持に寄与する。
 また、前記開放手段は、ドレインが前記ロウ選択線に接続され、ゲートに第1の同期信号と第3の制御信号とを論理合成した信号を受けるN型MISトランジスタを有する。
 この構成によれば、不揮発デバイスアレイへのアクセスが同期信号により開始される場合であっても、例えば、ロウ選択線のうち活性状態であるロウ選択線はハイレベルとなり、非活性状態であるロウ選択線は一旦その電位がロウレベルとなった後に、不揮発デバイスアレイへのアクセス中に開放状態とすることが可能となるため、開放手段をより簡易な構成とすることができる。
 また、前記開放手段は、前記N型MISトランジスタのゲート電位をロウレベルにすることによって、前記ロウ選択線のうち活性状態である1本以外を開放状態にしてもよい。
 この構成によれば、ロウ選択線のうち活性状態のロウ選択線はハイレベルとなり、非活性状態のロウ選択線は一旦その電位がロウレベルとなった後に、不揮発デバイスアレイへのアクセス中にのみ開放状態とすることができる。
 また、前記開放手段は、ドレインが前記コラム選択線に接続され、ゲートに第1の同期信号と第3の制御信号とを論理合成した信号を受けるN型MISトランジスタを有する。
 この構成によれば、不揮発デバイスアレイへのアクセスが同期信号により開始される場合であっても、例えば、コラム選択線のうち活性状態であるコラム選択線はハイレベルとなり、非活性状態であるコラム選択線は一旦その電位をロウレベルとされた後に、不揮発デバイスアレイへのアクセス中にのみ開放状態とすることが可能となるため、開放手段をより簡易な構成とすることができる。
 前記開放手段は、前記N型MISトランジスタのゲート電位をロウレベルにすることによって、前記コラム選択線のうち活性状態である1本以外を開放状態にしてもよい。
 この構成によれば、コラム選択線のうち活性状態であるコラム選択線はハイレベルとなり、非活性状態であるコラム選択線は一旦その電位をロウレベルとされた後に、不揮発デバイスアレイへのアクセス中に開放状態とすることができる。
 また、前記フリップフロップ回路は、第4の制御信号に基づいて、前記ロウ選択線および前記コラム選択線の少なくとも一方の電位を取り込んでもよい。
 この構成によれば、不揮発デバイスアレイの書込動作や読出動作中のいずれの場合でも、また、不揮発デバイスアレイの動作が停止中の場合であっても、フリップフロップ回路によって、不揮発デバイスアレイのロウ選択線およびコラム選択線の少なくとも一方の状態を検知することが可能となる。
 また、前記フリップフロップ回路は、前記不揮発デバイスアレイからみて、前記ロウ制御回路の反対側および前記コラム制御回路の反対側の双方に設けられていてもよい。
 この構成によれば、ロウ選択線およびコラム選択線の両方の状態をフリップフロップ回路によって検知することができる。
 また、前記不揮発デバイスは、トランジスタのゲート材料で構成される電気ヒューズであってもよい。
 この構成によれば、一度だけ書き換え可能な不揮発デバイスとして、電流が流れることによりその状態を変化させる電気ヒューズを、トランジスタのゲート材料で構成することができるため、不揮発デバイスを容易に製造することができ、低コスト化を図ることができる。
 本開示によると、微細化が進む先端プロセスと、高機能化および高性能化が進むセキュリティー等との要請から、不揮発デバイスアレイを備えた半導体記憶装置の面積縮小が可能である。また、アナログ量の精度向上の観点において、半導体メーカー内部でのトリミングのみならず、半導体記憶装置出荷後のセット状態でのトリミングや切断を行う場合であっても、回路規模の増大を抑制しつつ、半導体記憶装置の製造原価低減と、品質維持および向上を図ることができる。さらに、不揮発デバイス等を破壊することなく安定的な検査が可能であり、製品出荷後の品質向上を実現することが可能となる。
図1は、一実施形態に係る半導体記憶装置の構成例を示す図である。 図2は、図1におけるロウ制御回路を構成するプリデコード信号発生回路の第1の構成例を示す図である。 図3は、図1におけるロウ制御回路を構成するプリデコード信号発生回路の第2の構成例を示す図である。 図4は、図1におけるロウ制御回路を構成するプリデコード信号発生回路の第3の構成例を示す図である。 図5は、図1におけるコラム選択線の開放手段の構成例を示す図である。 図6は、図1におけるロウ選択線の開放手段の構成例を示す図である。 図7は、図1の半導体記憶装置の第1の動作を示す波形図である。 図8は、図1の半導体記憶装置の第2の動作を示す波形図である。
 (一実施形態)
 以下、本開示の一実施形態に係る半導体記憶装置について図面を参照しながら説明する。
 図1は、一実施形態に係る半導体記憶装置の構成例を示す図である。図1に示す半導体記憶装置10は、一度だけ書き換え可能な不揮発デバイスが行列状に配置された不揮発デバイスアレイを有するメモリセルアレイを備えた半導体記憶装置である。なお、本実施形態では、不揮発性デバイスとして、トランジスタのゲート材料で構成される電気ヒューズを用いた場合について説明する。
 半導体記憶装置10は、電気ヒューズが行列状に配置された電気ヒューズアレイを有するメモリセルアレイ101と、メモリセルアレイ101にロウ選択線WLによって接続されたロウ制御回路102と、メモリセルアレイ101に接続された切断駆動回路111と、メモリセルアレイ101及び切断駆動回路111にコラム選択線BLによって接続されたコラム/入出力制御回路103(コラム制御回路)と、ロウ制御回路102及びコラム/入出力制御回路103に接続された制御回路100と、メモリセルアレイ101に接続されたロウ選択用スキャンフリップフロップ回路112と、メモリセルアレイ101に接続されたコラム選択用スキャンフリップフロップ回路113とを有している。
 制御回路100は、メモリセルアレイ101を選択する選択信号であるチップイネーブル信号CE、プログラムイネーブル信号PG、およびテストモードイネーブル信号TE[0:1](TE[0:1]は、TE[0],TE[1]の略、以降この表記を使用する)を入力信号とし、第1の同期信号としての同期信号FCLKをクロック入力としている。そして、制御回路100は、ロウ制御回路102及びコラム/入出力制御回路103のそれぞれを出力信号によって制御している。なお、本実施形態では、メモリセルアレイ101が選択されることによって、内部に設けられた電気ヒューズアレイが選択される。
 ロウ制御回路102は、入力アドレス信号AX[0:m](mは正の整数)を入力とし、制御回路100からの出力信号によって制御される。ロウ制御回路102は、メモリセルアレイ101に対してアドレスのデコードを行い、ロウ選択信号115をロウ選択線WLに出力している。これにより、メモリセルアレイ101内の電気ヒューズアレイが選択される。
 コラム/入出力制御回路103は、入力アドレス信号AY[0:n](nは正の整数)を入力とし、メモリセルアレイ101に含まれるメモリセルに対してデータの読み出しおよび書き込みを行う。コラム/入出力制御回路103は、データを読み出す場合、コラム信号114を発生し、メモリセル(電気ヒューズ)の読み出し結果としてコラム選択線BLに出力されたデータをデータ出力信号DO[0:p](pは正の整数)として出力する。一方、コラム/入出力制御回路103は、データを書き込む場合、信号/COLSEL[0:p]を切断駆動回路111に出力する。
 メモリセルアレイ101は、MISトランジスタのゲートで形成された電気ヒューズと、ロウ選択信号115をゲートに受けるN型MISトランジスタとで構成される複数のメモリセルを有する。各メモリセルは、ロウ選択線WL及びコラム選択線BLに接続されている。
 切断駆動回路111は、制御回路100の制御によってコラム/入出力制御回路103によるメモリセルへの書き込みが有効になった際、信号/COLSEL[0:p]に基づいて、メモリセルのコラム選択線BLに、電気ヒューズを切断するために必要な電位をドライブする。
 ロウ選択用スキャンフリップフロップ回路112は、ロウ選択線WLのデコードされた電位を取り込む。コラム選択用スキャンフリップフロップ回路113は、コラム選択線BLのデコードされた電位を取り込む。なお、本実施形態では、ロウ選択用スキャンフリップフロップ回路112とコラム選択用スキャンフリップフロップ回路113とは、ロウ選択用スキャンフリップフロップ回路112の出力がコラム選択用スキャンフリップフロップ回路113の入力に接続された構成を有している。
 ロウ選択用スキャンフリップフロップ回路112は、ロウ選択線WLのロウ選択信号115を、コラム選択用スキャンフリップフロップ回路113は、コラム選択線BLのコラム信号114を、それぞれフリップフロップ回路116の内部に取り込むために制御信号RSTを入力とする。また、内部に取り込んだデータを外部出力するために同期信号SCLKが入力される。
 ここで、ロウ選択用スキャンフリップフロップ回路112及びコラム選択用スキャンフリップフロップ回路113を構成する単位であるフリップフロップ回路116について詳細に説明する。
 フリップフロップ回路116は、データ入力としてのI端子と、制御信号RSTが入力されるR端子と、ロウ選択線WLかあるいはコラム選択線BLの電位が入力されるS端子と、同期信号SCLKが入力されるC端子と、データ出力としてのO端子と、インバータ回路117と、NAND回路118,119,120で構成されるセレクタ回路と、DQフリップフロップ回路121とを有する。
 インバータ回路117は、制御信号RSTを反転して出力する。NAND回路118は、インバータ回路117の出力と前段のフリップフロップ回路116のO端子からの出力とを受ける。NAND回路119は、S端子の入力と制御信号RSTとを受ける。NAND回路120は、NAND回路118,119の出力を受ける。
 DQフリップフロップ回路121は、フリップフロップ回路116のC端子であり、DQフリップフロップ回路121のCK端子入力である同期信号SCLKにより、入力であるD端子からの入力信号を、出力であるQ端子に対して転送する。なお、図1では、フリップフロップ回路116のS端子は、ロウ選択線WLおよびコラム選択線BLの末端部に接続されているが、フリップフロップ回路116は、メモリセルアレイ101からみてロウ制御回路102の反対側、およびコラム/入出力制御回路103の反対側に接続されていればよい。
 フリップフロップ回路116は、R端子入力である制御信号RSTがハイレベルになるとS端子入力の信号をDQフリップフロップ回路121に伝達して、DQフリップフロップ回路121にその電位を格納する。フリップフロップ回路116へ入力される制御信号RSTがロウレベルになると、各フリップフロップ回路116は、前段のフリップフロップ回路116のO端子からの出力を自身のI端子への入力として受ける構成であり、フリップフロップ回路116に同期信号SCLKがクロック入力されると、シーケンシャルに次段に転送される構成になっている。
 なお、初段のフリップフロップ回路116への入力を信号FDとして、最終段のフリップフロップ回路116から外部に信号SOが出力される。この構成により、メモリセルアレイ101が読出動作および書込動作中であっても、あるいはその動作が停止している状態であっても、ロウ選択線WLのロウ選択信号115と、コラム選択線BLのコラム信号114の電位を任意に取り込むことにより、外部に信号SOを出力することが可能になる。
 (プリデコード信号発生回路の第1の構成例)
 図2は、図1に示す半導体記憶装置におけるロウ制御回路を構成するプリデコード信号発生回路の第1の構成例を示す図である。
 図2に示すように、プリデコード信号発生回路20は、インバータ回路201と、NAND回路202と、NOR回路203とを有する。
 図2において、入力アドレス信号AX[0]は、図1におけるロウ制御回路102に入力される入力アドレス信号AX[0:m]のうち、配列0に相当する信号であり、入力アドレス信号AX[1]は配列1に相当する信号である。
 プリデコード信号発生回路20では、入力アドレス信号AX[0],AX[1]をデコードするため、インバータ回路201により反転電位が発生される。そして、NAND回路202にそれぞれデコードできるように正、負の信号が入力され、NAND回路202の出力は、対応するNOR回路203に入力される。また、NOR回路203には、半導体記憶装置におけるテストモードイネーブル信号TE[0](第1の制御信号)が共通に入力される。
 上記構成を入力アドレス信号AX[0:m]のすべてに対して実施することでロウプリデコード信号発生回路が構成される。テストモードイネーブル信号TE[0]がロウレベルである場合には、プリデコード信号PXは入力アドレス信号AX[0:m]により指定されたアドレスがデコードされたものとなる。一方、テストモードイネーブル信号TE[0]がハイレベルである場合には、全てのプリデコード信号PXはロウレベルとなり非活性状態となる。
 (プリデコード信号発生回路の第2の構成例)
 図3は、図1に示す半導体記憶装置におけるロウ制御回路を構成するプリデコード信号発生回路の第2の構成例を示す図である。図2に示す第1の構成例では、NOR回路203の一方にテストモードイネーブル信号TE[0]を直接入力している。これに対して、図3に示す第2の構成例ではNOR回路203の一方に、図2におけるテストモードイネーブル信号TE[0]の代わりに、チップイネーブル信号CE(第2の制御信号)とテストモードイネーブル信号TE[0]を入力とする論理回路304からの出力信号を入力している点で相違している。なお、図3において、図2に示す第1の構成例と同様の役割を有する構成には図2と同じ符号を付与している。
 プリデコード信号発生回路20は、プリデコード信号PX[0:3]が、メモリセルアレイ101の選択信号であるチップイネーブル信号CEにより発生される構成になっている。
 具体的に、論理回路304は、チップイネーブル信号CEを入力とするインバータ回路301と、インバータ回路301から出力される、チップイネーブル信号CEを反転した信号とテストモードイネーブル信号TE[0]とを入力とするNOR回路302と、NOR回路302から出力される信号を入力とするインバータ回路303とを有している。
 そして、このインバータ回路303からはNOR回路302の出力信号を反転した信号が出力され、この反転した信号がNOR回路203の一方の入力信号となる。通常、チップイネーブル信号CEによりプリデコード信号を発生する場合、NOR回路203の一方の入力にはチップイネーブル信号CEの反転信号が入力され、これによってプリデコード信号を発生する。しかしながら、第2の構成例では、テストモードイネーブル信号TE[0]とチップイネーブル信号CEとの論理合成により、プリデコード信号PX[0:3]を非活性化する構成であるため、図3に示すような論理回路304の構成を有している。
 なお、この論理回路304を、ロウ制御回路102内に設けてもよいし、例えば、制御回路100内に設けてもよい。制御回路100内に設けた場合、論理回路304からの出力がロウ制御回路102へ供給されるため、ロウ制御回路102を形成するための領域に必要な面積は少なくて済む。
 (プリデコード信号発生回路の第3の構成例)
 図4は、図1に示す半導体記憶装置におけるロウ制御回路を構成するプリデコード信号発生回路の第3の構成例を示す図である。図3に示す第2の構成例では、インバータ回路301にチップイネーブル信号CEを入力している。これに対して、図4に示す第3の構成例では、図3におけるチップイネーブル信号CEの代わりに同期信号FCLKをインバータ回路301に入力している点で相違している。図4において、図3に示す第2の構成例と同様の役割を有する構成には図3と同じ符号を付与している。
 プリデコード信号発生回路20は、プリデコード信号PX[0:3]が、制御回路100に供給される同期信号FCLKにより発生される構成になっている。
 具体的に、論理回路404は、同期信号FCLKを入力とするインバータ回路301と、インバータ回路301から出力される、同期信号FCLKを反転した信号とテストモードイネーブル信号TE[0]とを入力とするNOR回路302と、NOR回路302から出力される信号を入力とするインバータ回路303とを有している。
 そして、このインバータ回路303からはNOR回路302の出力信号を反転した信号が出力され、この反転した信号がNOR回路203の一方の入力信号となる。通常、同期信号FCLKによりプリデコード信号を発生する場合、NOR回路203の一方の入力には同期信号FCLKの反転信号が入力され、これによってプリデコード信号を発生する。しかしながら、第3の構成例では、テストモードイネーブル信号TE[0]と同期信号FCLKとの論理合成により、プリデコード信号PX[0:3]を非活性化する構成であるため、図4に示すような論理回路404の構成を有している。
 なお、この論理回路404を、ロウ制御回路102内に設けてもよいし、例えば、制御回路100内に設けてもよい。制御回路100内に設けた場合、論理回路404からの出力がロウ制御回路102へ供給されるため、ロウ制御回路102を形成するための領域に必要な面積は少なくて済む。
 ここで、図2~図4には、ロウプリデコード信号発生回路の一部を記載しているが、これらの構成をコラムプリデコード信号発生回路に適用することも可能である。その場合、例えば、入力アドレス信号AX[0],AX[1]を、それぞれ入力アドレス信号AY[0],AY[1]とし、プリデコード信号PX[0:3]をプリデコード信号PY[0:3]とする。なお、プリデコード信号PY[0]は例えばCOLSEL[0](図6等参照)に対応する。そして、第1の制御信号としてテストモードイネーブル信号TE[1]を用いればよい。
 以上、図1~図4に示す構成により、コラム選択線BLおよびロウ選択線WLのいずれか一方を非活性状態にすることができる。したがって、半導体記憶装置10の検査時に、ロウ選択線WLおよびコラム選択線BLのいずれか一方を非活性状態にすることによって、メモリセルアレイ101に含まれるメモリセルが活性状態になることがない。つまり、電気ヒューズを切断することなく検査が可能である。
 また、メモリセルアレイ101から見て、ロウ選択用スキャンフリップフロップ回路112をロウ制御回路102と反対側に配置しているため、制御回路100からロウ制御回路102およびメモリセルアレイ101を介してロウ選択用スキャンフリップフロップ回路112までの経路に異常があるかどうかを検査することができる。
 また、メモリセルアレイ101から見て、コラム選択用スキャンフリップフロップ回路113をコラム/入出力制御回路103と反対側に配置しているため、制御回路100からコラム/入出力制御回路103およびメモリセルアレイ101を介してコラム選択用スキャンフリップフロップ回路113までの経路に異常があるかどうかを検査することができる。
 また、比較的回路面積が小さいスキャンフリップフロップ回路112,113を用いて検査を行うことができるため、検査回路の面積の縮小化を図ることができる。
 なお、検査の結果については、スキャンフリップフロップ回路112,113の出力を外部でモニタするなどして確認することができる。
 このように、簡易な構成で、電気ヒューズアレイを有するメモリセルアレイに接続される、ロウ選択線あるいはコラム選択線のいずれか一方を非活性状態にする非活性化手段と、ロウ選択線あるいはコラム選択線の電位を検知する手段とを用いることで、より少ない面積で検査が可能で、かつ品質の維持と向上を図ることができる。
 (コラム選択線開放手段の構成例)
 図5は、図1に示す半導体記憶装置におけるコラム選択線を開放状態とする開放手段の構成例を示す図である。このコラム選択線開放手段50では、全てのロウ選択線WLが非活性状態である間、コラム選択線BLのうち、活性状態でないコラム選択線BLを開放状態とすることができる。つまり、コラム選択線開放手段50は、任意の1本以外のコラム選択線BLを開放状態にすることができる。
 図5において、メモリセル群501の各メモリセル501aは、電気ヒューズ505とN型MISトランジスタ503とで構成されている。
 電気ヒューズ505は、一端がコラム選択線BLに接続され、他端が電気ヒューズ505を切断するためのN型MISトランジスタ503のドレインに接続されている。N型MISトランジスタ503は、ゲートがロウ選択線WLに接続され、ソースが接地されている。
 コラム選択線開放手段50は、切断用駆動回路504と、N型MISトランジスタ502と、コラム選択線開放回路509とを有している。
 切断用駆動回路504は、例えばP型MISトランジスタ504aで構成されている。P型MISトランジスタ504aは、ソースが高電圧側の電源VDDHEに接続され、ドレインがコラム選択線BLに接続され、ゲートがデコード信号COLSEL[p]を反転した反転信号/COLSEL[p]に接続されている。P型MISトランジスタ504aのドレインには、N型MISトランジスタ502のドレインが接続されている。
 N型MISトランジスタ502は、ドレインがコラム選択線BLに接続され、ソースが接地され、ゲートがコラム選択線開放回路509からの出力信号ATに接続されている。
 コラム選択線開放回路509は、インバータ回路506と、NAND回路507と、インバータ回路508とを有している。コラム選択線開放回路509からの出力信号ATは、同期信号FCLKをインバータ回路506により反転した信号と、第3の制御信号としてのテストモードイネーブル信号TE[0]とをNAND回路507の入力とし、NAND回路507からの出力をインバータ回路508により反転して発生される。なお、第1および第3の制御信号として、テストモードイネーブル信号TE[0]を用いてもよい。
 テストモードイネーブル信号TE[0]がハイレベルであるとき、前述したように、ロウ制御回路102はロウ選択線WLの電位をすべてロウレベルに保持している。
 テストモードイネーブル信号TE[0]がハイレベルである場合、同期信号FCLKの電位を反転するインバータ回路506によりNAND回路507の2入力端子は双方共にハイレベルとなる。これにより、NAND回路507の出力はロウレベル、インバータ回路508からの出力信号ATは一度ハイレベルとなるため、コラム選択線BLの電位が一度ロウレベルとなる。
 同期信号FCLKの電位がハイレベルとなると、出力信号ATはロウレベルとなって、ロウレベルに落とされた非活性状態のコラム選択線BL、つまり活性状態である1本のコラム選択線BL以外は開放状態となる。
 このとき、デコード信号COLSEL[p]を反転した反転信号/COLSEL[p]のデコード結果に基づいて、切断用駆動回路504のゲート電位はロウレベルとなり、活性状態であるコラム選択線BLは電源VDDHEの高電位となる。
 これにより、メモリセルアレイ101に対してアクセス(特に書込動作)が生じる場合に、1本のコラム選択線BL以外を開放状態とすることが可能になる。メモリセルアレイ101内部で生じたショート等の故障に対しては、活性状態であるコラム選択線BLがハイレベルから低下しなくとも、ショートが生じた開放状態にある非活性状態のコラム選択線BLがハイレベルになるため、故障を検知することが可能となる。
 なお、図示はしないが、コラム選択線開放手段50において、同期信号FCLKの代わりに、メモリセルアレイ101を選択する信号であるチップイネーブル信号CEを用いても。また、テストモードイネーブル信号TE[0]がロウレベルである場合は、出力信号ATはロウレベルとなり、通常動作に支障をきたすことがない。
 (ロウ選択線開放手段の構成例)
 図6は、図1に示す半導体記憶装置におけるロウ選択線を開放状態とする開放手段の構成例を示す図である。このロウ選択線開放手段60では、全てのコラム選択線BLが非活性状態である間、ロウ選択線WLのうち、活性状態でないロウ選択線WLを開放状態とすることができる。なお、図6において、図5に示す構成と同様の役割を有する構成には図5と同じ符号を付与している。また、図6において、統一性を維持するため、コラム選択線BLを非活性状態とする信号、つまり、コラムプリデコード信号発生回路への第1の制御信号としてテストモードイネーブル信号TE[1]を使用するものとする。
 図6において、メモリセル群501の各メモリセル501aは、電気ヒューズ505とN型MISトランジスタ503とで構成されている。電気ヒューズ505は、一端がコラム選択線BLに接続され、他端が電気ヒューズ505を切断するためのN型MISトランジスタ503のドレインに接続されている。N型MISトランジスタ503は、ゲートがロウ選択線WLに接続され、ソースが接地されている。
 切断用駆動回路504は、P型MISトランジスタ504aで構成されている。P型MISトランジスタ504aは、ソースが電源VDDHEに接続され、ドレインがコラム選択線BLに接続され、ゲートがデコード信号COLSEL[p]を反転した反転信号/COLSEL[p]に接続されている。
 ロウ選択線開放手段60は、ドライバ回路606と、セレクタ回路607及び論理回路608からなるロウ選択線開放回路609とを有している。
 ドライバ回路606は、P型MISトランジスタ606pとN型MISトランジスタ606nとで構成されており、ロウ選択線WLの電位を発生する。
 P型MISトランジスタ606pは、ソースがメモリセルアレイ101の書き込み電位となる電源VDDHEに接続され、ドレインがロウ選択線WLに接続され、ゲートがロウ選択線WLのデコード信号ROWSEL[x]を反転した反転信号/ROWSEL[x]に接続されている。
 N型MISトランジスタ606nは、ドレインがロウ選択線WLに接続され、ソースが接地され、ゲートがセレクタ回路607の出力信号BTに接続されている。
 論理回路608は、インバータ回路610と、NAND回路611と、インバータ回路612とを有している。論理回路608からの出力信号は、同期信号FCLKをインバータ回路610により反転した信号と第3の制御信号としてのテストモードイネーブル信号TE[1]とをNAND回路611の入力とし、NAND回路611からの出力をインバータ回路612により反転して発生する。なお、第1および第3の制御信号としてテストモードイネーブル信号TE[1]を使用してもよい。
 セレクタ回路607は、テストモードイネーブル信号TE[1]が入力されるインバータ回路613と、インバータ回路613から出力される信号(テストモードイネーブル信号TE[1]の反転信号)とデコード信号ROWSEL[x]を反転した反転信号/ROWSEL[x]とを入力とするNAND回路614と、テストモードイネーブル信号TE[1]と論理回路608におけるインバータ回路612から出力される信号とを入力とするNAND回路615と、NAND回路614及びNAND回路615から出力される各信号を入力として受けるNAND回路616とで構成され、NAND回路616から出力信号BTが出力される。
 セレクタ回路607において、選択制御を行う信号として、テストモードイネーブル信号TE[1]を入力とし、テストモードイネーブル信号TE[1]がロウレベルである場合にはデコード信号ROWSEL[x]の反転信号/ROWSEL[x]が出力信号BTとして出力される。一方、テストモードイネーブル信号TE[1]がハイレベルである場合には、テストモードイネーブル信号TE[1]と同期信号FCLKの反転信号とでAND論理を組んだ結果が出力信号BTとして出力されるように構成されている。
 ドライバ回路606におけるN型MISトランジスタ606nのゲートに入力される出力信号BTとして、テストモードイネーブル信号TE[1]がロウレベルである場合には、デコード信号ROWSEL[x]の反転信号/ROWSEL[x]が入力されるため、通常のデコード動作となる。一方、テストモードイネーブル信号TE[1]がハイレベルである場合には、同期信号FCLKの反転信号が供給されるため、同期信号FCLKがロウレベルである場合には、出力信号BTはハイレベルとなり、ロウ選択線WLはロウレベルとなる。一方、同期信号FCLKがハイレベルである場合には、出力信号BTはロウレベルとなってロウ選択線WLを開放状態とする。この際、活性状態であるロウ選択線WLは、ドライバ回路606のP型MISトランジスタ606pがデコード信号ROWSEL[x]の反転信号/ROWSEL[x]をゲートに受けるため、電源VDDHEの電位となる。したがって、活性状態であるロウ選択線WLの電位は、電源VDDHEと同程度の電位となるため、非活性状態のロウ選択線WL、つまり活性状態である1本のロウ選択線以外のロウ選択線WLは開放状態となる。これにより、メモリセルアレイ101内部の一定の抵抗値をもつショートであっても、ロウ選択線WLが活性状態であるか非活性状態であるかにかかわらず、その電位を外部において検知することで異常を確認することが可能になる。
 (半導体記憶装置の第1の動作)
 図7は、一実施形態に係る半導体記憶装置の第1の動作を示す波形図である。特に、テストモードイネーブル信号TE[0]がハイレベルとなり、ロウ選択線WLが非活性状態となって、コラム選択線BLの異常を検出する場合の動作を示す波形図である。なお、図7に示す波形図は、図1に示す半導体記憶装置において、図4に示すプリデコード信号発生回路20と、図5に示すコラム選択線開放手段50とを使用した構成を前提としたものである。なお、図7における各信号の名称について既に説明済みのため、ここでは省略する。
 メモリセルアレイ101(電気ヒューズアレイ)の選択信号となるチップイネーブル信号CEが、メモリセルアレイ101の選択状態を示すハイレベルになると同時に、プログラムイネーブル信号PGがハイレベルとなり書き込み動作が開始される。このとき、書き込みを行う対象のメモリセルのアドレスを示す、入力アドレス信号AY[0:n]と入力アドレス信号AX[0:m]が指定して入力される。また、テストモードイネーブル信号TE[0]がハイレベルとなると、ロウ選択線WLが非活性状態となる。
 このとき、図5に示すコラム選択線BLに接続されたN型MISトランジスタ502のゲート電位となる出力信号ATはハイレベルとなるため、コラム選択線BLの電位がロウレベルとなる。次に、半導体記憶装置10に供給される同期信号FCLKがハイレベルとなると、図4に示す構成により、全てのプリデコード信号PXは非活性状態となるため、全てのロウ選択線WLの電位はロウレベルとなる。
 同期信号FCLKがハイレベルになると、出力信号ATはロウレベルとなるため、コラム選択線BLの電位はロウレベルのまま、開放状態となる。この後、図1に示す制御信号RSTをハイレベルにすると、ロウ選択線WL,及びコラム選択線BLの電位がスキャンフリップフロップ回路112,113に取り込まれる。そして、スキャンフリップフロップ回路112,113に同期信号SCLKを入力することで、各ロウ選択線WLと各コラム選択線BLの電位が最終段のフリップフロップ回路116のO端子から信号SOとして出力される。
 上記のような動作により、活性状態である1本のコラム選択線BLの電位が一定の抵抗を有する微弱なショートであっても外部に出力された信号SOの電位を検知することで異常を確認することができる。
 (半導体記憶装置の第2の動作)
 図8は、本発明の一実施形態に係る半導体記憶装置の第2の動作を示す波形図である。特に、テストモードイネーブル信号TE[1]がハイレベルとなり、コラム選択線BLが非活性状態となって、ロウ選択線WLの異常を検出する場合の動作を示す波形図である。なお、図8に示す波形図は、図1に示す半導体記憶装置において、図4に示すプリデコード信号発生回路20をコラムプリデコード信号発生回路に適用し、図6に示すロウ選択線開放手段60を使用した構成を前提としたものである。なお、図8における各信号については既に説明済みのため、ここでは省略する。
 メモリセルアレイ101(電気ヒューズアレイ)の選択信号となるチップイネーブル信号CEが、メモリセルアレイ101の選択状態を示すハイレベルになると同時に、プログラムイネーブル信号PGがハイレベルとなり書き込み動作が開始される。このとき、書き込みを行う対象のメモリセルのアドレスを示す、入力アドレス信号AY[0:n]と入力アドレス信号AX[0:m]が指定して入力される。また、テストモードイネーブル信号TE[1]がハイレベルとなると、コラム選択線BLが非活性状態となる。
 このとき、図6に示すロウ選択線WLに接続されたN型MISトランジスタ606nのゲート電位となる出力信号BTはハイレベルとなるため、ロウ選択線WLの電位がロウレベルとなる。次に、半導体記憶装置に供給される同期信号FCLKがハイレベルとなると、上述したコラムプリデコード信号発生回路により、その全ての出力は非活性状態となるため、全てのコラム選択線BLの電位はロウレベルとなる。
 同期信号FCLKがハイレベルになると、出力信号BTはロウレベルとなるため、ロウ選択線WLの電位はロウレベルのまま、開放状態となる。この後、図1に示す制御信号RSTをハイレベルとしてロウ選択線WL,及びコラム選択線BLの電位がスキャンフリップフロップ回路112,113に取り込まれる。そして、スキャンフリップフロップ回路112,113に同期信号SCLKを入力することで、各ロウ選択線WLと各コラム選択線BLの電位が最終段のフリップフロップ回路116のO端子から信号SOとして出力される。
 上記のような動作により、活性状態である1本のロウ選択線WLの電位が一定の抵抗を有する微弱なショートであっても端子に出力された信号SOの電位を検知することで異常を確認できる。
 なお、上記第1および第2の動作において、入力アドレス信号AX,AYによって特定されるメモリセル以外のメモリセルに接続される、ロウ選択線WLあるいはコラム選択線BLに異常がある場合でも、その異常の検出が可能である。例えば、図7および図8に示す信号SOにおいて、入力アドレス信号AX,AYによって特定される箇所以外の箇所に電位の変化が現れた場合、その電位の変化を異常として検出することができる。
 以上、本実施形態に係る半導体記憶装置10によると、ロウ制御回路102とスキャンフリップフロップ回路112とがメモリセルアレイ101を挟むようにしてロウ選択線WLで接続されているため、制御回路100からスキャンフリップフロップ回路112までの経路における任意の箇所に生じる異常の検出が可能である。
 また、コラム/入出力制御回路103とスキャンフリップフロップ回路113とがメモリセルアレイ101を挟むようにしてコラム選択線BLで接続されているため、制御回路100からスキャンフリップフロップ回路113までの経路における任意の箇所に生じる異常の検出が可能である。
 なお、本実施形態では、2つのスキャンフリップフロップ回路112,113を設けた場合について説明したが、少なくとも一方のスキャンフリップフロップ回路を設けてもよい。例えば、スキャンフリップフロップ回路112のみを設けた場合には、ロウ選択線WLに生じうる異常の検出が可能であり、スキャンフリップフロップ回路113のみを設けた場合には、コラム選択線BLに生じうる異常の検出が可能である。
 また、本実施形態では、不揮発デバイスとして、電気ヒューズを用いた場合について説明したが、一度だけ書き換えが可能な不揮発デバイスであればよい。例えば、金属配線溶断型ヒューズ、金属配線層間のコンタクトを破壊するヒューズ、トランジスタのゲート部を破壊するアンチヒューズ、およびトランジスタに過大電流を流して劣化させるトランジスタ劣化型ヒューズを用いてもよく、フローティングゲートを有するEEPROM(Electrically Erasable Programmable Read Only Memory)型セルを用いてもよい。
 本開示は、微細化が進む先端プロセスにおいて、セキュリティー用のIDコード、プロセッサ、メモリ、PLL回路等を搭載したシステムLSIの回路技術として、特に大規模な容量を有する不揮発デバイスをアレイ型で実現する技術分野における品質の維持向上に有用である。
 10       半導体記憶装置
 20       プリデコード信号発生回路
 50       コラム選択線開放手段
 60       ロウ選択線開放手段
 100      制御回路
 101      メモリセルアレイ(不揮発デバイスアレイ)
 102      ロウ制御回路
 103      コラム/入出力制御回路
 111      切断駆動回路
 112      ロウ選択用スキャンフリップフロップ回路
 113      コラム選択用スキャンフリップフロップ回路
 502,503  N型MISトランジスタ
 505      電気ヒューズ(不揮発デバイス)
 508      インバータ回路
 509      コラム選択線開放回路
 609      ロウ選択線開放回路
 BL       コラム選択線
 WL       ロウ選択線

Claims (12)

  1.  一度だけ書き換え可能な不揮発デバイスが行列状に配置された不揮発デバイスアレイと、
     前記不揮発デバイスアレイの列に対応する1以上のロウ選択線と、
     前記ロウ選択線の一端側に接続されるロウ制御回路と、
     前記不揮発デバイスアレイの行に対応する1以上のコラム選択線と、
     前記コラム選択線の一端側に接続されるコラム制御回路と、
     前記不揮発デバイスアレイからみて、前記ロウ制御回路の反対側および前記コラム制御回路の反対側の少なくとも一方に設けられたフリップフロップ回路と、
     第1の制御信号に基づいて、前記ロウ選択線および前記コラム選択線のいずれか一方を非活性状態にする非活性化手段とを備えている
    ことを特徴とする半導体記憶装置。
  2.  請求項1に記載の半導体記憶装置において、
     前記非活性化手段は、前記第1の制御信号に基づいて論理遷移するプリデコード信号を非活性状態にすることによって、前記ロウ選択線および前記コラム選択線のいずれか一方を非活性状態にするプリデコード信号発生回路を有する
    ことを特徴とする半導体記憶装置。
  3.  請求項2に記載の半導体記憶装置において、
     前記プリデコード信号発生回路は、前記第1の制御信号および前記不揮発デバイスアレイを選択する第2の制御信号に基づいて前記プリデコード信号を非活性状態にする
    ことを特徴とする半導体記憶装置。
  4.  請求項2に記載の半導体記憶装置において、
     前記プリデコード信号発生回路は、第1の同期信号および前記第1の制御信号に基づいて前記プリデコード信号を非活性状態にする
    ことを特徴とする半導体記憶装置。
  5.  請求項1に記載の半導体記憶装置において、
     前記ロウ選択線および前記コラム選択線のうち非活性状態でない方のいずれか1本以外を開放状態にする開放手段を備えている
    ことを特徴とする半導体記憶装置。
  6.  請求項5に記載の半導体記憶装置において、
     前記開放手段は、ドレインが前記ロウ選択線に接続され、ゲートに第1の同期信号と第3の制御信号とを論理合成した信号を受けるN型MISトランジスタを有する
    ことを特徴とする半導体記憶装置。
  7.  請求項6に記載の半導体記憶装置において、
     前記開放手段は、前記N型MISトランジスタのゲート電位をロウレベルにすることによって、前記ロウ選択線のうち活性状態である1本以外を開放状態にする
    ことを特徴とする半導体記憶装置。
  8.  請求項5に記載の半導体記憶装置において、
     前記開放手段は、ドレインが前記コラム選択線に接続され、ゲートに第1の同期信号と第3の制御信号とを論理合成した信号を受けるN型MISトランジスタを有する
    ことを特徴とする半導体記憶装置。
  9.  請求項8に記載の半導体記憶装置において、
     前記開放手段は、前記N型MISトランジスタのゲート電位をロウレベルにすることによって、前記コラム選択線のうち活性状態である1本以外を開放状態にする
    ことを特徴とする半導体記憶装置。
  10.  請求項1に記載の半導体記憶装置において、
     前記フリップフロップ回路は、第4の制御信号に基づいて、前記ロウ選択線および前記コラム選択線の少なくとも一方の電位を取り込む
    ことを特徴とする半導体記憶装置。
  11.  請求項1に記載の半導体記憶装置において、
     前記フリップフロップ回路は、前記不揮発デバイスアレイからみて、前記ロウ制御回路の反対側および前記コラム制御回路の反対側の双方に設けられている
    ことを特徴とする半導体記憶装置。
  12.  請求項1に記載の半導体記憶装置において、
     前記不揮発デバイスは、トランジスタのゲート材料で構成される電気ヒューズである
    ことを特徴とする半導体記憶装置。
PCT/JP2013/003074 2012-05-29 2013-05-14 半導体記憶装置 WO2013179594A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014518257A JPWO2013179594A1 (ja) 2012-05-29 2013-05-14 半導体記憶装置
US14/516,380 US20150036411A1 (en) 2012-05-29 2014-10-16 Semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-121899 2012-05-29
JP2012121899 2012-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/516,380 Continuation US20150036411A1 (en) 2012-05-29 2014-10-16 Semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2013179594A1 true WO2013179594A1 (ja) 2013-12-05

Family

ID=49672823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003074 WO2013179594A1 (ja) 2012-05-29 2013-05-14 半導体記憶装置

Country Status (3)

Country Link
US (1) US20150036411A1 (ja)
JP (1) JPWO2013179594A1 (ja)
WO (1) WO2013179594A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153183A (ja) * 1983-02-22 1984-09-01 Nippon Telegr & Teleph Corp <Ntt> 集積回路
JP2000251499A (ja) * 1999-03-03 2000-09-14 Asahi Kasei Microsystems Kk 不揮発性メモリ及び不揮発性メモリの検査方法
JP2007188620A (ja) * 2006-11-06 2007-07-26 Epson Toyocom Corp 記憶回路の検査方法
JP2011503759A (ja) * 2007-10-16 2011-01-27 マイクロン テクノロジー, インク. 積み重ねられた半導体素子用の再構成可能な接続部

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229600A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 不揮発性半導体記憶装置
US6111801A (en) * 1999-04-30 2000-08-29 Stmicroelectronics, Inc. Technique for testing wordline and related circuitry of a memory array
JP3942332B2 (ja) * 2000-01-07 2007-07-11 富士通株式会社 半導体記憶装置
US6445640B1 (en) * 2001-03-23 2002-09-03 Sun Microsystems, Inc. Method and apparatus for invalidating memory array write operations
JP2005332436A (ja) * 2004-05-18 2005-12-02 Toshiba Corp 半導体装置及びそのテスト方法
JP5238458B2 (ja) * 2008-11-04 2013-07-17 株式会社東芝 不揮発性半導体記憶装置
US8395923B2 (en) * 2008-12-30 2013-03-12 Intel Corporation Antifuse programmable memory array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153183A (ja) * 1983-02-22 1984-09-01 Nippon Telegr & Teleph Corp <Ntt> 集積回路
JP2000251499A (ja) * 1999-03-03 2000-09-14 Asahi Kasei Microsystems Kk 不揮発性メモリ及び不揮発性メモリの検査方法
JP2007188620A (ja) * 2006-11-06 2007-07-26 Epson Toyocom Corp 記憶回路の検査方法
JP2011503759A (ja) * 2007-10-16 2011-01-27 マイクロン テクノロジー, インク. 積み重ねられた半導体素子用の再構成可能な接続部

Also Published As

Publication number Publication date
US20150036411A1 (en) 2015-02-05
JPWO2013179594A1 (ja) 2016-01-18

Similar Documents

Publication Publication Date Title
US8315116B2 (en) Repair circuit and repair method of semiconductor memory apparatus
US20070255981A1 (en) Redundancy-function-equipped semiconductor memory device made from ECC memory
KR101608739B1 (ko) 리던던시 회로, 이를 포함하는 반도체 메모리 장치 및 반도체 메모리 장치의 리페어 방법
US9230693B1 (en) Repair circuit and semiconductor memory device including the same
JP2007172720A (ja) 半導体装置、半導体記憶装置、制御信号生成方法、及び救済方法
JP2007004955A (ja) 不揮発性半導体記憶装置
US7924646B2 (en) Fuse monitoring circuit for semiconductor memory device
JP2008257850A (ja) フラッシュメモリ装置及びその駆動方法
US8767490B2 (en) Electrical fuse rupture circuit
US8059477B2 (en) Redundancy circuit of semiconductor memory
WO2013179594A1 (ja) 半導体記憶装置
US9570194B1 (en) Device for detecting fuse test mode using a fuse and method therefor
US7760566B2 (en) Semiconductor memory device for preventing supply of excess specific stress item and test method thereof
JP2007250125A (ja) ヒューズラッチ回路及び半導体装置
KR20130059196A (ko) 퓨즈회로를 포함하는 반도체 집적회로 및 퓨즈회로의 구동방법
US7859923B2 (en) Semiconductor memory device
KR20140081345A (ko) 반도체 메모리 장치
US8054696B1 (en) System and method to improve reliability in memory word line
KR20130118476A (ko) 반도체 장치
CN108231125B (zh) 半导体器件及其操作方法
JP2008217848A (ja) 半導体集積回路装置
JP4180021B2 (ja) 半導体記憶装置テスト回路
KR102133861B1 (ko) 반도체 메모리 장치 및 그의 동작 방법
JP2012033234A (ja) 半導体装置及び欠陥メモリ置換方法
JP2012108973A (ja) 半導体装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797941

Country of ref document: EP

Kind code of ref document: A1