WO2013176249A1 - 膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤 - Google Patents

膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤 Download PDF

Info

Publication number
WO2013176249A1
WO2013176249A1 PCT/JP2013/064469 JP2013064469W WO2013176249A1 WO 2013176249 A1 WO2013176249 A1 WO 2013176249A1 JP 2013064469 W JP2013064469 W JP 2013064469W WO 2013176249 A1 WO2013176249 A1 WO 2013176249A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
producing
medium
pancreatic hormone
fgf
Prior art date
Application number
PCT/JP2013/064469
Other languages
English (en)
French (fr)
Inventor
秀男 豊島
康司 岡崎
友隆 横尾
泉 菅原
Original Assignee
学校法人埼玉医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人埼玉医科大学 filed Critical 学校法人埼玉医科大学
Priority to CN201380027230.0A priority Critical patent/CN104428410B/zh
Priority to JP2014516862A priority patent/JP6161603B2/ja
Priority to US14/403,026 priority patent/US20150140661A1/en
Priority to EP13793805.6A priority patent/EP2857500B1/en
Publication of WO2013176249A1 publication Critical patent/WO2013176249A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/335Glucagon; Glucagon-like peptide [GLP]; Exendin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/22Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to pluripotent stem cells such as induced pluripotent stem cells (hereinafter also referred to as “iPS cells”) and embryonic stem cells (hereinafter also referred to as “ES cells”), or pancreatic tissue stem / progenitor cells.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • pancreatic tissue stem / progenitor cells pancreatic tissue stem / progenitor cells.
  • the present invention relates to a method for producing pancreatic hormone-producing cells for producing pancreatic hormone-producing cells, the produced pancreatic hormone-producing cells, and a differentiation induction promoter used in the production method.
  • the pancreas has endocrine cells and exocrine cells, and is an organ that plays an important role in both endocrine and exocrine.
  • Endocrine cells play a role in producing and secreting pancreatic hormones.
  • Glucagon is secreted from ⁇ cells
  • insulin is secreted from ⁇ cells
  • somatostatin is secreted from ⁇ cells
  • pancreatic polypeptide is secreted from PP cells. It has been.
  • insulin has a blood glucose lowering effect and plays an important role in maintaining blood glucose at the correct concentration.
  • pancreatic hormone-producing cells In recent years, many methods for inducing differentiation from pluripotent stem cells or pancreatic tissue stem / progenitor cells into pancreatic hormone-producing cells have been reported (see Non-Patent Documents 1 to 4, Patent Documents 1 to 6, etc.). If pancreatic hormone-producing cells can be obtained efficiently by such a differentiation induction method, it is expected to lead to a method for treating diabetes that is an alternative to islet transplantation. Furthermore, it is considered that the problem of rejection can be solved by obtaining pancreatic hormone-producing cells from pluripotent stem cells or pancreatic tissue stem / progenitor cells derived from the patient himself.
  • Non-Patent Document 1 the efficiency of inducing differentiation into insulin-producing cells in Non-Patent Document 1 is about 12%. Therefore, a differentiation induction method capable of highly efficiently inducing differentiation from pluripotent stem cells or pancreatic tissue stem / progenitor cells to pancreatic hormone-producing cells is desired.
  • Non-patent Document 3 differentiation is induced into insulin-producing cells by introducing and culturing the pdx1 gene into mouse ES cells. From the viewpoint of safety, a differentiation induction method that does not involve gene introduction is used. Preferably there is.
  • the present invention has been made in view of such conventional circumstances, and can produce pancreatic hormones that can be efficiently induced to differentiate from pluripotent stem cells or pancreatic tissue stem / progenitor cells into pancreatic hormone-producing cells. It aims at providing the production method (differentiation induction method) of a cell, the produced pancreatic hormone production cell, and the differentiation induction promoter used for the production method.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • a polypeptide known as human TM4SF20 or a culture supernatant of a cell in which a DNA encoding human TM4SF20 is incorporated as a foreign gene is added to the culture medium, so that the pancreas is transformed from a pluripotent stem cell or pancreatic tissue stem / progenitor cell
  • differentiation can be efficiently induced into hormone-producing cells.
  • the present invention has been completed based on such findings, and more specifically is as follows.
  • a method for producing pancreatic hormone-producing cells which produces pancreatic hormone-producing cells from pluripotent stem cells or pancreatic tissue stem / progenitor cells, comprising: In the process of inducing differentiation from pluripotent stem cells or pancreatic tissue stem / progenitor cells to pancreatic hormone producing cells, adding at least one differentiation induction promoter selected from the following (1) to (3) to the medium:
  • a method for producing pancreatic hormone-producing cells (1) a polypeptide comprising an amino acid sequence encoded by DNA comprising the base sequence set forth in SEQ ID NO: 1, (2) A pancreatic hormone-producing cell comprising an amino acid sequence in which one or several amino acids are substituted, deleted, and / or added in the amino acid sequence encoded by the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1.
  • a polypeptide having an action of inducing differentiation into (3) A culture supernatant of a cell in which a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1 or a DNA hybridizing with a DNA complementary to this DNA under stringent conditions is incorporated as a foreign gene.
  • (A2) at least selected from the group consisting of a growth factor belonging to the TGF- ⁇ superfamily, a growth factor belonging to the Wnt (wingless MMTV integration site) family, and a GSK-3 (glycogen synthase kinase-3) inhibitor Culturing pluripotent stem cells in the presence of one factor; (B2) culturing the cells obtained in the above step (A2) in the presence of a growth factor belonging to the TGF- ⁇ superfamily; (C2) a step of culturing the cells obtained in the step (B2) in the presence of a retinoid, (D2)
  • the cell obtained in the step (C2) is at least one selected from the group consisting of a cAMP (cyclic adenosine monophosphate) increasing agent, dexamethasone, a TGF- ⁇ 1 type receptor inhibitor, and nicotinamide. Culturing in the presence of The method for producing pancreatic hormone-producing cells according to [1] above, wherein the
  • a differentiation induction promoter that induces differentiation of pluripotent stem cells or pancreatic tissue stem / progenitor cells into pancreatic hormone-producing cells, comprising at least one of the following (1) to (3); (1) a polypeptide comprising an amino acid sequence encoded by DNA comprising the base sequence set forth in SEQ ID NO: 1, (2) A pancreatic hormone-producing cell comprising an amino acid sequence in which one or several amino acids are substituted, deleted, and / or added in the amino acid sequence encoded by the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1.
  • a polypeptide having an action of inducing differentiation into (3) A culture supernatant of a cell in which a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1 or a DNA hybridizing with a DNA complementary to this DNA under stringent conditions is incorporated as a foreign gene.
  • pancreatic hormone-producing cells differentiated-inducing method
  • a pancreatic hormone-producing cell and a differentiation induction promoter used in the production method can be provided.
  • the culture supernatant of a cell transfected with an expression vector of a polypeptide (IBCAP) encoded by a DNA having the nucleotide sequence set forth in SEQ ID NO: 1 is used as the final stage of the differentiation induction process from human iPS cells to pancreatic hormone-producing cells. It is a figure which shows the expression level of glucagon (GCG) at the time of adding at (process (D1), (E1)) and somatostatin (SST).
  • GCG glucagon
  • D1 glucagon
  • E1 somatostatin
  • FIG. 3 is a diagram showing the expression levels of glucagon (GCG) and somatostatin (SST) when added at (step (A1-1), (A1-1)) or at an intermediate stage (steps (B1), (C1)). .
  • the method for producing pancreatic hormone-producing cells comprises adding a specific differentiation-inducing promoter in the medium in the differentiation induction process from pluripotent stem cells or pancreatic tissue stem / progenitor cells to pancreatic hormone-producing cells.
  • pluripotent stem cells, pancreatic tissue stem / progenitor cells, and differentiation induction promoters will be described in order, and then a specific method for producing pancreatic hormone-producing cells (differentiation induction method) will be described.
  • a pluripotent stem cell is a self-replicating stem cell capable of differentiating into a differentiated cell belonging to at least one type of three germ layers (ectodermal, mesoderm, endoderm), for example, Induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic germ cells (EG cells), embryonic cancer cells (EC cells), adult pluripotent stem cells (APS cells), etc.
  • iPS cells Induced pluripotent stem cells
  • ES cells embryonic stem cells
  • EG cells embryonic germ cells
  • EC cells embryonic cancer cells
  • APS cells adult pluripotent stem cells
  • IPS cells are pluripotent cells obtained by reprogramming somatic cells.
  • the production of iPS cells is carried out by Dr. Kyoto University. Dr. Yamanaka et al., Dr. of Massachusetts Institute of Technology. Jaenisch et al., Dr. of University of Wisconsin. Thomson et al., Dr. Harvard University.
  • Several groups have been successful, including the group of Hochedlinger et al.
  • somatic cell used for production of iPS cells is not particularly limited, and any somatic cell can be used. That is, all cells other than internal germ cells of the cells constituting the living body can be used, and may be differentiated somatic cells or undifferentiated stem cells.
  • the origin of somatic cells may be any of mammals, birds, fishes, reptiles and amphibians, but is not particularly limited, but mammals are preferred, and humans or mice are particularly preferred. When human somatic cells are used, any fetal, neonatal, or adult somatic cells may be used.
  • the reprogramming gene is a gene encoding a reprogramming factor that has the action of reprogramming somatic cells to become iPS cells. Examples of combinations of reprogramming genes for producing human iPS cells include (i) to (iv) below, but are not limited to these examples.
  • OCT gene (I) OCT gene, KLF gene, SOX gene, MYC gene (ii) OCT gene, SOX gene, NANOG gene, LIN28 gene (iii) OCT gene, KLF gene, SOX gene, MYC gene, hTERT gene, SV40 large T gene (Iv) OCT gene, KLF gene, SOX gene
  • ES cells are stem cells having pluripotency and self-renewal ability, which are produced from an inner cell mass belonging to a part of an embryo at the blastocyst stage, which is an early stage of animal development.
  • the origin of ES cells is not particularly limited, but mammals are preferred, and humans or mice are particularly preferred.
  • a cell having a reporter gene introduced in the vicinity of the PDX1 gene can be used in order to facilitate confirmation of the degree of differentiation.
  • the pancreatic tissue stem / progenitor cell is a tissue stem / progenitor cell present in the pancreas of an animal and having multipotency and self-renewal ability.
  • the origin of pancreatic tissue stem / progenitor cells is not particularly limited, but mammals are preferable, and humans or mice are particularly preferable.
  • As a method for separating tissue stem / progenitor cells from the pancreas a conventionally known method can be arbitrarily employed, and is not particularly limited.
  • PDX1 is known as a marker molecule for pancreatic tissue stem / progenitor cells (Jonsson, J.
  • pancreatic tissue stem / progenitor cells differentiate into endocrine cells, exocrine cells, and pancreatic duct cells, giving rise to all types of cells present in the adult pancreas. Therefore, pancreatic tissue stem / progenitor cells can be separated using PDX1 as a marker molecule. In addition, this pancreatic tissue stem / progenitor cell may be not established or may be established.
  • the differentiation induction promoter used in the method for producing pancreatic hormone-producing cells according to the present invention is at least one selected from the following (1) to (3).
  • a pancreatic hormone-producing cell comprising an amino acid sequence in which one or several amino acids are substituted, deleted, and / or added in the amino acid sequence encoded by the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1.
  • a culture supernatant of a cell in which a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1 or a DNA hybridizing with a DNA complementary to this DNA under stringent conditions is incorporated as a foreign gene.
  • the DNA consisting of the base sequence described in SEQ ID NO: 1 has a length of 2308 bp known as DNA encoding human TM4SF20 (NCBI: LOCUS NM 024795).
  • the CDS of this DNA is 38. . 720, and encodes a polypeptide having the 229 amino acid sequence set forth in SEQ ID NO: 3 (see SEQ ID NO: 2).
  • this polypeptide can be used as a differentiation induction promoter.
  • pancreatic hormone-producing cells in the method for producing pancreatic hormone-producing cells according to the present invention, as long as the action of promoting differentiation induction into pancreatic hormone-producing cells is maintained, one or several amino acids in the amino acid sequence of the above polypeptide are substituted or missing.
  • a polypeptide comprising a lost and / or added amino acid sequence (hereinafter also referred to as “modified polypeptide”) can be used as a differentiation induction promoter. It is already known that a polypeptide consisting of an amino acid sequence modified by substitution, deletion and / or addition of one or several amino acids to an amino acid sequence maintains its biological activity (Mark, DF et al., Proc. Natl. Acad. Sci. USA, 81, pp.
  • amino acid side chains include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H , K, S, T), an amino acid having an aliphatic side chain (G, A, V, L, I, P), an amino acid having a hydroxyl group-containing side chain (S, T, Y), and a sulfur atom-containing side chain.
  • hydrophobic amino acids A, I, L, M, F, P, W, Y, V
  • hydrophilic amino acids R, D, N, C, E, Q, G, H , K, S, T
  • G, A, V, L, I, P amino acid having a hydroxyl group-containing side chain
  • S, T, Y hydroxyl group-containing side chain
  • the number may be, for example, 1 to 20, 1 to 15, or 1 to 10.
  • the number may be 1 to 5.
  • the homology between the modified polypeptide and the original polypeptide is preferably 80% or more, more preferably 90% or more, still more preferably 93% or more, particularly preferably 95% or more, and most preferably 98% or more.
  • amino acids 1 to 163 and 179 to 229 of SEQ ID NO: 3 are highly conserved portions between different species. For this reason, it is preferable that the amino acid of the part is preserve
  • polypeptides and modified polypeptides may be chemically synthesized, but can also be obtained by genetic engineering.
  • a DNA comprising the base sequence set forth in SEQ ID NO: 1 or a DNA hybridizing with a DNA comprising a base sequence complementary to this DNA under stringent conditions is incorporated as a foreign gene into a culturable host cell, By culturing the host cell and expressing the gene, the above-mentioned polypeptide or modified polypeptide can be obtained from the culture supernatant.
  • the host cell known cells such as bacteria, yeast, insect cells, animal cells and the like can be appropriately used. Examples of animal cells include HEK293 cells, HEK293T cells, CHO-K1 cells, and COS cells.
  • DNA that hybridizes under stringent conditions means that a specific DNA (DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 1) is used as a probe, and colony high It means DNA that can be obtained by employing a hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. For example, after hybridization at 65 ° C. in the presence of 0.7 to 1.0 M sodium chloride using a filter on which DNA derived from colonies or plaques is immobilized, 0.1 to 2 ⁇ SSC solution (1 ⁇ SSC composition: 150 mM sodium chloride, 15 mM sodium citrate) and DNA etc. that can be identified by washing the filter under 65 ° C.
  • the homology of the base sequence of the DNA that hybridizes under stringent conditions with the base sequence of the DNA used as the probe is preferably 80% or more, more preferably 90% or more, still more preferably 93% or more, 95 % Or more is particularly preferable, and 98% or more is most preferable.
  • polypeptides and modified polypeptides can be separated and purified by methods usually used in peptide chemistry, such as ion exchange resin, partition chromatography, gel chromatography, and reverse phase chromatography.
  • a culture supernatant containing the above-mentioned polypeptide or modified polypeptide can be used as a differentiation induction promoter.
  • the culture supernatant it is preferable to concentrate the culture supernatant by ultrafiltration or the like.
  • dialysis may be performed as necessary to remove unnecessary chemical substances.
  • the above-described differentiation induction promoter is added to the medium in the process of inducing differentiation from pluripotent stem cells to pancreatic hormone-producing cells.
  • a conventionally known method can be arbitrarily employed and is not particularly limited.
  • the concentration is preferably 10 to 200 ng / mL, more preferably 50 to 180 ng / mL, and even more preferably 60 to 150 ng / mL.
  • the concentration is preferably 0.5 to 20% (v / v), more preferably 1 to 10% (v / v), and 1.5 to 5% (v / v) is more preferable.
  • pancreatic hormone-producing cells two examples of methods for inducing differentiation from pluripotent stem cells to pancreatic hormone-producing cells (methods for producing pancreatic hormone-producing cells) will be described.
  • the method for producing pancreatic hormone-producing cells according to the present invention is described below. It is not limited to examples.
  • the first differentiation induction method is based on the method described in Non-Patent Document 1. This document is incorporated herein by reference.
  • the first differentiation induction method includes the following steps (A1) to (E1). In at least one of these steps, the differentiation induction promoter described above is added to the medium.
  • the step of adding the differentiation induction promoter is preferably at least one of steps (A1) to (C1), and more preferably at least one of steps (B1) to (C1).
  • (B1) A step of culturing the cells obtained in the step (A1) in the presence of FGF.
  • C1 A step of culturing the cells obtained in the step (B1) in the presence of a retinoid.
  • (D1) A step of culturing the cells obtained in the step (C1) in the presence of a ⁇ -secretase inhibitor.
  • (E1) A step of culturing the cells obtained in the step (D1) in the presence of at least one factor selected from the group consisting of exendin-4, HGF, IGF-1, and nicotinamide.
  • pluripotent stem cells are cultured in the presence of a growth factor belonging to the TGF- ⁇ superfamily.
  • growth factors belonging to the TGF- ⁇ superfamily include activin, nodal, BMP (bone morphogenetic protein), and among them, activin is preferable.
  • Such growth factors belonging to the TGF- ⁇ superfamily are known to promote differentiation from pluripotent stem cells into definitive endoderm cells (see Non-Patent Document 1, Patent Documents 1 to 3, etc.) .
  • the activin include activin A, activin B, activin AB and the like. Among these, activin A is preferable.
  • the concentration of the growth factor belonging to the TGF- ⁇ superfamily is preferably 5 to 250 ng / mL, more preferably 10 to 200 ng / mL, and further preferably 50 to 150 ng / mL.
  • the step (A1) it is preferable to add a growth factor belonging to the Wnt family to the medium.
  • a growth factor belonging to the Wnt family By adding a growth factor belonging to the Wnt family together with a growth factor belonging to the TGF- ⁇ superfamily, differentiation efficiency into definitive endoderm cells can be increased.
  • the growth factor belonging to the Wnt family include Wnt1, Wnt3a, Wnt5a, Wnt7a and the like. Wnt1 and Wnt3a are preferable, and Wnt3a is more preferable.
  • the concentration of the growth factor belonging to the Wnt family is preferably 1 to 1000 ng / mL, more preferably 10 to 100 ng / mL, and even more preferably 10 to 50 ng / mL.
  • a GSK-3 inhibitor for example, CHIR
  • a growth factor belonging to the Wnt family may be added instead of a growth factor belonging to the Wnt family.
  • GSK-3 inhibitors eg, CHIR
  • CHIR are known to activate the Wnt signaling pathway (J. Biol. Chem. 277 (34), pp. 30998-31004 (2002)).
  • an additional factor that can increase the efficiency of differentiation into definitive endoderm cells may be added to the medium.
  • Additional factors include, for example, PDGF (platelet-derived growth factor), EGF (epidermal growth factor), VEGF (vascular endothelial growth factor), KGF (keratinocyte growth factor), HGF, NGF (nerve growth factor), GDF ( Growth and differentiation factor), GLP (glucagon-like peptide), nicotinamide, exendin-4, retinoic acid, ethanolamine, parathyroid hormone, progesterone, aprotinin, hydrocortisone, gastrin, steroid alkaloid, copper chelator (triethylenepentamine, etc.), Forskolin, sodium butyrate, noggin, valproic acid, trichostatin A, Indian hedgehog, sonic hedgehog, proteasome inhibitor, Notch pathway inhibitor, hedgehog pathway inhibitor and the like.
  • a culture plate coated with a scaffold using a biocompatible material is preferable from the viewpoint of differentiation inducing ability, function expression ability, viability and the like.
  • the scaffold include laminin, fibronectin, collagen, heparan sulfate proteoglycan, gelatin, entactin, polyornithine and the like.
  • Examples of commercially available products, Becton Dickinson made of MATRIGEL TM, growth factor reduced MATRIGEL TM, etc. are available.
  • the medium used for culturing is prepared by adding various nutrient sources and other components necessary for the maintenance and growth of cells to a basic medium that can be used for culturing animal cells.
  • RPMI1640 medium As the basic medium, RPMI1640 medium, DMEM medium, CMRL1066 medium, Ham F12 medium, Eagle MEM medium, Glasgow MEM medium, IMEM Zinc Option medium, IMDM medium, William E medium, Fisher medium, McCoy medium, BME medium, ⁇ MEM medium, Examples thereof include BGJb medium, Medium 199 medium, and mixed media thereof.
  • Nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, starch, dextrin; hydrocarbons such as fatty acids, fats and oils, lecithin, alcohol; nitrogen such as ammonium sulfate, ammonium nitrate, ammonium chloride, urea, sodium nitrate Sources: inorganic salts such as sodium salt, potassium salt, magnesium salt, calcium salt and phosphate; various vitamins; various amino acids;
  • antibiotics such as penicillin and streptomycin
  • cholera toxin insulin
  • transferrin selenite
  • albumin 2-mercaptoethanol
  • serum or serum substitute commercially available products such as ITS-X, ITS-A, and ITS-G manufactured by Invitrogen are available.
  • ITS-X, ITS-A, and ITS-G commercially available products
  • B-27 TM supplement, N-2 supplement, Knockout TM serum substitute, etc., manufactured by Invitrogen are commercially available.
  • the step (A1) it is known that in order to increase the differentiation efficiency in the step (A1), it is important to sufficiently reduce the content of insulin, IGF, and the like in the medium (International Publication No. 2006/020919). See). For this reason, in the step (A1), it is preferable to use a serum-free medium or a low serum medium (see Non-Patent Document 1, Patent Documents 1 to 3, etc.).
  • the serum concentration is preferably 0 to 2% (v / v), more preferably 0 to 1% (v / v), and still more preferably 0 to 0.5% (v / v).
  • a serum-free or low-serum RPMI 1640 medium supplemented with activin A, Wnt3a, antibiotics such as penicillin or streptomycin, L-glutamine or a dipeptide containing L-glutamine is used.
  • the culture period in the step (A1) is, for example, 1 to 6 days, and preferably 2 to 4 days.
  • the progress of differentiation induction into definitive endoderm cells can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR.
  • stem cell marker genes such as OCT4, NANOG, SOX2, ECAD, etc. decreases, and definitive endoderm cell marker genes SOX17, CER, Expression of FOXA2, CXCR4, etc. is enhanced.
  • the step (A1) is preferably divided into a step (A1-1) for culturing in a serum-free first medium and a step (A1-2) for culturing in a low serum second medium.
  • the first medium used in step (A1-1) may be the same as above except that it is serum-free. That is, the first medium contains a growth factor belonging to the TGF- ⁇ superfamily, and may contain a growth factor belonging to the Wnt family. The first medium preferably contains a growth factor belonging to the Wnt family.
  • the culture period in the step (A1-1) is, for example, 1 to 3 days, and preferably 1 to 2 days.
  • differentiation from pluripotent stem cells to mesendoderm cells proceeds.
  • the progress of differentiation induction into mesendoderm cells can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR.
  • stem cell marker genes such as OCT4, NANOG, SOX2, ECAD and the like decreases, and mesendoderm cell marker genes BRA, FGF4, Expression of WNT3, NCAD, etc. is enhanced.
  • the second medium used in the step (A1-2) may be the same as described above except for low serum. That is, the second medium contains a growth factor belonging to the TGF- ⁇ superfamily, and may contain a growth factor belonging to the Wnt family.
  • the serum concentration is preferably 0.05 to 2% (v / v), more preferably 0.05 to 1% (v / v), still more preferably 0.1 to 0.5% (v / v).
  • the culture period in the step (A1-2) is, for example, 1 to 3 days, and preferably 1 to 2 days.
  • differentiation from mesendoderm cells to definitive endoderm cells proceeds.
  • the progression of differentiation induction into definitive endoderm cells can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR.
  • the obtained cells may be concentrated, isolated and / or purified by a known method before proceeding to the next step (B1).
  • step (B1) the cells obtained in step (A1) are cultured in the presence of FGF.
  • FGF examples include FGF-1, FGF-2 (bFGF), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, and FGF-11.
  • FGF-2 (bFGF), FGF-5, FGF-7, and FGF-10 are preferable.
  • the concentration of FGF is preferably 5 to 150 ng / mL, more preferably 10 to 100 ng / mL, and even more preferably 20 to 80 ng / mL.
  • Hedgehog pathway inhibitors include KAAD-cyclopamine (28- [2-[[6-[(3-phenylpropanoyl) amino] hexanoyl] amino] ethyl] -17 ⁇ , 23 ⁇ -epoxyveratraman-3-one) , KAAD-cyclopamine analogs, jervin (17,23 ⁇ -epoxy-3 ⁇ -hydroxyveratraman-11-one), gerbin analogs, hedgehog pathway blocking antibodies, and the like, among which KAAD-cyclopamine is preferred.
  • the concentration of the hedgehog pathway inhibitor is preferably 0.01 to 5 ⁇ M, more preferably 0.02 to 2 ⁇ M, and even more preferably 0.1 to 0.5 ⁇ m.
  • the container used for culture may be the same as in step (A1).
  • the medium may be the same as in step (A1) except for the above-described factors and the serum concentration of the medium.
  • the serum concentration of the medium is preferably 0.1 to 5% (v / v), more preferably 0.5 to 5% (v / v), and even more preferably 1 to 5% (v / v).
  • low serum RPMI 1640 medium supplemented with FGF-10, KAAD-cyclopamine, antibiotics such as penicillin and streptomycin, L-glutamine or a dipeptide containing L-glutamine is used.
  • the culture period in the step (B1) is, for example, 1 to 6 days, and preferably 2 to 4 days.
  • the progress of differentiation induction can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR. As differentiation progresses, the expression of genes such as HNF1B and HNF4A increases.
  • the obtained cells may be concentrated, isolated, and / or purified by a known method before proceeding to the next step (C1).
  • step (C1) the cells obtained in step (B1) are cultured in the presence of a retinoid.
  • retinoids examples include retinol, retinal, retinoic acid, etc. Among them, retinoic acid is preferable.
  • the concentration of retinoid is preferably 0.2 to 10 ⁇ M, more preferably 0.4 to 8 ⁇ M, and even more preferably 1 to 4 ⁇ M.
  • a hedgehog pathway inhibitor it is preferable to add a hedgehog pathway inhibitor to the medium. Differentiation efficiency can be enhanced by adding a hedgehog pathway inhibitor together with the retinoid.
  • the hedgehog pathway inhibitor include KAAD-cyclopamine, an analog of KAAD-cyclopamine, jervin, an analog of jervin, a hedgehog pathway blocking antibody, and among them, KAAD-cyclopamine is preferable.
  • the concentration of the hedgehog pathway inhibitor is preferably 0.01 to 5 ⁇ M, more preferably 0.02 to 2 ⁇ M, and even more preferably 0.1 to 0.5 ⁇ M.
  • FGF FGF-1, FGF-2 (bFGF), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, and FGF-11.
  • FGF-2 (bFGF), FGF-5, FGF-7, and FGF-10 are preferable.
  • the concentration of FGF is preferably 0.5 to 50 ng / mL, more preferably 1 to 25 ng / mL, and even more preferably 2 to 10 ng / mL.
  • a growth factor belonging to the TGF- ⁇ superfamily may be added to the medium.
  • the concentration of the growth factor belonging to the TGF- ⁇ superfamily is preferably 5 to 250 ng / mL, more preferably 10 to 200 ng / mL, and further preferably 20 to 150 ng / mL.
  • the container used for culture may be the same as in step (B1).
  • the medium may be basically the same as in the step (B1) except for the above-described factors.
  • a serum substitute is preferably added to the medium instead of serum.
  • examples of commercially available serum substitutes include B-27 TM supplement, N-2 supplement, Knockout TM serum substitute, etc. manufactured by Invitrogen, and among them, B-27 TM supplement is preferable.
  • the concentration of B-27 TM supplement is preferably 0.1 to 10% (v / v), more preferably 0.2 to 5% (v / v), and 0.4 to 2.5% (v / v). Is more preferable.
  • this B-27 TM supplement is commercially available as a 50-fold stock solution
  • the B-27 TM supplement concentration is 5- to 500-fold diluted to achieve a concentration of 0.1 to 10% (v / v). As long as it is added to the medium.
  • serum-free DMEM / ham F12 medium supplemented with retinoic acid, KAAD-cyclopamine, FGF-10, antibiotics such as penicillin and streptomycin, and B-27 TM supplement is used.
  • the culture period in the step (C1) is, for example, 1 to 6 days, and preferably 2 to 4 days.
  • the progress of differentiation induction can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR. As differentiation progresses, the expression of genes such as PDX1, HNF6, and HLXB9 increases.
  • the obtained cells may be concentrated, isolated and / or purified by a known method before proceeding to the next step (D1).
  • step (D1) the cells obtained in step (C1) are cultured in the presence of a ⁇ -secretase inhibitor.
  • DAPT N- [N- (3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine-tert-butyl ester
  • L-658458 [1S-benzyl- 4R- [1- (1S-carbamoyl-2-phenethylcarbamoyl) -1S-3-methylbutylcarbamoyl] -2R-hydroxy-5-phenethylpentyl] carbamic acid tert-butyl ester
  • concentration of the ⁇ -secretase inhibitor is preferably 1 to 50 ⁇ M, more preferably 2 to 40 ⁇ M, and even more preferably 5 to 20 ⁇ M.
  • exendin-4 is preferably added to the medium. Differentiation efficiency can be increased by adding exendin-4 together with a ⁇ -secretase inhibitor.
  • concentration of exendin-4 is preferably 5 to 150 ng / mL, more preferably 10 to 100 ng / mL, and further preferably 20 to 80 ng / mL.
  • the container and medium used for the culture may be the same as in step (C1). That is, it is preferable to add a serum substitute to the medium.
  • serum-free DMEM / Ham F12 medium supplemented with DAPT, exendin-4, antibiotics such as penicillin and streptomycin, and B-27 TM supplement is used.
  • the culture period in the step (D1) is, for example, 1 to 6 days, and preferably 2 to 3 days.
  • the progress of differentiation induction can be evaluated not only by morphological observation but also by confirming gene expression by RT-PCR. As differentiation proceeds, the expression of genes such as NKX6-1, NGN3, PAX4, and NKX2-2 increases.
  • the obtained cells may be concentrated, isolated and / or purified by a known method before proceeding to the next step (E1).
  • step (E1) the cells obtained in step (D1) are cultured in the presence of at least one factor selected from the group consisting of exendin-4, HGF, IGF-1, and nicotinamide.
  • exendin-4 As exendin-4, HGF, IGF-1, and nicotinamide, it is preferable to add two or more of them, and it is more preferable to add three or more.
  • the concentration of exendin-4 is preferably 5 to 150 nM, more preferably 10 to 100 nM, and even more preferably 20 to 80 nM.
  • the concentration of HGF is preferably 5 to 150 ng / mL, more preferably 10 to 100 ng / mL, and further preferably 20 to 80 ng / mL.
  • the concentration of IGF-1 is preferably 5 to 150 ng / mL, more preferably 10 to 100 ng / mL, and further preferably 20 to 80 ng / mL.
  • the concentration of nicotinamide is preferably 1 to 30 mM, more preferably 3 to 20 mM, and even more preferably 5 to 15 mM.
  • the container and medium used for the culture may be the same as in step (D1). That is, it is preferable to add a serum substitute to the medium.
  • serum-free CMRL 1066 medium supplemented with antibiotics such as exendin-4, HGF, IGF-1, penicillin, streptomycin, B-27 TM supplement is used.
  • the culture period in the step (E1) is, for example, 3 to 20 days, and preferably 3 to 10 days.
  • pancreatic hormone-producing cells are obtained.
  • the progress of differentiation induction into pancreatic hormone-producing cells can be evaluated by confirming gene expression by RT-PCR in addition to confirming production of pancreatic hormones such as insulin, glucagon and somatostatin.
  • pancreatic hormones such as insulin, glucagon and somatostatin.
  • the expression of at least one gene among INS, GCG, GHRL, SST, PPY, etc. increases.
  • the second differentiation induction method is based on the method described in Non-Patent Document 4. This document is incorporated herein by reference.
  • the second differentiation induction method includes the following steps (A2) to (D2). In at least one of these steps, the differentiation induction promoter described above is added to the medium.
  • the step of adding the differentiation induction promoter is preferably at least one of steps (C2) to (D2), and particularly preferably step (D2).
  • (A2) culturing pluripotent stem cells in the presence of a growth factor belonging to the TGF- ⁇ superfamily and at least one factor selected from the group consisting of a growth factor belonging to the Wnt family and a GSK-3 inhibitor Process.
  • (B2) A step of culturing the cells obtained in the step (A2) in the presence of a growth factor belonging to the TGF- ⁇ superfamily.
  • (C2) A step of culturing the cells obtained in the step (B2) in the presence of a retinoid.
  • the cells obtained in the above step (C2) are cultured in the presence of at least one factor selected from the group consisting of a cAMP increasing agent, dexamethasone, a TGF- ⁇ 1 type receptor inhibitor, and nicotinamide. Process.
  • Step (A2) pluripotent stem cells in the presence of a growth factor belonging to the TGF- ⁇ superfamily and at least one factor selected from the group consisting of a growth factor belonging to the Wnt family and a GSK-3 inhibitor Is cultured.
  • Examples of the growth factor belonging to the TGF- ⁇ superfamily include activin, nodal, BMP and the like, among which activin is preferable.
  • Examples of the activin include activin A, activin B, activin AB and the like. Among these, activin A is preferable.
  • the concentration of the growth factor belonging to the TGF- ⁇ superfamily is preferably 5 to 250 ng / mL, more preferably 10 to 200 ng / mL, and further preferably 50 to 150 ng / mL.
  • Examples of the growth factor belonging to the Wnt family include Wnt1, Wnt3a, Wnt5a, Wnt7a and the like. Wnt1 and Wnt3a are preferable, and Wnt3a is more preferable.
  • the concentration of the growth factor belonging to the Wnt family is preferably 1 to 1000 ng / mL, more preferably 10 to 100 ng / mL, and even more preferably 10 to 50 ng / mL.
  • GSK-3 inhibitor either a GSK-3 ⁇ inhibitor or a GSK-3 ⁇ inhibitor may be used, but a GSK-3 ⁇ inhibitor is preferably used.
  • Specific examples include CHIR99021 (6-[[2-[[4- (2,4-dichlorophenyl) -5- (5-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] amino) ) -3-pyridinecarbonitrile), SB415286 (3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione), SB216673 (3 -(2,4-dichlorophenyl) -4- (1-methyl-1H-indol-3-yl) -1H-pyrrole-2,5-dione), indirubin-3'-monooxime (3-[(3E)- 3- (hydroxyimino) -2,3-dihydro-1H-ind
  • an additional factor that can increase differentiation efficiency may be added to the medium.
  • Additional factors include, for example, PDGF, EGF, VEGF, KGF, HGF, NGF, GDF, GLP, nicotinamide, exendin-4, retinoic acid, ethanolamine, parathyroid hormone, progesterone, aprotinin, hydrocortisone, gastrin, steroids Alkaloids, copper chelators (such as triethylenepentamine), forskolin, sodium butyrate, noggin, valproic acid, trichostatin A, Indian hedgehog, sonic hedgehog, proteasome inhibitor, Notch pathway inhibitor, hedgehog pathway inhibitor, etc. Is mentioned.
  • a culture plate coated with a scaffold using a biocompatible material is preferable from the viewpoint of differentiation inducing ability, function expression ability, viability and the like.
  • the scaffold include laminin, fibronectin, collagen, heparan sulfate proteoglycan, gelatin, entactin, polyornithine and the like.
  • Examples of commercially available products, Becton Dickinson made of MATRIGEL TM, growth factor reduced MATRIGEL TM, etc. are available.
  • the medium used for culturing is prepared by adding various nutrient sources and other components necessary for the maintenance and growth of cells to a basic medium that can be used for culturing animal cells.
  • RPMI1640 medium As the basic medium, RPMI1640 medium, DMEM medium, CMRL1066 medium, Ham F12 medium, Eagle MEM medium, Glasgow MEM medium, IMEM Zinc Option medium, IMDM medium, William E medium, Fisher medium, McCoy medium, BME medium, ⁇ MEM medium, Examples thereof include BGJb medium, Medium 199 medium, and mixed media thereof.
  • Nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, starch, dextrin; hydrocarbons such as fatty acids, fats and oils, lecithin, alcohol; nitrogen such as ammonium sulfate, ammonium nitrate, ammonium chloride, urea, sodium nitrate Sources: inorganic salts such as sodium salt, potassium salt, magnesium salt, calcium salt and phosphate; various vitamins; various amino acids;
  • antibiotics such as penicillin and streptomycin
  • cholera toxin insulin
  • transferrin selenite
  • albumin 2-mercaptoethanol
  • serum or serum substitute commercially available products such as ITS-X, ITS-A, and ITS-G manufactured by Invitrogen are available.
  • ITS-X, ITS-A, and ITS-G commercially available products
  • B-27 TM supplement, N-2 supplement, Knockout TM serum substitute, etc., manufactured by Invitrogen are commercially available.
  • the serum concentration is preferably 0 to 3% (v / v), more preferably 0 to 2% (v / v).
  • low serum RPMI 1640 medium supplemented with activin A, CHIR99021 is used.
  • the culture period in the step (A2) is, for example, 1 to 3 days, and preferably 1 to 2 days.
  • step (B2) the cells obtained in step (A2) are cultured in the presence of a growth factor belonging to the TGF- ⁇ superfamily.
  • Examples of the growth factor belonging to the TGF- ⁇ superfamily include activin, nodal, BMP and the like, among which activin is preferable.
  • Examples of the activin include activin A, activin B, activin AB and the like. Among these, activin A is preferable.
  • the concentration of the growth factor belonging to the TGF- ⁇ superfamily is preferably 5 to 250 ng / mL, more preferably 10 to 200 ng / mL, and further preferably 50 to 150 ng / mL.
  • the container and medium used for culture may be the same as in step (A2). That is, in a preferred embodiment, low serum RPMI 1640 medium supplemented with activin A is used.
  • the culture period in the step (B2) is, for example, 1 to 4 days, and preferably 1 to 3 days.
  • the cells obtained in the step (B2) are cultured in the presence of a retinoid.
  • retinoids examples include retinol, retinal, retinoic acid, etc. Among them, retinoic acid is preferable.
  • the concentration of retinoid is preferably 0.2 to 10 ⁇ M, more preferably 0.4 to 8 ⁇ M, and even more preferably 1 to 4 ⁇ M.
  • BMP receptor inhibitors include dorsomorphin (6- [4- [2- (1-piperidinyl) ethoxy] phenyl] -3- (4-pyridyl) pyrazolo [1,5-a] pyrimidine), LDN-193189 (4- (6- (4- (piperazin-1-yl) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl) quinoline) and the like, among which dorsomorphin is preferable.
  • the concentration of the BMP receptor inhibitor is preferably 0.2 to 5 ⁇ M, more preferably 0.3 to 3 ⁇ M, and even more preferably 0.5 to 2 ⁇ M.
  • TGF- ⁇ 1 type receptor inhibitors include SB431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazol-2-yl] benzamide), SB525334. (6- [2- (1,1-dimethylethyl) -5- (6-methyl-1,2-pyridinyl) -1H-imidazol-4-yl] quinoxaline), LY364947 (4- [3- (2- Pyridinyl) -1H-pyrazol-4-yl] quinoline), among which SB431542 is preferred.
  • TGF- ⁇ 1 type receptor inhibitor Alk5 inhibitor II manufactured by Calbiochem can also be used.
  • concentration of the TGF- ⁇ 1 type receptor inhibitor is preferably 1 to 50 ⁇ M, more preferably 2 to 30 ⁇ M, and even more preferably 5 to 20 ⁇ M.
  • the container used for culture may be the same as in step (B2).
  • the medium may be basically the same as in the step (B2) except for the above-described factors.
  • a serum substitute is preferably added to the medium instead of serum.
  • examples of commercially available serum substitutes include B-27 TM supplement, N-2 supplement, Knockout TM serum substitute, etc. manufactured by Invitrogen, and among them, B-27 TM supplement is preferable.
  • the concentration of B-27 TM supplement is preferably 0.1 to 10% (v / v), more preferably 0.2 to 5% (v / v), and 0.4 to 2.5% (v / v). Is more preferable.
  • this B-27 TM supplement is commercially available as a 50-fold stock solution
  • the B-27 TM supplement concentration is 5- to 500-fold diluted to achieve a concentration of 0.1 to 10% (v / v). As long as it is added to the medium.
  • serum-free IMEM Zinc Option medium supplemented with retinoic acid, dorsomorphin, SB431542, B-27 TM supplement is used.
  • the culture period in the step (C2) is, for example, 5 to 9 days, and preferably 6 to 8 days.
  • step (D2) the cells obtained in step (C2) are treated in the presence of at least one factor selected from the group consisting of a cAMP increasing agent, dexamethasone, a TGF- ⁇ 1 type receptor inhibitor, and nicotinamide. Incubate at
  • cAMP increasing agent dexamethasone, TGF- ⁇ 1 type receptor inhibitor, and nicotinamide, it is preferable to add two or more of them, and it is more preferable to add three or more.
  • the cAMP increasing agent examples include an adenylate cyclase activator such as forskolin; a phosphodiesterase inhibitor such as 3-isobutyl-1-methylxanthine; a cAMP analog such as dibutyryl cAMP; among them, forskolin is preferable.
  • the concentration of the cAMP increasing agent is preferably 1 to 50 ⁇ M, more preferably 2 to 30 ⁇ M, and even more preferably 5 to 20 ⁇ M.
  • the concentration of dexamethasone is preferably 1 to 50 ⁇ M, more preferably 2 to 30 ⁇ M, and even more preferably 5 to 20 ⁇ M.
  • TGF- ⁇ 1 type receptor inhibitor examples include SB431542, SB525334, LY364947 and the like, among which SB431542 is preferable.
  • TGF- ⁇ 1 type receptor inhibitor Alk5 inhibitor II manufactured by Calbiochem can also be used.
  • concentration of the TGF- ⁇ 1 type receptor inhibitor is preferably 1 to 50 ⁇ M, more preferably 2 to 30 ⁇ M, and even more preferably 5 to 20 ⁇ M.
  • the concentration of nicotinamide is preferably 1 to 30 mM, more preferably 3 to 20 mM, and even more preferably 5 to 15 mM.
  • the container and medium used for culture may be the same as in step (C2). That is, it is preferable to add a serum substitute to the medium.
  • serum-free IMEM Zinc Option medium supplemented with forskolin, dexamethasone, Alk5 inhibitor II, nicotinamide, B-27 TM supplement is used.
  • the culture period in the step (D2) is, for example, 9 to 13 days, and preferably 10 to 12 days.
  • pancreatic hormone-producing cells are obtained.
  • the progress of differentiation induction into pancreatic hormone-producing cells can be evaluated by confirming gene expression by RT-PCR in addition to confirming production of pancreatic hormones such as insulin, glucagon and somatostatin.
  • pancreatic hormones such as insulin, glucagon and somatostatin.
  • the expression of at least one of the marker genes of pancreatic hormone-producing cells increases.
  • the differentiation-inducing promoter described above is added to the medium in the process of inducing differentiation from pancreatic tissue stem / progenitor cells to pancreatic hormone-producing cells.
  • a conventionally known method can be arbitrarily employed and is not particularly limited.
  • a polypeptide or a modified polypeptide When a polypeptide or a modified polypeptide is added as a differentiation induction promoter, its concentration is preferably 10 to 200 ng / mL, more preferably 50 to 150 ng / mL, and even more preferably 60 to 120 ng / mL. In addition, when a culture supernatant is added as a differentiation induction promoter, the concentration is preferably 0.5 to 20% (v / v), more preferably 1 to 10% (v / v), and 1.5 to 5% (v / v) is more preferable.
  • pancreatic hormone-producing cells a method for producing pancreatic hormone-producing cells
  • the method for producing pancreatic hormone-producing cells according to the present invention is limited to this example. Is not to be done.
  • This differentiation induction method includes the following steps (A3) to (E3). In at least one of these steps, the differentiation induction promoter described above is added to the medium.
  • the step of adding a differentiation induction promoter is preferably at least one of steps (D3) to (E3), and particularly preferably step (E3).
  • A3 A step of culturing pancreatic tissue stem / progenitor cells in the absence of growth factors belonging to the TGF- ⁇ superfamily, retinoids, FGF, and nicotinamide.
  • B3 A step of culturing the cells obtained in the step (A3) in the presence of a growth factor belonging to the TGF- ⁇ superfamily.
  • C3 A step of culturing the cells obtained in the step (B3) in the presence of a retinoid.
  • D3) A step of culturing the cells obtained in the step (C3) in the presence of FGF.
  • E3) A step of culturing the cells obtained in the step (D3) in the presence of nicotinamide.
  • step (A3) pancreatic tissue stem / progenitor cells are cultured in the absence of growth factors belonging to the TGF- ⁇ superfamily, retinoids, FGF, and nicotinamide.
  • a culture plate coated with a scaffold using a biocompatible material is preferable from the viewpoint of differentiation inducing ability, function expression ability, viability and the like.
  • the scaffold include laminin, fibronectin, collagen, heparan sulfate proteoglycan, gelatin, entactin, polyornithine and the like.
  • Examples of commercially available products, Becton Dickinson made of MATRIGEL TM, growth factor reduced MATRIGEL TM, etc. are available.
  • the medium used for culturing is prepared by adding various nutrient sources and other components necessary for the maintenance and growth of cells to a basic medium that can be used for culturing animal cells.
  • RPMI1640 medium As the basic medium, RPMI1640 medium, DMEM medium, CMRL1066 medium, Ham F12 medium, Eagle MEM medium, Glasgow MEM medium, IMEM Zinc Option medium, IMDM medium, William E medium, Fisher medium, McCoy medium, BME medium, ⁇ MEM medium, Examples thereof include BGJb medium, Medium 199 medium, and mixed media thereof.
  • Nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, starch, dextrin; hydrocarbons such as fatty acids, fats and oils, lecithin, alcohol; nitrogen such as ammonium sulfate, ammonium nitrate, ammonium chloride, urea, sodium nitrate Sources: inorganic salts such as sodium salt, potassium salt, magnesium salt, calcium salt and phosphate; various vitamins; various amino acids;
  • antibiotics such as penicillin and streptomycin
  • cholera toxin insulin
  • transferrin selenite
  • 2-mercaptoethanol albumin
  • serum or serum substitutes As insulin, transferrin, and selenite, commercially available products such as ITS-X, ITS-A, and ITS-G manufactured by Invitrogen are available.
  • ITS-X, ITS-A, and ITS-G commercially available products
  • B-27 TM supplement, N-2 supplement, Knockout TM serum substitute, etc., manufactured by Invitrogen are commercially available.
  • serum-free DMEM / Ham F12 supplemented with antibiotics such as penicillin, streptomycin, insulin, transferrin, selenite, 2-mercaptoethanol, albumin is used.
  • concentration of insulin is preferably 2 to 30 ⁇ g / mL, more preferably 5 to 20 ⁇ g / mL.
  • the transferrin concentration is preferably 1 to 20 ⁇ g / mL, more preferably 3 to 10 ⁇ g / mL.
  • the concentration of selenious acid is preferably 1 to 20 ng / mL, and more preferably 5 to 20 ng / mL.
  • the concentration of 2-mercaptoethanol is preferably 50 to 200 ⁇ M, more preferably 50 to 100 ⁇ M.
  • concentration of albumin is preferably 1 to 10 ng / mL, and more preferably 2 to 5 ng / mL.
  • the culture period in the step (A3) is, for example, 1 to 3 days, and preferably 1 to 2 days.
  • step (B3) the cells obtained in step (A3) are cultured in the presence of a growth factor belonging to the TGF- ⁇ superfamily.
  • Examples of the growth factor belonging to the TGF- ⁇ superfamily include activin, nodal, BMP and the like, among which activin is preferable.
  • Examples of the activin include activin A, activin B, activin AB and the like. Among these, activin A is preferable.
  • the concentration of the growth factor belonging to the TGF- ⁇ superfamily is preferably 5 to 250 ng / mL, more preferably 10 to 200 ng / mL, and further preferably 50 to 150 ng / mL.
  • the container used for culture may be the same as in step (A3).
  • the medium may be the same as in step (A3) except that a growth factor belonging to the TGF- ⁇ superfamily is added. That is, in a preferred embodiment, serum-free DMEM / ham F12 supplemented with antibiotics such as penicillin and streptomycin, insulin, transferrin, selenite, 2-mercaptoethanol, and albumin is used.
  • the culture period in the step (B3) is, for example, 2 to 6 days, and preferably 3 to 5 days.
  • the cells obtained in the step (B3) are cultured in the presence of a retinoid.
  • retinoids examples include retinol, retinal, retinoic acid and the like, and among them, all-trans retinoic acid is preferable.
  • concentration of retinoid is preferably 0.2 to 10 ⁇ M, more preferably 0.4 to 8 ⁇ M, and even more preferably 1 to 4 ⁇ M.
  • the container used for culture may be the same as in step (A3).
  • the medium may be the same as in step (A3) except that a growth factor belonging to the TGF- ⁇ superfamily is added.
  • serum-free DMEM / Ham F12 supplemented with antibiotics such as all-trans retinoic acid, penicillin, streptomycin, insulin, transferrin, selenite, 2-mercaptoethanol, albumin is used.
  • the culture period in the step (C3) is, for example, 2 to 6 days, and preferably 3 to 5 days.
  • Step (D3) the cells obtained in the step (C3) are cultured in the presence of FGF.
  • FGF examples include FGF-1, FGF-2 (bFGF), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, and FGF-11.
  • FGF-2 (bFGF), FGF-5, FGF-7, and FGF-10 are preferable.
  • the concentration of FGF is preferably 1 to 30 ng / mL, more preferably 2 to 20 ng / mL, and even more preferably 5 to 15 ng / mL.
  • the container used for culture may be the same as in step (A3).
  • the medium may be basically the same as in step (C3) except that FGF is added.
  • FGF FGF-2
  • serum-free DMEM / ham F12 supplemented with antibiotics such as FGF-2 (bFGF), penicillin, streptomycin, insulin, transferrin, selenite, albumin is used.
  • the culture period in the step (D3) is, for example, 1 to 5 days, and preferably 2 to 4 days.
  • step (E3) the cells obtained in step (D3) are cultured in the presence of nicotinamide.
  • concentration of nicotinamide is preferably 1 to 30 mM, more preferably 3 to 20 mM, and even more preferably 5 to 15 mM.
  • FGF FGF-1, FGF-2 (bFGF), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, and FGF-11.
  • FGF-2 (bFGF), FGF-5, FGF-7, and FGF-10 are preferable.
  • the concentration of FGF is preferably 1 to 30 ng / mL, more preferably 2 to 20 ng / mL, and even more preferably 5 to 15 ng / mL.
  • the container used for culture may be the same as in step (A3).
  • the medium may be basically the same as in step (D3) except that nicotinamide is added.
  • nicotinamide is added.
  • serum-free DMEM / ham F12 supplemented with antibiotics such as nicotinamide, FGF-2 (bFGF), penicillin, streptomycin, insulin, transferrin, selenite, albumin is used.
  • the culture period in the step (E3) is, for example, 3 to 20 days, and preferably 3 to 10 days.
  • pancreatic hormone-producing cells are obtained.
  • the progress of differentiation induction into pancreatic hormone-producing cells can be evaluated by confirming gene expression by RT-PCR in addition to confirming production of pancreatic hormones such as insulin, glucagon and somatostatin.
  • pancreatic hormones such as insulin, glucagon and somatostatin.
  • the expression of at least one gene among marker genes of pancreatic hormone-producing cells such as INS, GCG, GHRL, SST, PPY, increases. .
  • pancreatic hormone-producing cells obtained as described above can be applied to therapeutic agents such as diabetes.
  • a cell mass such as a pellet obtained by concentrating the insulin-producing cells as it is or by filtering can be used as a therapeutic agent for diabetes.
  • This therapeutic agent for diabetes can be cryopreserved by adding a protective agent such as DMSO.
  • DMSO protective agent
  • a small incision is made in the right lower abdomen of a human patient, a thin blood vessel in the mesentery is exposed, and a catheter is directly viewed. Transplant the cells by inserting a cell, identify the portal vein of the liver by echo, transplant the cells by puncturing the catheter, or transplant to the spleen by puncturing the spleen directly under the abdominal echo guide A method is mentioned.
  • Dose (implantation amount), 1 ⁇ 10 8 ⁇ is preferably 1 ⁇ 10 10 cells / animal, and more preferably 5 ⁇ 10 8 ⁇ 1 ⁇ 10 10 cells / animal.
  • the dose (transplant amount) can be appropriately changed depending on the age, weight, symptoms, etc. of the patient to be administered.
  • pancreatic hormone-producing cells obtained as described above can be used as a research reagent.
  • a new drug can be screened by adding the new drug to a culture vessel in which pancreatic hormone-producing cells are cultured or a bioreactor containing the pancreatic hormone-producing cells.
  • bioartificial pancreas using the pancreatic hormone-producing cells obtained as described above.
  • the bioartificial pancreas include a hybrid type artificial pancreas in which a hollow fiber type bioreactor (device) and pancreatic hormone-producing cells are combined.
  • Bioartificial pancreas is attached outside the body and connected to the blood vessel, placed in the body and connected to the blood vessel, placed in the abdominal cavity without connecting to the blood vessel, placed subcutaneously without connecting to the blood vessel It can be applied to any form of bioartificial pancreas.
  • a differentiation induction promoter was prepared as follows. 10 cm of CHO-K1 cells subcultured in Ham's F12 medium (Sigma, N6658) supplemented with 10% FBS (fetal bovine serum) (Nichirei, 171012), 1% penicillin / streptomycin (Life Technologies Japan, 15140-122) 5 ⁇ 10 5 plates were plated on the dish. On the next day, using FuGENE6 (Roche), an expression vector (pCAGGS-IBCAP) of a polypeptide (hereinafter referred to as “IBCAP”) encoded by a DNA comprising the nucleotide sequence set forth in SEQ ID NO: 1 was selected as CHO-K1.
  • IBCAP-expressing stable CHO cells were transfected and IBCAP was forced to be expressed. After 48 hours, the cells were diluted to 1/20 concentration and re-plated into 10 cm dishes. The next day, G418 (Nacalai Tesque, 09380-44) having a final concentration of 400 ⁇ g / mL was added, and thereafter, the medium was changed every 3 to 5 days to form colonies. Colonies cloned by limiting dilution are isolated, and after growth, gene expression is confirmed by Southern blotting and Northern blotting. A stable IBCAP-expressing CHO-K1 cell line (hereinafter referred to as “IBCAP-expressing stable CHO cells”). Was made.
  • the IBCAP-expressing Stable CHO cells were supplemented with 1% GLUTAMAX I (Life Technologies Japan, 35050-061) and 1% penicillin / streptomycin (Life Technologies Japan, 15140-122). 011). Further, the conditioned IBCAP-expressing stable CHO cells were subjected to forced aeration CO 2 incubator (Tytech, CO 2 -BR-43FL, temperature: 37 ° C., shaking speed: 120 rpm, gas conditions: 5% CO 2 , 20 mL / min. / Flask), and culture supernatant was prepared using these cells.
  • forced aeration CO 2 incubator Teytech, CO 2 -BR-43FL, temperature: 37 ° C., shaking speed: 120 rpm, gas conditions: 5% CO 2 , 20 mL / min. / Flask
  • the culture supernatant was confirmed to have a survival rate of 90% or more, and subcultured so that the number of cells was 5 ⁇ 10 5 cells / mL (culture solution volume: 150 mL culture solution / 500 mL flask), and collected after 5 days. (The number of cells was about 4-5 ⁇ 10 5 cells / mL).
  • the collected culture supernatant is then concentrated about 10 times using Centriprep (Millipore, 4302, YM-3) (300 mL is concentrated to about 30 mL), and further against 2 L of 30 mM HEPES (pH 7.6). And dialyzed 3 times. Then, the culture supernatant after dialysis (hereinafter referred to as “IBCAP culture supernatant”) was prepared as a differentiation induction promoter.
  • pCAGGS a culture supernatant after dialysis
  • TIG3 / KOSM cells consist of 1% (v / v) penicillin / streptomycin (Gibco), 20% (v / v) Knockout TM serum replacement (Gibco), 1% (v / v) nonessential amino acids (Gibco), Maintained in DMEM / Ham F12 medium supplemented with 2.5 mM L-glutamine, 0.1 mM 2-mercaptoethanol (Gibco), 5 ng / mL FGF-2 (R & D Systems), 5 mM sodium chloride.
  • TIG3 / KOSM cells increased to 10 cm dish were plated at a cell density of 1 ⁇ 10 9 cells / well on a 6-well plate coated with MATRIGEL TM (Becton Dickinson), and STO feeder cells were used. Incubated overnight in conditioned medium. Then, the medium was removed, 1 mL of CTK (0.25% trypsin, 1 mg / mL Collagenase IV, 20% KSR, 1 mM CaCl 2 in PBS) was added, treated at 37 ° C. for 5 minutes, and STO feeder cells were removed. Later, TIG3 / KOSM cells were detached by suspending by pipetting.
  • CTK 0.25% trypsin, 1 mg / mL Collagenase IV, 20% KSR, 1 mM CaCl 2 in PBS
  • the peeled TIG3 / KOSM cells are taken into a 15 mL tube, centrifuged at 1000 rpm (150 ⁇ g) for 5 minutes, the supernatant is removed, and the cell density is 1 ⁇ 10 9 cells / well in a Matrigel TM coated 6-well plate. Plated with.
  • said conditioned medium was prepared as follows. Specifically, 7.5 ⁇ 10 6 mitomycin-treated STO cells were plated on a 15 cm dish, and the next day, the medium was replaced with human iPS medium (without FGF-2), treated for 1 to 3 hours, and then again into human iPS medium. The culture was changed and cultured for 24 hours. The next day, the supernatant was collected and the cells were removed by centrifugation at 1500 rpm (330 ⁇ g) for 10 minutes and stocked at ⁇ 20 to ⁇ 30 ° C.
  • 1% (v / v) penicillin / streptomycin (Gibco), 0.2% (v / v) FBS (fetal bovine serum), 2 mM L-glutamine (Gibco), 100 ng / mL activin A (Gibco) are added.
  • the medium was replaced with the Advanced RPMI 1640 medium (Gibco) and cultured for 2 days (step (A1-2)).
  • step (D1) 1% (v / v) penicillin / streptomycin (Gibco), 2% (v / v) B-27 TM supplement (Gibco), 10 ⁇ M DAPT (Sigma), 55 nM exendin-4 (Phoenix Pharmaceuticals). Further, the medium was changed to DMEM / Ham F12 medium (Gibco) supplemented with 2% (v / v) IBCAP culture supernatant or Mock culture supernatant, and cultured for 3 days (step (D1)).
  • GIGAGON GIGAGON
  • SST somatostatin gene expression of TIG3 / KOSM cells before differentiation induction and cells obtained through the step (E1) by quantitative RT-PCR confirmed.
  • RNA was first extracted from cells using NucleoSpin TM RNA II (Takara Bio), and quantitative RT-PCR analysis was performed using Fast SYBR TM Green PCR Master Mix (Applied Biosystems). Primer sequences are shown below.
  • HsGCG — 264F GCATTTACTTTGTGGCTGGA (SEQ ID NO: 4)
  • HsGCG — 368R CCTGGGAAGCTGAGAATGAT (SEQ ID NO: 5)
  • HsSST — 206F CCCCAGACTCCGTCAGTTTTC (SEQ ID NO: 6)
  • HsSST — 313R TCCGTCTGGTTGGGTTCAG (SEQ ID NO: 7)
  • PCR products were separated by 3% agarose gel electrophoresis and visualized with ethidium bromide, BioDoc-It Imaging System (BMbio).
  • FIGS. 1 (a) and 1 (b) show relative values (induction ratio) where the expression levels of glucagon (GCG) and somatostatin (SST) in TIG3 / KOSM cells before differentiation induction are taken as 1.
  • Example 2 In addition to adding IBCAP culture supernatant or Mock culture supernatant in steps (A1-1), (A1-1), or steps (B1), (C1), the culture period in step (E1) is 3 days In the same manner as in Example 1, TIG3 / KOSM cells were cultured, and gene expression of glucagon (GCG) and somatostatin (SST) was confirmed by quantitative RT-PCR.
  • GCG glucagon
  • SST somatostatin
  • FIGS. 2 (a) and 2 (b) show relative values with the expression levels of glucagon (GCG) and somatostatin (SST) in TIG3 / KOSM cells before differentiation induction as 1.
  • the glucagon (GCG) induction magnification was about 120.1 times in the case of no addition, whereas in the steps (A1-1) and (A1-2), the mocking rate When the culture supernatant was added, it was about 100.7 times, and when the IBCAP culture supernatant was added, it was about 193.8 times.
  • the Mock culture supernatant was added in steps (B1) and (C1), the ratio was about 31.2 times, and when the IBCAP culture supernatant was added, the ratio was about 218.5 times.
  • FIG. 2 (a) the glucagon (GCG) induction magnification was about 120.1 times in the case of no addition, whereas in the steps (A1-1) and (A1-2), the mocking rate When the culture supernatant was added, it was about 100.7 times, and when the IBCAP culture supernatant was added, it was about 193.8 times.
  • the Mock culture supernatant was added in steps (B1) and (C1), the ratio was about 31.2
  • the induction ratio of somatostatin (SST) was about 117.6 times, whereas steps (A1-1) and (A1-2)
  • SST somatostatin
  • steps (A1-1) and (A1-2) When the Mock culture supernatant was added in step 1, it was about 16.6 times, and when the IBCAP culture supernatant was added in steps (A1-1) and (A1-2), it was about 65.2 times.
  • the ratio was about 8.8 times, and when IBCAP culture supernatant was added, the ratio was about 164.1 times.
  • mouse pancreatic tissue stem / progenitor cells include Dr. Tec3DR cells donated by Matsumoto were used. This cell was established by cloning tissue stem / progenitor cells isolated from mouse fetal pancreas. Tec3DR cells were maintained in DMEM medium supplemented with 1% (v / v) penicillin / streptomycin (Gibco), 15% (v / v) FBS, 50 ⁇ M 2-mercaptoethanol (Gibco).
  • Tec3DR cells were plated at a cell density of 1 ⁇ 10 5 cells / well in a 24-well plate, and 1% (v / v) penicillin / streptomycin (Gibco), 0.1% (v / v) Cultured in DMEM / Ham F12 medium (Gibco) supplemented with BSA (bovine serum albumin) (Sigma), 1% (v / v) ITS-X (Gibco), 55 ⁇ M 2-mercaptoethanol (Gibco) for 2 days (Step (A3)).
  • Cells in culture were then collected by treatment with trypsin-EDTA, plated at a cell density of 1 ⁇ 10 5 cells / well in a 24-well plate, and 1% (v / v) penicillin / streptomycin (Gibco)
  • the cells were cultured for 3 days in DMEM / Ham F12 medium (Gibco) supplemented with 2 mg / mL BSA (Sigma), 1% (v / v) ITS-X (Gibco), 10 ng / mL FGF-2 (Nacalai Tesque) ( Step (D3)).
  • PCR products were separated by 3% agarose gel electrophoresis, stained with ethidium bromide, and visualized by BioDoc-It Imaging System (BMbio).
  • FIG. 3 shows the expression level of insulin-1 (Ins1) in the cells obtained through the step (E3).
  • FIG. 3 shows a relative value with the expression level of insulin-1 (Ins1) in Tec3DR cells before differentiation induction as 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと高効率に分化誘導することが可能な膵臓ホルモン産生細胞の生産方法(分化誘導方法)及び生産された膵臓ホルモン産生細胞、並びにその生産方法に用いられる分化誘導促進剤を提供する。 本発明に係る膵臓ホルモン産生細胞の生産方法は、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程で、特定の分化誘導促進剤を培地中に添加することを特徴とする。分化誘導促進剤としては、配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチドやその改変体、あるいは配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清が用いられる。

Description

膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤
 本発明は、誘導多能性幹細胞(以下、「iPS細胞」ともいう。)や胚性幹細胞(以下、「ES細胞」ともいう。)等の多能性幹細胞、あるいは膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞を生産する膵臓ホルモン産生細胞の生産方法及び生産された膵臓ホルモン産生細胞、並びにその生産方法に用いられる分化誘導促進剤に関する。
 膵臓は内分泌細胞と外分泌細胞とを有し、内分泌及び外分泌の両方で重要な役割を担っている器官である。内分泌細胞は膵臓ホルモンを産生・分泌する役割を果たし、α細胞からはグルカゴンが、β細胞からはインスリンが、δ細胞からはソマトスタチンが、PP細胞からは膵ポリペプチドがそれぞれ分泌されることが知られている。特にインスリンは血糖値低下作用を有し、血糖を正しい濃度に保つ重要な役割を果たす。
 近年、多能性幹細胞や膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと分化誘導する方法が数多く報告されている(非特許文献1~4、特許文献1~6等を参照)。このような分化誘導方法によって効率的に膵臓ホルモン産生細胞を得ることができれば、膵島移植の代替となる糖尿病の治療方法に繋がると期待される。さらに、患者本人由来の多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞を得ることにより、拒絶反応の問題も解消し得ると考えられる。
 しかし、これまで報告されている分化誘導方法は、いずれも膵臓ホルモン産生細胞への分化誘導効率が十分ではなかった。例えば、非特許文献1におけるインスリン産生細胞への分化誘導効率は12%程度である。このため、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと高効率に分化誘導することが可能な分化誘導方法が望まれている。また、非特許文献3では、マウスES細胞にpdx1遺伝子を導入して培養することによってインスリン産生細胞へと分化誘導しているが、安全性の観点からは、遺伝子導入を伴わない分化誘導方法であることが好ましい。
国際公開第2007/103282号 国際公開第2005/063971号 国際公開第2009/048675号 国際公開第2007/051038号 国際公開第2006/108361号 国際公開第2008/066199号
D’Amour,K.A. et al., Nature Biotechnology, 24, pp.1392-1401(2006) Wei Jiang et al., Cell Research, 17, pp.333-344(2007) Miyazaki,S. et al., Diabetes, 53, pp.1030-1037(2004) Yuya Kunisada et al.,Stem Cell Research, 8, pp.274-284(2012)
 本発明は、このような従来の実情に鑑みてなされたものであり、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと高効率に分化誘導することが可能な膵臓ホルモン産生細胞の生産方法(分化誘導方法)及び生産された膵臓ホルモン産生細胞、並びにその生産方法に用いられる分化誘導促進剤を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、ヒトTM4SF20として公知のポリペプチド、あるいはヒトTM4SF20をコードするDNAを外来遺伝子として組み込んだ細胞の培養上清を培地に添加することにより、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと高効率に分化誘導することが可能になることを見出した。本発明は、このような知見に基づいて完成されたものであり、より具体的には以下のとおりである。
[1]
 多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞を生産する膵臓ホルモン産生細胞の生産方法であって、
 多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程で、下記(1)~(3)から選ばれる少なくとも1種の分化誘導促進剤を培地中に添加することを特徴とする膵臓ホルモン産生細胞の生産方法、
 (1)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチド、
 (2)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなり、かつ、膵臓ホルモン産生細胞への分化誘導促進作用を持つポリペプチド、
 (3)配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清。
[2]
 (A1)TGF-β(トランスフォーミング増殖因子β)スーパーファミリーに属する増殖因子の存在下で多能性幹細胞を培養する工程、
 (B1)上記工程(A1)で得られた細胞をFGF(線維芽細胞増殖因子)の存在下で培養する工程、
 (C1)上記工程(B1)で得られた細胞をレチノイドの存在下で培養する工程、
 (D1)上記工程(C1)で得られた細胞をγ-セクレターゼ阻害剤の存在下で培養する工程、及び
 (E1)上記工程(D1)で得られた細胞を、エキセンジン-4、HGF(肝細胞増殖因子)、IGF-1(インスリン様増殖因子-1)、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程、を含み、
 上記工程(A1)~(E1)の少なくとも1つの工程で上記分化誘導促進剤を培地中に添加する上記[1]記載の膵臓ホルモン産生細胞の生産方法。
[3]
 (A2)TGF-βスーパーファミリーに属する増殖因子と、Wnt(ウィングレス型MMTV組み込み部位)ファミリーに属する増殖因子及びGSK-3(グリコーゲン合成酵素キナーゼ-3)阻害剤からなる群から選択される少なくとも1種の因子との存在下で多能性幹細胞を培養する工程、
 (B2)上記工程(A2)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程、
 (C2)上記工程(B2)で得られた細胞をレチノイドの存在下で培養する工程、
 (D2)上記工程(C2)で得られた細胞を、cAMP(環状アデノシン一リン酸)増加剤、デキサメタゾン、TGF-β1型受容体阻害剤、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程、を含み、
 上記工程(A2)~(D2)の少なくとも1つの工程で上記分化誘導促進剤を培地中に添加する上記[1]記載の膵臓ホルモン産生細胞の生産方法。
[4]
 (A3)TGF-βスーパーファミリーに属する増殖因子、レチノイド、FGF、及びニコチンアミドの非存在下で膵臓組織幹/前駆細胞を培養する工程、
 (B3)上記工程(A3)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程、
 (C3)上記工程(B3)で得られた細胞をレチノイドの存在下で培養する工程、
 (D3)上記工程(C3)で得られた細胞をFGFの存在下で培養する工程、及び
 (E3)上記工程(D3)で得られた細胞をニコチンアミドの存在下で培養する工程
を含み、
 上記工程(A3)~(E3)の少なくとも1つの工程で上記分化誘導促進剤を培地中に添加する上記[1]記載の膵臓ホルモン産生細胞の生産方法。
[5]
 上記[1]~[4]のいずれか1項記載の膵臓ホルモン産生細胞の生産方法によって人工的に生産された膵臓ホルモン産生細胞。
[6]
 次の(1)~(3)の少なくとも1種を含み、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化を誘導する分化誘導促進剤;
 (1)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチド、
 (2)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなり、かつ、膵臓ホルモン産生細胞への分化誘導促進作用を持つポリペプチド、
 (3)配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清。
 本発明によれば、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞へと高効率に分化誘導することが可能な膵臓ホルモン産生細胞の生産方法(分化誘導方法)及び生産された膵臓ホルモン産生細胞、並びにその生産方法に用いられる分化誘導促進剤を提供することができる。
配列番号1に記載の塩基配列からなるDNAによりコードされるポリペプチド(IBCAP)の発現ベクターをトランスフェクトした細胞の培養上清を、ヒトiPS細胞から膵臓ホルモン産生細胞への分化誘導過程の最終段階(工程(D1)、(E1))で添加した場合の、グルカゴン(GCG)及びソマトスタチン(SST)の発現量を示す図である。 配列番号1に記載の塩基配列からなるDNAによりコードされるポリペプチド(IBCAP)の発現ベクターをトランスフェクトした細胞の培養上清を、ヒトiPS細胞から膵臓ホルモン産生細胞への分化誘導過程の初期段階(工程(A1-1)、(A1-1))又は中間段階(工程(B1)、(C1))で添加した場合の、グルカゴン(GCG)及びソマトスタチン(SST)の発現量を示す図である。 配列番号1に記載の塩基配列からなるDNAによりコードされるポリペプチド(IBCAP)の発現ベクターをトランスフェクトした細胞の培養上清を、マウス膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程の最終段階(工程(E3))で添加した場合の、マウスインスリン-1(Ins1)の発現量を示す図である。
 本発明に係る膵臓ホルモン産生細胞の生産方法は、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程で、特定の分化誘導促進剤を培地中に添加することを特徴とする。以下ではまず、多能性幹細胞、膵臓組織幹/前駆細胞、分化誘導促進剤について順に説明し、次いで、具体的な膵臓ホルモン産生細胞の生産方法(分化誘導方法)について説明する。
<多能性幹細胞>
 多能性幹細胞とは、少なくとも一種類ずつの三胚葉(外胚葉、中胚葉、内胚葉)に属する分化細胞に分化する能力(多分化能)のある自己複製可能な幹細胞のことをいい、例えば、誘導多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、胚性癌細胞(EC細胞)、成体多能性幹細胞(APS細胞)等が包含される。本発明に係る生産方法では、その中でも、誘導多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)を用いることが好ましい。
 iPS細胞とは、体細胞を初期化することによって得られる多能性を有する細胞である。iPS細胞の作製は、京都大学のDr.Yamanakaらのグループ、マサチューセッツ工科大学のDr.Jaenischらのグループ、ウィスコンシン大学のDr.Thomsonらのグループ、ハーバード大学のDr.Hochedlingerらのグループ等を含む複数のグループが成功している。
 iPS細胞の作製に用いる体細胞の種類は特に限定されず、任意の体細胞を用いることができる。すなわち、生体を構成する細胞の内生殖細胞以外の全ての細胞を用いることができ、分化した体細胞であってもよく、未分化の幹細胞であってもよい。体細胞の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類のいずれでもよく特に限定されないが、哺乳動物が好ましく、ヒト又はマウスが特に好ましい。ヒトの体細胞を用いる場合、胎児、新生児、成人のいずれの体細胞を用いてもよい。
 体細胞からiPS細胞を作製するには、少なくとも1種類の初期化遺伝子を体細胞に導入し、初期化する必要がある。初期化遺伝子とは、体細胞を初期化してiPS細胞とする作用を有する初期化因子をコードする遺伝子である。ヒトiPS細胞を作製する場合の初期化遺伝子の組み合わせとしては、例えば以下の(i)~(iv)を挙げることができるが、これらの例に限定されるものではない。
(i)OCT遺伝子、KLF遺伝子、SOX遺伝子、MYC遺伝子
(ii)OCT遺伝子、SOX遺伝子、NANOG遺伝子、LIN28遺伝子
(iii)OCT遺伝子、KLF遺伝子、SOX遺伝子、MYC遺伝子、hTERT遺伝子、SV40 large T遺伝子
(iv)OCT遺伝子、KLF遺伝子、SOX遺伝子
 一方、ES細胞とは、動物の発生初期段階である胚盤胞期の胚の一部に属する内部細胞塊から作製された、多分化能、自己複製能を有する幹細胞である。ES細胞の由来は、特に限定されないが、哺乳動物が好ましく、ヒト又はマウスが特に好ましい。ES細胞としては、その分化の程度の確認を容易とするために、例えばPDX1遺伝子付近にレポーター遺伝子を導入した細胞を用いることもできる。
<膵臓組織幹/前駆細胞>
 膵臓組織幹/前駆細胞とは、動物の膵臓に存在する、多分化能、自己複製能を有する組織幹/前駆細胞である。膵臓組織幹/前駆細胞の由来は、特に限定されないが、哺乳動物が好ましく、ヒト又はマウスが特に好ましい。膵臓から組織幹/前駆細胞を分離する方法としては、従来公知の方法を任意に採用することができ、特に限定されない。例えば、胎児膵臓では、PDX1が膵臓組織幹/前駆細胞のマーカー分子として既知である(Jonsson,J. et al., Nature, 371, pp.606-609(1994);Offield,M.F. et al., Development, 22, pp.983-995(1996))。胎児のPDX1発現細胞は、内分泌細胞、外分泌細胞、及び膵管細胞に分化し、成体膵に存在するあらゆる種類の細胞を生じる。そこで、PDX1をマーカー分子として、膵臓組織幹/前駆細胞を分離することができる。
 なお、この膵臓組織幹/前駆細胞は、株化されていないものであってもよく、株化されたものであってもよい。
<分化誘導促進剤>
 本発明に係る膵臓ホルモン産生細胞の生産方法で用いられる分化誘導促進剤は、下記(1)~(3)から選ばれる少なくとも1種である。
(1)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチド。
(2)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなり、かつ、膵臓ホルモン産生細胞への分化誘導促進作用を持つポリペプチド。
(3)配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清。
 配列番号1に記載の塩基配列からなるDNAは、ヒトTM4SF20をコードするDNAとして公知の全長2308bpのものである(NCBI:LOCUS NM 024795)。このDNAのCDSは38..727であり、配列番号3に記載の229個のアミノ酸配列を有するポリペプチドをコードしている(配列番号2を参照)。本発明に係る生産方法では、このポリペプチドを分化誘導促進剤として用いることができる。
 また、本発明に係る膵臓ホルモン産生細胞の生産方法では、膵臓ホルモン産生細胞への分化誘導促進作用が維持されている限り、上述のポリペプチドのアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなるポリペプチド(以下、「改変ポリペプチド」ともいう。)を分化誘導促進剤として用いることもできる。あるアミノ酸配列に対する1又は数個のアミノ酸の置換、欠失、及び/又は付加により修飾されたアミノ酸配列からなるポリペプチドが、その生物学的活性を維持することは既に知られている(Mark,D.F. et al., Proc. Natl. Acad. Sci. USA, 81, pp.5662-5666(1984);Zoller,M.J. et al., Nucleic Acids Research, 10, pp.6487-6500(1982);Wang,A. et al., Science, 224, pp.1431-1433;Dalbadie-McFarland,G. et al., Proc. Natl. Acad. Sci. USA, 79, pp.6409-6413(1982)等を参照)。
 ここで、上述のポリペプチドのアミノ酸配列において1又は数個のアミノ酸を他のアミノ酸に置換する場合には、置換前後でアミノ酸側鎖の性質が保存されていることが望ましい。アミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)が挙げられる(括弧内のアルファベットはいずれもアミノ酸を一文字表記したものである)。
 1若しくは数個のアミノ酸を置換、欠失、及び/又は付加する場合、その数は例えば1~20個であってもよく、1~15個であってもよく、1~10個であってもよく、1~5個であってもよい。
 また、改変ポリペプチドと元のポリペプチドとの相同性は、80%以上が好ましく、90%以上がより好ましく、93%以上がさらに好ましく、95%以上が特に好ましく、98%以上が最も好ましい。
 なお、配列番号3の1~163番目、179~229番目のアミノ酸は、異なる生物種間で高度に保存された部分である。このため、その部分のアミノ酸は、改変前後で保存されていることが好ましい。
 上述のポリペプチドや改変ポリペプチドは、化学合成してもよいが、遺伝子工学的に取得することもできる。例えば、配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として、培養可能な宿主細胞に組み込み、その宿主細胞を培養して遺伝子発現させることで、その培養上清から上述のポリペプチドや改変ポリペプチドを得ることができる。
 宿主細胞としては、細菌、酵母、昆虫細胞、動物細胞等の公知の細胞を適宜使用することができる。動物細胞としては、HEK293細胞、HEK293T細胞、CHO-K1細胞、COS細胞等が挙げられる。
 ここで「ストリンジェントな条件下でハイブリダイズするDNA」とは、特定のDNA(配列番号1に記載の塩基配列からなるDNAと相補的な塩基配列からなるDNA)をプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、サザンブロットハイブリダイゼーション法等を採用することにより取得できるDNAを意味する。例えば、コロニーやプラーク由来のDNAを固定化したフィルターを使用し、0.7~1.0M塩化ナトリウム存在下、65℃でハイブリダイゼーションを行った後、0.1~2×SSC溶液(1×SSCの組成:150mM塩化ナトリウム、15mMクエン酸ナトリウム)を使用し、65℃条件下でフィルターを洗浄することにより同定できるDNA等が挙げられる(必要であれば、Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989.等を参照のこと)。ストリンジェントな条件下でハイブリダイズするDNAの塩基配列の、プローブとして使用するDNAの塩基配列との相同性は、80%以上が好ましく、90%以上がより好ましく、93%以上がさらに好ましく、95%以上が特に好ましく、98%以上が最も好ましい。
 これらのポリペプチドや改変ポリペプチドの分離・精製は、例えば、イオン交換樹脂、分配クロマトグラフィー、ゲルクロマトグラフィー、逆相クロマトグラフィー等の、ペプチド化学において通常使用される方法によって行うことができる。
 また、本発明に係る膵臓ホルモン産生細胞の生産方法では、上述のポリペプチドや改変ポリペプチドを含む培養上清を分化誘導促進剤として用いることもできる。培養上清を分化誘導促進剤として用いる場合、限外濾過等により培養上清を濃縮することが好ましい。さらに、必要に応じて透析を行い、不要な化学物質等を除いてもよい。
<多能性幹細胞から膵臓ホルモン産生細胞への分化誘導方法(膵臓ホルモン産生細胞の生産方法)>
 本発明に係る膵臓ホルモン産生細胞の生産方法では、多能性幹細胞から膵臓ホルモン産生細胞への分化誘導過程で、上述した分化誘導促進剤を培地中に添加する。多能性幹細胞から膵臓ホルモン産生細胞への分化誘導方法としては、従来公知の方法を任意に採用することができ、特に限定されない。分化誘導促進剤としてポリペプチド又は改変ポリペプチドを添加する場合、その濃度は、10~200ng/mLが好ましく、50~180ng/mLがより好ましく、60~150ng/mLがさらに好ましい。また、分化誘導促進剤として培養上清を添加する場合、その濃度は、0.5~20%(v/v)が好ましく、1~10%(v/v)がより好ましく、1.5~5%(v/v)がさらに好ましい。
 以下、多能性幹細胞から膵臓ホルモン産生細胞への分化誘導方法(膵臓ホルモン産生細胞の生産方法)の例として2種類の方法について説明するが、本発明に係る膵臓ホルモン産生細胞の生産方法はこの例に限定されるものではない。
[第1の分化誘導方法]
 第1の分化誘導方法は、非特許文献1に記載の方法に準じたものである。この文献は参照により本願に援用する。
 第1の分化誘導方法は、下記の工程(A1)~(E1)を含む。このうち少なくとも1つの工程で、上述した分化誘導促進剤が培地中に添加される。分化誘導促進剤を添加する工程は、工程(A1)~(C1)の少なくとも1つの工程であることが好ましく、工程(B1)~(C1)の少なくとも1つの工程であることがより好ましい。なお、ある工程に分化誘導促進剤を添加する場合、その工程の最初から添加してもよく、工程の途中から添加してもよい。
(A1)TGF-βスーパーファミリーに属する増殖因子の存在下で多能性幹細胞を培養する工程。
(B1)上記工程(A1)で得られた細胞をFGFの存在下で培養する工程。
(C1)上記工程(B1)で得られた細胞をレチノイドの存在下で培養する工程。
(D1)上記工程(C1)で得られた細胞をγ-セクレターゼ阻害剤の存在下で培養する工程。
(E1)上記工程(D1)で得られた細胞を、エキセンジン-4、HGF、IGF-1、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程。
(工程(A1))
 工程(A1)では、TGF-βスーパーファミリーに属する増殖因子の存在下で多能性幹細胞を培養する。
 TGF-βスーパーファミリーに属する増殖因子としては、アクチビン、ノーダル、BMP(骨形成タンパク質)等が挙げられ、その中でもアクチビンが好ましい。このようなTGF-βスーパーファミリーに属する増殖因子は、多能性幹細胞から胚体内胚葉細胞への分化を促進することが知られている(非特許文献1、特許文献1~3等を参照)。アクチビンとしては、アクチビンA、アクチビンB、アクチビンAB等が挙げられ、その中でもアクチビンAが好ましい。
 TGF-βスーパーファミリーに属する増殖因子の濃度は、5~250ng/mLが好ましく、10~200ng/mLがより好ましく、50~150ng/mLがさらに好ましい。
 また、工程(A1)では、Wntファミリーに属する増殖因子を培地中に添加することが好ましい。TGF-βスーパーファミリーに属する増殖因子とともにWntファミリーに属する増殖因子を添加することにより、胚体内胚葉細胞への分化効率を高めることができる。
 Wntファミリーに属する増殖因子としては、Wnt1、Wnt3a、Wnt5a、Wnt7a等が挙げられ、Wnt1、Wnt3aが好ましく、Wnt3aがより好ましい。
 Wntファミリーに属する増殖因子の濃度は、1~1000ng/mLが好ましく、10~100ng/mLがより好ましく、10~50ng/mLがさらに好ましい。
 なお、工程(A1)では、Wntファミリーに属する増殖因子の代わりに、GSK-3阻害剤(例えば、CHIR)を添加してもよい。GSK-3阻害剤(例えば、CHIR)は、Wntシグナル経路を活性化させることが知られている(J. Biol. Chem. 277(34),pp.30998-31004(2002))。
 また、工程(A1)では、胚体内胚葉細胞への分化効率を高め得る追加の因子を培地中に添加してもよい。追加の因子としては、例えば、PDGF(血小板由来増殖因子)、EGF(上皮増殖因子)、VEGF(血管内皮細胞増殖因子)、KGF(ケラチノサイト増殖因子)、HGF、NGF(神経増殖因子)、GDF(増殖分化因子)、GLP(グルカゴン様ペプチド)、ニコチンアミド、エキセンジン-4、レチノイン酸、エタノールアミン、副甲状腺ホルモン、プロゲステロン、アプロチニン、ヒドロコルチゾン、ガストリン、ステロイドアルカロイド、銅キレーター(トリエチレンペンタミン等)、フォルスコリン、酪酸ナトリウム、ノギン、バルプロ酸、トリコスタチンA、インディアンヘッジホッグ、ソニックヘッジホッグ、プロテアソーム阻害剤、ノッチ経路阻害剤、ヘッジホッグ経路阻害剤等が挙げられる。
 培養に用いる容器としては、分化誘導能、機能発現能、生存能等の観点から、生体適合材料を用いたスキャフォールドでコートされた培養プレートが好ましい。スキャフォールドとしては、ラミニン、フィブロネクチン、コラーゲン、ヘパラン硫酸プロテオグリカン、ゼラチン、エンタクチン、ポリオルニチン等が挙げられる。市販品としては、Becton Dickinson製のMATRIGELTM、増殖因子減少MATRIGELTM等が入手可能である。特に、MATRIGELTMでコートされた培養プレートを用いることが好ましい。
 培養に用いる培地は、動物細胞の培養に用いることのできる基本培地に、細胞の維持増殖に必要な各種栄養源やその他の成分を添加して作製される。
 基本培地としては、RPMI1640培地、DMEM培地、CMRL1066培地、ハムF12培地、イーグルMEM培地、グラスゴーMEM培地、IMEM Zinc Option培地、IMDM培地、ウィリアムE培地、フィッシャー培地、マッコイ培地、BME培地、αMEM培地、BGJb培地、Medium199培地、あるいはこれらの混合培地等が挙げられる。
 栄養源としては、グリセロール、グルコース、フルクトース、スクロース、ラクトース、デンプン、デキストリン等の炭素源;脂肪酸、油脂、レシチン、アルコール等の炭化水素類;硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源;ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、リン酸塩等の無機塩類;各種ビタミン類;各種アミノ酸類;等が挙げられる。
 その他の成分としては、ペニシリン、ストレプトマイシン等の抗生物質;コレラトキシン;インスリン;トランスフェリン;亜セレン酸;アルブミン;2-メルカプトエタノール;血清又は血清代替物;等が挙げられる。インスリン、トランスフェリン、及び亜セレン酸としては、Invitrogen製のITS-X、ITS-A、ITS-G等が市販品として入手可能である。また、血清代替物としては、Invitrogen製のB-27TMサプリメント、N-2サプリメント、KnockoutTM血清代替物等が市販品として入手可能である。
 ここで、工程(A1)における分化効率を高めるためには、培地中のインスリン、IGF等の含有量を十分に低くすることが重要であることが知られている(国際公開第2006/020919号を参照)。このため、工程(A1)では、無血清培地又は低血清培地を用いることが好ましい(非特許文献1、特許文献1~3等を参照)。血清濃度は、0~2%(v/v)が好ましく、0~1%(v/v)がより好ましく、0~0.5%(v/v)がさらに好ましい。
 好適な実施形態では、アクチビンA、Wnt3a、ペニシリンやストレプトマイシン等の抗生物質、L-グルタミン又はL-グルタミンを含むジペプチドを添加した、無血清又は低血清のRPMI1640培地が用いられる。
 工程(A1)の培養期間は例えば1~6日であり、2~4日が好ましい。
 胚体内胚葉細胞への分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。多能性幹細胞から胚体内胚葉細胞への分化が進行するに従って、幹細胞のマーカー遺伝子であるOCT4、NANOG、SOX2、ECAD等の発現が減少し、胚体内胚葉細胞のマーカー遺伝子であるSOX17、CER、FOXA2、CXCR4等の発現が亢進する。
 なお、胚体内胚葉細胞への分化効率を高めるためには、培地中の血清濃度を低めることが必要であるが、細胞の生存率を高めるためには、培地中の血清濃度を高める方が好ましい。
 そこで、工程(A1)を、無血清の第1の培地で培養する工程(A1-1)と、低血清の第2の培地で培養する工程(A1-2)とに分けることが好ましい。
 工程(A1-1)で用いられる第1の培地は、無血清であるほかは上記と同様でよい。すなわち、第1の培地は、TGF-βスーパーファミリーに属する増殖因子を含有し、その他に、Wntファミリーに属する増殖因子を含有していてもよい。この第1の培地は、Wntファミリーに属する増殖因子を含有する方が好ましい。
 工程(A1-1)の培養期間は例えば1~3日であり、1~2日が好ましい。この培養により、多能性幹細胞から中内胚葉細胞への分化が進行する。
 中内胚葉細胞への分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。多能性幹細胞から中内胚葉細胞への分化が進行するに従って、幹細胞のマーカー遺伝子であるOCT4、NANOG、SOX2、ECAD等の発現が減少し、中内胚葉細胞のマーカー遺伝子であるBRA、FGF4、WNT3、NCAD等の発現が亢進する。
 工程(A1-2)で用いられる第2の培地は、低血清であるほかは上記と同様でよい。すなわち、第2の培地は、TGF-βスーパーファミリーに属する増殖因子を含有し、その他に、Wntファミリーに属する増殖因子を含有していてもよい。血清濃度は、0.05~2%(v/v)が好ましく、0.05~1%(v/v)がより好ましく、0.1~0.5%(v/v)がさらに好ましい。
 工程(A1-2)の培養期間は例えば1~3日であり、1~2日が好ましい。この培養により、中内胚葉細胞から胚体内胚葉細胞への分化が進行する。
 上述したとおり、胚体内胚葉細胞への分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。
 なお、得られた細胞は、次の工程(B1)に進む前に、公知の方法で濃縮、単離、及び/又は精製してもよい。
(工程(B1))
 工程(B1)では、工程(A1)で得られた細胞をFGFの存在下で培養する。
 FGFとしては、FGF-1、FGF-2(bFGF)、FGF-3、FGF-4、FGF-5、FGF-6、FGF-7、FGF-8、FGF-9、FGF-10、FGF-11、FGF-12、FGF-13、FGF-14、FGF-15、FGF-16、FGF-17、FGF-18、FGF-19、FGF-20、FGF-21、FGF-22、FGF-23等が挙げられ、FGF-2(bFGF)、FGF-5、FGF-7、FGF-10が好ましい。
 FGFの濃度は、5~150ng/mLが好ましく、10~100ng/mLがより好ましく、20~80ng/mLがさらに好ましい。
 また、工程(B1)では、ヘッジホッグ経路阻害剤を培地中に添加することが好ましい。FGFとともにヘッジホッグ経路阻害剤を添加することにより、分化効率を高めることができる。
 ヘッジホッグ経路阻害剤としては、KAAD-シクロパミン(28-[2-[[6-[(3-フェニルプロパノイル)アミノ]ヘキサノイル]アミノ]エチル]-17β,23β-エポキシベラトラマン-3-オン)、KAAD-シクロパミンの類似体、ジェルビン(17,23β-エポキシ-3β-ヒドロキシベラトラマン-11-オン)、ジェルビンの類似体、ヘッジホッグ経路遮断抗体等が挙げられ、その中でもKAAD-シクロパミンが好ましい。
 ヘッジホッグ経路阻害剤の濃度は、0.01~5μMが好ましく、0.02~2μMがより好ましく、0.1~0.5μmがさらに好ましい。
 培養に用いる容器は、工程(A1)と同様でよい。培地は、上述した各因子や培地の血清濃度を除き、工程(A1)と同様でよい。培地の血清濃度は、0.1~5%(v/v)が好ましく、0.5~5%(v/v)がより好ましく、1~5%(v/v)がさらに好ましい。
 なお、工程(A1)で低血清培地が用いられる場合、工程(B1)では、工程(A1)よりも高い血清濃度の培地を用いることが好ましい。
 好適な実施形態では、FGF-10、KAAD-シクロパミン、ペニシリンやストレプトマイシン等の抗生物質、L-グルタミン又はL-グルタミンを含むジペプチドを添加した、低血清のRPMI1640培地が用いられる。
 工程(B1)の培養期間は例えば1~6日であり、2~4日が好ましい。
 分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。分化が進行するに従って、HNF1B、HNF4A等の遺伝子の発現が亢進する。
 なお、得られた細胞は、次の工程(C1)に進む前に、公知の方法で濃縮、単離、及び/又は精製してもよい。
(工程(C1))
 工程(C1)では、工程(B1)で得られた細胞をレチノイドの存在下で培養する。
 レチノイドとしては、レチノール、レチナール、レチノイン酸等が挙げられ、その中でもレチノイン酸が好ましい。
 レチノイドの濃度は、0.2~10μMが好ましく、0.4~8μMがより好ましく、1~4μMがさらに好ましい。
 また、工程(C1)では、ヘッジホッグ経路阻害剤を培地中に添加することが好ましい。レチノイドとともにヘッジホッグ経路阻害剤を添加することにより、分化効率を高めることができる。
 ヘッジホッグ経路阻害剤としては、KAAD-シクロパミン、KAAD-シクロパミンの類似体、ジェルビン、ジェルビンの類似体、ヘッジホッグ経路遮断抗体等が挙げられ、その中でもKAAD-シクロパミンが好ましい。
 ヘッジホッグ経路阻害剤の濃度は、0.01~5μMが好ましく、0.02~2μMがより好ましく、0.1~0.5μMがさらに好ましい。
 また、工程(C1)では、FGFを培地中に添加することが好ましい。レチノイドとともにFGFを添加することにより、分化効率を高めることができる。
 FGFとしては、FGF-1、FGF-2(bFGF)、FGF-3、FGF-4、FGF-5、FGF-6、FGF-7、FGF-8、FGF-9、FGF-10、FGF-11、FGF-12、FGF-13、FGF-14、FGF-15、FGF-16、FGF-17、FGF-18、FGF-19、FGF-20、FGF-21、FGF-22、FGF-23等が挙げられ、FGF-2(bFGF)、FGF-5、FGF-7、FGF-10が好ましい。
 FGFの濃度は、0.5~50ng/mLが好ましく、1~25ng/mLがより好ましく、2~10ng/mLがさらに好ましい。
 また、工程(C1)では、TGF-βスーパーファミリーに属する増殖因子を培地中に添加してもよい。
 TGF-βスーパーファミリーに属する増殖因子の濃度は、5~250ng/mLが好ましく、10~200ng/mLがより好ましく、20~150ng/mLがさらに好ましい。
 培養に用いる容器は、工程(B1)と同様でよい。培地は、上述した各因子を除き、基本的に工程(B1)と同様でよい。ただし、培地には、血清の代わりに血清代替物を添加することが好ましい。血清代替物の市販品としては、Invitrogen製のB-27TMサプリメント、N-2サプリメント、KnockoutTM血清代替物等が入手可能であり、その中でもB-27TMサプリメントが好ましい。
 B-27TMサプリメントの濃度は、0.1~10%(v/v)が好ましく、0.2~5%(v/v)がより好ましく、0.4~2.5%(v/v)がさらに好ましい。なお、このB-27TMサプリメントは、50倍ストック溶液として市販されているため、B-27TMサプリメントの濃度を0.1~10%(v/v)とするには、5~500倍希釈されるように培地中に添加すればよい。
 好適な実施形態では、レチノイン酸、KAAD-シクロパミン、FGF-10、ペニシリンやストレプトマイシン等の抗生物質、B-27TMサプリメントを添加した、無血清のDMEM/ハムF12培地が用いられる。
 工程(C1)の培養期間は例えば1~6日であり、2~4日が好ましい。
 分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。分化が進行するに従って、PDX1、HNF6、HLXB9等の遺伝子の発現が亢進する。
 なお、得られた細胞は、次の工程(D1)に進む前に、公知の方法で濃縮、単離、及び/又は精製してもよい。
[工程(D1)]
 工程(D1)では、工程(C1)で得られた細胞をγ-セクレターゼ阻害剤の存在下で培養する。
 γ-セクレターゼ阻害剤としては、DAPT(N-[N-(3,5-ジフルオロフェナセチル-L-アラニル)]-S-フェニルグリシン-tert-ブチルエステル)、L-685458([1S-ベンジル-4R-[1-(1S-カルバモイル-2-フェネチルカルバモイル)-1S-3-メチルブチルカルバモイル]-2R-ヒドロキシ-5-フェネチルペンチル]カルバミン酸tert-ブチルエステル)等が挙げられ、その中でもDAPTが好ましい。
 γ-セクレターゼ阻害剤の濃度は、1~50μMが好ましく、2~40μMがより好ましく、5~20μMがさらに好ましい。
 また、工程(D1)では、エキセンジン-4を培地中に添加することが好ましい。γ-セクレターゼ阻害剤とともにエキセンジン-4を添加することにより、分化効率を高めることができる。
 エキセンジン-4の濃度は、5~150ng/mLが好ましく、10~100ng/mLがより好ましく、20~80ng/mLがさらに好ましい。
 培養に用いる容器や培地は、工程(C1)と同様でよい。すなわち、培地には血清代替物を添加することが好ましい。
 好適な実施形態では、DAPT、エキセンジン-4、ペニシリンやストレプトマイシン等の抗生物質、B-27TMサプリメントを添加した、無血清のDMEM/ハムF12培地が用いられる。
 工程(D1)の培養期間は例えば1~6日であり、2~3日が好ましい。
 分化誘導の進行は、形態学的観察によるほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。分化が進行するに従って、NKX6-1、NGN3、PAX4、NKX2-2等の遺伝子の発現が亢進する。
 なお、得られた細胞は、次の工程(E1)に進む前に、公知の方法で濃縮、単離、及び/又は精製してもよい。
(工程(E1))
 工程(E1)では、工程(D1)で得られた細胞を、エキセンジン-4、HGF、IGF-1、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する。
 エキセンジン-4、HGF、IGF-1、及びニコチンアミドとしては、そのうちの2種以上を添加することが好ましく、3種以上を添加することがより好ましい。
 エキセンジン-4の濃度は、5~150nMが好ましく、10~100nMがより好ましく、20~80nMがさらに好ましい。
 HGFの濃度は、5~150ng/mLが好ましく、10~100ng/mLがより好ましく、20~80ng/mLがさらに好ましい。
 IGF-1の濃度は、5~150ng/mLが好ましく、10~100ng/mLがより好ましく、20~80ng/mLがさらに好ましい。
 ニコチンアミドの濃度は、1~30mMが好ましく、3~20mMがより好ましく、5~15mMがさらに好ましい。
 培養に用いる容器や培地は、工程(D1)と同様でよい。すなわち、培地には血清代替物を添加することが好ましい。
 好適な実施形態では、エキセンジン-4、HGF、IGF-1、ペニシリン、ストレプトマイシン等の抗生物質、B-27TMサプリメントを添加した、無血清のCMRL1066培地が用いられる。
 工程(E1)の培養期間は例えば3~20日であり、3~10日が好ましい。
 この工程(E1)により、膵臓ホルモン産生細胞が得られる。
 膵臓ホルモン産生細胞への分化誘導の進行は、インスリン、グルカゴン、ソマトスタチン等の膵臓ホルモンの産生を確認するほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。分化が進行するに従って、INS、GCG、GHRL、SST、PPY等のうち、少なくとも1つの遺伝子の発現が亢進する。
[第2の分化誘導方法]
 第2の分化誘導方法は、非特許文献4に記載の方法に準じたものである。この文献は参照により本願に援用する。
 第2の分化誘導方法は、下記の工程(A2)~(D2)を含む。このうち少なくとも1つの工程で、上述した分化誘導促進剤が培地中に添加される。分化誘導促進剤を添加する工程は、工程(C2)~(D2)の少なくとも1つの工程であることが好ましく、工程(D2)であることが特に好ましい。なお、ある工程に分化誘導促進剤を添加する場合、その工程の最初から添加してもよく、工程の途中から添加してもよい。
(A2)TGF-βスーパーファミリーに属する増殖因子と、Wntファミリーに属する増殖因子及びGSK-3阻害剤からなる群から選択される少なくとも1種の因子との存在下で多能性幹細胞を培養する工程。
(B2)上記工程(A2)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程。
(C2)上記工程(B2)で得られた細胞をレチノイドの存在下で培養する工程。
(D2)上記工程(C2)で得られた細胞を、cAMP増加剤、デキサメタゾン、TGF-β1型受容体阻害剤、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程。
(工程(A2))
 工程(A2)では、TGF-βスーパーファミリーに属する増殖因子と、Wntファミリーに属する増殖因子及びGSK-3阻害剤からなる群から選択される少なくとも1種の因子との存在下で多能性幹細胞を培養する。
 TGF-βスーパーファミリーに属する増殖因子としては、アクチビン、ノーダル、BMP等が挙げられ、その中でもアクチビンが好ましい。アクチビンとしては、アクチビンA、アクチビンB、アクチビンAB等が挙げられ、その中でもアクチビンAが好ましい。
 TGF-βスーパーファミリーに属する増殖因子の濃度は、5~250ng/mLが好ましく、10~200ng/mLがより好ましく、50~150ng/mLがさらに好ましい。
 Wntファミリーに属する増殖因子としては、Wnt1、Wnt3a、Wnt5a、Wnt7a等が挙げられ、Wnt1、Wnt3aが好ましく、Wnt3aがより好ましい。
 Wntファミリーに属する増殖因子の濃度は、1~1000ng/mLが好ましく、10~100ng/mLがより好ましく、10~50ng/mLがさらに好ましい。
 GSK-3阻害剤としては、GSK-3α阻害剤及びGSK-3β阻害剤のいずれを用いてもよいが、GSK-3β阻害剤を用いることが好ましい。具体例としては、CHIR99021(6-[[2-[[4-(2,4-ジクロロフェニル)-5-(5-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]-3-ピリジンカルボニトリル)、SB415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、SB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、インジルビン-3’-モノオキシム(3-[(3E)-3-(ヒドロキシイミノ)-2,3-ジヒドロ-1H-インドール-2-イリデン]-2,3-ジヒドロ-1H-インドール-2-オン)、ケンパウロン(7,8-ジヒドロ-9-ブロモインドロ[3,2-d][1]ベンゾアゼピン-6(5H)-オン)等が挙げられ、その中でもCHIR99021が好ましい。
 GSK-3阻害剤の濃度は、0.01~20μMが好ましく、0.1~20μMがより好ましく、1~5μMがさらに好ましい。
 また、工程(A2)では、分化効率を高め得る追加の因子を培地中に添加してもよい。追加の因子としては、例えば、PDGF、EGF、VEGF、KGF、HGF、NGF、GDF、GLP、ニコチンアミド、エキセンジン-4、レチノイン酸、エタノールアミン、副甲状腺ホルモン、プロゲステロン、アプロチニン、ヒドロコルチゾン、ガストリン、ステロイドアルカロイド、銅キレーター(トリエチレンペンタミン等)、フォルスコリン、酪酸ナトリウム、ノギン、バルプロ酸、トリコスタチンA、インディアンヘッジホッグ、ソニックヘッジホッグ、プロテアソーム阻害剤、ノッチ経路阻害剤、ヘッジホッグ経路阻害剤等が挙げられる。
 培養に用いる容器としては、分化誘導能、機能発現能、生存能等の観点から、生体適合材料を用いたスキャフォールドでコートされた培養プレートが好ましい。スキャフォールドとしては、ラミニン、フィブロネクチン、コラーゲン、ヘパラン硫酸プロテオグリカン、ゼラチン、エンタクチン、ポリオルニチン等が挙げられる。市販品としては、Becton Dickinson製のMATRIGELTM、増殖因子減少MATRIGELTM等が入手可能である。特に、MATRIGELTMでコートされた培養プレートを用いることが好ましい。
 培養に用いる培地は、動物細胞の培養に用いることのできる基本培地に、細胞の維持増殖に必要な各種栄養源やその他の成分を添加して作製される。
 基本培地としては、RPMI1640培地、DMEM培地、CMRL1066培地、ハムF12培地、イーグルMEM培地、グラスゴーMEM培地、IMEM Zinc Option培地、IMDM培地、ウィリアムE培地、フィッシャー培地、マッコイ培地、BME培地、αMEM培地、BGJb培地、Medium199培地、あるいはこれらの混合培地等が挙げられる。
 栄養源としては、グリセロール、グルコース、フルクトース、スクロース、ラクトース、デンプン、デキストリン等の炭素源;脂肪酸、油脂、レシチン、アルコール等の炭化水素類;硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源;ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、リン酸塩等の無機塩類;各種ビタミン類;各種アミノ酸類;等が挙げられる。
 その他の成分としては、ペニシリン、ストレプトマイシン等の抗生物質;コレラトキシン;インスリン;トランスフェリン;亜セレン酸;アルブミン;2-メルカプトエタノール;血清又は血清代替物;等が挙げられる。インスリン、トランスフェリン、及び亜セレン酸としては、Invitrogen製のITS-X、ITS-A、ITS-G等が市販品として入手可能である。また、血清代替物としては、Invitrogen製のB-27TMサプリメント、N-2サプリメント、KnockoutTM血清代替物等が市販品として入手可能である。
 ここで、工程(A2)における分化効率を高めるためには、培地中のインスリン、IGF等の含有量を十分に低くすることが重要であることが知られている。このため、工程(A2)では、無血清培地又は低血清培地を用いることが好ましい。血清濃度は、0~3%(v/v)が好ましく、0~2%(v/v)がより好ましい。
 好適な実施形態では、アクチビンA、CHIR99021を添加した低血清のRPMI1640培地が用いられる。
 工程(A2)の培養期間は例えば1~3日であり、1~2日が好ましい。
(工程(B2))
 工程(B2)では、工程(A2)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する。
 TGF-βスーパーファミリーに属する増殖因子としては、アクチビン、ノーダル、BMP等が挙げられ、その中でもアクチビンが好ましい。アクチビンとしては、アクチビンA、アクチビンB、アクチビンAB等が挙げられ、その中でもアクチビンAが好ましい。
 TGF-βスーパーファミリーに属する増殖因子の濃度は、5~250ng/mLが好ましく、10~200ng/mLがより好ましく、50~150ng/mLがさらに好ましい。
 培養に用いる容器や培地は、工程(A2)と同様でよい。すなわち、好適な実施形態では、アクチビンAを添加した低血清のRPMI1640培地が用いられる。
 工程(B2)の培養期間は例えば1~4日であり、1~3日が好ましい。
(工程(C2))
 工程(C2)では、工程(B2)で得られた細胞をレチノイドの存在下で培養する。
 レチノイドとしては、レチノール、レチナール、レチノイン酸等が挙げられ、その中でもレチノイン酸が好ましい。
 レチノイドの濃度は、0.2~10μMが好ましく、0.4~8μMがより好ましく、1~4μMがさらに好ましい。
 また、工程(C2)では、BMP受容体阻害剤を培地中に添加することが好ましい。
 BMP受容体阻害剤としては、ドルソモルフィン(6-[4-[2-(1-ピペリジニル)エトキシ]フェニル]-3-(4-ピリジル)ピラゾロ[1,5-a]ピリミジン)、LDN-193189(4-(6-(4-(ピペラジン-1-イル)フェニル)ピラゾロ[1,5-a]ピリミジン-3-イル)キノリン)等が挙げられ、その中でもドルソモルフィンが好ましい。
 BMP受容体阻害剤の濃度は、0.2~5μMが好ましく、0.3~3μMがより好ましく、0.5~2μMがさらに好ましい。
 また、工程(C2)では、TGF-β1型受容体阻害剤を培地中に添加することが好ましい。
 TGF-β1型受容体阻害剤としては、SB431542(4-[4-(1,3-ベンゾジオキソル-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]ベンズアミド)、SB525334(6-[2-(1,1-ジメチルエチル)-5-(6-メチル-1,2-ピリジニル)-1H-イミダゾール-4-イル]キノキサリン)、LY364947(4-[3-(2-ピリジニル)-1H-ピラゾール-4-イル]キノリン)等が挙げられ、その中でもSB431542が好ましい。また、TGF-β1型受容体阻害剤としては、Calbiochem製のAlk5インヒビターIIを用いることも可能である。
 TGF-β1型受容体阻害剤の濃度は、1~50μMが好ましく、2~30μMがより好ましく、5~20μMがさらに好ましい。
 培養に用いる容器は、工程(B2)と同様でよい。培地は、上述した各因子を除き、基本的に工程(B2)と同様でよい。ただし、培地には、血清の代わりに血清代替物を添加することが好ましい。血清代替物の市販品としては、Invitrogen製のB-27TMサプリメント、N-2サプリメント、KnockoutTM血清代替物等が入手可能であり、その中でもB-27TMサプリメントが好ましい。
 B-27TMサプリメントの濃度は、0.1~10%(v/v)が好ましく、0.2~5%(v/v)がより好ましく、0.4~2.5%(v/v)がさらに好ましい。なお、このB-27TMサプリメントは、50倍ストック溶液として市販されているため、B-27TMサプリメントの濃度を0.1~10%(v/v)とするには、5~500倍希釈されるように培地中に添加すればよい。
 好適な実施形態では、レチノイン酸、ドルソモルフィン、SB431542、B-27TMサプリメントを添加した、無血清のIMEM Zinc Option培地が用いられる。
 工程(C2)の培養期間は例えば5~9日であり、6~8日が好ましい。
(工程(D2))
 工程(D2)では、工程(C2)で得られた細胞を、cAMP増加剤、デキサメタゾン、TGF-β1型受容体阻害剤、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する。
 cAMP増加剤、デキサメタゾン、TGF-β1型受容体阻害剤、及びニコチンアミドとしては、そのうちの2種以上を添加することが好ましく、3種以上を添加することがより好ましい。
 cAMP増加剤としては、フォルスコリン等のアデニル酸シクラーゼ活性化剤;3-イソブチル-1-メチルキサンチン等のホスホジエステラーゼ阻害剤;ジブチリルcAMP等のcAMPアナログ;等が挙げられ、その中でもフォルスコリンが好ましい。
 cAMP増加剤の濃度は、1~50μMが好ましく、2~30μMがより好ましく、5~20μMがさらに好ましい。
 デキサメタゾンの濃度は、1~50μMが好ましく、2~30μMがより好ましく、5~20μMがさらに好ましい。
 TGF-β1型受容体阻害剤としては、SB431542、SB525334、LY364947等が挙げられ、その中でもSB431542が好ましい。また、TGF-β1型受容体阻害剤としては、Calbiochem製のAlk5インヒビターIIを用いることも可能である。
 TGF-β1型受容体阻害剤の濃度は、1~50μMが好ましく、2~30μMがより好ましく、5~20μMがさらに好ましい。
 ニコチンアミドの濃度は、1~30mMが好ましく、3~20mMがより好ましく、5~15mMがさらに好ましい。
 培養に用いる容器や培地は、工程(C2)と同様でよい。すなわち、培地には血清代替物を添加することが好ましい。
 好適な実施形態では、フォルスコリン、デキサメタゾン、Alk5インヒビターII、ニコチンアミド、B-27TMサプリメントを添加した、無血清のIMEM Zinc Option培地が用いられる。
 工程(D2)の培養期間は例えば9~13日であり、10~12日が好ましい。
 この工程(D2)により、膵臓ホルモン産生細胞が得られる。
 膵臓ホルモン産生細胞への分化誘導の進行は、インスリン、グルカゴン、ソマトスタチン等の膵臓ホルモンの産生を確認するほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。多能性幹細胞から膵臓ホルモン産生細胞への分化が進行するに従って、膵臓ホルモン産生細胞のマーカー遺伝子であるINS、GCG、GHRL、SST、PPY等のうち、少なくとも1つの遺伝子の発現が亢進する。
<膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導方法(膵臓ホルモン産生細胞の生産方法)>
 本発明に係る膵臓ホルモン産生細胞の生産方法では、膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程で、上述した分化誘導促進剤を培地中に添加する。膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導方法としては、従来公知の方法を任意に採用することができ、特に限定されない。分化誘導促進剤としてポリペプチド又は改変ポリペプチドを添加する場合、その濃度は、10~200ng/mLが好ましく、50~150ng/mLがより好ましく、60~120ng/mLがさらに好ましい。また、分化誘導促進剤として培養上清を添加する場合、その濃度は、0.5~20%(v/v)が好ましく、1~10%(v/v)がより好ましく、1.5~5%(v/v)がさらに好ましい。
 以下、膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導方法(膵臓ホルモン産生細胞の生産方法)の一例について説明するが、本発明に係る膵臓ホルモン産生細胞の生産方法はこの例に限定されるものではない。
 以下の分化誘導方法は、非特許文献2に記載の方法に準じたものである。この文献は参照により本願に援用する。
 この分化誘導方法は、下記の工程(A3)~(E3)を含む。このうち少なくとも1つの工程で、上述した分化誘導促進剤が培地中に添加される。分化誘導促進剤を添加する工程は、工程(D3)~(E3)の少なくとも1つの工程であることが好ましく、工程(E3)であることが特に好ましい。なお、ある工程に分化誘導促進剤を添加する場合、その工程の最初から添加してもよく、工程の途中から添加してもよい。
(A3)TGF-βスーパーファミリーに属する増殖因子、レチノイド、FGF、及びニコチンアミドの非存在下で膵臓組織幹/前駆細胞を培養する工程。
(B3)上記工程(A3)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程。
(C3)上記工程(B3)で得られた細胞をレチノイドの存在下で培養する工程。
(D3)上記工程(C3)で得られた細胞をFGFの存在下で培養する工程。
(E3)上記工程(D3)で得られた細胞をニコチンアミドの存在下で培養する工程。
(工程(A3))
 工程(A3)では、TGF-βスーパーファミリーに属する増殖因子、レチノイド、FGF、ニコチンアミドの非存在下で膵臓組織幹/前駆細胞を培養する。
 培養に用いる容器としては、分化誘導能、機能発現能、生存能等の観点から、生体適合材料を用いたスキャフォールドでコートされた培養プレートが好ましい。スキャフォールドとしては、ラミニン、フィブロネクチン、コラーゲン、ヘパラン硫酸プロテオグリカン、ゼラチン、エンタクチン、ポリオルニチン等が挙げられる。市販品としては、Becton Dickinson製のMATRIGELTM、増殖因子減少MATRIGELTM等が入手可能である。特に、MATRIGELTMでコートされた培養プレートを用いることが好ましい。
 培養に用いる培地は、動物細胞の培養に用いることのできる基本培地に、細胞の維持増殖に必要な各種栄養源やその他の成分を添加して作製される。
 基本培地としては、RPMI1640培地、DMEM培地、CMRL1066培地、ハムF12培地、イーグルMEM培地、グラスゴーMEM培地、IMEM Zinc Option培地、IMDM培地、ウィリアムE培地、フィッシャー培地、マッコイ培地、BME培地、αMEM培地、BGJb培地、Medium199培地、あるいはこれらの混合培地等が挙げられる。
 栄養源としては、グリセロール、グルコース、フルクトース、スクロース、ラクトース、デンプン、デキストリン等の炭素源;脂肪酸、油脂、レシチン、アルコール等の炭化水素類;硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源;ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、リン酸塩等の無機塩類;各種ビタミン類;各種アミノ酸類;等が挙げられる。
 その他の成分としては、ペニシリン、ストレプトマイシン等の抗生物質;コレラトキシン;インスリン;トランスフェリン;亜セレン酸;2-メルカプトエタノール;アルブミン;血清又は血清代替物;等が挙げられる。インスリン、トランスフェリン、及び亜セレン酸としては、Invitrogen製のITS-X、ITS-A、ITS-G等が市販品として入手可能である。また、血清代替物としては、Invitrogen製のB-27TMサプリメント、N-2サプリメント、KnockoutTM血清代替物等が市販品として入手可能である。
 好適な実施形態では、ペニシリン、ストレプトマイシン等の抗生物質、インスリン、トランスフェリン、亜セレン酸、2-メルカプトエタノール、アルブミンを添加した、無血清のDMEM/ハムF12が用いられる。
 インスリンの濃度は、2~30μg/mLが好ましく、5~20μg/mLがより好ましい。トランスフェリンの濃度は、1~20μg/mLが好ましく、3~10μg/mLがより好ましい。亜セレン酸の濃度は、1~20ng/mLが好ましく、5~20ng/mLがより好ましい。2-メルカプトエタノールの濃度は、50~200μMが好ましく、50~100μMがより好ましい。アルブミンの濃度は、1~10ng/mLが好ましく、2~5ng/mLがより好ましい。
 工程(A3)の培養期間は例えば1~3日であり、1~2日が好ましい。
(工程(B3))
 工程(B3)では、工程(A3)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する。
 TGF-βスーパーファミリーに属する増殖因子としては、アクチビン、ノーダル、BMP等が挙げられ、その中でもアクチビンが好ましい。アクチビンとしては、アクチビンA、アクチビンB、アクチビンAB等が挙げられ、その中でもアクチビンAが好ましい。
 TGF-βスーパーファミリーに属する増殖因子の濃度は、5~250ng/mLが好ましく、10~200ng/mLがより好ましく、50~150ng/mLがさらに好ましい。
 培養に用いる容器は、工程(A3)と同様でよい。培地は、TGF-βスーパーファミリーに属する増殖因子を添加することを除き、工程(A3)と同様でよい。すなわち、好適な実施形態では、ペニシリン、ストレプトマイシン等の抗生物質、インスリン、トランスフェリン、亜セレン酸、2-メルカプトエタノール、アルブミンを添加した、無血清のDMEM/ハムF12が用いられる。
 工程(B3)の培養期間は例えば2~6日であり、3~5日が好ましい。
(工程(C3))
 工程(C3)では、工程(B3)で得られた細胞をレチノイドの存在下で培養する。
 レチノイドとしては、レチノール、レチナール、レチノイン酸等が挙げられ、その中でも全トランス型レチノイン酸が好ましい。
 レチノイドの濃度は、0.2~10μMが好ましく、0.4~8μMがより好ましく、1~4μMがさらに好ましい。
 培養に用いる容器は、工程(A3)と同様でよい。培地は、TGF-βスーパーファミリーに属する増殖因子を添加することを除き、工程(A3)と同様でよい。
 好適な実施形態では、全トランス型レチノイン酸、ペニシリン、ストレプトマイシン等の抗生物質、インスリン、トランスフェリン、亜セレン酸、2-メルカプトエタノール、アルブミンを添加した、無血清のDMEM/ハムF12が用いられる。
 工程(C3)の培養期間は例えば2~6日であり、3~5日が好ましい。
(工程(D3))
 工程(D3)では、工程(C3)で得られた細胞をFGFの存在下で培養する。
 FGFとしては、FGF-1、FGF-2(bFGF)、FGF-3、FGF-4、FGF-5、FGF-6、FGF-7、FGF-8、FGF-9、FGF-10、FGF-11、FGF-12、FGF-13、FGF-14、FGF-15、FGF-16、FGF-17、FGF-18、FGF-19、FGF-20、FGF-21、FGF-22、FGF-23等が挙げられ、FGF-2(bFGF)、FGF-5、FGF-7、FGF-10が好ましい。
 FGFの濃度は、1~30ng/mLが好ましく、2~20ng/mLがより好ましく、5~15ng/mLがさらに好ましい。
 培養に用いる容器は、工程(A3)と同様でよい。培地は、FGFを添加することを除き、基本的に工程(C3)と同様でよい。
 好適な実施形態では、FGF-2(bFGF)、ペニシリン、ストレプトマイシン等の抗生物質、インスリン、トランスフェリン、亜セレン酸、アルブミンを添加した、無血清のDMEM/ハムF12が用いられる。
 工程(D3)の培養期間は例えば1~5日であり、2~4日が好ましい。
(工程(E3))
 工程(E3)では、工程(D3)で得られた細胞をニコチンアミドの存在下で培養する。
 ニコチンアミドの濃度は、1~30mMが好ましく、3~20mMがより好ましく、5~15mMがさらに好ましい。
 また、工程(E3)では、FGFを培地中に添加することが好ましい。
 FGFとしては、FGF-1、FGF-2(bFGF)、FGF-3、FGF-4、FGF-5、FGF-6、FGF-7、FGF-8、FGF-9、FGF-10、FGF-11、FGF-12、FGF-13、FGF-14、FGF-15、FGF-16、FGF-17、FGF-18、FGF-19、FGF-20、FGF-21、FGF-22、FGF-23等が挙げられ、FGF-2(bFGF)、FGF-5、FGF-7、FGF-10が好ましい。
 FGFの濃度は、1~30ng/mLが好ましく、2~20ng/mLがより好ましく、5~15ng/mLがさらに好ましい。
 培養に用いる容器は、工程(A3)と同様でよい。培地は、ニコチンアミドを添加することを除き、基本的に工程(D3)と同様でよい。
 好適な実施形態では、ニコチンアミド、FGF-2(bFGF)、ペニシリン、ストレプトマイシン等の抗生物質、インスリン、トランスフェリン、亜セレン酸、アルブミンを添加した、無血清のDMEM/ハムF12が用いられる。
 工程(E3)の培養期間は例えば3~20日であり、3~10日が好ましい。
 この工程(E3)により、膵臓ホルモン産生細胞が得られる。
 膵臓ホルモン産生細胞への分化誘導の進行は、インスリン、グルカゴン、ソマトスタチン等の膵臓ホルモンの産生を確認するほか、RT-PCRにより遺伝子発現を確認することによっても評価することができる。膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化が進行するに従って、膵臓ホルモン産生細胞のマーカー遺伝子であるINS、GCG、GHRL、SST、PPY等のうち、少なくとも1つの遺伝子の発現が亢進する。
<膵臓ホルモン産生細胞の応用例>
 上述のようにして得られた膵臓ホルモン産生細胞は、糖尿病等の治療薬に応用することができる。例えば、膵臓ホルモン産生細胞がインスリンを産生・分泌する場合には、そのインスリン産生細胞をそのまま、あるいはフィルター濾過により濃縮したペレット等の細胞塊を糖尿病治療薬として用いることができる。この糖尿病治療薬は、DMSO等の保護剤を加え、凍結保存することもできる。なお、より安全に利用するためには、加熱処理、放射線処理、マイトマイシンC処理など、糖尿病治療薬としての機能を残しつつ、病原体のタンパク質が変性する程度の条件下で処理をすることが好ましい。
 インスリン産生細胞を用いた糖尿病治療薬のヒトへの投与形態(移植方法)としては、例えば、ヒト患者の右下腹部に小切開を置き、腸間膜の細い血管を露出して直視下にカテーテルを挿入して細胞を移植する方法、エコーにて肝臓の門脈を同定して、カテーテルを穿刺して細胞を移植する方法、あるいは腹部エコーガイド下に脾臓を直接穿刺することにより脾臓に移植する方法が挙げられる。投与量(移植量)は、1×10~1×1010細胞/個体が好ましく、5×10~1×1010細胞/個体がより好ましい。なお、投与量(移植量)は、投与される患者の年齢、体重、症状等によって適宜変更することができる。
 また、上述のようにして得られた膵臓ホルモン産生細胞を研究試薬として用いることもできる。例えば、膵臓ホルモン産生細胞を培養している培養容器や、膵臓ホルモン産生細胞を封じ込めたバイオリアクター内に新薬を添加することにより、新薬のスクリーニングを行うことができる。
 さらに、上述のようにして得られた膵臓ホルモン産生細胞を用いて、バイオ人工膵臓を製造することも可能である。バイオ人工膵臓としては、中空糸型のバイオリアクター(デバイス)と膵臓ホルモン産生細胞とを組み合わせたハイブリッド型の人工膵臓が挙げられる。バイオ人工膵臓には、体外に装着して血管に接続するもの、体内に留置して血管に接続するもの、血管に接続せずに腹腔内に留置するもの、血管に接続せずに皮下に留置するもの等があり、いずれの形態のバイオ人工膵臓にも適用可能である。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載によって何ら限定して解釈されるものではない。
<実施例1>
(1)分化誘導促進剤の調製
 分化誘導促進剤は以下のようにして調製した。10% FBS(ウシ胎児血清)(ニチレイ、171012)、1% ペニシリン/ストレプトマイシン(Life Technologies Japan、15140-122)を添加したハムF12培地(Sigma、N6658)で継代培養したCHO-K1細胞を10cmディッシュに5×10個プレーティングした。その翌日、FuGENE6(Roche)を使用して、配列番号1に記載の塩基配列からなるDNAによりコードされるポリペプチド(以下、「IBCAP」という。)の発現ベクター(pCAGGS-IBCAP)をCHO-K1細胞にトランスフェクトし、IBCAPを強制発現させた。その48時間後に細胞を1/20濃度に希釈し、10cmディッシュに再度プレーティングした。その翌日、最終濃度400μg/mLのG418(ナカライテスク、09380-44)を添加し、以後、3~5日おきに培地交換を行い、コロニー形成させた。限界希釈法でクローン化したコロニーを単離し、増殖後、サザンブロット法及びノザンブロット法で遺伝子発現を確認し、安定型IBCAP発現CHO-K1細胞株(以下、「IBCAP発現Stable CHO細胞」という。)を作製した。
 その後、このIBCAP発現Stable CHO細胞を、1% GLUTAMAX I(Life Technologies Japan、35050-061)及び1% ペニシリン/ストレプトマイシン(Life Technologies Japan、15140-122)を添加したCD OptiCHO(Life Technologies Japan、12681-011)に馴化させた。さらに、馴化させたIBCAP発現Stable CHO細胞を、強制通気式COインキュベーター(タイテック、CO-BR-43FL、温度:37℃、振とう速度:120rpm、ガス条件:5% CO、20mL/min/フラスコ)にて振とう培養を行い、以後、この細胞を用いて培養上清を作製した。
 培養上清は、生存率が90%以上あることを確認し、細胞数が5×10個/mLとなるよう継代し(培養液量:150mL培養液/500mLフラスコ)、5日後に回収した(細胞数は約4~5×10個/mL)。回収した培養上清はその後、セントリプレップ(Millipore、4302、YM-3)を用いて約10倍に濃縮し(300mLを約30mLに濃縮し)、さらに2Lの30mM HEPES(pH7.6)に対して3回透析した。そして、透析後の培養上清(以下、「IBCAP培養上清」という。)を分化誘導促進剤として準備した。
 また、Mockコントロールとして、空ベクター(pCAGGS)をCHO-K1細胞にトランスフェクトし、上記と同様にして透析後の培養上清(以下、「Mock培養上清」という。)を準備した。
(2)ヒトiPS細胞から膵臓ホルモン産生細胞への分化誘導
 ヒトiPS細胞としては、埼玉医科大学のDr.Mitaniから供与されたTIG3/KOSM細胞を用いた。この細胞は、センダイウイルスを用いてTIG-3細胞に4因子(OCT遺伝子、KLF遺伝子、SOX遺伝子、MYC遺伝子)を導入することにより、産業技術総合研究所にて樹立されたものである(Nishimura,K. et al., J. Biol. Chem., 286, pp.4760-4771(2011))。TIG3/KOSM細胞は、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、20%(v/v) KnockoutTM血清代替物(Gibco)、1% (v/v) 非必須アミノ酸(Gibco)、2.5mM L-グルタミン、0.1mM 2-メルカプトエタノール(Gibco)、5ng/mL FGF-2(R&D Systems)、5mM 塩化ナトリウムを添加したDMEM/ハムF12培地中で維持した。
 分化誘導を開始する前日、10cmディッシュに増やしたTIG3/KOSM細胞を、MATRIGELTM(Becton Dickinson)でコートされた6ウェルプレートに1×10個/ウェルの細胞密度でプレーティングし、STOフィーダー細胞による馴化培地中で一晩培養した。そして、培地を取り除き、CTK(0.25% トリプシン、1mg/mL Collagenase IV、20% KSR、1mM CaCl in PBS)1mLを添加し、37℃で5分間処理をし、STOフィーダー細胞を取り除いた後に、ピペッティングにより懸濁してTIG3/KOSM細胞を剥がした。その後、剥がしたTIG3/KOSM細胞を15mLチューブにとり、1000rpm(150×g)で5分間遠心後、上清を取り除き、MatrigelTMでコートされた6ウェルプレートに1×10個/ウェルの細胞密度でプレーティングした。
 なお、上記の馴化培地は、以下のようにして調製したものである。すなわち、マイトマイシン処理済みSTO細胞を15cmディッシュに7.5×10個プレーティングし、翌日、ヒトiPS培地(FGF-2なし)に培地交換し、1~3時間処理後、再度ヒトiPS培地に交換して24時間培養した。その翌日、上清を回収し、1500rpm(330×g)で10分間遠心することによって細胞を取り除き、-20~-30℃にてストックした。
 分化誘導の開始初日に、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2mM L-グルタミン(Gibco)、100ng/mL アクチビンA(Humanzyme)、25ng/mL Wnt3a(ナカライテスク)を添加したAdvanced RPMI1640培地(Gibco)に培地交換し、1日間培養した(工程(A1-1))。次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、0.2%(v/v) FBS(ウシ胎児血清)、2mM L-グルタミン(Gibco)、100ng/mL アクチビンA(Gibco)を添加したAdvanced RPMI1640培地(Gibco)に培地交換し、2日間培養した(工程(A1-2))。
 次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2%(v/v) FBS、2mM L-グルタミン(Gibco)、50ng/mL FGF-10(R&D Systems)、0.25μM KAAD-シクロパミン(ナカライテスク)を添加したAdvanced RPMI1640培地(Gibco)に培地交換し、2日間培養した(工程(B1))。
 次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2%(v/v) B-27TMサプリメント(Gibco)、2μM レチノイン酸(Sigma)、0.25μM KAAD-シクロパミン(ナカライテスク)、50ng/mL FGF-10(R&D Systems)を添加したDMEM/ハムF12培地(Gibco)に培地交換し、4日間培養した(工程(C1))。
 次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2%(v/v) B-27TMサプリメント(Gibco)、10μM DAPT(Sigma)、55nM エキセンジン-4(Phoenix Pharmaceuticals)を添加し、さらに2%(v/v) IBCAP培養上清又はMock培養上清を添加したDMEM/ハムF12培地(Gibco)に培地交換し、3日間培養した(工程(D1))。
 最後に、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2%(v/v) B-27TMサプリメント(Gibco)、55nM エキセンジン-4(Phoenix Pharmaceuticals)、50ng/mL HGF(Humanzyme)、50ng/mL IGF-1(Humanzyme)を添加し、さらに2%(v/v) IBCAP培養上清又はMock培養上清を添加したCMRL1066培地(Gibco)に培地交換し、6日間培養した(工程(E1))。
(3)定量的RT-PCR分析
 分化誘導前のTIG3/KOSM細胞、及び工程(E1)を経て得られた細胞について、グルカゴン(GCG)及びソマトスタチン(SST)の遺伝子発現を定量的RT-PCRで確認した。具体的には、まず、NucleoSpinTM RNA II(タカラバイオ)を用いて細胞からRNAを抽出し、Fast SYBRTM Green PCR Master Mix(Applied Biosystems)を用いて定量的RT-PCR分析を行った。プライマー配列を以下に示す。
 HsGCG_264F:GCATTTACTTTGTGGCTGGA(配列番号4)
 HsGCG_368R:CCTGGGAAGCTGAGAATGAT(配列番号5)
 HsSST_206F:CCCCAGACTCCGTCAGTTTC(配列番号6)
 HsSST_313R:TCCGTCTGGTTGGGTTCAG(配列番号7)
 PCR産物は3%アガロースゲル電気泳動により分離し、エチジウムブロマイド、BioDoc-It Imaging System(BMbio)により可視化した。
 工程(E1)を経て得られた細胞におけるグルカゴン(GCG)及びソマトスタチン(SST)の発現量をそれぞれ図1(a)、(b)に示す。この図1(a)、(b)は、分化誘導前のTIG3/KOSM細胞におけるグルカゴン(GCG)及びソマトスタチン(SST)の発現量を1とした相対値(誘導倍率)で示したものである。
 図1(a)に示すように、無添加の場合にはグルカゴン(GCG)の誘導倍率が約22.6倍であったのに対し、工程(D1)、(E1)でMock培養上清を添加した場合には約12.8倍であり、IBCAP培養上清を添加した場合には約36.8倍であった。
 また、図1(b)に示すように、無添加の場合にはソマトスタチン(SST)の誘導倍率がほぼ0倍であったのに対し、工程(D1)、(E1)でMock培養上清を添加した場合には約0.4倍であり、IBCAP培養上清を添加した場合には約9.5倍であった。
 この結果から、工程(D1)、(E1)でIBCAP培養上清を添加することにより、ヒトiPS細胞から膵臓ホルモン産生細胞への分化誘導効率が向上することが分かる。
<実施例2>
 IBCAP培養上清又はMock培養上清を工程(A1-1)、(A1-1)、あるいは工程(B1)、(C1)で添加するとともに、工程(E1)の培養期間を3日間とするほかは、実施例1と同様にしてTIG3/KOSM細胞を培養し、グルカゴン(GCG)及びソマトスタチン(SST)の遺伝子発現を定量的RT-PCRで確認した。
 工程(E1)を経て得られた細胞におけるグルカゴン(GCG)及びソマトスタチン(SST)の発現量をそれぞれ図2(a)、(b)に示す。この図2(a)、(b)は、分化誘導前のTIG3/KOSM細胞におけるグルカゴン(GCG)及びソマトスタチン(SST)の発現量を1とした相対値で示したものである。
 図2(a)に示すように、無添加の場合にはグルカゴン(GCG)の誘導倍率が約120.1倍であったのに対し、工程(A1-1)、(A1-2)でMock培養上清を添加した場合には約100.7倍であり、IBCAP培養上清を添加した場合には約193.8倍であった。また、工程(B1)、(C1)でMock培養上清を添加した場合には約31.2倍であり、IBCAP培養上清を添加した場合には約218.5倍であった。
 また、図2(b)に示すように、無添加の場合にはソマトスタチン(SST)の誘導倍率が約117.6倍であったのに対し、工程(A1-1)、(A1-2)でMock培養上清を添加した場合には約16.6倍であり、工程(A1-1)、(A1-2)でIBCAP培養上清を添加した場合には約65.2倍であった。また、工程(B1)、(C1)でMock培養上清を添加した場合には約8.8倍であり、IBCAP培養上清を添加した場合には約164.1倍であった。
 この結果から、工程(A1-1)、(A1-2)でIBCAP培養上清を添加する場合と、工程(B1)、(C1)でIBCAP培養上清を添加する場合とのいずれも、ヒトiPS細胞から膵臓ホルモン産生細胞への分化誘導効率が向上することが分かる。
<実施例3>
(1)マウス膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導
 マウス膵臓組織幹/前駆細胞としては、埼玉医科大学のDr.Matsumotoから供与されたTec3DR細胞を用いた。この細胞は、マウス胎児期の膵臓から分離された組織幹/前駆細胞をクローン化することにより樹立されたものである。Tec3DR細胞は、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、15%(v/v) FBS、50μM 2-メルカプトエタノール(Gibco)を添加したDMEM培地中で維持した。
 分化誘導の開始初日に、24ウェルプレートにTec3DR細胞を1×10個/ウェルの細胞密度でプレーティングし、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、0.1%(v/v) BSA(ウシ血清アルブミン)(Sigma)、1%(v/v) ITS-X(Gibco)、55μM 2-メルカプトエタノール(Gibco)を添加したDMEM/ハムF12培地(Gibco)で2日間培養した(工程(A3))。
 次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、0.1%(v/v) BSA(Sigma)、1%(v/v) ITS-X(Gibco)、55μM 2-メルカプトエタノール(Gibco)、50ng/mL アクチビンA(Humanzyme)を添加したDMEM/ハムF12培地(Gibco)に培地交換し、4日間培養した(工程(B3))。
 次いで、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、0.1%(v/v) BSA(Sigma)、1%(v/v) ITS-X(Gibco)、55μM 2-メルカプトエタノール(Gibco)、1μM レチノイン酸(Sigma)を添加したDMEM/ハムF12培地(Gibco)に培地交換し、4日間培養した(工程(C3))。
 次いで、トリプシン-EDTAで処理することにより培養中の細胞を回収し、24ウェルプレートに1×10個/ウェルの細胞密度でプレーティングし、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2mg/mL BSA(Sigma)、1%(v/v) ITS-X(Gibco)、10ng/mL FGF-2(ナカライテスク)を添加したDMEM/ハムF12培地(Gibco)で3日間培養した(工程(D3))。
 最後に、1%(v/v) ペニシリン/ストレプトマイシン(Gibco)、2mg/mL BSA(Sigma)、1%(v/v) ITS-X(Gibco)、10ng/mL FGF-2(ナカライテスク)、10mM ニコチンアミド(Sigma)を添加したDMEM/ハムF12培地(Gibco)に培地交換し、5日間培養した。その途中、2~3日経過後に新しい培地に交換した。その後、培地中に2%(v/v) IBCAP培養上清又はMock培養上清を添加し、さらに6日間培養した(工程(E3))。
(2)定量的RT-PCR分析
 分化誘導前のTec3DR細胞、及び工程(E3)を経て得られた細胞について、マウスインスリン-1(Ins1)の遺伝子発現を定量的RT-PCRで確認した。具体的には、まず、NucleoSpinTM RNA II(タカラバイオ)を用いて細胞からRNAを抽出し、Power SYBRTM Green PCR Master Mix(Applied Biosystems)を用いて定量的RT-PCR分析を行った。プライマー配列を以下に示す。
 MnIns1_qPCR_Fw:CACTTCCTACCCCTGCTGG(配列番号8)
 MnIns1_qPCR_Rv:ACGCCAAGGTCTGAAGGTC(配列番号9)
 PCR産物は3%アガロースゲル電気泳動により分離し、エチブジウムブロマイドで染色し、BioDoc-It Imaging System(BMbio)により可視化した。
 工程(E3)を経て得られた細胞におけるインスリン-1(Ins1)の発現量を図3に示す。この図3は、分化誘導前のTec3DR細胞におけるインスリン-1(Ins1)の発現量を1とした相対値で示したものである。
 図3に示すように、工程(E3)でMock培養上清を添加した場合には約0.3倍であり、IBCAP培養上清を添加した場合には約17.0倍であった。
 この結果から、工程(E3)でIBCAP培養上清を添加することにより、マウス膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導効率が向上することが分かる。

Claims (6)

  1.  多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞を生産する膵臓ホルモン産生細胞の生産方法であって、
     多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化誘導過程で、下記(1)~(3)から選ばれる少なくとも1種の分化誘導促進剤を培地中に添加することを特徴とする膵臓ホルモン産生細胞の生産方法、
     (1)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチド、
     (2)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなり、かつ、膵臓ホルモン産生細胞への分化誘導促進作用を持つポリペプチド、
     (3)配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清。
  2.  (A1)TGF-β(トランスフォーミング増殖因子β)スーパーファミリーに属する増殖因子の存在下で多能性幹細胞を培養する工程、
     (B1)前記工程(A1)で得られた細胞をFGF(線維芽細胞増殖因子)の存在下で培養する工程、
     (C1)前記工程(B1)で得られた細胞をレチノイドの存在下で培養する工程、
     (D1)前記工程(C1)で得られた細胞をγ-セクレターゼ阻害剤の存在下で培養する工程、及び
     (E1)前記工程(D1)で得られた細胞を、エキセンジン-4、HGF(肝細胞増殖因子)、IGF-1(インスリン様増殖因子-1)、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程、を含み、
     前記工程(A1)~(E1)の少なくとも1つの工程で前記分化誘導促進剤を培地中に添加する請求項1記載の膵臓ホルモン産生細胞の生産方法。
  3.  (A2)TGF-β(トランスフォーミング増殖因子β)スーパーファミリーに属する増殖因子と、Wnt(ウィングレス型MMTV組み込み部位)ファミリーに属する増殖因子及びGSK-3(グリコーゲン合成酵素キナーゼ-3)阻害剤からなる群から選択される少なくとも1種の因子との存在下で多能性幹細胞を培養する工程、
     (B2)前記工程(A2)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程、
     (C2)前記工程(B2)で得られた細胞をレチノイドの存在下で培養する工程、
     (D2)前記工程(C2)で得られた細胞を、cAMP(環状アデノシン一リン酸)増加剤、デキサメタゾン、TGF-β1型受容体阻害剤、及びニコチンアミドからなる群から選択される少なくとも1種の因子の存在下で培養する工程、を含み、
     前記工程(A2)~(D2)の少なくとも1つの工程で前記分化誘導促進剤を培地中に添加する請求項1記載の膵臓ホルモン産生細胞の生産方法。
  4.  (A3)TGF-β(トランスフォーミング増殖因子β)スーパーファミリーに属する増殖因子、レチノイド、FGF(線維芽細胞増殖因子)、及びニコチンアミドの非存在下で膵臓組織幹/前駆細胞を培養する工程、
     (B3)前記工程(A3)で得られた細胞をTGF-βスーパーファミリーに属する増殖因子の存在下で培養する工程、
     (C3)前記工程(B3)で得られた細胞をレチノイドの存在下で培養する工程、
     (D3)前記工程(C3)で得られた細胞をFGFの存在下で培養する工程、及び
     (E3)前記工程(D3)で得られた細胞をニコチンアミドの存在下で培養する工程
    を含み、
     前記工程(A3)~(E3)の少なくとも1つの工程で前記分化誘導促進剤を培地中に添加する請求項1記載の膵臓ホルモン産生細胞の生産方法。
  5.  請求項1~4のいずれか1項記載の膵臓ホルモン産生細胞の生産方法によって人工的に生産された膵臓ホルモン産生細胞。
  6.  次の(1)~(3)の少なくとも1種を含み、多能性幹細胞又は膵臓組織幹/前駆細胞から膵臓ホルモン産生細胞への分化を誘導する分化誘導促進剤;
     (1)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列からなるポリペプチド、
     (2)配列番号1に記載の塩基配列からなるDNAによりコードされるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、及び/又は付加されたアミノ酸配列からなり、かつ、膵臓ホルモン産生細胞への分化誘導促進作用を持つポリペプチド、
     (3)配列番号1に記載の塩基配列からなるDNA、又はこのDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを外来遺伝子として組み込んだ細胞の培養上清。
PCT/JP2013/064469 2012-05-25 2013-05-24 膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤 WO2013176249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380027230.0A CN104428410B (zh) 2012-05-25 2013-05-24 胰激素产生细胞的制造方法及胰激素产生细胞、以及分化诱导促进剂
JP2014516862A JP6161603B2 (ja) 2012-05-25 2013-05-24 膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤
US14/403,026 US20150140661A1 (en) 2012-05-25 2013-05-24 Method for producing pancreatic hormone-producing cell, pancreatic hormone-producing cell, and differentiation/induction promoter
EP13793805.6A EP2857500B1 (en) 2012-05-25 2013-05-24 Method for producing pancreatic hormone-producing cell, pancreatic hormone-producing cell, and differentiation/induction promoter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120281 2012-05-25
JP2012120281 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013176249A1 true WO2013176249A1 (ja) 2013-11-28

Family

ID=49623929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064469 WO2013176249A1 (ja) 2012-05-25 2013-05-24 膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤

Country Status (5)

Country Link
US (1) US20150140661A1 (ja)
EP (1) EP2857500B1 (ja)
JP (1) JP6161603B2 (ja)
CN (1) CN104428410B (ja)
WO (1) WO2013176249A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988110A (zh) * 2015-07-08 2015-10-21 深圳爱生再生医学科技有限公司 脐带间充质干细胞转化为胰岛细胞的方法
WO2015178397A1 (ja) * 2014-05-20 2015-11-26 国立大学法人熊本大学 インスリン産生細胞の分化誘導方法
WO2018207714A1 (ja) * 2017-05-09 2018-11-15 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911141A (zh) * 2015-06-02 2015-09-16 深圳市第二人民医院 一种诱导iPSCs分化为胰岛β细胞的方法
CN104988111A (zh) * 2015-07-08 2015-10-21 深圳爱生再生医学科技有限公司 用于将uc-msc转化为胰岛细胞的诱导液及其应用
WO2017188378A1 (ja) * 2016-04-28 2017-11-02 武田薬品工業株式会社 多能性幹細胞由来膵前駆細胞の純化法とその増幅法
US11352605B2 (en) * 2016-05-12 2022-06-07 Erasmus University Medical Center Rotterdam Method for culturing myogenic cells, cultures obtained therefrom, screening methods, and cell culture medium
JP7369346B2 (ja) * 2018-11-14 2023-10-26 株式会社片岡製作所 インスリン産生細胞の製造方法、及び組成物
WO2020100789A1 (ja) * 2018-11-14 2020-05-22 株式会社片岡製作所 インスリン産生細胞の製造方法
CN111607556B (zh) * 2019-01-25 2022-06-07 中国科学院广州生物医药与健康研究院 一种培养扩增人肝祖细胞的培养基及其应用
CN113736725B (zh) * 2020-05-29 2024-04-16 国玺干细胞应用技术股份有限公司 细胞分化培养基组合物、高分泌量胰岛素产生细胞及制备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063971A2 (en) 2003-12-23 2005-07-14 Cythera, Inc Definitive endoderm
WO2006020919A2 (en) 2004-08-13 2006-02-23 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006108361A1 (en) 2005-04-15 2006-10-19 Peking University Method of inducing embryonic stem cells into pancreatic cells
WO2007051038A2 (en) 2005-10-27 2007-05-03 Cythera, Inc. Pdx1-expressing dorsal and ventral foregut endoderm
JP2007209214A (ja) * 2006-02-07 2007-08-23 Univ Of Tsukuba インスリン分泌誘導剤、インスリン分泌誘導組成物及びその製造方法、遺伝子治療用ウイルスベクター
WO2007103282A2 (en) 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
WO2008066199A1 (fr) 2006-12-01 2008-06-05 Naoya Kobayashi Procédé d'induction de la différenciation de cellules souches embryonnaires en cellules sécrétrices d'insuline, cellules sécrétrices d'insuline induites par le procédé et leur utilisation
WO2009013794A1 (ja) * 2007-07-20 2009-01-29 Hideo Toyoshima インスリン分泌誘導剤及び膵臓β細胞増加促進剤
WO2009048675A1 (en) 2007-07-31 2009-04-16 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063971A2 (en) 2003-12-23 2005-07-14 Cythera, Inc Definitive endoderm
WO2006020919A2 (en) 2004-08-13 2006-02-23 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
WO2006108361A1 (en) 2005-04-15 2006-10-19 Peking University Method of inducing embryonic stem cells into pancreatic cells
WO2007051038A2 (en) 2005-10-27 2007-05-03 Cythera, Inc. Pdx1-expressing dorsal and ventral foregut endoderm
JP2007209214A (ja) * 2006-02-07 2007-08-23 Univ Of Tsukuba インスリン分泌誘導剤、インスリン分泌誘導組成物及びその製造方法、遺伝子治療用ウイルスベクター
WO2007103282A2 (en) 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
WO2008066199A1 (fr) 2006-12-01 2008-06-05 Naoya Kobayashi Procédé d'induction de la différenciation de cellules souches embryonnaires en cellules sécrétrices d'insuline, cellules sécrétrices d'insuline induites par le procédé et leur utilisation
WO2009013794A1 (ja) * 2007-07-20 2009-01-29 Hideo Toyoshima インスリン分泌誘導剤及び膵臓β細胞増加促進剤
WO2009048675A1 (en) 2007-07-31 2009-04-16 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning: A Laboratory Manual, 2nd Ed.,", 1989, COLD SPRING HARBOR LABORATORY
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
D'AMOUR, K.A. ET AL.: "Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells", NATURE BIOTECHNOLOGY, vol. 24, 2006, pages 1392 - 1401, XP002650232 *
D'AMOUR,K.A. ET AL., NATURE BIOTECHNOLOGY, vol. 24, 2006, pages 1392 - 1401
J. BIOL. CHEM., vol. 277, no. 34, 2002, pages 30998 - 31004
JIANG, W. ET AL.: "In vitro derivation of functional insulin-producing cells from human embryonic stem cells", CELL RESEARCH, vol. 17, 2007, pages 333 - 344, XP002455184 *
JONSSON, J. ET AL., NATURE, vol. 371, 1994, pages 606 - 609
KUNISADA, Y. ET AL.: "Small molecules induce efficient differentiation into insulin- producing cells from human induced pluripotent stem cells", STEM CELL RESEARCH, vol. 8, no. 2, March 2012 (2012-03-01), pages 274 - 284, XP055094959 *
MARK, D. F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MIYAZAKI,S ET AL., DIABETES, vol. 53, 2004, pages 1030 - 1037
NISHIMURA, K. ET AL., J. BIOL. CHEM., vol. 286, 2011, pages 4760 - 4771
OFFIELD, M. F. ET AL., DEVELOPMENT, vol. 22, 1996, pages 983 - 995
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WEI JIANG ET AL., CELL RESEARCH, vol. 17, 2007, pages 333 - 344
YUYA KUNISADA ET AL., STEM CELL RESEARCH, vol. 8, 2012, pages 274 - 284
ZOLLER, M. J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178397A1 (ja) * 2014-05-20 2015-11-26 国立大学法人熊本大学 インスリン産生細胞の分化誘導方法
JPWO2015178397A1 (ja) * 2014-05-20 2017-04-20 国立大学法人 熊本大学 インスリン産生細胞の分化誘導方法
US10457916B2 (en) 2014-05-20 2019-10-29 Tokyo Institute Of Technology Method for inducing differentiation of insulin-producing cells
CN104988110A (zh) * 2015-07-08 2015-10-21 深圳爱生再生医学科技有限公司 脐带间充质干细胞转化为胰岛细胞的方法
WO2018207714A1 (ja) * 2017-05-09 2018-11-15 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
JPWO2018207714A1 (ja) * 2017-05-09 2020-03-12 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
JP7174426B2 (ja) 2017-05-09 2022-11-17 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
US11859212B2 (en) 2017-05-09 2024-01-02 Public University Corporation Nagoya City University Method for producing intestinal organoid derived from pluripotent stem cells

Also Published As

Publication number Publication date
EP2857500B1 (en) 2018-01-31
US20150140661A1 (en) 2015-05-21
JP6161603B2 (ja) 2017-07-12
CN104428410B (zh) 2016-08-31
CN104428410A (zh) 2015-03-18
JPWO2013176249A1 (ja) 2016-01-14
EP2857500A4 (en) 2015-11-11
EP2857500A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP6161603B2 (ja) 膵臓ホルモン産生細胞の生産方法及び膵臓ホルモン産生細胞、並びに分化誘導促進剤
JP7187647B2 (ja) 多能性幹細胞の膵臓内胚葉細胞(PEC)および内分泌細胞へのin vitro分化
Sun et al. Stem cell-based therapies for Duchenne muscular dystrophy
CN102159703B (zh) 多能干细胞的分化
Rak-Raszewska et al. Organ in vitro culture: what have we learned about early kidney development?
KR20160033703A (ko) 체세포로부터 신경 능선 세포로의 소분자 기반 전환
CN114174494A (zh) 产生和扩增造血干细胞的方法
EP2882848A1 (en) Method, combination and/or composition for inducing cardiomyocyte differentation
Edamura et al. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage-and glutamate-responsive neuron-like cells
JP2023536421A (ja) 多能性幹細胞由来細胞の大規模製造のための閉鎖型製造プロセス
JP7139951B2 (ja) インスリン産生細胞分化誘導促進剤
EP3006564B1 (en) New peptide and application thereof
CN115044534B (zh) 一种利用BMP7因子在体外生产胰岛β细胞的方法和获得的胰岛β细胞以及应用
CA3229048A1 (en) Vascularized organoids
CN117957309A (zh) 血管化类器官
EP4221724A1 (en) Organoid recombination
EP4217467A1 (en) Raft cultures and methods of making thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516862

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14403026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013793805

Country of ref document: EP