WO2013179393A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2013179393A1
WO2013179393A1 PCT/JP2012/063795 JP2012063795W WO2013179393A1 WO 2013179393 A1 WO2013179393 A1 WO 2013179393A1 JP 2012063795 W JP2012063795 W JP 2012063795W WO 2013179393 A1 WO2013179393 A1 WO 2013179393A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
catalyst
internal combustion
combustion engine
amount
Prior art date
Application number
PCT/JP2012/063795
Other languages
English (en)
French (fr)
Inventor
一樹 岩谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12878017.8A priority Critical patent/EP2857648B8/en
Priority to JP2014518128A priority patent/JP6015753B2/ja
Priority to PCT/JP2012/063795 priority patent/WO2013179393A1/ja
Priority to US14/403,982 priority patent/US9212586B2/en
Publication of WO2013179393A1 publication Critical patent/WO2013179393A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/01Adding substances to exhaust gases the substance being catalytic material in liquid form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a technique for raising the temperature of a NOx catalyst arranged in an exhaust passage of the internal combustion engine.
  • an exhaust purification device for an internal combustion engine a device that arranges an oxidation catalyst or a NOx catalyst in an exhaust passage of the internal combustion engine is known.
  • a technique for operating the internal combustion engine in either an exhaust temperature raising mode in which the exhaust temperature increases or an exhaust component reduction mode in which hydrocarbon (HC) in the exhaust gas decreases is known. Specifically, during the period from the start of the internal combustion engine to the activation of the catalyst, the internal combustion engine is operated in the exhaust temperature increase mode, and after the catalyst is activated, the exhaust temperature increase mode is set based on the purification performance of the catalyst and the exhaust components.
  • a technique for switching the exhaust component reduction mode is known (see, for example, Patent Document 1).
  • the catalyst becomes difficult to activate. Therefore, the period or opportunity for which the internal combustion engine is operated in the exhaust gas temperature raising mode increases.
  • the air-fuel ratio of the air-fuel mixture is lowered (rich), the fuel ignition timing is retarded, or fuel post-injection (or after-injection) is performed. I will be broken. Therefore, when the period or opportunity when the internal combustion engine is operated in the exhaust gas temperature raising mode increases, the fuel consumption increases. Further, since the period during which the internal combustion engine is operated in a state where the catalyst is not activated becomes long, there is a possibility that the emission increases.
  • the present invention has been made in view of the above situation, and an object of the present invention is to increase the temperature of the NOx catalyst in an exhaust gas purification apparatus for an internal combustion engine including a NOx catalyst disposed in an exhaust passage of the internal combustion engine.
  • the present invention provides a technique capable of suppressing an increase in fuel consumption and an increase in emissions caused by the above process.
  • the present invention focuses on the correlation between the temperature of the NOx catalyst and the NOx purification rate (the ratio of the NOx amount purified by the NOx catalyst to the NOx amount flowing into the NOx catalyst).
  • the NOx purification rate when the NOx catalyst is in an inactive state increases as the temperature of the NOx catalyst increases.
  • the ratio of the amount by which the NOx purification rate increases with respect to the temperature increase amount of the NOx catalyst (hereinafter referred to as “temperature change rate”) is not constant. Therefore, there is a case where the amount of increase in the NOx purification rate is smaller than the amount of increase in the temperature of the NOx catalyst (when the temperature change rate is small).
  • the amount of increase in the NOx purification rate may increase with respect to the amount of increase in temperature of the NOx catalyst (when the temperature change rate is large).
  • the amount of increase in the NOx purification rate is smaller than the amount of temperature increase of the NOx catalyst.
  • the increase amount of the NOx purification rate increases with respect to the temperature increase amount of the NOx catalyst.
  • the “lower limit temperature” here is, for example, a temperature at which a part of the NOx catalyst is activated (partial activation temperature).
  • the “activation temperature” is a temperature at which the entire NOx catalyst is activated (complete activation temperature).
  • the temperature change rate of the NOx catalyst becomes small, and therefore the period of time for performing the temperature raising process becomes long.
  • the execution period of the temperature raising process tends to be long.
  • the amount of fuel consumption increases and the amount of emissions (such as smoke and carbon dioxide (CO 2 )) also increases.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention executes the temperature raising process of the NOx catalyst on the condition that the rate of temperature change is equal to or higher than a reference value. In other words, even when the NOx catalyst is in an inactive state, the exhaust gas purification apparatus for an internal combustion engine according to the present invention does not execute the temperature raising process of the NOx catalyst when the temperature change rate falls below the reference value. I made it.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention is A NOx catalyst disposed in an exhaust passage of an internal combustion engine mounted on a vehicle; A temperature raising means for performing a temperature raising process which is a process for raising the temperature of the NOx catalyst by raising the temperature of the exhaust gas flowing into the NOx catalyst; Detecting means for detecting the temperature of the NOx catalyst; The condition is that the temperature change rate, which is the ratio of the increase amount of the NOx purification rate to the predetermined amount when the temperature of the NOx catalyst is increased by a predetermined amount from the temperature detected by the detecting means, is equal to or higher than a reference value. Control means for permitting execution of the temperature raising process, I was prepared to.
  • the “predetermined amount” may be an amount that makes a difference between when the temperature change rate is large and small, and is determined in advance by an adaptation process using experiments or the like.
  • the “reference value” is, for example, the minimum temperature change rate at which the amount of increase in the NOx purification rate is considered appropriate with respect to the amount of fuel consumption required to increase the temperature of the NOx catalyst by a predetermined amount. The value is determined in advance by an adaptation process using an experiment or the like.
  • the temperature raising process is not executed. In other words, the temperature raising process is executed only when the temperature change rate when the temperature of the NOx catalyst rises by a predetermined amount is equal to or higher than the reference value.
  • the temperature increasing process is executed when the temperature change rate is equal to or higher than the reference value, the temperature of the NOx catalyst and the NOx purification rate are rapidly increased.
  • the temperature increasing process is executed on condition that the temperature change rate is equal to or higher than a reference value, NOx
  • the temperature of the catalyst and the NOx purification rate can be quickly increased. As a result, the execution time of the temperature raising process can be shortened.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention it is possible to suppress an increase in fuel consumption and an increase in emissions due to the temperature raising process.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention it is possible to activate the NOx catalyst while suppressing an increase in fuel consumption and an increase in emissions accompanying the execution of the temperature raising process.
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention may further include an oxidation catalyst disposed in the exhaust passage upstream of the NOx catalyst.
  • the temperature raising means may raise the temperature of the exhaust gas flowing into the NOx catalyst by supplying unburned fuel to the oxidation catalyst.
  • the oxidation rate of the unburned fuel in the oxidation catalyst indicates that the temperature of the oxidation catalyst is a predetermined activity. When it is lower than the temperature (for example, the partial activation temperature), it becomes extremely small.
  • the control means may permit the supply of unburned fuel to the oxidation catalyst on the condition that the temperature of the oxidation catalyst is equal to or higher than a predetermined activation temperature and the rate of temperature change is equal to or higher than the reference value.
  • the temperature raising process can be executed while suppressing the amount of unburned fuel that is not oxidized in the oxidation catalyst and the NOx catalyst and is discharged into the atmosphere. Further, when the temperature raising process is performed in accordance with such conditions, a relatively large amount of unburned fuel can be supplied to the oxidation catalyst, so that the period for performing the temperature raising process can be further shortened. .
  • the exhaust gas purification apparatus for an internal combustion engine of the present invention may further include a calculation means for integrating the amount of emission contained in the exhaust gas flowing out from the oxidation catalyst.
  • the control means may prohibit the temperature raising process when the integrated amount of emission calculated by the computing means exceeds the comparison value.
  • the “comparison value” here corresponds to, for example, an integrated amount of emissions when the temperature raising process is executed by a conventional method.
  • Conventional methods include a method in which unburned fuel continues to be supplied to the oxidation catalyst during the period from the start of the internal combustion engine to the activation of the NOx catalyst, or when the temperature of the oxidation catalyst rises above a predetermined activation temperature.
  • the unburned fuel is continuously supplied to the oxidation catalyst during the period until the NOx catalyst is activated.
  • “Emission” is an exhaust component that increases due to the execution of the temperature raising process, and is, for example, smoke, carbon dioxide (CO 2 ), or the like. The amount of smoke and CO 2 flowing out from the oxidation catalyst per unit time can be calculated using the amount of unburned fuel supplied to the oxidation catalyst and the temperature of the oxidation catalyst as parameters.
  • the exhaust gas purifying apparatus when the integrated amount of emissions calculated by the calculating means exceeds the comparison amount, the exhaust gas purifying apparatus increases even if the temperature change rate is equal to or higher than a reference value. The temperature process is not executed.
  • the temperature increase is performed after the restart of the internal combustion engine.
  • the process is executed again, there is a possibility that the accumulated amount of emissions becomes larger than the comparison value.
  • the accumulated amount of emissions can be suppressed to the same level or lower as before.
  • the amount of unburned fuel supplied to the oxidation catalyst during the temperature increase process is increased from the conventional temperature increase process, there is a possibility that the amount of emissions will be temporarily higher than the conventional temperature increase process.
  • the amount of emissions (accumulated amount) in the medium to long term period can be suppressed to the same level or lower as before.
  • control means of the present invention may reduce the amount of unburned fuel supplied to the oxidation catalyst when the NOx purification rate of the NOx catalyst exceeds a certain value during the temperature raising process.
  • the “constant value” here is, for example, a value smaller than the NOx purification rate when the entire NOx catalyst is activated, and is equal to the NOx purification rate when most of the NOx catalyst is activated.
  • the control means of the present invention may determine that the temperature change rate is equal to or higher than the reference value when the temperature detected by the detection means belongs to a predetermined temperature range.
  • the “predetermined temperature range” is, for example, a temperature range in which the temperature change rate is equal to or higher than the reference value, and is a range obtained in advance by an adaptation process using an experiment or the like.
  • the control means of the present invention may determine that the temperature change rate is equal to or higher than the reference value when the NOx purification rate of the NOx catalyst belongs to a predetermined purification rate range.
  • the “predetermined purification rate range” is a range of the NOx purification rate in which the temperature change rate is equal to or higher than the reference value. Note that the NOx purification rate of the NOx catalyst can be calculated based on measured values of NOx sensors arranged upstream and downstream of the NOx catalyst.
  • control means of the present invention calculates a temperature change rate using the exhaust gas flow rate, the exhaust air-fuel ratio, the temperature of the oxidation catalyst, and the temperature of the NOx catalyst as parameters, and the calculation result and the reference value May be compared.
  • an increase in fuel consumption and an increase in emissions due to a process for raising the temperature of the NOx catalyst are reduced. Can be suppressed.
  • FIG. 1 shows schematic structure of the internal combustion engine to which this invention is applied, and its intake / exhaust system. It is a figure which shows the correlation with the temperature of an oxidation catalyst, and a purification rate. It is a figure which shows the correlation with the temperature of a selective reduction catalyst, and a purification rate. It is a timing chart which shows the execution method of the temperature rising process in a 1st Example. It is a flowchart which shows the process routine performed by ECU when a temperature rising process is performed in a 1st Example. It is a timing chart which shows the execution method of the temperature rising process in 2nd Example. It is a flowchart which shows the process routine performed by ECU when a temperature rising process is performed in a 2nd Example.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied.
  • the internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders.
  • the internal combustion engine to which the present invention is applied is not limited to a compression ignition type internal combustion engine, but may be a spark ignition type internal combustion engine (gasoline engine) operated in a lean combustion mode.
  • the intake passage 2 is a passage that guides fresh air (air) taken from the atmosphere to the cylinders of the internal combustion engine 1.
  • the exhaust passage 3 is a passage for circulating burned gas (exhaust gas) discharged from the cylinder of the internal combustion engine 1.
  • the throttle valve 4 is a valve mechanism that adjusts the amount of air taken into the cylinder of the internal combustion engine 1 by changing the cross-sectional area of the intake passage 2.
  • the throttle valve 4 includes a valve body and an electric motor for opening and closing the valve body, and the electric motor is controlled by an ECU 10 described later.
  • the first catalyst casing 5 includes an oxidation catalyst and a particulate filter inside a cylindrical casing.
  • the oxidation catalyst may be supported on a catalyst carrier disposed upstream of the particulate filter, or may be supported on the particulate filter.
  • the second catalyst casing 6 is a cylindrical casing in which a catalyst carrier carrying a selective reduction catalyst is accommodated.
  • the catalyst carrier is, for example, a monolith type substrate having a honeycomb-shaped cross section made of cordierite or Fe—Cr—Al heat resistant steel and coated with an active component (support) of alumina or zeolite. is there.
  • a noble metal catalyst for example, platinum (Pt), palladium (Pd), etc.
  • selective reduction catalyst corresponds to the NO X catalyst according to the present invention.
  • a catalyst carrier carrying an oxidation catalyst may be arranged downstream of the selective catalytic reduction catalyst.
  • the oxidation catalyst in that case can oxidize the reducing agent that has passed through the selective reduction catalyst among the reducing agents supplied from the reducing agent addition valve 7 described later to the selective reduction catalyst.
  • a reducing agent addition valve 7 for adding (injecting) NH 3 or a reducing agent which is a precursor of NH 3 into the exhaust gas. It is attached.
  • the reducing agent addition valve 7 is a valve device having an injection hole that is opened and closed by the movement of a needle.
  • the reducing agent addition valve 7 is connected to a reducing agent tank 71 via a pump 70.
  • the pump 70 sucks the reducing agent stored in the reducing agent tank 71 and pumps the sucked reducing agent to the reducing agent addition valve 7.
  • the reducing agent addition valve 7 injects the reducing agent pumped from the pump 70 into the exhaust passage 3.
  • the opening / closing timing of the reducing agent addition valve 7 and the discharge pressure of the pump 70 are electrically controlled by the ECU 10.
  • an aqueous solution such as urea or ammonium carbamate, or NH 3 gas can be used as the reducing agent.
  • an aqueous urea solution is used as the reducing agent.
  • the urea aqueous solution When the urea aqueous solution is injected from the reducing agent addition valve 7, the urea aqueous solution flows into the second catalyst casing 6 together with the exhaust gas. At that time, the urea aqueous solution receives heat from the exhaust and the second catalyst casing 6 and is thermally decomposed or hydrolyzed. When the aqueous urea solution is thermally decomposed or hydrolyzed, ammonia (NH 3 ) is generated. The ammonia (NH 3 ) thus generated is adsorbed or occluded by the selective reduction catalyst.
  • Ammonia (NH 3 ) adsorbed or occluded by the selective catalytic reduction catalyst reacts with nitrogen oxide (NO x ) contained in the exhaust gas to generate nitrogen (N 2 ) or water (H 2 O). That is, ammonia (NH 3 ) functions as a reducing agent for nitrogen oxides (NO X ).
  • the internal combustion engine 1 configured as described above is provided with an ECU 10.
  • the ECU 10 is an electronic control unit that includes a CPU, a ROM, a RAM, a backup RAM, and the like.
  • the ECU 10 is electrically connected to various sensors such as a first exhaust temperature sensor 8, a second exhaust temperature sensor 9, a crank position sensor 11, an accelerator position sensor 12, an air flow meter 13, and an A / F sensor 14.
  • the first exhaust temperature sensor 8 is disposed in the exhaust passage 3 downstream from the first catalyst casing 5 and upstream from the second catalyst casing 6, and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the first catalyst casing 5.
  • the second exhaust temperature sensor 9 is disposed in the exhaust passage 3 downstream from the second catalyst casing 6 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 6.
  • the crank position sensor 11 outputs an electrical signal correlated with the rotational position of the output shaft (crankshaft) of the internal combustion engine 1.
  • the accelerator position sensor 12 outputs an electrical signal that correlates with the amount of operation of the accelerator pedal (accelerator opening).
  • the air flow meter 13 outputs an electrical signal correlated with the amount of air taken into the internal combustion engine 1 (intake air amount).
  • the A / F sensor 14 is disposed in the exhaust passage 3 upstream from the first catalyst casing 5 and outputs an electrical signal correlated with the air-fuel ratio of the exhaust.
  • the ECU 10 is electrically connected to various devices (for example, a fuel injection valve) attached to the internal combustion engine 1, a throttle valve 4, a reducing agent addition valve 7, a pump 70, and the like.
  • the ECU 10 electrically controls various devices of the internal combustion engine 1, the throttle valve 4, the reducing agent addition valve 7, the pump 70, and the like based on the output signals of the various sensors described above.
  • the ECU 10 is a selective reduction type housed in the second catalyst casing 6 in addition to known controls such as fuel injection control of the internal combustion engine 1 and addition control for intermittently injecting the reducing agent from the reducing agent addition valve 7.
  • the catalyst temperature increase control is executed.
  • a method for executing the temperature rise control in this embodiment will be described.
  • the oxidation catalyst and the selective reduction catalyst are not active, that is, the oxidation catalyst can oxidize unburned fuel components (HC, CO, etc.) in the exhaust.
  • the selective catalytic reduction catalyst cannot reduce nitrogen oxide (NO x ) in the exhaust gas. Therefore, it is necessary to activate the oxidation catalyst and the selective reduction catalyst at an early stage.
  • a method of activating the oxidation catalyst and the selective catalytic reduction catalyst at an early stage fuel is added to the exhaust passage 3 upstream from the oxidation catalyst, or after-injection from the fuel injection valve into the cylinder of the expansion stroke or the exhaust stroke.
  • a method of executing a process (temperature increase process) for supplying an unburned fuel component to an oxidation catalyst is known. According to such a method, the temperature of the oxidation catalyst or the selective catalytic reduction catalyst can be raised by using heat generated when the unburned fuel component is oxidized by the oxidation catalyst.
  • the oxidation catalyst or the selective reduction catalyst when the oxidation catalyst or the selective reduction catalyst is lower than a predetermined temperature, the amount of increase in the purification rate is less than the amount of increase in temperature.
  • the relationship between the temperature (bed temperature) of the oxidation catalyst and the purification rate (oxidation rate of unburned fuel) is shown in FIG.
  • the “first temperature Te1” here is a temperature at which at least a part of the oxidation catalyst housed in the first catalyst casing 5 is activated (partial activation temperature). If the temperature raising process is executed when the temperature of the oxidation catalyst is lower than the first temperature Te1, a large portion of the unburned fuel component supplied to the oxidation catalyst may be discharged into the atmosphere without being oxidized. is there.
  • Figure 3 is a graph showing the relationship between the temperature and the purification rate of the selective reduction catalyst (NO X purification rate).
  • the temperature of the selective reduction catalyst is lower than a predetermined temperature (second temperature) Te2
  • second temperature Te2 to the temperature rise of the selective reduction catalyst
  • selective reduction temperature of the catalyst is the second temperature Te2 or more, and when belonging to a range of less than the third temperature Te3, to the temperature rise of the selective reduction catalyst, increases the amount of the NO X purification rate Become more.
  • the "second temperature Te2" is (ratio of the amount of NO X purification rate with respect to temperature increase of the selective catalytic reduction catalyst rises) temperature change rate when the temperature of the selective reduction catalyst rises a predetermined amount Is the lowest temperature that is equal to or higher than the reference value, for example, the temperature at which at least a part of the selective catalytic reduction catalyst accommodated in the second catalyst casing 6 is activated (partial activation temperature).
  • the “third temperature Te3” is the highest temperature at which the temperature change rate when the temperature of the selective catalytic reduction catalyst increases by a predetermined amount is equal to or higher than a reference value, and is accommodated in the second catalyst casing 6, for example. This is the temperature at which the entire selective catalytic reduction catalyst is activated (complete activation temperature).
  • the temperature raising process is executed on the condition that the temperature of the oxidation catalyst is equal to or higher than the first temperature Te1 and the temperature of the selective catalytic reduction catalyst is equal to or higher than the second temperature Te2 and lower than the third temperature Te3. It is desirable.
  • the execution method of the temperature raising process in the present embodiment will be described along the timing chart of FIG.
  • the heat of the exhaust is transferred to the oxidation catalyst and the selective reduction catalyst.
  • the temperature of the oxidation catalyst rises before the selective reduction catalyst.
  • the temperature of the oxidation catalyst reaches the first temperature Te1 or higher (t1 in FIG. 4)
  • the temperature of the selective catalytic reduction catalyst reaches the second temperature Te2 or higher (t2 in FIG. 4).
  • first period The period from the start of the internal combustion engine 1 until the temperature of the selective catalytic reduction catalyst reaches the second temperature Te2 or higher (hereinafter referred to as “first period”) is relative to the temperature increase amount of the selective catalytic reduction catalyst. ratio of the amount of NO X purification rate is increased (temperature change rate) is reduced. Therefore, during the first period, the temperature raising process is not executed (the temperature raising process flag is off (OFF)).
  • a period (hereinafter referred to as “second”) from the time when the temperature of the selective catalytic reduction catalyst reaches the second temperature Te2 or higher (t2 in FIG. 4) to the time when the temperature reaches the third temperature Te3 or higher (t3 in FIG. 4).
  • the temperature change rate is significantly higher than that in the first period. Therefore, during the second period, the temperature raising process is executed (the temperature raising process flag is on (ON)).
  • the temperature raising process is executed in the second period, the temperature of the selective catalytic reduction catalyst rapidly rises and the temperature change rate also rapidly rises. As a result, it is possible to increase the NO X purification rate of the selective reduction catalyst in a short time.
  • the amount of unburned fuel supplied to the oxidation catalyst per unit time at the time of executing the temperature raising process is the same as the conventional temperature raising process (supply of unburned fuel to the oxidation catalyst at the start of the internal combustion engine 1 or immediately after the start. It is preferable that the number of processes is increased more than when the process is started. In that case, it is possible to further increase the rising speed of the temperature increase rate and NO X purification rate of the selective reduction catalyst. As a result, even when the low load operation state is continued after the internal combustion engine 1 is started, the selective reduction catalyst can be activated quickly. Further, since the execution time of the temperature raising process is shortened, an increase in fuel consumption due to the temperature raising process can be suppressed to a small extent.
  • the amount of PM or CO 2 flowing out from the oxidation catalyst in a relatively short period is larger than that in the conventional temperature raising process.
  • the amount of PM and CO 2 flowing out from the oxidation catalyst can be reduced.
  • the selective reduction catalyst can be activated in a short time while suppressing an increase in fuel consumption and an increase in emissions (PM and CO 2 flowing out from the oxidation catalyst). It becomes possible.
  • FIG. 5 is a flowchart showing a processing routine executed by the ECU 10 when the temperature raising process is executed.
  • the processing routine of FIG. 5 is stored in advance in the ROM or the like of the ECU 10 and is periodically executed by the ECU 10.
  • the ECU 10 first reads the temperature of the oxidation catalyst and the temperature of the selective reduction catalyst in S101. At that time, the ECU 10 reads the output signal Tcat1 of the first exhaust temperature sensor 8 as the temperature of the oxidation catalyst, and reads the output signal Tcat2 of the second exhaust temperature sensor 9 as the temperature of the selective reduction catalyst.
  • the detection means concerning this invention is implement
  • the ECU 10 determines whether or not the temperature Tcat2 of the selective catalytic reduction catalyst belongs to a predetermined temperature range.
  • the “predetermined temperature range” is a temperature range that is equal to or higher than the second temperature Te2 and lower than the third temperature Te3. If a negative determination is made in S102, the ECU 10 ends the execution of this processing routine. On the other hand, if a positive determination is made in S102, the ECU 10 proceeds to S103.
  • the ECU 10 determines whether or not the temperature Tcat1 of the oxidation catalyst is equal to or higher than the first temperature Te1. If a negative determination is made in S103, the ECU 10 ends the execution of this processing routine. On the other hand, if an affirmative determination is made in S103, the ECU 10 proceeds to S104.
  • control means concerning this invention is implement
  • the ECU 10 executes a temperature raising process. That is, the ECU 10 injects fuel (after injection) from the fuel injection valve of the cylinder in the expansion stroke or the exhaust stroke. In this case, the fuel injection amount is increased as compared with the case where the conventional temperature raising process is executed.
  • the temperature raising processing by such a method are performed, the temperature of the selective reduction catalyst rises rapidly, NO X purification rate also increases rapidly.
  • the temperature raising means according to the present invention is realized by the ECU 10 executing the process of S104.
  • the ECU 10 reads the output signal Tcat2 of the second exhaust temperature sensor 9 again.
  • the ECU 10 determines whether or not the temperature Tcat2 read in S105 is equal to or higher than the third temperature Te3. If a negative determination is made in S106, the ECU 10 executes the processes subsequent to S101 again. On the other hand, if a positive determination is made in S106, the ECU 10 proceeds to S107.
  • the ECU 10 ends the temperature increase process. That is, the ECU 10 ends the after injection of the fuel injection valve.
  • the selective catalytic reduction catalyst can be quickly heated while suppressing an increase in fuel consumption and emission resulting from the temperature increasing process.
  • the selective reduction catalyst can be activated in a short time, so that the conventional temperature increase process is executed. compared to when it is, it is possible to reduce the amount of the NO X discharged into the atmosphere.
  • the example in which the temperature raising process is executed on condition that the temperature of the selective catalytic reduction catalyst belongs to the temperature range of the second temperature Te2 or higher and lower than the third temperature Te3 has been described.
  • the NO x purification rate of the selective catalytic reduction catalyst may change depending on factors other than the temperature of the selective catalytic reduction catalyst. Therefore, the temperature change rate of the selective catalytic reduction catalyst may also change due to factors other than the temperature of the selective catalytic reduction catalyst.
  • ECU 10 subject to the NO X purification rate of the selective reduction catalyst belongs to a predetermined purification rate range, it may perform the Atsushi Nobori process.
  • ECU 10 in S102 of the processing routine in FIG. 5 described above, calculates the NO X purification rate of the selective reduction catalyst, calculated NO X purification rate by discriminating whether or not belonging to a predetermined purification rate range That's fine.
  • predetermined purification rate range is the range of the NO X purification rate temperature change rate is equal to or greater than the reference value of the selective reduction catalyst is in a range determined in advance experimentally.
  • the NO X purification rate of the selective catalytic reduction catalyst can be calculated using the following equation.
  • Enox (Anoxin-Anoxout) / Anoxin Enox in the above formula is a NO X purification rate.
  • Anoxin is the amount of the NO X flowing into the selective reduction catalyst (NO X inflow).
  • Anoxout is the amount of the NO X flowing out from the selective catalytic reduction catalyst (NO X outflow).
  • the NO X inflow amount Anoxin may be measured by a NO X sensor disposed in the exhaust passage 3 upstream of the selective catalytic reduction catalyst, or the operating state of the internal combustion engine 1 (fuel injection amount, intake air amount, and engine (E.g., rotation speed).
  • the NO X outflow amount Anoxout may be measured by a NO X sensor disposed in the exhaust passage 3 downstream from the selective catalytic reduction catalyst.
  • NO X purification rate of the selective reduction catalyst is determined whether or not it belongs to a predetermined purification rate range, it is determined whether or not the temperature change rate of the selective reduction catalyst is equal to or greater than the reference value more accurately Can do.
  • the ECU 10 may calculate a temperature change rate when the temperature of the selective catalytic reduction catalyst has increased by a predetermined amount from the current temperature, and determine whether the temperature change rate is equal to or higher than a reference value. .
  • the rate of temperature change at that time is the current temperature of the selective catalytic reduction catalyst, the flow rate of the exhaust, the air-fuel ratio of the exhaust, and the amount of NO 2 contained in the exhaust (preferably, the NO X contained in the exhaust. The ratio of the amount of NO 2 to the amount).
  • the amount of NO 2 contained in the exhaust gas is correlated with the current temperature of the oxidation catalyst and the air-fuel ratio of the exhaust gas.
  • the ECU 10 selects the current temperature of the selective catalytic reduction catalyst, the current temperature of the oxidation catalyst, the exhaust gas flow rate, and the exhaust air / fuel ratio as parameters in S102 of the processing routine of FIG.
  • a temperature change rate when the temperature of the reduction catalyst increases by a predetermined amount from the current temperature may be calculated to determine whether or not the calculated temperature change rate is equal to or higher than a reference value.
  • the relationship between the temperature change rate, the current temperature of the selective catalytic reduction catalyst, the current temperature of the oxidation catalyst, the flow rate of exhaust gas, and the air-fuel ratio of exhaust gas is stored in advance in the ROM of the ECU 10 as a map. Also good.
  • the NO X purification rate of the selective reduction catalyst exceeds a predetermined value, so as to reduce the amount of fuel after-injection from the fuel injection valve (after injection amount) May be.
  • the “constant value” here is, for example, a value smaller than the NO X purification rate when the entire selective reduction catalyst accommodated in the second catalyst casing 6 is activated, and most of the NO X catalyst is active. it is a value equivalent to the NO X purification rate when the.
  • the difference between the first embodiment described above and the present embodiment is that the rate of change in temperature when the temperature of the selective catalytic reduction catalyst rises by a predetermined amount is not less than a reference value, and in addition the integration of emissions flowing out of the oxidation catalyst.
  • the temperature increase process is executed on condition that the amount is equal to or less than the comparison value.
  • emission is an exhaust component that increases due to execution of after injection, and is, for example, PM and / or CO 2 flowing out from the oxidation catalyst.
  • the “comparison value” is an integrated amount of emissions flowing out of the oxidation catalyst when the conventional temperature raising process is executed.
  • FIG. 6 is a timing chart showing a method of executing the temperature raising process in the present embodiment.
  • the timing chart shown in FIG. 6 is a diagram illustrating a method of executing the temperature raising process when the internal combustion engine 1 is started and stopped three times.
  • the solid line indicates data when the temperature increasing process of the present invention is executed
  • the alternate long and short dash line indicates data when the conventional temperature increasing process is executed.
  • the temperature Tcat2 of the selective catalytic reduction catalyst reaches the second temperature Te2 during the period from the first start of the internal combustion engine 1 (t10 in FIG. 6) to the shutdown (t13 in FIG. 6).
  • the accumulated amount of PM and / or CO 2 flowing out from the oxidation catalyst (integrated PM ⁇ CO 2 amount) is smaller than the comparison value, and thus the temperature raising process is executed.
  • the temperature raising process is terminated when the temperature Tcat2 of the selective catalytic reduction catalyst reaches the third temperature Te3 (t12 in FIG. 6).
  • the temperature Tcat2 of the selective catalytic reduction catalyst reaches a temperature range lower than the second temperature Te2. descend. However, during the period from the second start of the internal combustion engine 1 (t14 in FIG. 6) to the operation stop (t16 in FIG. 6), the temperature Tcat2 of the selective catalytic reduction catalyst reaches the second temperature Te2 ( At t15) in FIG. 6, the accumulated PM ⁇ CO 2 amount is larger than the comparison value, so the temperature raising process is not executed.
  • the comparison value in FIG. 6 is the accumulated PM ⁇ CO 2 amount when the above-described conventional temperature raising process is executed. Accumulated PM ⁇ CO 2 amount in the case of temperature increase process is executed according to the present invention, and the accumulated PM ⁇ CO 2 amount in the case of temperature increase process in the prior art is performed, as temperature of the after-injection amount and oxidation catalyst It is possible to calculate using known parameters.
  • the amount of PM and / or CO 2 flowing out from the oxidation catalyst in one heating process is larger than that in the case where the conventional temperature raising process is executed.
  • the temperature raising process is not executed. Therefore, the accumulated PM / CO 2 amount in a long period of time in which a plurality of start and stop operations are repeated is the conventional temperature rise. This can be reduced to a lesser extent than when processing is executed.
  • the amount of accumulated PM ⁇ CO 2 over a long period of time can be reduced to a lower level than when the conventional temperature raising process is executed.
  • NO X purification rate of the selective reduction catalyst when the temperature increase process is not executed in the present invention there is concern that lower than when conventional heating process is executed.
  • the conventional temperature raising process is executed when the temperature change rate is small. Therefore, as shown in the period from t14 to t16 in FIG. 6, the amount of NO x discharged into the atmosphere when the temperature raising process of the present invention is not executed is the same as when the conventional temperature raising process is executed. It will amount substantially equal of the NO X discharged into the atmosphere.
  • the amount of NO x discharged into the atmosphere when the temperature raising process of the present invention is executed is compared with the amount of NO x discharged into the atmosphere when the conventional temperature raising process is executed. Enough. Therefore, the amount of the NO X discharged into the atmosphere in a long time, towards the case of heating process of the present invention than when the conventional heating process is executed is executed is reduced.
  • FIG. 7 is a flowchart showing a processing routine executed by the ECU 10 when the temperature raising process is executed.
  • This processing routine is stored in advance in the ROM or the like of the ECU 10 and is periodically executed by the ECU 10.
  • FIG. 7 the same reference numerals are assigned to the same processes as those in the processing routine of the first embodiment described above (see FIG. 5).
  • the ECU 10 executes the process of S201 when an affirmative determination is made in S103 (Tcat1 ⁇ Te1).
  • step S201 the ECU 10 determines whether or not the integrated PM ⁇ CO 2 amount ⁇ PM ⁇ CO 2 is smaller than the comparison value Cv.
  • the accumulated PM ⁇ CO 2 amount ⁇ PM ⁇ CO 2 is sequentially calculated using the air-fuel ratio of the exhaust, the temperature of the oxidation catalyst, the after injection amount, and the like as parameters.
  • the comparison value Cv is sequentially calculated using as parameters the after-injection amount assuming that the conventional temperature raising process has been executed, the air-fuel ratio of the exhaust, the temperature of the oxidation catalyst, the after-injection amount, and the like. According to such a method, the ECU 10 calculates the integrated PM ⁇ CO 2 amount ⁇ PM ⁇ CO 2 and the comparison value Cv, thereby realizing the calculating means according to the present invention.
  • the temperature raising process When the temperature raising process is executed according to the procedure described above, the same effects as those of the first embodiment described above can be obtained, and the accumulated PM ⁇ CO 2 amount over a long period of time and NO X discharged into the atmosphere can be obtained. This amount can be reduced as compared with the case where the conventional temperature raising process is executed. As a result, the temperature raising process can be executed even under various conditions such as when the internal combustion engine 1 is repeatedly started and restarted in a short period of time, or when the low load operation state is continued after the internal combustion engine 1 is started. while less suppressing an increase in due to the emission, it is possible to reduce the NO X amount exhausted to the atmosphere.
  • the selective reduction catalyst may be a storage reduction catalyst.
  • the example in which the particulate filter is disposed in the exhaust passage 3 upstream of the selective reduction catalyst has been described.
  • the particulate filter is disposed in the exhaust passage downstream of the selective reduction catalyst.
  • a filter may be disposed, or the selective reduction catalyst may be supported on the particulate filter.
  • the present invention is applicable as long as the oxidation catalyst is arranged in the exhaust passage 3 upstream of the selective catalytic reduction catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明は、内燃機関の排気通路に配置されたNO触媒を備える内燃機関の排気浄化装置において、NO触媒を昇温させるための処理に起因した燃料消費量の増加やエミッションの増加を少なく抑えることを課題とする。本発明の内燃機関の排気浄化装置は、上記した課題を解決するために、NO触媒の温度が所定量上昇したと仮定した場合の温度変化率が基準値以上であることを条件として、NO触媒の昇温処理を実行するようにした。本発明によれば、昇温処理に起因した燃料消費量の不要な増加やエミッションの増加を少なく抑えつつ、NO触媒を速やかに活性させることができる。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気浄化装置に関し、特に、内燃機関の排気通路に配置されたNOx触媒を昇温させる技術に関する。
 内燃機関の排気浄化装置として、酸化触媒やNOx触媒を内燃機関の排気通路に配置する装置が知られている。このような内燃機関の排気浄化装置において、排気温度が高くなる排気昇温モードと排気中の炭化水素(HC)が少なくなる排気成分低減モードのいずれか一方により内燃機関を運転させる技術も知られている。詳細には、内燃機関の始動時から触媒が活性するまでの期間は排気昇温モードにより内燃機関を運転させ、触媒が活性した後は触媒の浄化性能や排気成分に基づいて排気昇温モードと排気成分低減モードを切り替える技術が知られている(例えば、特許文献1を参照)。
特開2010-112192号公報
 ところで、内燃機関の始動後において、該内燃機関の低負荷運転状態が継続した場合や、該内燃機関の運転停止と再始動が短期間に繰り返された場合は、触媒が活性し難くなる。そのため、内燃機関が前記排気昇温モードによって運転される期間又は機会が増加する。内燃機関が前記排気昇温モードにより運転される場合は、混合気の空燃比が低く(リッチ)されたり、燃料の着火時期が遅角されたり、又は燃料のポスト噴射(又はアフター噴射)が行われたりする。そのため、内燃機関が前記排気昇温モードで運転される期間又は機会が増加した場合は、燃料消費量が増加する。また、触媒が活性しない状態で内燃機関が運転される期間が長くなるため、エミッションが増加する可能性もある。
 本発明は、上記したような実情に鑑みてなれたものであり、その目的は、内燃機関の排気通路に配置されたNOx触媒を備える内燃機関の排気浄化装置において、NOx触媒を昇温させるための処理に起因した燃料消費量の増加やエミッションの増加を少なく抑えることができる技術の提供にある。
 本発明は、上記した課題を解決するために、NOx触媒の温度とNOx浄化率(NOx触媒へ流入するNOx量に対してNOx触媒で浄化されるNOx量の割合)との相関に着目した。
 NOx触媒が未活性状態にある場合のNOx浄化率は、該NOx触媒の温度が上昇するにつれて高くなる。ただし、NOx触媒の温度上昇量に対してNOx浄化率が上昇する量の割合(以下、「温度変化率」と称する)は、一定ではない。そのため、NOx触媒の温度上昇量に対し、NOx浄化率の上昇量が少なくなる場合(温度変化率が小さい場合)がある。一方、NOx触媒の温度上昇量に対し、NOx浄化率の上昇量が多くなる場合(温度変化率が大きい場合)もある。
 例えば、NOx触媒の温度が活性温度より低い下限温度を下回る場合は、NOx触媒の温度上昇量に対して、NOx浄化率の上昇量が少なくなる。一方、NOx触媒の温度が前記下限温度以上であり、且つ前記活性温度未満であるときは、NOx触媒の温度上昇量に対して、NOx浄化率の上昇量が多くなる。ここでいう「下限温度」は、例えば、NOx触媒の一部が活性する温度(部分活性温度)である。また、「活性温度」は、NOx触媒の全体が活性する温度(完全活性温度)である。
 NOx触媒の温度が前記下限温度より低いときに昇温処理が実行されると、NOx触媒の温度変化率が小さくなるため、昇温処理の実行期間が長くなる。特に、内燃機関の始動後において、該内燃機関の低負荷運転状態が継続された場合は、昇温処理の実行期間が長くなりやすい。昇温処理の実行期間が長くなる場合は、燃料消費量が増加するとともに、エミッション(スモークや二酸化炭素(CO)等)の量も増加する。
 そこで、本発明の内燃機関の排気浄化装置は、前記温度変化率が基準値以上であることを条件として、NOx触媒の昇温処理を実行するようにした。言い換えると、本発明の内燃機関の排気浄化装置は、NOx触媒が未活性状態にある場合であっても、前記温度変化率が基準値を下回るときは、NOx触媒の昇温処理を実行しないようにした。
 詳細には、本発明の内燃機関の排気浄化装置は、
 車両に搭載される内燃機関の排気通路に配置されたNOx触媒と、
 前記NOx触媒へ流入する排気の温度を上昇させることにより、前記NOx触媒を昇温させる処理である昇温処理を実行する昇温手段と、
 前記NOx触媒の温度を検出する検出手段と、
 前記NOx触媒の温度が前記検出手段により検出された温度から所定量上昇したと仮定した場合の前記所定量に対するNOx浄化率の上昇量の割合である温度変化率が基準値以上になることを条件として、前記昇温処理の実行を許可する制御手段と、
を備えるようにした。
 ここでいう「所定量」は、温度変化率が大きいときと小さいときの差が顕著になる量であればよく、予め実験等を用いた適合処理によって決定される量である。また、「基準値」は、例えば、NOx触媒の温度を所定量上昇させるために必要な燃料消費量に対し、NOx浄化率の上昇量が適当であると考えられる最小の温度変化率であり、予め実験等を利用した適合処理によって定められる値である。
 このように構成された内燃機関の排気浄化装置によれば、NOx触媒の温度が所定量上昇したときの温度変化率が基準値より小さい場合は、昇温処理が実行されない。言い換えると、NOx触媒の温度が所定量上昇したときの温度変化率が基準値以上である場合に限り、昇温処理が実行されることになる。
 前記温度変化率が基準値以上であるときに昇温処理が実行されると、NOx触媒の温度及びNOx浄化率が速やかに上昇する。特に、内燃機関の始動後において該内燃機関の低負荷運転状態が継続された場合であっても、前記温度変化率が基準値以上であることを条件として昇温処理が実行されると、NOx触媒の温度及びNOx浄化率を速やかに上昇させることができる。その結果、昇温処理の実行時間を短く抑えることができる。
 したがって、本発明の内燃機関の排気浄化装置によれば、昇温処理に起因した燃料消費量の増加やエミッションの増加を少なく抑えることができる。言い換えると、本発明の内燃機関の排気浄化装置によれば、昇温処理の実行に伴う燃料消費量の増加やエミッションの増加を少なく抑えつつ、NOx触媒を活性させることが可能になる。
 本発明の内燃機関の排気浄化装置は、NOx触媒より上流の排気通路に配置される酸化触媒をさらに備えるようにしてもよい。その場合、昇温手段は、酸化触媒へ未燃燃料を供給することにより、NOx触媒へ流入する排気の温度を上昇させてもよい。
 ところで、酸化触媒における未燃燃料の酸化率(酸化触媒へ流入する未燃燃料の量に対して酸化触媒において酸化される未燃燃料の量の割合)は、該酸化触媒の温度が所定の活性温度(たとえば、部分活性温度)より低いときは極めて小さくなる。
 そこで、制御手段は、酸化触媒の温度が所定の活性温度以上であり、且つ前記温度変化率が前記基準値以上であることを条件として、酸化触媒に対する未燃燃料の供給を許可してもよい。このような条件に従って昇温処理が実行されると、酸化触媒及びNOx触媒において酸化されずに大気中へ排出される未燃燃料の量を少なく抑えつつ、昇温処理を実行することができる。また、このような条件に従って昇温処理が実行される場合は、比較的多量の未燃燃料を酸化触媒へ供給することができるため、昇温処理の実行期間を一層短くすることも可能になる。
 本発明の内燃機関の排気浄化装置は、酸化触媒から流出する排気に含まれるエミッションの量を積算する演算手段をさらに備えるようにしてもよい。その場合、制御手段は、演算手段により算出されたエミッションの積算量が比較値を超えているときは、昇温処理の実行を禁止してもよい。
 ここでいう「比較値」は、例えば、従来の方法によって昇温処理が実行された場合のエミッションの積算量に相当する。従来の方法としては、内燃機関の始動時からNOx触媒が活性するまでの期間において、未燃燃料が酸化触媒に供給され続ける方法や、酸化触媒の温度が所定の活性温度以上に上昇したときからNOx触媒が活性するまでの期間において、未燃燃料が酸化触媒に供給され続ける方法等である。また、「エミッション」は、昇温処理の実行により増加する排気成分であり、例えば、スモークや二酸化炭素(CO)等である。なお、単位時間あたりに酸化触媒から流出するスモークやCOの量は、酸化触媒へ供給される未燃燃料の量と酸化触媒の温度をパラメータとして演算することができる。
 このように構成された内燃機関の排気浄化装置によれば、演算手段により算出されたエミッションの積算量が比較量を超えているときは、前記温度変化率が基準値以上であっても、昇温処理が実行されなくなる。
 例えば、昇温処理の実行中又は実行後に内燃機関の運転が停止され、次いでNOx触媒の温度が活性温度より低くなった後に内燃機関が再始動された場合において、内燃機関の再始動後に昇温処理が再度実行されると、エミッションの積算量が前記比較値より多くなる可能性がある。
 これに対し、エミッションの積算量が比較値より多いときに昇温処理の実行が禁止されると、エミッションの積算量を従来と同等以下に抑えることができる。特に、昇温処理実行中に酸化触媒へ供給される未燃燃料の量が従来の昇温処理より増量された場合は、エミッションの量が一時的に従来の昇温処理より多くなる可能性はあるが、中長期の期間におけるエミッションの量(積算量)は従来と同等以下に抑えることができる。
 ここで、本発明の制御手段は、昇温処理の実行中にNOx触媒のNOx浄化率が一定値を超えると、前記酸化触媒へ供給される未燃燃料の量を減少させてもよい。ここでいう「一定値」は、例えば、NOx触媒の全体が活性したときのNOx浄化率より小さい値であって、NOx触媒の大部分が活性したときのNOx浄化率と同等の値である。このような条件に従って、酸化触媒へ供給される未燃燃料の量が減少されると、昇温処理に伴う燃料消費量の増加及びエミッションの増加を一層少なく抑えることができる。
 本発明の制御手段は、前記検出手段により検出された温度が所定の温度範囲に属するときに、前記温度変化率が前記基準値以上であると判定してもよい。ここでいう「所定の温度範囲」は、例えば、前記温度変化率が前記基準値以上となる温度範囲であり、予め実験等を利用した適合処理によって求められた範囲である。
 ところで、NOx触媒のNOx浄化率は、NOx触媒の温度以外の要因によって変化する場合がある。そこで、本発明の制御手段は、NOx触媒のNOx浄化率が所定の浄化率範囲に属するときに、前記温度変化率が前記基準値以上であると判定してもよい。ここでいう「所定の浄化率範囲」は、前記温度変化率が前記基準値以上となるNOx浄化率の範囲である。なお、NOx触媒のNOx浄化率は、NOx触媒の上流及び下流に配置されたNOxセンサの測定値に基づいて演算することができる。
 また、本発明の制御手段は、排気の流量と、排気の空燃比と、酸化触媒の温度と、NOx触媒の温度と、をパラメータとして、温度変化率を演算し、その演算結果と前記基準値とを比較してもよい。
 本発明によれば、内燃機関の排気通路に配置されたNOx触媒を備える内燃機関の排気浄化装置において、NOx触媒を昇温させるための処理に起因した燃料消費量の増加やエミッションの増加を少なく抑えることができる。
本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。 酸化触媒の温度と浄化率との相関を示す図である。 選択還元型触媒の温度と浄化率との相関を示す図である。 第1の実施例における昇温処理の実行方法を示すタイミングチャートである。 第1の実施例において昇温処理が実行されるときにECUによって実行される処理ルーチンを示すフローチャートである。 第2の実施例における昇温処理の実行方法を示すタイミングチャートである。 第2の実施例において昇温処理が実行されるときにECUによって実行される処理ルーチンを示すフローチャートである。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図5に基づいて説明する。図1は、本発明が適用される内燃機関の概略構成を示す図である。
 図1に示す内燃機関1は、複数の気筒を有する圧縮着火式の内燃機関(ディーゼルエンジン)である。なお、本発明を適用する内燃機関は、圧縮着火式の内燃機関の限られず、希薄燃焼運転される火花点火式の内燃機関(ガソリンエンジン)であってもよい。
 内燃機関1には、吸気通路2と排気通路3が接続されている。吸気通路2は、大気中から取り込まれた新気(空気)を内燃機関1の気筒へ導く通路である。排気通路3は、内燃機関1の気筒内から排出される既燃ガス(排気)を流通させるための通路である。
 吸気通路2の途中には、スロットル弁4が配置されている。スロットル弁4は、吸気通路2の通路断面積を変更することにより、内燃機関1の気筒内に吸入される空気量を調整する弁機構である。なお、スロットル弁4は、弁体と該弁体を開閉駆動するための電動機とを備え、電動機は後述するECU10によって制御される。
 排気通路3の途中には、第1触媒ケーシング5と第2触媒ケーシング6が上流側から直列に配置されている。第1触媒ケーシング5は、筒状のケーシング内に酸化触媒とパティキュレートフィルタを内装している。その際、酸化触媒は、パティキュレートフィルタの上流に配置される触媒担体に担持されてもよく、あるいはパティキュレートフィルタに担持されてもよい。
 また、第2触媒ケーシング6は、筒状のケーシング内に、選択還元型触媒が担持された触媒担体を収容したものである。触媒担体は、例えば、コーディライトやFe-Cr-Al系の耐熱鋼から成るハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。さらに、触媒担体には、酸化能を有する貴金属触媒(例えば、白金(Pt)やパラジウム(Pd)等)が担持されている。このように構成される選択還元型触媒は、本発明に係わるNO触媒に相当する。
 なお、第2触媒ケーシング6の内部において、選択還元型触媒より下流には酸化触媒を担持した触媒担体が配置されるようにしてもよい。その場合の酸化触媒は、後述する還元剤添加弁7から選択還元型触媒へ供給される還元剤のうち、選択還元型触媒をすり抜けた還元剤を酸化することができる。
 第1触媒ケーシング5と第2触媒ケーシング6との間の排気通路3には、NH又はNHの前駆体である還元剤を排気中へ添加(噴射)するための還元剤添加弁7が取り付けられている。還元剤添加弁7は、ニードルの移動により開閉される噴孔を有する弁装置である。還元剤添加弁7は、ポンプ70を介して還元剤タンク71に接続されている。ポンプ70は、還元剤タンク71に貯留されている還元剤を吸引するとともに、吸引された還元剤を還元剤添加弁7へ圧送する。還元剤添加弁7は、ポンプ70から圧送されてくる還元剤を排気通路3内へ噴射する。なお、還元剤添加弁7の開閉タイミングやポンプ70の吐出圧力は、ECU10によって電気的に制御されるようになっている。
 ここで、還元剤タンク71に貯留される還元剤としては、尿素やカルバミン酸アンモニウム等の水溶液や、NHガスを用いることができる。本実施例では、還元剤として、尿素水溶液を用いる例について述べる。
 還元剤添加弁7から尿素水溶液が噴射されると、該尿素水溶液が排気とともに第2触媒ケーシング6へ流入する。その際、尿素水溶液が排気や第2触媒ケーシング6の熱を受けて熱分解又は加水分解される。尿素水溶液が熱分解又は加水分解されると、アンモニア(NH)が生成される。このようにして生成されたアンモニア(NH)は、選択還元型触媒に吸着又は吸蔵される。選択還元型触媒に吸着又は吸蔵されたアンモニア(NH)は、排気中に含まれる窒素酸化物(NO)と反応して窒素(N)や水(HO)を生成する。つまり、アンモニア(NH)は、窒素酸化物(NO)の還元剤として機能する。
 このように構成された内燃機関1には、ECU10が併設されている。ECU10は、CPU、ROM、RAM、バックアップRAM等を備えた電子制御ユニットである。ECU10は、第1排気温度センサ8、第2排気温度センサ9、クランクポジションセンサ11、アクセルポジションセンサ12、エアフローメータ13、及びA/Fセンサ14等の各種センサと電気的に接続されている。
 第1排気温度センサ8は、第1触媒ケーシング5より下流、且つ第2触媒ケーシング6より上流の排気通路3に配置され、第1触媒ケーシング5から流出する排気の温度に相関する電気信号を出力する。第2排気温度センサ9は、第2触媒ケーシング6より下流の排気通路3に配置され、第2触媒ケーシング6から流出する排気の温度に相関する電気信号を出力する。クランクポジションセンサ11は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。アクセルポジションセンサ12は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。エアフローメータ13は、内燃機関1に吸入される空気量(吸入空気量)に相関する電気信号を出力する。A/Fセンサ14は、第1触媒ケーシング5より上流の排気通路3に配置され、排気の空燃比に相関する電気信号を出力する。
 ECU10は、内燃機関1に取り付けられた各種機器(たとえば、燃料噴射弁等)、スロットル弁4、還元剤添加弁7、及びポンプ70等と電気的に接続されている。ECU10は、前記した各種センサの出力信号に基づいて、内燃機関1の各種機器、スロットル弁4、還元剤添加弁7、及びポンプ70等を電気的に制御する。例えば、ECU10は、内燃機関1の燃料噴射制御や、還元剤添加弁7から間欠的に還元剤を噴射させる添加制御等の既知の制御に加え、第2触媒ケーシング6に収容された選択還元型触媒の昇温制御を実行する。以下、本実施例における昇温制御の実行方法について述べる。
 内燃機関1が冷間始動されたときは、酸化触媒及び選択還元型触媒が活性していない状態、すなわち、酸化触媒が排気中の未燃燃料成分(HCやCO等)を酸化することができず、且つ選択還元型触媒が排気中の窒素酸化物(NO)を還元することができない状態になる。よって、酸化触媒及び選択還元型触媒を早期に活性させる必要がある。
 酸化触媒及び選択還元型触媒を早期に活性化させる方法としては、酸化触媒より上流の排気通路3に燃料を添加し、又は膨張行程若しくは排気行程の気筒内へ燃料噴射弁からアフター噴射することにより、未燃燃料成分を酸化触媒へ供給する処理(昇温処理)を実行する方法が知られている。このような方法によれば、未燃燃料成分が酸化触媒で酸化される際に発生する熱を利用して、酸化触媒や選択還元型触媒を昇温させることができる。
 ところで、酸化触媒や選択還元型触媒は、所定の温度より低いときは温度上昇量に対して浄化率の上昇量が少なくなる。ここで、酸化触媒の温度(床温)と浄化率(未燃燃料の酸化率)との関係を図2に示す。図2に示すように、酸化触媒の温度が所定の温度(第1温度)Te1より低いときは、該酸化触媒の温度が上昇しても、浄化率がほとんど上昇しない。ここでいう「第1温度Te1」は、第1触媒ケーシング5に収容されている酸化触媒の少なくとも一部が活性する温度(部分活性温度)である。酸化触媒の温度が前記第1温度Te1より低いときに昇温処理が実行されると、酸化触媒に供給された未燃燃料成分の大部分が酸化されずに大気中に排出される可能性がある。
 図3は、選択還元型触媒の温度と浄化率(NO浄化率)との関係を示す図である。図3に示すように、選択還元型触媒の温度が所定の温度(第2温度)Te2より低いときは、該選択還元型触媒の温度上昇量に対して、NO浄化率の上昇量が少なくなる。一方、選択還元型触媒の温度が前記第2温度Te2以上、且つ第3温度Te3未満の範囲に属するときは、該選択還元型触媒の温度上昇量に対して、NO浄化率の上昇量が多くなる。
 ここでいう「第2温度Te2」は、選択還元型触媒の温度が所定量上昇したときの温度変化率(選択還元型触媒の温度上昇量に対してNO浄化率が上昇する量の割合)が基準値以上となる最低の温度であり、例えば、第2触媒ケーシング6に収容されている選択還元型触媒の少なくとも一部が活性する温度(部分活性温度)である。また、「第3温度Te3」は、選択還元型触媒の温度が所定量上昇したときの温度変化率が基準値以上となる最高の温度であり、例えば、第2触媒ケーシング6に収容されている選択還元型触媒の全体が活性する温度(完全活性温度)である。
 選択還元型触媒の温度が前記第2温度Te2より低いときに昇温処理が実行されると、選択還元型触媒の温度を上昇させることはできるが、NO浄化率を十分に上昇させることはできない。その結果、燃料消費量が不要に増加したり、酸化触媒で生成されるスモークや二酸化炭素(CO)の量が不要に増加したりする可能性がある。一方、選択還元型触媒の温度が前記第2温度Te2以上、且つ前記第3温度Te3未満であるときに昇温処理が実行されると、選択還元型触媒の温度を上昇させることができるとともに、NO浄化率も十分に上昇させることができる。
 したがって、酸化触媒の温度が第1温度Te1以上であると同時に、選択還元型触媒の温度が第2温度Te2以上、且つ第3温度Te3未満であることを条件として、昇温処理が実行されることが望ましい。
 ここで、本実施例における昇温処理の実行方法について、図4のタイミングチャートに沿って説明する。内燃機関1が始動されると(図4中のt0)、排気の熱が酸化触媒と選択還元型触媒へ伝達される。その際、酸化触媒が選択還元型触媒より上流に配置されるため、酸化触媒が選択還元型触媒より先に昇温する。その結果、先ず酸化触媒の温度が前記第1温度Te1以上に到達し(図4中のt1)、その後に選択還元型触媒の温度が前記第2温度Te2以上に到達する(図4中のt2)。
 内燃機関1の始動時から選択還元型触媒の温度が前記第2温度Te2以上に到達するまでの期間(以下、「第1期間」と称する)は、選択還元型触媒の温度上昇量に対してNO浄化率が上昇する量の割合(温度変化率)が小さくなる。そのため、前記第1期間中は、昇温処理が実行されない(昇温処理フラグがオフ(OFF))。
 選択還元型触媒の温度が前記第2温度Te2以上に到達した時点(図4中のt2)から前記第3温度Te3以上に到達する時点(図4中のt3)までの期間(以下、「第2期間」と称する)は第1期間に比べ、温度変化率が大幅に大きくなる。そのため、前記第2期間中は、昇温処理が実行される(昇温処理フラグがオン(ON))。第2期間において昇温処理が実行されると、選択還元型触媒の温度が急速に上昇するとともに、温度変化率も急速に増加する。その結果、選択還元型触媒のNO浄化率を短時間で上昇させることができる。
 昇温処理の実行時において、単位時間あたりに酸化触媒へ供給される未燃燃料の量は、従来の昇温処理(内燃機関1の始動時又は始動直後に、酸化触媒に対する未燃燃料の供給が開始される処理)が実行される場合より多くされることが好ましい。その場合、選択還元型触媒の温度上昇速度及びNO浄化率の上昇速度を一層大きくすることができる。その結果、内燃機関1の始動後に低負荷運転状態が継続される場合であっても、選択還元型触媒を速やかに活性させることができる。また、昇温処理の実行時間が短くなるため、昇温処理に起因した燃料消費量の増加を少なく抑えることができる。
 なお、単位時間あたりに酸化触媒へ供給される未燃燃料の量が増量された場合は、酸化触媒から排出されるPMの量やCOの量が一時的に増加する可能性がある。ただし、昇温処理の実行前後に酸化触媒から排出されるスモーク(PM)の量やCOの量は、従来の昇温処理が実行される場合より少なくなる。その結果、内燃機関1の始動時から選択還元型触媒が活性するまでの期間において酸化触媒から流出するPMやCOの量は、従来の昇温処理が実行された場合と同等以下に抑えることができる。つまり、本実施例の昇温処理によれば、従来の昇温処理に比べ、比較的短い期間に酸化触媒から流出するPMやCOの量が多くなる可能性があるが、比較的長い期間に酸化触媒から流出するPMやCOの量を少なく抑えることができる。
 したがって、本実施例の昇温処理によれば、燃料消費量の増加やエミッション(酸化触媒から流出するPMやCO)の増加を少なく抑えつつ、選択還元型触媒を短時間に活性させることが可能になる。
 次に、本実施例における昇温処理の実行手順について図5のフローチャートに沿って説明する。図5は、昇温処理が実行される際にECU10によって実行される処理ルーチンを示すフローチャートである。図5の処理ルーチンは、予めECU10のROM等に記憶されており、ECU10によって周期的に実行される。
 図5の処理ルーチンでは、ECU10は、先ずS101において、酸化触媒の温度、及び選択還元型触媒の温度を読み込む。その際、ECU10は、酸化触媒の温度として第1排気温度センサ8の出力信号Tcat1を読み込み、選択還元型触媒の温度として第2排気温度センサ9の出力信号Tcat2を読み込む。なお、ECU10がS101の処理を実行することにより、本発明に係わる検出手段が実現される。
 S102では、ECU10は、選択還元型触媒の温度Tcat2が所定の温度範囲に属するか否かを判別する。ここでいう「所定の温度範囲」は、前記第2温度Te2以上、且つ前記第3温度Te3未満の温度範囲である。S102において否定判定された場合は、ECU10は、本処理ルーチンの実行を終了する。一方、S102において肯定判定された場合は、ECU10は、S103へ進む。
 S103では、ECU10は、酸化触媒の温度Tcat1が前記第1温度Te1以上であるか否かを判別する。S103において否定判定された場合は、ECU10は、本処理ルーチンの実行を終了する。一方、S103において肯定判定された場合は、ECU10は、S104へ進む。
 なお、ECU10がS102及びS103の処理を実行することにより、本発明に係わる制御手段が実現される。
 S104では、ECU10は、昇温処理を実行する。すなわち、ECU10は、膨張行程又は排気行程の気筒の燃料噴射弁から燃料を噴射(アフター噴射)させる。その場合の燃料噴射量は、従来の昇温処理が実行される場合より多くされる。このような方法により昇温処理が実行されると、選択還元型触媒の温度が急速に上昇するとともに、NO浄化率も急速に増加する。なお、ECU10がS104の処理を実行することにより、本発明に係わる昇温手段が実現される。
 S105では、ECU10は、第2排気温度センサ9の出力信号Tcat2を再度読み込む。
 S106では、ECU10は、前記S105において読み込まれた温度Tcat2が前記第3温度Te3以上であるか否かを判別する。S106において否定判定された場合は、ECU10は、S101以降の処理を再度実行する。一方、S106において肯定判定された場合は、ECU10は、S107へ進む。
 S107では、ECU10は、昇温処理の実行を終了する。すなわち、ECU10は、燃料噴射弁のアフター噴射を終了させる。
 以上述べた手順により昇温処理が実行されると、昇温処理に起因した燃料消費量やエミッションの増加を少なく抑えつつ、選択還元型触媒を速やかに昇温させることができる。特に、内燃機関1の冷間始動後に低負荷運転状態が継続されるような場合であっても、選択還元型触媒を短時間で活性させることが可能となるため、従来の昇温処理が実行された場合に比べ、大気中へ排出されるNOの量を少なく抑えることができる。
 なお、本実施例では、選択還元型触媒の温度が前記第2温度Te2以上、且つ前記第3温度Te3未満の温度範囲に属することを条件として、昇温処理が実行される例について述べた。しかしながら、選択還元型触媒のNO浄化率は、該選択還元型触媒の温度以外の要因によって変化する場合がある。そのため、選択還元型触媒の温度変化率も、該選択還元型触媒の温度以外の要因によって変化する可能性がある。
 そこで、ECU10は、選択還元型触媒のNO浄化率が所定の浄化率範囲に属することを条件として、昇温処理を実行してもよい。その場合、ECU10は、前述した図5の処理ルーチンのS102において、選択還元型触媒のNO浄化率を演算し、算出されたNO浄化率が所定の浄化率範囲に属する否かを判別すればよい。なお、ここでいう「所定の浄化率範囲」は、選択還元型触媒の温度変化率が基準値以上となるNO浄化率の範囲であり、予め実験的に求められた範囲である。
 選択還元型触媒のNO浄化率は、以下の式を用いて演算することができる。
 Enox=(Anoxin-Anoxout)/Anoxin
 上記の式中のEnoxは、NO浄化率である。Anoxinは、選択還元型触媒へ流入するNOの量(NO流入量)である。Anoxoutは、選択還元型触媒から流出するNOの量(NO流出量)である。
 前記NO流入量Anoxinは、選択還元型触媒より上流の排気通路3に配置されるNOセンサによって測定されてもよく、又は内燃機関1の運転状態(燃料噴射量、吸入空気量、及び機関回転数等)に基づいて演算されてもよい。前記NO流出量Anoxoutは、選択還元型触媒より下流の排気通路3に配置されるNOセンサにより測定されてもよい。
 選択還元型触媒のNO浄化率が所定の浄化率範囲に属しているか否かを判別することにより、選択還元型触媒の温度変化率が基準値以上である否かをより正確に判別することができる。
 また、ECU10は、選択還元型触媒の温度が現時点の温度から所定量上昇した場合の温度変化率を演算し、その温度変化率が基準値以上であるか否かを判別するようにしてもよい。その際の温度変化率は、選択還元型触媒の現時点の温度と、排気の流量と、排気の空燃比と、排気中に含まれるNOの量(好ましくは、排気中に含まれるNOの量に対するNOの量の割合)に相関する。排気中に含まれるNOの量は、酸化触媒の現時点の温度と排気の空燃比に相関する。
 そこで、ECU10は、前述した図5の処理ルーチンのS102において、選択還元型触媒の現時点の温度と、酸化触媒の現時点の温度と、排気の流量と、排気の空燃比と、をパラメータとして、選択還元型触媒の温度が現時点の温度から所定量増加した場合の温度変化率を演算し、算出された温度変化率が基準値以上であるか否かを判別してもよい。なお、温度変化率と、選択還元型触媒の現時点の温度と、酸化触媒の現時点の温度と、排気の流量と、排気の空燃比との関係は、予めマップとしてECU10のROMに記憶されていてもよい。
 このような方法により演算された温度変化率が基準値以上であるか否かを判別することにより、選択還元型触媒の温度変化率が基準値以上であるか否かをより正確に判別することができる。
 また、ECU10は、昇温処理の実行中において、選択還元型触媒のNO浄化率が一定値を超えると、燃料噴射弁からアフター噴射される燃料の量(アフター噴射量)を減少させるようにしてもよい。ここでいう「一定値」は、例えば、第2触媒ケーシング6に収容される選択還元型触媒の全体が活性したときのNO浄化率より小さい値であって、NO触媒の大部分が活性したときのNO浄化率と同等の値である。このような条件に従って、アフター噴射量が原料されると、昇温処理に伴う燃料消費量の増加及びエミッションの増加を一層少なく抑えることができる。
 <実施例2>
 次に、本発明の第2の実施例について図6及び図7に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との差違は、選択還元型触媒の温度が所定量上昇した場合の温度変化率が基準値以上であることに加え、酸化触媒から流出するエミッションの積算量が比較値以下であることを条件として、昇温処理が実行される点にある。ここでいう「エミッション」は、アフター噴射の実行により増加する排気成分であり、例えば、酸化触媒から流出するPMおよびまたはCOである。「比較値」は、従来の昇温処理が実行された場合に酸化触媒から流出するエミッションの積算量である。
 図6は、本実施例における昇温処理の実行方法を示すタイミングチャートである。図6に示すタイミングチャートは、内燃機関1の始動と運転停止が3回繰り返された場合における昇温処理の実行方法を示す図である。図6中において、実線は本発明の昇温処理が実行された場合のデータを示し、一点鎖線は従来の昇温処理が実行された場合のデータを示す。
 図6中において、内燃機関1の1回目の始動(図6中のt10)から運転停止(図6中のt13)までの期間において、選択還元型触媒の温度Tcat2が前記第2温度Te2に達したとき(図6中のt11)は、酸化触媒から流出するPMおよびまたはCOの積算量(積算PM・CO量)が比較値より少ないため、昇温処理が実行される。昇温処理は、選択還元型触媒の温度Tcat2が前記第3温度Te3に達したとき(図6中のt12)に終了される。
 内燃機関1の1回目の運転停止(図6中のt13)から2回目の始動(図6中のt14)の期間では、選択還元型触媒の温度Tcat2が前記第2温度Te2より低い温度域まで低下する。しかしながら、内燃機関1の2回目の始動(図6中のt14)から運転停止(図6中のt16)の期間においては、選択還元型触媒の温度Tcat2が前記第2温度Te2に達したとき(図6中のt15)に、積算PM・CO量が比較値より多いため、昇温処理が実行されない。
 次に、内燃機関1の3回目の始動(図6中の17)以降において、選択還元型触媒の温度Tcat2が前記第2温度Te2に達したとき(図6中のt18)は、積算PM・CO量が比較値より少ないため、昇温処理が実行される。
 なお、図6中の比較値は、前述した従来の昇温処理が実行された場合における積算PM・CO量である。本発明の昇温処理が実行された場合の積算PM・CO量、及び従来の昇温処理が実行された場合の積算PM・CO量は、アフター噴射量や酸化触媒の温度等のような既知のパラメータを用いて演算することができる。
 図6に示した方法によって昇温処理が実行されると、1回当たりの昇温処理において酸化触媒から流出するPMおよびまたはCOの量は、従来の昇温処理が実行された場合より多くなる可能性がある。しかしながら、積算PM・CO量が比較値より多いときは、昇温処理が実行されないため、複数回の始動と運転停止が繰り返されるような長期間における積算PM・CO量は従来の昇温処理が実行された場合より少なく抑えることができる。その結果、内燃機関1が如何なる運転をされた場合であっても、長期間における積算PM・CO量を従来の昇温処理が実行された場合より少なく抑えることができる。
 ところで、本発明の昇温処理が実行されない場合の選択還元型触媒のNO浄化率は、従来の昇温処理が実行された場合より低くなることが懸念される。しかしながら、従来の昇温処理は温度変化率が小さいときに実行される。そのため、図6中のt14からt16の期間に示すように、本発明の昇温処理が実行されない場合に大気中へ排出されるNOの量は、従来の昇温処理が実行された場合に大気中へ排出されるNOの量と略同等になる。逆に、本発明の昇温処理が実行された場合に大気中へ排出されるNOの量は、従来の昇温処理が実行された場合に大気中へ排出されるNOの量に比べ、十分に少なくなる。よって、長期間において大気中へ排出されるNOの量は、従来の昇温処理が実行された場合より本発明の昇温処理が実行された場合の方が少なくなる。
 以下、本実施例における昇温処理の実行手順について図7のフローチャートに沿って説明する。図7は、昇温処理が実行される際にECU10によって実行される処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU10のROM等に記憶されており、ECU10によって周期的に実行される。なお、図7において、前述した第1の実施例の処理ルーチン(図5を参照)と同様の処理には、同一の符号が付されている。
 図7の処理ルーチンでは、ECU10は、S103において肯定判定された場合(Tcat1≧Te1)に、S201の処理を実行する。S201では、ECU10は、積算PM・CO量ΣPM・COが比較値Cvより小さいか否かを判別する。積算PM・CO量ΣPM・COは、排気の空燃比、酸化触媒の温度、及びアフター噴射量等をパラメータとして、逐次演算される。また、比較値Cvは、従来の昇温処理が実行されたと仮定した場合のアフター噴射量と、排気の空燃比、酸化触媒の温度、及びアフター噴射量等をパラメータとして、逐次演算される。このような方法に従って、ECU10が積算PM・CO量ΣPM・CO及び比較値Cvを演算することにより、本発明に係わる演算手段が実現される。
 前記S201において否定判定された場合は、ECU10は、昇温処理を実行せずに、本処理ルーチンの実行を終了する。一方、前記S201において肯定判定された場合は、ECU10は、S104へ進み、昇温処理を実行する。
  以上述べた手順により昇温処理が実行されると、前述した第1の実施例と同様の効果を得ることができるとともに、長期間における積算PM・CO量や大気中に排出されるNOの量を従来の昇温処理が実行された場合より少なく抑えることができる。その結果、内燃機関1の始動と再始動が短期間に繰り返される場合や、内燃機関1の始動後に低負荷運転状態が継続される場合等の多様な条件下においても、昇温処理の実行に起因したエミッションの増加を少なく抑えつつ、大気中へ排出されるNO量を減少させることが可能になる。
 なお、前述した第1及び第2の実施例では、本発明に係わるNO触媒として、選択還元型触媒を例に挙げたが、吸蔵還元型触媒であってもよい。また、前述した第1及び第2の実施例では、選択還元型触媒より上流の排気通路3にパティキュレートフィルタが配置される例について述べたが、選択還元型触媒より下流の排気通路にパティキュレートフィルタが配置されてもよく、又はパティキュレートフィルタに選択還元型触媒が担持されてもよい。要するに、本発明は、選択還元型触媒より上流の排気通路3に酸化触媒が配置される構成であれば適用可能である。
1 内燃機関
2 吸気通路
3 排気通路
4 スロットル弁
5 第1触媒ケーシング
6 第2触媒ケーシング
7 還元剤添加弁
8 第1排気温度センサ
9 第2排気温度センサ
10 ECU
11 クランクポジションセンサ
12 アクセルポジションセンサ
13 エアフローメータ
14 A/Fセンサ1
70 ポンプ
71 還元剤タンク

Claims (6)

  1.  車両に搭載された内燃機関の排気通路に配置されるNO触媒と、
     前記NO触媒へ流入する排気の温度を上昇させることにより、前記NO触媒を昇温させる処理である昇温処理を実行する昇温手段と、
     前記NO触媒の温度を検出する検出手段と、
     前記NO触媒の温度が前記検出手段により検出された温度から所定量上昇したと仮定した場合の前記所定量に対するNO浄化率の上昇量の割合である温度変化率が基準値以上になることを条件として、前記昇温処理の実行を許可する制御手段と、
    を備える内燃機関の排気浄化装置。
  2.  請求項1において、前記NO触媒より上流の排気通路に配置される酸化触媒をさらに備え、
     前記昇温処理は、前記酸化触媒へ未燃燃料を供給する処理であり、
     前記制御手段は、前記酸化触媒の温度が所定の活性温度以上であり、且つ前記温度変化率が前記基準値以上であることを条件として、前記昇温処理の実行を許可する内燃機関の排気浄化装置。
  3.  請求項2において、前記酸化触媒から流出する排気に含まれるエミッションの量を積算する演算手段をさらに備え、
     前記制御手段は、前記演算手段により算出されたエミッションの積算量が比較値を超えているときは、前記昇温処理の実行を禁止する内燃機関の排気浄化装置。
  4.  請求項2又は3において、前記制御手段は、前記昇温処理の実行中に前記NO触媒のNO浄化率が一定値を超えると、前記酸化触媒へ供給される未燃燃料の量を減少させる内燃機関の排気浄化装置。
  5.  請求項1乃至4のいずれか1項において、前記制御手段は、前記検出手段により検出された温度が所定の温度範囲に属するときに、前記温度変化率が前記基準値以上であると判定する内燃機関の排気浄化装置。
  6.  請求項1乃至4のいずれか一項において、前記制御手段は、前記NO触媒のNO浄化率が所定の浄化率範囲に属するときに、前記温度変化率が前記基準値以上であると判定する内燃機関の排気浄化装置。
PCT/JP2012/063795 2012-05-29 2012-05-29 内燃機関の排気浄化装置 WO2013179393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12878017.8A EP2857648B8 (en) 2012-05-29 2012-05-29 Exhaust gas purification apparatus for internal combustion engine
JP2014518128A JP6015753B2 (ja) 2012-05-29 2012-05-29 内燃機関の排気浄化装置
PCT/JP2012/063795 WO2013179393A1 (ja) 2012-05-29 2012-05-29 内燃機関の排気浄化装置
US14/403,982 US9212586B2 (en) 2012-05-29 2012-05-29 Exhaust gas purification apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063795 WO2013179393A1 (ja) 2012-05-29 2012-05-29 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2013179393A1 true WO2013179393A1 (ja) 2013-12-05

Family

ID=49672647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063795 WO2013179393A1 (ja) 2012-05-29 2012-05-29 内燃機関の排気浄化装置

Country Status (4)

Country Link
US (1) US9212586B2 (ja)
EP (1) EP2857648B8 (ja)
JP (1) JP6015753B2 (ja)
WO (1) WO2013179393A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107654301B (zh) * 2016-07-25 2019-12-24 上海汽车集团股份有限公司 一种发动机排气歧管的温度控制方法及装置
FR3063521B1 (fr) * 2017-03-06 2019-08-16 Peugeot Citroen Automobiles Sa Procede de controle d’emission d’un polluant pendant un mode de fonctionnement d’un moteur thermique le protegeant de fortes temperatures
CN108087071B (zh) * 2017-12-05 2021-09-28 南京依柯卡特排放技术股份有限公司 对dpf碳载量的判断方法
US11131226B2 (en) * 2019-07-23 2021-09-28 Caterpillar Inc. Method and system for thermal control of aftertreatment
CN111535903B (zh) * 2020-05-22 2021-07-20 潍柴动力股份有限公司 清除反应器结晶的方法、装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269146A (ja) * 2002-03-19 2003-09-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008231966A (ja) * 2007-03-19 2008-10-02 Toyota Motor Corp 圧縮着火式内燃機関の排気浄化装置
JP2010043583A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010112192A (ja) 2008-11-04 2010-05-20 Nissan Motor Co Ltd 内燃機関の排気浄化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164928A (ja) 1999-12-13 2001-06-19 Mazda Motor Corp エンジンの排気浄化装置及び浄化方法
JP4253984B2 (ja) 2000-02-14 2009-04-15 マツダ株式会社 ディーゼルエンジンの制御装置
JP4051547B2 (ja) * 2002-07-04 2008-02-27 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP4677837B2 (ja) * 2005-07-08 2011-04-27 いすゞ自動車株式会社 排気ガス浄化システムの再生制御方法及び排気ガス浄化システム
JP5287282B2 (ja) 2009-01-20 2013-09-11 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
CN101918686B (zh) * 2009-03-31 2012-12-26 丰田自动车株式会社 催化剂劣化判定装置及催化剂劣化判定方法
JP4665258B2 (ja) 2010-03-04 2011-04-06 学校法人加計学園 人工飼育水による養殖システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269146A (ja) * 2002-03-19 2003-09-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008231966A (ja) * 2007-03-19 2008-10-02 Toyota Motor Corp 圧縮着火式内燃機関の排気浄化装置
JP2010043583A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010112192A (ja) 2008-11-04 2010-05-20 Nissan Motor Co Ltd 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
EP2857648A4 (en) 2015-05-27
US9212586B2 (en) 2015-12-15
EP2857648A1 (en) 2015-04-08
EP2857648B1 (en) 2018-11-21
US20150121854A1 (en) 2015-05-07
JP6015753B2 (ja) 2016-10-26
JPWO2013179393A1 (ja) 2016-01-14
EP2857648B8 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US8813480B2 (en) Exhaust purification system of internal combustion engine
JP5293811B2 (ja) エンジンの排気浄化装置
JP5472406B2 (ja) 内燃機関の制御システム
JP5850166B2 (ja) 内燃機関の排気浄化システム
JP2017194022A (ja) 排気浄化装置の制御装置
AU2017268543A1 (en) Exhaust gas control apparatus for internal combustion engine
JP6015753B2 (ja) 内燃機関の排気浄化装置
JP5672296B2 (ja) 内燃機関の排気浄化システム
JP6128122B2 (ja) 内燃機関の排気浄化装置
JP5761255B2 (ja) 内燃機関の排気浄化装置
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP2013253540A (ja) 内燃機関の排気浄化システム
JP2019167919A (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP6248974B2 (ja) 内燃機関の制御装置
JP2013234608A (ja) 排気浄化装置の昇温制御システム
JP2014101836A (ja) 内燃機関の排気浄化システム
JP2019167918A (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP5088298B2 (ja) 排気ガス浄化方法と排気ガス浄化システム
JP2013181465A (ja) 排気浄化装置の異常検出システム
JP2013221487A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14403982

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014518128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012878017

Country of ref document: EP