WO2013175740A1 - 圧電組成物及びその製造方法、並びに圧電素子/非鉛圧電素子及びその製造方法、並びに超音波プローブ及び画像診断装置 - Google Patents

圧電組成物及びその製造方法、並びに圧電素子/非鉛圧電素子及びその製造方法、並びに超音波プローブ及び画像診断装置 Download PDF

Info

Publication number
WO2013175740A1
WO2013175740A1 PCT/JP2013/003130 JP2013003130W WO2013175740A1 WO 2013175740 A1 WO2013175740 A1 WO 2013175740A1 JP 2013003130 W JP2013003130 W JP 2013003130W WO 2013175740 A1 WO2013175740 A1 WO 2013175740A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
piezoelectric element
lead
piezoelectric
heat treatment
Prior art date
Application number
PCT/JP2013/003130
Other languages
English (en)
French (fr)
Inventor
峯本 尚
智志 和田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014516658A priority Critical patent/JP6229653B2/ja
Priority to US14/402,659 priority patent/US9812633B2/en
Publication of WO2013175740A1 publication Critical patent/WO2013175740A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a novel lead-free piezoelectric composition containing no lead. Furthermore, the present invention relates to a lead-free piezoelectric element that does not contain lead, a method for manufacturing the same, an ultrasonic probe using the lead-free piezoelectric element, and an image diagnostic apparatus using the ultrasonic probe.
  • Conventional lead-free piezoelectric compositions include, for example, (Bi 0.5 K 0.5 ) TiO 3 (hereinafter also referred to as BKT) and binary systems of BKT and BiFeO 3 (hereinafter also referred to as BFO).
  • BKT Bi 0.5 K 0.5
  • BFO binary systems of BKT and BiFeO 3
  • Various lead-free piezoelectric compositions have been studied. However, the current piezoelectric constant is still smaller than that of lead-based piezoelectric compositions (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).
  • a solid solution of BiKT with Bi (Fe, Co) O 3 hereinafter also referred to as BFCO
  • Fe of BiFeO 3 is replaced with Co has begun to be studied (for example, Patent Document 3).
  • BMT Bi (Mg 0.5 Ti 0.5 ) O 3
  • BMT Bi (Mg 0.5 Ti 0.5 ) O 3
  • Non-Patent Document 4 a lead-free piezoelectric element using a BFO-based piezoelectric composition is expected to have a large spontaneous polarization (about 100 ⁇ C / cm 2 )
  • Non-Patent Document 5 it has been reported that it is difficult to actually obtain a piezoelectric composition having a large spontaneous polarization because, for example, the leakage current is large and the spontaneous polarization is hardly expressed by pinning.
  • Patent Document 1 a method of sintering from a very fine raw material (Patent Document 1, Non-Patent Document 2) or a method of quenching at a very high speed by immersing in hot water from a high temperature (Non-Patent Document 5, Non-Patent Document 6), a method of heating at a high speed of 100 ° C./second and sintering in a short time (Non-Patent Document 7), or piezoelectric to suppress evaporation of easily volatile elements such as Bi.
  • Various methods have been proposed, such as a method (Patent Document 2) for producing a dense sintered body and improving the characteristics of the lead-free piezoelectric element by sintering near the melting point of the composition.
  • Patent Document 3 A BFO-based lead-free piezoelectric ceramic containing a large amount of Co in addition to Fe has also been reported (Patent Document 3).
  • BKT alone a piezoelectric composition having a sufficiently large piezoelectric constant cannot be obtained.
  • BKT alone or BKT-BFO is difficult to sinter, and it may be necessary to use nano-powder synthesized from the gas phase as a raw material (Patent Document 1, Non-Patent Document 2).
  • BKT-BFCO and the like have a problem that a large piezoelectric performance cannot be exhibited with high reproducibility because of a large amount of leakage current or pinning of spontaneous polarization and remanent polarization due to various defects.
  • the lead-free piezoelectric element using the BFO piezoelectric composition has the following problems. That is, when the amount of BFO is increased, the amount of Bi having high volatility increases, so that defects such as Bi vacancies and oxygen vacancies increase. In addition, since domains and domain walls are pinned by various defects and defect pairs, large spontaneous polarization and remanent polarization cannot be obtained in the electric field-polarization curve. Furthermore, due to the influence of oxygen vacancies and the like, the valence of Fe changes from Fe 3+ to Fe 2+ and the leakage current of the device increases, so that a high voltage cannot be applied.
  • Non-Patent Document 5 there was a problem that originally expected ferroelectricity and piezoelectric characteristics could not be obtained (for example, Non-Patent Document 5).
  • the lead-free piezoelectric ceramic described in Patent Document 3 contains a large amount of Co in addition to Fe, thereby increasing leakage current and pinning domains and domain walls due to defects. There is a problem that a lead-free piezoelectric ceramic having a large piezoelectric characteristic cannot be obtained.
  • the present invention solves the above problems and provides a lead-free piezoelectric composition and a lead-free piezoelectric element having a large piezoelectric constant with a simple process and good reproducibility.
  • points A (1, 0, 0), B ( 0.7, 0.3, 0), point C (0.1, 0.3, 0.6), point D (0.1, 0.1, 0.8), point E (0.2, (0, 0.8) is included on a line segment AE that is surrounded by a pentagon ABCDE having a vertex and connects the point A (1, 0, 0) and the point E (0.2, 0, 0.8). It has a composition represented by no region.
  • the first piezoelectric composition manufacturing method of the present invention 1 is a method for manufacturing the above-described piezoelectric composition of the present invention 1, and includes a raw material preparation step, a temperature raising step, a heat treatment step, a cooling step, In this order.
  • the second piezoelectric composition manufacturing method of the present invention 1 is a method of manufacturing the above-described piezoelectric composition of the present invention 1, and includes a raw material preparation step, a temperature raising step, a first heat treatment step, and a temperature lowering step. A process, a second heat treatment process, and a cooling process are included in this order.
  • a third method for producing a piezoelectric composition of the present invention 1 is a method for producing the piezoelectric composition of the present invention 1, and includes a raw material preparation step, a first temperature raising step, a first heat treatment step, The first cooling step, the second temperature raising step, the second heat treatment step, and the second cooling step are included in this order.
  • the piezoelectric element of the first aspect of the invention includes the piezoelectric composition of the first aspect of the invention and an electrode for applying a voltage to the piezoelectric composition.
  • the lead-free piezoelectric element of the present invention 2 is a lead-free piezoelectric element including a piezoelectric composition and an electrode for applying a voltage to the piezoelectric composition, wherein the piezoelectric composition has a general composition formula ABO 3 , the piezoelectric composition contains BiFeO 3 and a Bi composite oxide, and the content of BiFeO 3 is 3 to 80 mol% with respect to the entire piezoelectric composition.
  • the Bi composite oxide has a Bi in the general composition formula, the A site is Bi, the B site is composed of a plurality of elements having different valences, and a relative dielectric constant ⁇ r at 25 ° C. is 400 or more, and The dielectric loss tan ⁇ is 0.2 or less, and the piezoelectric constant d33 * obtained from the electric field-strain curve is 250 pm / V or more.
  • the ultrasonic probe of the present invention 2 includes the lead-free piezoelectric element of the present invention 2 described above.
  • the diagnostic imaging apparatus includes the ultrasonic probe according to the second aspect of the invention.
  • the first lead-free piezoelectric element manufacturing method of the second aspect of the invention is a method of manufacturing the lead-free piezoelectric element of the second aspect of the invention, wherein the piezoelectric composition contained in the lead-free piezoelectric element is manufactured.
  • the raw material preparation step, the temperature raising step, the first heat treatment step, the temperature lowering step, the second heat treatment step, and the cooling step are included in this order.
  • a second lead-free piezoelectric element manufacturing method is a method for manufacturing the lead-free piezoelectric element according to the second aspect of the invention, wherein the piezoelectric composition contained in the lead-free piezoelectric element is manufactured. , Including a raw material preparation step, a first temperature raising step, a first heat treatment step, a first cooling step, a second temperature raising step, a second heat treatment step, and a second cooling step in this order.
  • the present invention it is possible to provide a piezoelectric composition having a larger piezoelectric constant than each of BKT alone, BMT alone (difficult to synthesize at normal pressure), and BFO alone.
  • the piezoelectric composition can be easily manufactured by using a BKT-BMT-BFO composite composition.
  • a lead-free piezoelectric element using a BFO-based piezoelectric composition a lead-free piezoelectric element having a large spontaneous polarization and remanent polarization, low leakage current, and high piezoelectric characteristics, and a method for manufacturing the same Can be provided.
  • FIG. 1 is a triangular coordinate showing the composition region of the piezoelectric composition of the first aspect of the present invention.
  • FIG. 2 is a triangular coordinate showing a more preferable composition region of the piezoelectric composition of the first invention.
  • FIG. 3 is a schematic view showing a method for producing the first piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • FIG. 4 is a schematic view showing a second method for producing the piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • FIG. 5 is a schematic view showing a third method for producing a piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • FIG. 6 is a perspective view showing an example of the piezoelectric element of the first aspect of the present invention.
  • FIG. 7 shows triangular coordinates showing the compositions of the piezoelectric compositions of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-2.
  • FIG. 8 is a relationship diagram between the ratio of BMT in the piezoelectric composition and the piezoelectric constant.
  • FIG. 9 shows triangular coordinates showing the compositions of the piezoelectric compositions of Examples 1-7 to 1-26 and Comparative Examples 1-3 to 1-6.
  • FIG. 10 is a relationship diagram between the ratio of BFO in the piezoelectric composition and the piezoelectric constant.
  • FIG. 11 is a relationship diagram between the amount of Mn added in the piezoelectric composition and the piezoelectric constant.
  • FIG. 12 is a relationship diagram between the amount of Mn added in the piezoelectric composition and the dielectric loss.
  • FIG. 13 shows triangular coordinates indicating the composition region of the piezoelectric composition based on Examples 1-1 to 1-31 and Comparative Examples 1-1 to 1-6.
  • FIG. 14 shows triangular coordinates indicating a more preferable composition region of the piezoelectric compositions based on Examples 1-1 to 1-31 and Comparative Examples 1-1 to 1-6.
  • FIG. 15 is a perspective view showing an example of the lead-free piezoelectric element of the second aspect.
  • FIG. 16 is a perspective view showing another example of the lead-free piezoelectric element of the second aspect.
  • 17A and 17B are schematic diagrams for explaining domain pinning of a lead-free piezoelectric element using a piezoelectric composition containing BiFeO 3 and its avoidance state.
  • FIG. 18 is a schematic view showing a first method for producing a lead-free piezoelectric element of the present invention 2 excluding a raw material preparation step.
  • FIG. 19 is a schematic view showing a second method for producing a lead-free piezoelectric element of the present invention 2 excluding the raw material preparation step.
  • FIG. 20 is a schematic cross-sectional view of the ultrasonic probe of the second invention.
  • FIG. 21 is a schematic perspective view of the diagnostic imaging apparatus according to the second aspect of the present invention.
  • FIG. 22 is a diagram showing the relationship between the relative dielectric constant of the piezoelectric element of Example 2-1 of the present invention 2 and temperature.
  • FIG. 23 is a diagram showing the relationship between the dielectric loss and the temperature of the piezoelectric element according to Example 2-1 of the present invention 2.
  • FIG. 24 is a diagram showing the electric field-strain characteristics of the piezoelectric element according to Example 2-1 of the second invention.
  • FIG. 25 is a diagram showing the electric field-polarization characteristics of the piezoelectric element according to Example 2-1 of the second invention.
  • FIG. 26 is a diagram showing the relationship between the relative dielectric constant and the temperature of the piezoelectric element according to Example 2-2 of the second invention.
  • FIG. 27 is a diagram showing the relationship between the dielectric loss and the temperature of the piezoelectric element according to Example 2-2 of the second invention.
  • FIG. 28 is a diagram showing the electric field-strain characteristics of the piezoelectric element according to Example 2-2 of the second invention.
  • FIG. 29 is a diagram showing electric field-polarization characteristics of the piezoelectric element according to Example 2-2 of the second invention.
  • FIG. 30 is a diagram showing the relationship between the relative dielectric constant and temperature of the piezoelectric element of Comparative Example 2-1.
  • FIG. 31 is a graph showing the relationship between the dielectric loss and temperature of the piezoelectric element of Comparative Example 2-1.
  • FIG. 32 is a diagram showing the electric field-strain characteristics of the piezoelectric element of Comparative Example 2-1.
  • FIG. 33 is a diagram showing the electric field-polarization characteristics of the piezoelectric element of Comparative Example 2-1.
  • FIG. 34 is a diagram showing the relationship between the amount of BFO and d33 * .
  • FIG. 30 is a diagram showing the relationship between the amount of BFO and d33 * .
  • FIG. 35 is a graph showing the relationship between the relative permittivity of the piezoelectric element of Example 2-8 of the present invention 2 and temperature.
  • FIG. 36 is a diagram showing the relationship between the dielectric loss and the temperature of the piezoelectric element according to Example 2-8 of the present invention 2.
  • FIG. 37 is a schematic view showing a method for manufacturing the piezoelectric element of Example 2-9 excluding the raw material preparation step.
  • FIG. 38 is a diagram showing the relationship between the relative dielectric constant of the piezoelectric element of Example 2-9 of the present invention 2 and temperature.
  • FIG. 39 is a diagram showing the relationship between the dielectric loss and the temperature of the piezoelectric element according to Example 2-9 of the second invention.
  • Embodiment 1-1 First, the piezoelectric composition of the present invention 1 will be described.
  • point A (1, 0, 0), point B (0.7, 0.3, 0), point C (0.1, 0.3, 0.6), point D (0.1, 0.1, 0.8), surrounded by a pentagon ABCDE with point E (0.2, 0, 0.8) as vertices, and It has a composition represented by a region not including the line segment AE connecting the point A (1, 0, 0) and the point E (0.2, 0, 0.8).
  • FIG. 1 shows a point A (1, 0, 0), a point B (0.7, 0.3, 0), a point C (0...)
  • a point D 0.1, 0.1, 0.8
  • a point E 0.2, 0, 0.8
  • the composition region 1 is shown.
  • the composition region on the line segment AE connecting the point A (1, 0, 0) and the point E (0.2, 0, 0.8) is not included.
  • the piezoelectric composition in the composition region 1 is relatively easy to sinter the raw material components, and has a large piezoelectric constant d33 * obtained from the maximum value of the gradient of the electric field-strain characteristics.
  • composition of z> 0.8 the phenomenon that the leakage current becomes large or the domain movement is pinned becomes remarkable, and the large piezoelectric characteristics are not exhibited. Therefore, it is not preferable.
  • the composition excluding 0) is the composition of the present invention 1.
  • the present inventors have found that sintering is significantly facilitated when BMT or BMT-BFO is dissolved in BKT.
  • a composition where the amount of BMT exceeds 0.3 (a composition satisfying y> 0.3)
  • a different phase other than the perovskite structure often occurs, or the piezoelectric constant d33 * becomes small.
  • a composition with an amount of BMT less than 0.02 (a composition with y ⁇ 0.02) is so close to BKT-BFO that it is difficult to sinter like BKT-BFO.
  • BKT is a tetragonal crystal and BFO is a rhombohedral crystal. Therefore, there is a phase boundary between them.
  • the phase boundary refers to a composition region in which at least two kinds of crystal structures coexist.
  • BMT can only be produced under high temperature and high pressure conditions, it is considered difficult to produce it as a solid solution, and the combination of BKT-BMT or BKT-BMT-BFO has not been studied at all. Was completely unknown.
  • the present inventors have revealed for the first time that a phase boundary between a tetragonal crystal and a pseudocubic crystal and a phase boundary between a rhombohedral crystal and a suspicious crystal exist even in the solid solution composition of BKT-BMT-BFO.
  • the piezoelectric composition according to the first aspect of the present invention has a point A (1, 0, 0), a point F (0.8, 0.2, 0), a point G (0.7, 0.2, 0.1), a point H (0.7, 0.1, 0.2), a pentagon AFGHI having a point I (0.8, 0, 0.2) as a vertex, and A composition represented by a region not including the line segment AI connecting the point A (1, 0, 0) and the point I (0.8, 0, 0.2) is preferable. Further, a tetragonal crystal and a pseudo cubic crystal are preferable. A composition including a phase boundary with or a composition in the vicinity of the phase boundary is more preferable.
  • the piezoelectric composition of the first aspect of the invention has a point J (0.6, 0, 0.4), a point K (0.5, 0.2, 0.3), a point L (0 .2, 0.2, 0.6), surrounded by a pentagon JKLMN with points M (0.2, 0.1, 0.7) and N (0.3, 0, 0.7) as vertices
  • a composition represented by a region not including the line JN connecting the point J (0.6, 0, 0.4) and the point N (0.3, 0, 0.7) is preferable.
  • a composition including a phase boundary between rhombohedral crystals and pseudocubic crystals, or a composition in the vicinity of the phase boundary is more preferable.
  • FIG. 2 shows a point A (1, 0, 0), a point F (0.8, 0.2, 0), a point G (0.7, 0.2, 0.1), a point in the triangular coordinates.
  • H 0.7, 0.1, 0.2
  • composition region 2 surrounded by pentagon AFGHI having point I (0.8, 0, 0.2) as a vertex, and point J (0.6 , 0, 0.4), point K (0.5, 0.2, 0.3), point L (0.2, 0.2, 0.6), point M (0.2, 0.1) , 0.7), and a composition region 3 surrounded by a pentagonal JKLMN having a point N (0.3, 0, 0.7) as a vertex.
  • composition region 2 of the present invention the composition region on the line segment AI connecting the point A (1, 0, 0) and the point I (0.8, 0, 0.2),
  • the composition region 3 does not include the composition region on the line segment JN connecting the point J (0.6, 0, 0.4) and the point N (0.3, 0, 0.7).
  • the piezoelectric composition of the present invention 1 has a perovskite structure and is represented by a general composition formula ABO 3 , and the standard molar ratio of A site element, B site element, and oxygen is 1: 1: 3.
  • the molar ratio may deviate from the standard molar ratio as long as it can take a perovskite structure.
  • the piezoelectric composition of the present invention it is preferable that a part of Mg in the composition formula is replaced with Zn, and a part of Bi in the composition formula is replaced with at least one of La, Sm, and Nd. It is preferable to do. Furthermore, it is preferable to substitute a part of Ti in the above composition formula with Zr. By substitution of these elements, the Curie temperature (Tc) or the maximum temperature of dielectric constant (Tm) can be lowered, and in the piezoelectric composition of the present invention 1 exhibiting relaxor characteristics, the Tc (or Tm) is greatly reduced. A piezoelectric constant and a large dielectric constant can be expected.
  • the piezoelectric composition according to the first aspect of the present invention contains at least one element selected from the group consisting of Mn, Co, Ni, V, Nb, Ta, W, Si, Ge, Ca, and Sr in a proportion of 2% by weight or less. It is preferable to contain.
  • Mn, Co, Ni, or V it is possible to return the valence shift of Fe to trivalence, and a reduction in leakage current can be expected.
  • Nb, Ta, V, and W contribute as donors, it can be expected that the material is softened by including them.
  • Inclusion of Si or Ge can be expected to improve the sintering density and the electromechanical coupling coefficient.
  • Sr or Ca reduction of evaporation of Bi and K can be expected, and as a result, improvement in characteristics and improvement in reliability are possible.
  • the at least one element selected from the group consisting of Mn, Co, Ni, V, Nb, Ta, W, Si, Ge, Ca and Sr does not need to be dissolved in the crystal of the piezoelectric composition. Further, it may be precipitated in crystal grains or in grain boundaries, or may be segregated.
  • Embodiment 1-2 Next, the manufacturing method of the piezoelectric composition of the present invention 1 will be described with reference to the drawings. By using the following manufacturing method, the piezoelectric composition described in Embodiment 1-1 can be easily obtained.
  • FIG. 3 is a schematic view showing a method for producing the first piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • the manufacturing method of the 1st piezoelectric composition of this invention 1 is characterized by including a raw material preparation process, a temperature rising process, a heat treatment process, and a cooling process in this order.
  • oxides, carbonates, hydrogen carbonates, various acid salts and the like of the elements constituting the piezoelectric composition of the first invention are prepared as starting materials.
  • Bi 2 O 3 , Fe 2 O 3 , TiO 2 , MgO or the like can be used as the oxide
  • K 2 CO 3 or KHCO 3 can be used as the carbonate.
  • K 2 CO 3 or KHCO 3 can be used as the potassium raw material of the piezoelectric composition of the first aspect of the invention, but KHCO 3 is preferably used. This is because the hygroscopicity of KHCO 3 is particularly small compared to K 2 CO 3 , so that the weighing error as a raw material can be reduced.
  • a raw material mixture is prepared using the starting materials weighed in the required amount.
  • a method for producing the mixture either a dry method or a wet method may be used.
  • wet pulverization using a ball mill, a jet mill or the like can be used as appropriate.
  • the above raw materials are mixed with a dispersion medium and put into a pulverizer.
  • the dispersion medium various alcohol materials such as methanol and ethanol, various organic liquids, and pure water can be used.
  • water-soluble K 2 CO 3 or KHCO 3 is used as a raw material, waste liquid treatment or water is included.
  • An alcohol-based material is preferable from the standpoint of not.
  • pulverization media such as zirconia balls and alumina balls are added to the pulverizer, and mixing and pulverization are performed until the particle size of the starting material is fine and uniform.
  • the grinding media is removed, and the dispersion medium is removed using suction filtration or a dryer.
  • the obtained raw material powder is put into a container such as a crucible and pre-baked.
  • the pre-baking temperature can be performed at a temperature of 600 to 1000 ° C., for example.
  • the composition of the mixture can be made uniform and the sintered density after sintering can be improved.
  • the pre-baking is not necessarily required, and the following molded body production process may be performed using raw material powder obtained by drying and removing the dispersion medium.
  • temporary baking may be performed twice or more in order to improve uniformity and sintered density.
  • the pre-baked powder is pulverized again after the pre-baking in the same manner as when the raw material powder is pulverized using a pulverizer.
  • a binder or the like is added at any of the first, middle, or final stage of the step, and then dried again to produce a raw material powder.
  • the binder for example, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), or the like can be used.
  • the obtained mixed powder of the organic component and the ceramic is formed into a cylindrical pellet having a diameter of about 10 mm and a thickness of about 1 mm to a diameter of about 50 mm and a thickness of about 5 mm using, for example, a press machine.
  • the obtained molded body is put in an electric furnace and heated at 500 to 750 ° C. for several hours to about 20 hours to perform a binder removal treatment to obtain a raw material molded body.
  • the raw material preparation step the case of a normal solid phase method is shown, but the raw material preparation step is not limited to the solid phase method, and for example, a hydrothermal synthesis method or a method using an alkoxide as a starting material may be used.
  • the obtained raw material molded body is again put in a crucible or the like, and the temperature is raised to the temperature of the heat treatment step.
  • the rate of temperature rise is usually 50 to 300 ° C./hr, although it depends on the size of the raw material compact. It should be noted that, for example, maintaining the temperature at 100 to 200 ° C. for a certain period of time for the purpose of removing moisture, or slowing the temperature increase rate is also included in the temperature increase step of the present invention 1.
  • the raw material molded body is heat-treated at 900 to 1080 ° C. for 5 minutes to 4 hours.
  • the molded body after the heat treatment is cooled to room temperature.
  • This cooling step is performed in order to prevent various defects of the piezoelectric composition from collecting on the domain wall.
  • the cooling rate is preferably from 0.01 to 200 ° C./second, more preferably from 5 to 100 ° C./second.
  • destruction of the piezoelectric composition can be avoided.
  • FIG. 4 is a schematic view showing a second method for producing the piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • the manufacturing method of the 2nd piezoelectric composition of this invention 1 includes a raw material preparation process, a temperature rising process, a 1st heat treatment process, a temperature fall process, a 2nd heat treatment process, and a cooling process in this order. It is characterized by.
  • the raw material preparation step of the second manufacturing method is performed in the same manner as the raw material preparation step of the first manufacturing method.
  • the temperature raising step of the second manufacturing method is performed in the same manner as the temperature raising step of the first manufacturing method.
  • the raw material compact is heat-treated at 900 to 1080 ° C.
  • the heat treatment time is 2 to 300 hours, more preferably 6 to 200 hours.
  • the first heat treatment step becomes a sintering step of the raw material molded body, and the particle size of the ceramics can be controlled by controlling the heat treatment time.
  • the particle size is preferably 0.5 to 200 ⁇ m, more preferably 1 to 100 ⁇ m. The particle size of these preferable piezoelectric compositions can be realized by setting the heat treatment time (sintering time) to 6 to 300 hours.
  • the heat treatment temperature is 6 to 3000 hours.
  • the first heat treatment step is a crystal growth step of the raw material molded body.
  • the temperature lowering step is performed between the first heat treatment step and the second heat treatment step as shown in FIG.
  • the cooling rate is not particularly limited, but may be 50 to 1000 ° C./hr for ceramics and 0.1 to 200 ° C./hr for single crystals.
  • a second heat treatment step is performed on the raw material molded body.
  • This second heat treatment step is an annealing step, the annealing temperature is 300 to 900 ° C., more preferably 400 to 800 ° C., and the annealing time is 5 minutes to 100 hours.
  • This annealing step is performed to remove various defects of the piezoelectric composition.
  • the annealing process is performed twice or more at different temperatures. This is because the removal temperature of various defects is not the same temperature.
  • FIG. 5 is a schematic view showing a third method for producing a piezoelectric composition of the present invention 1 excluding the raw material preparation step.
  • the manufacturing method of the 3rd piezoelectric composition of this invention 1 is a raw material preparation process, a 1st temperature rising process, a 1st heat treatment process, a 1st cooling process, a 2nd temperature rising process, and a 2nd heat treatment process. And the second cooling step in this order.
  • the raw material preparation step of the third manufacturing method is performed in the same manner as the raw material preparation step of the first manufacturing method.
  • the molded body after the heat treatment is cooled to room temperature.
  • the cooling rate can be performed at a cooling rate substantially similar to the cooling rate in the cooling step of the first manufacturing method.
  • a step of processing the molded body after the first cooling step into a molded body having a smaller shape may be added.
  • the second heat treatment step (annealing step) described later can be performed on the compact shaped body, and as a result, the piezoelectric composition is more reliably prevented from being damaged by thermal shock in the second cooling step described later. be able to.
  • ⁇ Second temperature raising step> As will be described later, since the second heat treatment step is an annealing step, a temperature raising step is performed after the first cooling step, as shown in FIG.
  • the temperature raising rate is not particularly limited, but may be 50 to 1000 ° C./hr.
  • FIG. 6 is a perspective view showing an example of the piezoelectric element of the first aspect of the present invention.
  • the piezoelectric element according to the first aspect of the present invention includes the piezoelectric composition described in the embodiment 1-1 and an electrode for applying a voltage to the piezoelectric composition.
  • the piezoelectric element 10 of the present invention 1 includes a piezoelectric composition 11 and an electrode 12 for applying a voltage to the piezoelectric composition 11.
  • the piezoelectric constant d33 * obtained from the electric field-strain curve of the piezoelectric element of the first invention is preferably 140 pm / V or more, more preferably 200 pm / V or more, and most preferably 250 pm / V or more.
  • the present invention 1 will be described based on examples.
  • examples in which bulk ceramics are used as the piezoelectric composition are shown.
  • the piezoelectric composition of the present invention 1 is not limited to ceramics, and the piezoelectric composition of the present invention 1 is oriented ceramics. A thick film or a single crystal may be used.
  • Example 1-1 ⁇ Raw material preparation process>
  • 0.05, z 0]
  • Bi 2 O 3 , KHCO 3 , TiO 2 , and MgO were weighed as raw materials to prepare a total of 30 g of raw materials.
  • the weighed raw materials were put in a pot together with ethanol and zirconia balls, and pulverized for 16 hours by a ball mill. Thereafter, the raw material was dried, and the raw material powder was further calcined at 800 ° C. for 6 hours.
  • the obtained raw material powder was again put in a pot together with ethanol and zirconia balls, ground again with a ball mill for 16 hours, and then PVB was added as a binder and dried.
  • a pressure of about 200 to 250 MPa was applied to the obtained raw material powder with a single-screw press to produce pellets having a diameter of 10 mm and a thickness of 1.5 mm.
  • the obtained pellet was heated at 700 ° C. for 10 hours to remove the binder to obtain a raw material molded body.
  • the obtained piezoelectric composition was polished and processed to a thickness of about 0.4 mm, and then gold electrodes were formed on both sides of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • a piezoelectric composition and a piezoelectric element were produced in the same manner as in Example 1-1.
  • a piezoelectric composition and a piezoelectric element were produced in the same manner as in Example 1-1.
  • a piezoelectric composition and a piezoelectric element were produced in the same manner as in Example 1-1.
  • a piezoelectric composition and a piezoelectric element were produced in the same manner as in Example 1-1.
  • Table 1 also shows triangular coordinates using x, y, and z in the composition formula of the piezoelectric composition.
  • the piezoelectric constant of the piezoelectric element was measured along the arrow 30 shown in FIGS. From Table 1, it can be seen that the piezoelectric elements of Examples 1-1 to 1-6 can realize a larger piezoelectric constant than the piezoelectric elements of Comparative Examples 1-1 to 1-2. Also, from Table 1 and FIG. 8, the piezoelectric constants of the piezoelectric elements of Examples 1-1, 1-2, and 1-3 in which the triangular coordinate y of the piezoelectric composition is in the range of 0.05 ⁇ y ⁇ 0.15. It can be seen that d33 * is particularly large. In FIG.
  • compositions of the piezoelectric compositions of Examples 1-1, 1-2, and 1-3 include the composition including the phase boundary 35 between the tetragonal crystal and the pseudocubic crystal, or the vicinity of the phase boundary 35. This is thought to be due to the composition.
  • a piezoelectric composition and a piezoelectric element were manufactured in the same manner as in Example 1-1, except that the sintering temperature was 900 ° C.
  • Example 1-1 the crystal structure of the piezoelectric composition And the piezoelectric constant d33 * of the piezoelectric element were measured.
  • Table 2 shows triangular coordinates using x, y, and z in the composition formula of the piezoelectric composition.
  • the piezoelectric constant of the piezoelectric element was measured along the arrow 40 shown in FIGS. From Table 2, it can be seen that the piezoelectric elements of Examples 1-7 to 1-16 can realize a larger piezoelectric constant than the piezoelectric elements of Comparative Examples 1-3 to 1-5.
  • Example 1-17 ⁇ Raw material preparation process>
  • the obtained piezoelectric composition was polished and processed to a thickness of about 0.4 mm, and then gold electrodes were formed on both sides of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • a piezoelectric composition and a piezoelectric element were produced in the same manner as in Example 1-17 except that the sintering temperature was 900 ° C.
  • Example 1-1 analysis of the crystal structure of the piezoelectric composition and piezoelectricity were performed.
  • the piezoelectric constant d33 * of the element was measured.
  • Table 3 shows triangular coordinates using x, y, and z of the composition formula of the piezoelectric composition.
  • the piezoelectric constant of the piezoelectric element was measured along the arrow 40 shown in FIGS. From Table 3, it can be seen that the piezoelectric elements of Examples 1-17 to 1-26 can achieve a larger piezoelectric constant than the piezoelectric element of Comparative Example 1-6. Also, from Table 3 and FIG. 10, the piezoelectric constants of the piezoelectric elements of Examples 1-21 and 1-22 in which the triangular coordinate z of the piezoelectric composition is in the range of 0.4 ⁇ y ⁇ 0.45 are particularly large. I understand. In FIG. 9, the compositions of the piezoelectric compositions of Examples 1-21 and 1-22 include the composition including the phase boundary 45 between the pseudo cubic and rhombohedral crystals, or the composition in the vicinity of the phase boundary 45. This is probably because of this.
  • Example 1-22 when the sintering time, which is the first heat treatment step, was further increased to 20 to 300 hours, larger piezoelectric characteristics with d33 * of 378 to 410 pm / V could be obtained.
  • a piezoelectric composition and a piezoelectric element were manufactured in the same manner as described above except that the amount of MnCO 3 added was changed to 0.05 to 0.5% by weight.
  • the piezoelectric constant d33 * of the piezoelectric element was measured using the manufactured piezoelectric element in the same manner as in Example 1-1. The result is shown in FIG. Further, the dielectric loss (tan ⁇ ) of the manufactured piezoelectric element was measured at a frequency of 100 Hz and a temperature of 150 ° C. using an LCR meter (model number 6440B) manufactured by Wayne Kerr. The result is shown in FIG.
  • FIG. 11 shows that the value of the piezoelectric constant d33 * hardly decreases to 0.3% by weight of the added amount of MnCO 3 .
  • FIG. 12 shows that the dielectric loss (tan ⁇ ) rapidly decreases when MnCO 3 is added. This means that the leakage current is reduced when a high voltage is applied.
  • MnCO 3 reduces the leakage current when a high voltage is applied and further reduces the piezoelectric constant d33 * even when the addition amount is small, which is very advantageous for the polarization treatment.
  • MnCO 3 was used as the Mn additive.
  • MnO, Mn 2 O 3 , MnO 2, Mn 3 O 4 or the like low frequency dielectric loss (tan ⁇ ) at 150 ° C. Can be similarly reduced.
  • Example 4 shows triangular coordinates using x, y, and z in the composition formula of the piezoelectric composition.
  • Example 5 shows triangular coordinates using x, y, and z of the composition formula of the piezoelectric composition.
  • Examples 1-30 to 1-31 can realize a large piezoelectric constant only by adding an additive to the piezoelectric composition of Example 1-29. Further, in Examples 1-27 to 1-31, MnCO 3 , Nb 2 O 5 , and WO 3 were added separately as additives, but by adding these simultaneously, the insulation was high and A piezoelectric composition and a piezoelectric element with high piezoelectricity can be realized.
  • FIG. 13 and FIG. 14 collectively show the composition regions of Examples 1-1 to 1-31 and Comparative Examples 1-1 to 1-6.
  • the piezoelectric constant d33 * of the piezoelectric composition in the composition region 1 (excluding the composition region on the line segment AE) surrounded by the pentagon ABCDE is large, and the composition region 2 (FIG. 14 surrounded by the pentagon AFGHI)
  • the piezoelectric constant d33 * of the piezoelectric composition in the composition region 3 (excluding the composition region on the line segment JN) surrounded by the pentagonal JKLMN is particularly large.
  • the piezoelectric composition according to the first aspect of the present invention is a lead-free piezoelectric composition that has a large piezoelectric constant and can be manufactured with a simple method with good reproducibility, and is an environment-friendly piezoelectric composition that does not contain lead.
  • Application to ultrasonic probes, transducers, sensors, etc. can be expected.
  • the lead-free piezoelectric element of the present invention 2 includes a piezoelectric composition and an electrode for applying a voltage to the piezoelectric composition.
  • the piezoelectric composition has a perovskite structure represented by a general composition formula ABO 3 , and the piezoelectric composition includes BiFeO 3 and a Bi composite oxide, and the content of the BiFeO 3 is The Bi composite oxide is composed of a plurality of elements having different valences at 25 ° C. in the general composition formula, wherein the A site is Bi and the B site is composed of a plurality of elements having different valences.
  • the relative dielectric constant ⁇ r at room temperature) is 400 or more, the dielectric loss tan ⁇ is 0.2 or less, and the piezoelectric constant d33 * obtained from the electric field-strain curve is 250 pm / V or more.
  • the piezoelectric composition has a perovskite structure and is represented by a general composition formula ABO 3 , and a standard molar ratio of A site element, B site element, and oxygen is 1: 1: 3. It may deviate from the standard molar ratio within a range where a perovskite structure can be taken.
  • the B site is composed of a plurality of elements having different valences. Examples of the B site element include Mg, Zn, Ti, Zr, Fe, Mn, Co, Ni, Nb, Ta, and W. Is mentioned.
  • the piezoelectric composition preferably has a composition including a phase boundary of at least two kinds of crystal structures or a composition near the phase boundary.
  • the phase boundary is a composition region in which at least two kinds of crystal structures coexist, and the composition in the vicinity of the phase boundary of the present invention 2 is at least a phase boundary within a range of 15 mol% from a predetermined composition.
  • it is defined as a composition region in which the maximum value of the piezoelectric constant d33 * obtained from the electric field-strain curve exists.
  • the phase boundary is a composition region where rhombohedral crystals and any one crystal structure selected from the group consisting of pseudocubic, tetragonal, orthorhombic and monoclinic crystals coexist.
  • it may be a composition region in which tetragonal crystals and pseudocubic crystals coexist.
  • the piezoelectric constant d33 * is preferably 330 pm / V or more, and the content of BiFeO 3 is preferably 30 to 80 mol% with respect to the entire piezoelectric composition. Thereby, the piezoelectric characteristics of the lead-free piezoelectric element can be further improved.
  • the piezoelectric composition is preferably made of a relaxor material.
  • the relaxor of the present invention 2 is a complex oxide having a perovskite structure represented by the general composition formula ABO 3 , wherein the A site or the B site is composed of a plurality of elements, and has a broad dielectric constant with respect to temperature change. The thing which has. Since the lead-free piezoelectric element has a broad dielectric constant peak which is a relaxor characteristic, it exhibits a high dielectric constant even at a temperature away from the peak temperature. Piezoelectric elements exhibiting relaxor characteristics are useful in devices that require a high dielectric constant, such as ultrasonic probes.
  • the piezoelectric composition is preferably made of ceramics having a particle size of 0.5 ⁇ m or more and 200 ⁇ m or less, and more preferably made of ceramics having a particle size of 1 ⁇ m or more and 100 ⁇ m or less.
  • the particle size By setting the particle size to 0.5 ⁇ m or more, the relative dielectric constant ⁇ m at the maximum temperature Tm can be increased, which is advantageous for increasing the dielectric constant and remanent polarization at room temperature.
  • the upper limit of the particle size is based on the workability of the piezoelectric composition, and ceramic cracks can be prevented when the particle size is 200 ⁇ m or less.
  • the piezoelectric composition may be formed from a single crystal.
  • the particle size is not a problem, and it is necessary to have a strength sufficient to withstand the processing when processed as a piezoelectric material.
  • the piezoelectric composition it is preferable that a part of Mg in the composition formula is replaced with Zn, and a part of Bi in the composition formula is replaced with at least one of La, Sm, and Nd. preferable. Furthermore, it is preferable to substitute a part of Ti in the above composition formula with Zr. By substituting these elements, the Curie temperature (Tc) or the maximum temperature (Tm) of the dielectric constant can be lowered, and in the piezoelectric composition of the present invention 2 exhibiting relaxor characteristics, the Tc (or Tm) is greatly reduced. A piezoelectric constant and a large dielectric constant can be expected.
  • the piezoelectric composition further contains at least one element selected from the group consisting of Mn, Co, Ni, V, Nb, Ta, W, Si, Ge, Ca and Sr in a proportion of 2% by weight or less. It is preferable to do. Inclusion of Mn, Co, Ni or V makes it possible to increase the insulation, and a reduction in leakage current can be expected.
  • Mn source MnCO 3 , MnO, Mn 2 O 3 , Mn 3 O 4 , MnO 2 or the like can be used.
  • V, Nb, Ta, and W are preferable as dopants advantageous for softening the piezoelectric composition.
  • Si or Ge it is advantageous for improving the sintered density and the electromechanical coupling coefficient.
  • Ca or Sr reduction of evaporation of Bi and K can be expected, and as a result, improvement in characteristics and improvement in reliability are possible.
  • the at least one element selected from the group consisting of Mn, Co, Ni, V, Nb, Ta, W, Si, Ge, Ca and Sr does not need to be dissolved in the crystal of the piezoelectric composition. Further, it may be precipitated in crystal grains or in grain boundaries, or may be segregated.
  • the relative dielectric constant ⁇ m at the maximum temperature Tm is preferably 7000 or more, more preferably 13000 or more.
  • the maximum temperature Tm refers to a temperature at which the relative dielectric constant is maximum.
  • the dielectric loss tan ⁇ of the lead-free piezoelectric element of the second aspect of the invention is preferably 0.2 or less.
  • the maximum temperature Tm is preferably 130 ° C. or higher and 400 ° C. or lower.
  • the relative dielectric constant of the present invention 2 is a value at a measurement frequency of 1 MHz unless otherwise specified.
  • the remanent polarization Pr of the lead-free piezoelectric element of the second aspect of the present invention is preferably 20 ⁇ C / cm 2 or more.
  • FIG. 15 is a perspective view showing an example of the lead-free piezoelectric element of the second aspect of the present invention.
  • the piezoelectric element 10 of the present invention 2 includes a piezoelectric composition 11 and an electrode 12 for applying a voltage to the piezoelectric composition 11.
  • FIG. 16 is a perspective view showing another example of the lead-free piezoelectric element of the second aspect.
  • the piezoelectric element 20 of the present invention 2 includes a piezoelectric composition 21 and an electrode 22 for applying a voltage to the piezoelectric composition 21.
  • the piezoelectric compositions 11 and 21 the piezoelectric composition described in this embodiment is used.
  • the electrodes 12 and 22 are for applying a voltage to the piezoelectric compositions 11 and 21.
  • the material and manufacturing method of the electrodes 12 and 22 are not particularly limited, but can be formed by sputtering, vapor deposition, printing, or the like, such as gold, silver, platinum, palladium, nickel, copper, or an alloy of various noble metals.
  • the shape of the lead-free piezoelectric element is not particularly limited, and may be other than the shape shown in FIGS. 15 and 16.
  • a shape such as a donut shape, a cylindrical shape, or a prism shape may be used depending on the use of the lead-free piezoelectric element. It can be used as appropriate.
  • Embodiment 2-2 Next, a method for manufacturing the lead-free piezoelectric element of the second aspect will be described. By using the following manufacturing method, the lead-free piezoelectric element described in Embodiment 2-1 can be easily obtained.
  • the manufacturing method of the 1st lead-free piezoelectric element of this invention 2 WHEREIN As a manufacturing process of the piezoelectric composition contained in the said lead-free piezoelectric element, a raw material preparation process, a temperature rising process, a 1st heat treatment process, and a temperature falling process And a second heat treatment step and a cooling step in this order.
  • the second lead-free piezoelectric element manufacturing method includes a raw material preparation step, a first temperature raising step, and a first heat treatment step as the steps for manufacturing the piezoelectric composition contained in the lead-free piezoelectric element. And a first cooling step, a second heating step, a second heat treatment step, and a second cooling step in this order.
  • the first and second lead-free piezoelectric element manufacturing methods of the present invention 2 it is possible to provide a lead-free piezoelectric element having a large spontaneous polarization and remanent polarization, a small leakage current, and high piezoelectric characteristics.
  • the conventional manufacturing process of the piezoelectric composition only includes a raw material preparation process, a temperature raising process, a heat treatment process, and a cooling process, whereas the manufacturing process of the piezoelectric composition in the present invention 2 Is considered to be because it includes the first heat treatment step and the second heat treatment step. This will be described below with reference to the drawings.
  • FIGS. 17A and 17B are schematic views for explaining domain pinning of a lead-free piezoelectric element (hereinafter also referred to as a BFO-based lead-free piezoelectric element) using a piezoelectric composition containing BiFeO 3 and its avoidance state.
  • a defect 33 (including a defect pair) exists inside the domain 32 delimited by the domain wall 31 and in contact with the domain wall.
  • the domain 32 and the domain wall 31 are pinned by defects 33 such as Bi vacancies, oxygen vacancies, and Fe 2+ . Furthermore, when the valence of iron that should originally be Fe 3+ becomes Fe 2+ due to, for example, oxygen vacancies, the insulating properties of the piezoelectric composition deteriorate.
  • the first heat treatment step and the second heat treatment step are important to prevent the pinning and the deterioration of the insulating properties of the piezoelectric composition.
  • the grain size of the piezoelectric composition can be increased by increasing the sintering time, and the crystallinity in the crystal grains can be further improved. It is thought to increase mobility.
  • the grain size of the piezoelectric composition is increased, impurities are discharged out of the crystal grains, so that there is an effect of improving the insulation resistance particularly on the low frequency side, which is effective for reducing polarization treatment and dielectric loss tan ⁇ . is there.
  • the second heat treatment step which is an annealing step
  • the amount of defects such as oxygen vacancies and Fe 2+ can be reduced, and the defect density can be reduced.
  • the next cooling step can be started from an annealing temperature lower than the sintering temperature, it is considered that defects and defect pairs that cannot be completely eliminated can be fixed before gathering on the domain wall.
  • the annealing temperature is lower than the sintering temperature, even if it is cooled at a relatively fast rate, the temperature difference from room temperature becomes small, the thermal shock can be reduced, and the piezoelectric composition is destroyed during the cooling process. Can be prevented.
  • the piezoelectric composition includes two types of crystal structure phase boundaries, the problem of reproducibility, which has been a conventional problem, can be solved if there is no leakage or domain wall pinning. As a result, the piezoelectric performance inherent to the piezoelectric element can be expressed with good reproducibility.
  • This makes it possible to increase the dielectric constant and remanent polarization at room temperature, the relative dielectric constant ⁇ r at 25 ° C. is 400 or more, and the dielectric loss tan ⁇ is 0.2 or less, which is obtained from the electric field-strain curve.
  • a lead-free piezoelectric element having a piezoelectric constant d33 * of 250 pm / V or more can be realized.
  • the piezoelectric composition contains 3 to 80 mol% BiFeO 3 , and more preferably contains 30 to 80 mol%. This is because if there is no leakage or domain wall pinning, the performance of a BFO-based piezoelectric composition with inherently high piezoelectric properties is likely to be exhibited.
  • the piezoelectric composition is preferably made of a relaxor material. This is because the peak of the dielectric constant with respect to the temperature is broad, and the dielectric constant at room temperature is easily improved.
  • a relatively high driving frequency of 1 MHz to 100 MHz as a piezoelectric element it is easy to configure a signal processing circuit with a 50 ohm system, and impedance matching with the signal source / transmission path and the piezoelectric element is easy It is easy to take.
  • the manufacturing method of the lead-free piezoelectric element of this invention 2 is further demonstrated based on drawing.
  • the case of the (Bi 0.5 K 0.5 ) TiO 3 —Bi (Mg 0.5 Ti 0.5 ) O 3 —BiFeO 3 system will be mainly described.
  • the manufacturing method is not particularly limited to this system, and can be applied to other systems used for the lead-free piezoelectric element of the present invention 2.
  • FIG. 18 is a schematic view showing a first method for producing a lead-free piezoelectric element of the present invention 2 excluding a raw material preparation step.
  • the first lead-free piezoelectric element manufacturing method according to the second aspect of the present invention includes a raw material preparation process, a temperature raising process, a first heat treatment process, and a temperature lowering process as manufacturing processes of the piezoelectric composition contained in the lead-free piezoelectric element.
  • the second heat treatment step and the cooling step are included in this order.
  • each step will be described.
  • oxides, carbonates, bicarbonates, and various acid salts of elements constituting the piezoelectric composition are prepared as starting materials.
  • Bi 2 O 3 , Fe 2 O 3 , TiO 2 , MgO or the like can be used as the oxide
  • K 2 CO 3 or KHCO 3 can be used as the carbonate.
  • K 2 CO 3 and KHCO 3 can be used as the potassium raw material of the piezoelectric composition of the present invention 2, but KHCO 3 is preferably used. This is because KHCO 3 has a particularly low hygroscopicity as compared with K 2 CO 3 , so that a weighing error as a raw material can be reduced.
  • a raw material powder mixture is prepared using the starting raw materials weighed in the required amount.
  • a method for producing the mixture either a dry method or a wet method may be used.
  • wet pulverization using a ball mill, a jet mill or the like can be used as appropriate.
  • wet pulverization is performed by a ball mill, the above raw materials are mixed with a dispersion medium and put into a pulverizer.
  • the dispersion medium pure water; various alcohol materials such as methanol and ethanol, various organic liquids, and the like can be used.
  • pulverization media such as zirconia balls and alumina balls are added to the pulverizer, and mixing and pulverization are performed until the particle size of the starting material is fine and uniform.
  • grinding media such as zirconia balls and alumina balls are removed, and the dispersion medium is removed using suction filtration and a dryer.
  • the obtained raw material powder is put into a container such as a crucible and pre-baked.
  • the pre-baking temperature can be performed at a temperature of 600 to 1000 ° C., for example.
  • the composition of the mixture can be made uniform and the sintered density after sintering can be improved.
  • the pre-baking is not necessarily required, and the following molded body production process may be performed using raw material powder obtained by drying and removing the dispersion medium.
  • temporary baking may be performed twice or more in order to improve uniformity and sintered density.
  • the pre-baked powder is pulverized again after the pre-baking in the same manner as when the raw material powder is pulverized using a pulverizer.
  • a binder or the like is added at any of the first, middle, or final stage of the step, and then dried again to produce a raw material powder.
  • the binder for example, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), or the like can be used.
  • the obtained mixed powder of the organic component and the ceramic is formed into a cylindrical pellet having a diameter of about 10 mm and a thickness of about 1 mm to a diameter of about 50 mm and a thickness of about 5 mm using, for example, a press machine.
  • the obtained molded body is put in an electric furnace and heated at 500 to 750 ° C. for several hours to about 20 hours to perform a binder removal treatment to obtain a raw material molded body.
  • the raw material preparation step the case of a normal solid phase method is shown, but the raw material preparation step is not limited to the solid phase method, and for example, a hydrothermal synthesis method or a method using an alkoxide as a starting material may be used.
  • the obtained raw material molded body is again put in a crucible or the like and heated to the temperature of the first heat treatment step.
  • the rate of temperature increase is not particularly limited, but is usually 50 to 1000 ° C./hr, although it depends on the size of the raw material compact and the capacity of the heating device. It should be noted that, for example, holding at 100 to 200 ° C. for a certain period of time for the purpose of removing moisture, or slowing the rate of temperature increase is also included in the temperature increasing step of the present invention 2.
  • the raw material compact is heat-treated at 800 to 1150.degree.
  • the heat treatment time is 2 to 300 hours, more preferably 6 to 200 hours.
  • the first heat treatment step becomes a sintering step of the raw material molded body, and the particle size of the ceramics can be controlled by controlling the heat treatment time.
  • the particle size is preferably 0.5 to 200 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the particle size of these preferable piezoelectric compositions can be realized by setting the heat treatment time (sintering time) to 6 to 300 hours.
  • the first heat treatment step may be performed in air, or may be performed in an oxygen atmosphere, a reducing atmosphere, or an atmosphere having the same composition (that is, an atmosphere such as covering the molded body with a calcined powder having the same composition).
  • the heat treatment temperature is 2 to 3000 hours, more preferably 6 to 3000 hours.
  • the first heat treatment step is a crystal growth step of the raw material molded body.
  • a temperature lowering step is performed between the first heat treatment step and the second heat treatment step as shown in FIG.
  • the temperature lowering rate is not particularly limited, but is usually 50 to 1000 ° C./hr, although it depends on the size of the raw material compact and the temperature lowering performance of the heating device.
  • a second heat treatment step is performed on the raw material molded body.
  • This second heat treatment step is an annealing step, the annealing temperature is 300 to 900 ° C., more preferably 400 to 800 ° C., and the annealing time is 5 minutes to 100 hours.
  • This annealing step is performed to remove various defects of the piezoelectric composition.
  • the temperature of the second heat treatment step is set lower than the temperature of the first heat treatment step. This is because if the second heat treatment temperature is higher than the first heat treatment temperature, the sintering further proceeds or the raw material molded body is dissolved.
  • the annealing step may be performed in the air, and an oxidizing atmosphere such as an oxygen atmosphere or an oxygen-nitrogen mixed gas atmosphere, or a reducing atmosphere, or an atmosphere having the same composition (that is, covering the molded body with calcined powder having the same composition, etc.) ).
  • an oxidizing atmosphere such as an oxygen atmosphere or an oxygen-nitrogen mixed gas atmosphere, or a reducing atmosphere, or an atmosphere having the same composition (that is, covering the molded body with calcined powder having the same composition, etc.)
  • an oxidizing atmosphere such as an oxygen atmosphere or an oxygen-nitrogen mixed gas atmosphere, or a reducing atmosphere, or an atmosphere having the same composition (that is, covering the molded body with calcined powder having the same composition, etc.)
  • nitrogen gas, argon gas, nitrogen-hydrogen mixed gas, or the like can be used.
  • the annealing step may be performed continuously, or may be performed twice or more at different temperatures. Specifically, in the annealing step, it is preferable that after heating at the first annealing temperature on the high temperature side, the temperature is once cooled to room temperature, and then heated again to the second annealing temperature on the low temperature side. This is because the removal temperature of various defects is not the same temperature.
  • the different temperatures are preferably 600 to 900 ° C. on the high temperature side and 300 to 600 ° C. on the low temperature side, and different temperatures are 700 to 900 on the high temperature side. It is more preferably 400 ° C. to 600 ° C. on the low temperature side.
  • the heat-treated molded body is cooled to room temperature.
  • This cooling step is performed in order to prevent various defects of the piezoelectric composition from collecting on the domain wall.
  • the cooling rate is preferably from 0.01 to 200 ° C./second, more preferably from 5 to 100 ° C./second.
  • the cooling rate is about 1/10 to 1/100 or less of the cooling rate in the case of ultra-fast quenching in which a molded body at a temperature of 900 ° C. is immersed in 70 ° C. hot water. And destruction of the piezoelectric composition can be avoided.
  • FIG. 19 is a schematic view showing a second method for producing a lead-free piezoelectric element of the present invention 2 excluding the raw material preparation step.
  • the second lead-free piezoelectric element manufacturing method according to the second aspect of the present invention includes a raw material preparation process, a first temperature raising process, a first heat treatment process, and a first manufacturing process of the piezoelectric composition contained in the lead-free piezoelectric element. 1 cooling process, 2nd temperature rising process, 2nd heat treatment process, and 2nd cooling process are included in this order, It is characterized by the above-mentioned. Hereinafter, each step will be described.
  • the raw material preparation step of the second manufacturing method is performed in the same manner as the raw material preparation step of the first manufacturing method.
  • First temperature raising step of the second manufacturing method is performed in the same manner as the temperature raising step of the first manufacturing method.
  • First heat treatment step of the second manufacturing method is performed in the same manner as the first heat treatment step of the first manufacturing method.
  • the molded body after the heat treatment is cooled to room temperature.
  • the cooling rate can be performed at a cooling rate substantially similar to the cooling rate in the cooling step of the first manufacturing method.
  • a step of processing the molded body after the first cooling step into a molded body having a smaller shape may be added.
  • an electrode manufacturing process can also be performed after the said process process.
  • ⁇ Second temperature raising step> As will be described later, since the second heat treatment step is an annealing step, a temperature raising step is performed after the first cooling step, as shown in FIG.
  • the rate of temperature increase is not particularly limited, but may be, for example, 50 to 1000 ° C./hr.
  • the second heat treatment step of the second manufacturing method is an annealing step, and is performed in the same manner as the second heat treatment step of the first manufacturing method as shown in FIG. Further, the annealing step may be performed continuously in the same manner as the second heat treatment step of the first manufacturing method, and is divided into two or more times at different temperatures as in Example 2-9 described later. You may go.
  • the ultrasonic probe of the present invention 2 includes the lead-free piezoelectric element described in Embodiment 2-1.
  • FIG. 20 is a schematic cross-sectional view of the ultrasonic probe of the second invention.
  • the ultrasonic probe according to the second aspect of the present invention can be manufactured as follows. First, the piezoelectric element 202 is once polarized under a desired polarization condition. As a polarization condition, a general polarization condition of a piezoelectric element can be used. For example, in an oil bath, the piezoelectric element 202 is heated to 100 to 150 ° C., and the condition is 10 to 80 kV / cm. After holding for about an hour, the temperature of the piezoelectric element 202 is lowered to room temperature to complete the polarization.
  • a polarization condition a general polarization condition of a piezoelectric element can be used. For example, in an oil bath, the piezoelectric element 202 is heated to 100 to 150 ° C., and the condition is 10 to 80 kV / cm. After holding for about an hour, the temperature of the piezoelectric element 202
  • the piezoelectric element 202 (before cutting) for which the polarization treatment has been completed is fixed on the lower lead electrode 206 fixed to the back surface load material 220 with a conductive adhesive or the like.
  • the upper lead electrode 204 is bonded using a conductive adhesive or the like.
  • the first matching layer 230 and the second matching layer 232 are bonded and fixed thereon.
  • the piezoelectric element is divided using a dicing apparatus. For example, it is cut into a width of 200 to 400 ⁇ m.
  • the ultrasonic lens 200 can be manufactured by bonding the acoustic lens 240 and attaching a necessary casing (not shown).
  • the diagnostic imaging apparatus of the present invention 2 includes the ultrasonic probe described in Embodiment 2-3.
  • FIG. 21 is a schematic perspective view of the diagnostic imaging apparatus according to the second aspect of the present invention.
  • an ultrasonic diagnostic imaging apparatus 300 includes an ultrasonic probe 302, an ultrasonic diagnostic imaging apparatus main body 304, and a display 306. Except for the ultrasonic probe 302, a conventional ultrasonic diagnostic apparatus main body can be used as the ultrasonic diagnostic imaging apparatus main body 304. Further, in order to match the characteristics of the ultrasonic diagnostic imaging apparatus main body 304 to the ultrasonic probe 302 using a lead-free piezoelectric element, the signal processing circuit of the ultrasonic diagnostic imaging apparatus main body 304 and the electrical impedance of the ultrasonic probe 302 are used. The matching circuit can be adjusted for the ultrasound probe 302.
  • an impedance fine adjustment circuit can be included in the ultrasonic probe 302. It is.
  • the image diagnostic apparatus 300 can be used as an image diagnostic apparatus for a specific disease, for example, an ultrasonic diagnostic apparatus for measuring the inner film thickness in a blood vessel or an ultrasonic diagnostic imaging apparatus for other uses.
  • the present invention 2 will be described based on examples. However, the present invention 2 is not limited to the following examples.
  • Example 2-1 A piezoelectric element was produced as follows.
  • the raw material was dried, and the raw material powder was further calcined at 800 ° C. for 6 hours.
  • the obtained raw material powder was again put in a pot together with ethanol and zirconia balls, ground again with a ball mill for 16 hours, and then PVB was added as a binder and dried.
  • a pressure of about 200 to 250 MPa was applied to the obtained raw material powder with a single-screw press to produce pellets having a diameter of 10 mm and a thickness of 1.5 mm.
  • the obtained pellet was heated at 700 ° C. for 10 hours to remove the binder to obtain a raw material molded body.
  • the obtained piezoelectric composition was polished and processed to a thickness of about 0.4 mm, and then gold electrodes were formed on both sides of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • the surface resistance of the electrode of the produced piezoelectric element was measured at 2 mm between terminals, it was as good as several ohms or less.
  • the relative dielectric constant and dielectric loss of the produced piezoelectric element were measured using an LCR meter (model number 6440B) manufactured by Wayne Kerr.
  • FIG. 22 shows the temperature characteristics of the dielectric constant of the piezoelectric element
  • FIG. 23 shows the temperature characteristics of the dielectric loss of the piezoelectric element.
  • the dielectric loss (tan ⁇ ) increases to 1 or more, and therefore, the relative dielectric constant and the dielectric loss are evaluated with a value of 1 MHz.
  • the relative dielectric constant ⁇ r was 430, and the dielectric loss tan ⁇ was 0.12.
  • Tm 376 ° C.
  • the relative dielectric constant ⁇ m was 7700
  • the piezoelectric characteristics the electric field-strain characteristics and electric field-polarization characteristics of the produced piezoelectric element were measured using a ferroelectric evaluation system “FCE-3” manufactured by Toyo Technica Co., Ltd. or a contact displacement meter and an integrator. Measurements were made using a self-made measurement system. The measurement of the piezoelectric characteristics was performed after calibration with commercially available PZT values with known piezoelectric constant d33 * and remanent polarization.
  • FIG. 24 shows the electric field-strain characteristics of the piezoelectric element
  • FIG. 25 shows the electric field-polarization characteristics of the piezoelectric element.
  • the piezoelectric constant d33 * obtained from FIG. 24 is 331 pm / V
  • the residual polarization Pr obtained from FIG. 25 is 13.6 ⁇ C / cm 2
  • the particle size of the piezoelectric composition was 0.5 to 1.5 ⁇ m.
  • Example 2-2 A piezoelectric element was produced as follows.
  • the obtained piezoelectric composition was polished and processed to a thickness of about 0.4 mm, and then gold electrodes were formed on both sides of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • the surface resistance of the electrode of the produced piezoelectric element was measured at 2 mm between terminals, it was as good as several ohms or less.
  • FIG. 26 shows the temperature characteristics of the relative permittivity of the piezoelectric element
  • FIG. 27 shows the temperature characteristics of the dielectric loss of the piezoelectric element.
  • FIG. 28 shows the electric field-strain characteristics of the piezoelectric element
  • FIG. 29 shows the electric field-polarization characteristics of the piezoelectric element.
  • the piezoelectric constant d33 * obtained from FIG. 28 is 378 pm / V
  • the residual polarization Pr obtained from FIG. 29 is 27 ⁇ C / cm 2
  • the particle size of the piezoelectric composition was 2 to 5 ⁇ m.
  • both the relative dielectric constant ⁇ r and the remanent polarization Pr could be increased as compared with Example 2-1, by extending the sintering time as compared with Example 2-1.
  • Example 2-3 A piezoelectric element was produced in the same manner as in Example 2-2 except that the sintering time of the first heat treatment step was 200 hours. Next, the dielectric characteristics and piezoelectric characteristics of the fabricated piezoelectric element were measured in the same manner as in Example 2-1. As a result, at 25 ° C., the relative dielectric constant ⁇ r is 490, the dielectric loss tan ⁇ is 0.08, and at the maximum temperature Tm (370 ° C.), the relative dielectric constant ⁇ m is 14000, and the dielectric loss tan ⁇ is 0.00. It was 12. The piezoelectric constant d33 * was 410 pm / V and the remanent polarization Pr was 27 ⁇ C / cm 2 .
  • the particle size of the piezoelectric composition was 3 to 10 ⁇ m.
  • Example 2-4 A piezoelectric element was produced in the same manner as in Example 2-2, except that the sintering time of the first heat treatment step was 300 hours. Next, when the dielectric characteristics and piezoelectric characteristics of the fabricated piezoelectric element were measured in the same manner as in Example 2-1, the results were almost the same as in Example 2-3.
  • the obtained piezoelectric composition was polished and processed to a thickness of about 0.4 mm, and then gold electrodes were formed on both sides of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • FIG. 30 shows the temperature characteristics of the dielectric constant of the piezoelectric element
  • FIG. 31 shows the temperature characteristics of the dielectric loss of the piezoelectric element.
  • FIG. 32 shows the electric field-strain characteristics of the piezoelectric element
  • FIG. 33 shows the electric field-polarization characteristics of the piezoelectric element.
  • the piezoelectric constant d33 * obtained from FIG. 32 is 84 pm / V, and the remanent polarization Pr obtained from FIG. 33 cannot be measured accurately because of a leakage current.
  • Example 2-5 A piezoelectric composition was prepared as follows.
  • ⁇ Raw material preparation process> A raw material compact was produced in the same manner as in Example 2-1, except that the size of the raw material compact was 50 mm in diameter and 5 mm in thickness.
  • the temperature-decreasing shaped body was cut out by grinding and processed into a shaped body having a diameter of 15 mm and a thickness of 3 mm.
  • the obtained piezoelectric composition was polished and processed into a diameter of 13 mm and a thickness of 1 mm, and then gold electrodes were formed on both surfaces of the piezoelectric composition by sputtering to obtain a piezoelectric element.
  • the dielectric characteristics and piezoelectric characteristics of the fabricated piezoelectric element were measured in the same manner as in Example 2-1.
  • the relative dielectric constant ⁇ r is 460
  • the dielectric loss tan ⁇ is 0.11
  • the relative dielectric constant ⁇ m is 12500
  • the dielectric loss tan ⁇ is 0.00. It was 12.
  • the piezoelectric constant d33 * was 360 pm / V
  • the remanent polarization Pr was 24 ⁇ C / cm 2 .
  • Example 2-6 A piezoelectric composition was prepared as follows.
  • Example 2 except that Bi 2 O 3 , KHCO 3 , TiO 2 , MgO, and Fe 2 O 3 were weighed as raw materials to prepare a total of 30 g of raw materials.
  • the raw material molded body was obtained in the same manner as in the raw material preparation step -1.
  • a piezoelectric element was fabricated in the same manner as described above except that the temperature was changed to 900 to 1065 ° C. so that the sintered density was maximized, and the cooling rate of the cooling process was changed to 40 to 100 ° C./second.
  • the piezoelectric constant d33 * of the produced piezoelectric element was measured in the same manner as in 2-1. The above results are indicated by the ⁇ marks in FIG.
  • Example 2-2 A piezoelectric composition was produced in the same manner as in Example 2-6, except that the temperature lowering step and the second heat treatment step (annealing step) were not performed, and the sintered compact was cooled in the cooling step over 5 hours.
  • a piezoelectric element was produced in the same manner as in Example 2-1, and the piezoelectric constant d33 * of the produced piezoelectric element was measured in the same manner as in Example 2-1.
  • a piezoelectric element was produced in the same manner as described above except that the piezoelectric constant d33 * of the produced piezoelectric element was measured in the same manner as in Example 2-1. The above results are indicated by ⁇ in FIG.
  • a piezoelectric composition was prepared. Further, this piezoelectric composition was annealed at 900 ° C. for 5 minutes as in the known example, and then immersed in water at 70 ° C. (the cooling rate at this time was about 830 ° C./second or more). A piezoelectric composition was prepared in the same manner as described above. At this time, the piezoelectric composition often broke down.
  • a piezoelectric element was produced from the piezoelectric composition without destruction in the same manner as in Example 2-1.
  • the piezoelectric constant d33 * of the produced piezoelectric element was measured in the same manner as in Example 2-1. The above results are indicated by ⁇ in FIG.
  • FIG. 34 shows that the piezoelectric constants d33 * of Examples 2-6 and 2-7 subjected to the annealing step reach a peak when the amount (molar ratio) z of BFO is 0.45. It can also be seen that the piezoelectric constant d33 * of Example 2-6 increases even when the amount (molar ratio) z of BFO is 0.1.
  • Example 2-8 A piezoelectric element was produced as follows.
  • a raw material compact was prepared in the same manner as the raw material preparation step of Example 2-1, except that 0.1 wt% (0.03 g) of MnCO 3 was added to prepare the raw material.
  • the obtained piezoelectric composition is polished and processed to a thickness of about 0.4 mm, then cut into 4 mm length and 1.5 mm width, and gold electrodes are formed on both sides of the piezoelectric element by sputtering.
  • a piezoelectric element as shown in FIG. 16 was obtained.
  • FIG. 35 shows the temperature characteristics of the relative permittivity of the piezoelectric element
  • FIG. 36 shows the temperature characteristics of the dielectric loss of the piezoelectric element.
  • the piezoelectric constant d33 * was 372 pm / V
  • the remanent polarization Pr was 24 ⁇ C / cm 2
  • a large piezoelectric characteristic was exhibited as a lead-free piezoelectric element.
  • the dielectric loss tan ⁇ at a temperature of 150 ° C. and 100 Hz was measured and found to be a relatively low loss of 0.13.
  • Example 2-9 A piezoelectric element was produced in the same manner as in Example 2-8, except that the second heat treatment step and the second cooling step were changed as follows.
  • FIG. 37 shows a schematic diagram of the method for manufacturing the piezoelectric element of the present example excluding the raw material preparation step.
  • annealing step ⁇ Second heat treatment step (annealing step)>
  • the annealing process was performed in two stages, a first annealing process and a second annealing process, as described below.
  • FIG. 38 shows the temperature characteristics of the relative permittivity of the piezoelectric element
  • FIG. 39 shows the temperature characteristics of the dielectric loss of the piezoelectric element.
  • the piezoelectric constant d33 * was 370 pm / V
  • the residual polarization Pr was 21 ⁇ C / cm 2
  • the piezoelectric characteristics of the lead-free piezoelectric element were large.
  • the dielectric loss tan ⁇ at a temperature of 150 ° C. and 100 Hz was measured. It was a loss.
  • Table 6 shows typical characteristic values of the piezoelectric elements of Examples 2-8 and 2-9.
  • Example 2-10 A piezoelectric element was produced as follows.
  • a raw material compact was prepared in the same manner as the raw material preparation step of Example 2-1, except that 0.1 wt% (0.03 g) of MnCO 3 was added to prepare the raw material.
  • the obtained piezoelectric composition is polished and processed to a thickness of about 0.4 mm, then cut into 4 mm length and 1.5 mm width, and gold electrodes are formed on both sides of the piezoelectric element by sputtering.
  • a piezoelectric element as shown in FIG. 16 was obtained.
  • the dielectric characteristics and piezoelectric characteristics of the fabricated piezoelectric element were measured in the same manner as in Example 2-1.
  • the relative dielectric constant ⁇ r was 460, and the dielectric loss tan ⁇ was 0.11.
  • the relative dielectric constant ⁇ m was 11400, and the dielectric loss tan ⁇ was 0.1.
  • the piezoelectric constant d33 * was 293 pm / V
  • the residual polarization Pr was 27 ⁇ C / cm 2
  • the piezoelectric characteristics of the lead-free piezoelectric element were large.
  • the dielectric loss tan ⁇ at a temperature of 150 ° C. and 100 Hz was measured and found to be a relatively low loss of 0.36.
  • Example 2-11 A piezoelectric element was fabricated in the same manner as in Example 2-10, except that the second heat treatment step and the second cooling step were changed as follows.
  • annealing step ⁇ Second heat treatment step (annealing step)>
  • the annealing process was performed in two stages, a first annealing process and a second annealing process, as described below.
  • the obtained piezoelectric composition is polished and processed to a thickness of about 0.4 mm, then cut into 4 mm length and 1.5 mm width, and gold electrodes are formed on both sides of the piezoelectric element by sputtering.
  • a piezoelectric element as shown in FIG. 16 was obtained.
  • the dielectric characteristics and piezoelectric characteristics of the fabricated piezoelectric element were measured in the same manner as in Example 2-1.
  • the relative dielectric constant ⁇ r was 470, and the dielectric loss tan ⁇ was 0.12.
  • the relative dielectric constant ⁇ m was 11100, and the dielectric loss tan ⁇ was 0.09.
  • the piezoelectric constant d33 * was 309 pm / V
  • the residual polarization Pr was 26 ⁇ C / cm 2
  • the piezoelectric characteristics of the lead-free piezoelectric element were large.
  • the dielectric loss tan ⁇ measured at a temperature of 150 ° C. and 100 Hz was 0.08, which can be reduced to 1 ⁇ 4 or less compared to Example 2-10. It was found that a piezoelectric element advantageous for polarization can be realized.
  • nitrogen gas is used as the reducing atmosphere gas, but argon gas, nitrogen-hydrogen mixed gas, or the like may be used.
  • the piezoelectric element manufactured using the manufacturing method of the present invention 2 that undergoes the heat treatment steps shown in FIGS. 18, 19, and 37 has higher piezoelectric characteristics and ferroelectricity than the piezoelectric element manufactured by the conventional method.
  • the manufacturing method of the present invention 2 is extremely effective for providing a piezoelectric element having high reproducibility and high piezoelectric characteristics and ferroelectric characteristics.
  • the lead-free piezoelectric element of the present invention 2 has high piezoelectric characteristics
  • the method of manufacturing the lead-free piezoelectric element of the present invention 2 has high piezoelectric characteristics and does not contain lead.
  • composition region of the piezoelectric composition of the present invention 1 (excluding the composition region on the line segment AE) 2 More preferable composition region of the piezoelectric composition of the first aspect of the invention (excluding the composition region on the line segment AI) 3 More preferable composition region of the piezoelectric composition of the first aspect of the present invention (excluding the composition region on the line segment JN).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明は、一般式ABOで表されるペロブスカイト構造を有し、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、前記組成式においてx+y+z=1であり、前記組成式中のx、y及びzを用いた三角座標において、点A(1,0,0)、点B(0.7,0.3,0)、点C(0.1,0.3,0.6)、点D(0.1,0.1,0.8)、点E(0.2,0,0.8)を頂点とする5角形ABCDEで囲まれ、かつ点A(1,0,0)と点E(0.2,0,0.8)とを結ぶ線分AE上を含まない領域で表される組成を有することを特徴とする圧電組成物と、その圧電組成物を用いた圧電素子である。

Description

圧電組成物及びその製造方法、並びに圧電素子/非鉛圧電素子及びその製造方法、並びに超音波プローブ及び画像診断装置
 本発明は、鉛を含まない非鉛系の新規な圧電組成物に関するものである。更に、本発明は、鉛を含まない非鉛圧電素子及びその製造方法、並びにその非鉛圧電素子を用いた超音波プローブ、及びその超音波プローブを用いた画像診断装置に関するものである。
 従来の非鉛圧電組成物は、例えば(Bi0.50.5)TiO(以下、BKTともいう。)や、BKTとBiFeO(以下、BFOともいう。)との2元系など、各種非鉛圧電組成物が検討されている。しかし、その圧電定数は鉛系の圧電組成物と比べるとまだ小さいのが現状である(例えば、特許文献1、2、及び非特許文献1、2)。更に、BiFeOのFeをCoで置換したBi(Fe,Co)O(以下、BFCOともいう。)とBKTとの固溶体も検討され始めている(例えば、特許文献3)。一方、複合酸化物であるBi(Mg0.5Ti0.5)O(以下、BMTともいう。)は、常圧では合成困難であり、高温・高圧にて初めて単一相が得られる作製が困難な組成であり、一度作製したものでも常圧では数100℃で分解してしまう非常に不安定な組成物であることが知られている(例えば、非特許文献3)。そのため従来の非鉛圧電体では、BaTiO(以下、BTともいう。)系との組み合わせがわずかに検討されているだけであり(例えば、特許文献4及び非特許文献6参照)、BKT-BFO系への適用はまったく検討されていなかった。
 また、BFO系圧電組成物を用いた非鉛圧電素子は、大きな自発分極(約100μC/cm)を有することが予想されており(非特許文献4)、近年盛んに研究されている。しかし、大きな自発分極を有する圧電組成物を実際に得ることは、例えばリーク電流が大きく、かつ自発分極がピンニングにより発現しにくいなどの理由で困難なことが報告されている(非特許文献5)。その解決のために、例えば、非常に細かな原料から焼結する方法(特許文献1、非特許文献2)や高温からお湯に浸漬して非常に早い速度でクエンチする方法(非特許文献5、非特許文献6)や、Biなどの揮発しやすい元素の蒸発を抑えるために、100℃/秒の高速で昇温して、短時間で焼結する方法(非特許文献7)、あるいは、圧電組成物の融点近傍で焼結することにより、緻密な焼結体を作製して非鉛圧電素子の特性を向上させる方法(特許文献2)など種々提案されている。また、FeのほかにCoを多く含有するBFO系非鉛圧電磁器も報告されている(特許文献3)。
特開2008-69051号公報 特開2010-126421号公報 WO2012/013956号公報 特開2010-235442号公報
Japanese Journal of Applied Physics,Vol.44,No.7A,pp.5040-5044(2005) Journal of Applied Physics,Vol.108,104103(2010) Japanese Journal of Applied Physics,Vol.50,09NE06(2011) C.Ederer et al.,Phys.Rev.B,71 224103(2005) Journal of Applied Physics,Vol.108,074107(2010) Japanese Journal of Applied Physics,Vol.50,09ND07(2011) G.L.Yuan et al.,Solid State communication,Vol.138,pp.76-81(2006)
 上記のようにBKT単体では、十分大きな圧電定数を有する圧電組成物を得ることができない。また、BKT単体やBKT-BFOではその焼結が困難であり、原料に気相から合成したナノパウダーを用いることが必要な場合があった(特許文献1、非特許文献2)。更に、BKT-BFCOなどでは、リーク電流が多かったり、又は自発分極や残留分極が各種欠陥によりピンニングされてしまうために再現性よく大きな圧電性能を発揮できない、という課題があった。
 また、上記BFO系圧電組成物を用いた非鉛圧電素子には以下の課題がある。即ち、BFOの量を増やすと揮発性の高いBi量が増えるため、Bi空孔や酸素空孔などの欠陥が増える。また、各種の欠陥・欠陥対によりドメインやドメイン壁がピンニングさるため、電界-分極曲線において大きな自発分極や残留分極が得られなくなる。更に、酸素空孔などの影響で、Feの価数がFe3+からFe2+に変化して素子のリーク電流が増加するため、高電圧を印加することができない。この結果、本来期待される強誘電性や圧電特性が得られないという課題を有していた(例えば、非特許文献5)。また、特許文献3に記載の非鉛圧電磁器では、FeのほかにCoを多く含有することで、よりリーク電流が増加したり、またドメインやドメイン壁が欠陥などでピンニングされるため、再現性よく大きな圧電特性を持った非鉛圧電磁器が得られないという課題を有する。
 本発明は上記課題を解決したもので、大きな圧電定数を有する非鉛圧電組成物及び非鉛圧電素子を簡便なプロセスで再現性よく提供する。
 本発明1の圧電組成物は、一般式ABOで表されるペロブスカイト構造を有し、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、前記組成式において、x+y+z=1であり、前記組成式中のx、y及びzを用いた三角座標において、点A(1,0,0)、点B(0.7,0.3,0)、点C(0.1,0.3,0.6)、点D(0.1,0.1,0.8)、点E(0.2,0,0.8)を頂点とする5角形ABCDEで囲まれ、かつ点A(1,0,0)と点E(0.2,0,0.8)とを結ぶ線分AE上を含まない領域で表される組成を有することを特徴とする。
 また、本発明1の第1の圧電組成物の製造方法は、上記本発明1の圧電組成物を製造する方法であって、原料準備工程と、昇温工程と、熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 また、本発明1の第2の圧電組成物の製造方法は、上記本発明1の圧電組成物を製造する方法であって、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 また、本発明1の第3の圧電組成物の製造方法は、上記本発明1の圧電組成物を製造する方法であって、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする。
 また、本発明1の圧電素子は、上記本発明1の圧電組成物と、前記圧電組成物に電圧を印加するための電極とを含むことを特徴とする。
 更に、本発明2の非鉛圧電素子は、圧電組成物と、前記圧電組成物に電圧を印加するための電極とを含む非鉛圧電素子であって、前記圧電組成物は、一般組成式ABOで表されるペロブスカイト構造を有し、前記圧電組成物は、BiFeOと、Bi複合酸化物とを含み、前記BiFeOの含有量が、前記圧電組成物の全体に対して3~80mol%であり、前記Bi複合酸化物は、前記一般組成式において、AサイトがBiであり、Bサイトが異なる価数の複数元素からなり、25℃での比誘電率εrが400以上であり、かつ誘電損失tanδが0.2以下あり、電界-歪曲線から求めた圧電定数d33が、250pm/V以上であることを特徴とする。
 また、本発明2の超音波プローブは、上記本発明2の非鉛圧電素子を含むことを特徴とする。
 また、本発明2の画像診断装置は、上記本発明2の超音波プローブを含むことを特徴とする。
 また、本発明2の第1の非鉛圧電素子の製造方法は、上記本発明2の非鉛圧電素子を製造する方法であって、前記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 また、本発明2の第2の非鉛圧電素子の製造方法は、上記本発明2の非鉛圧電素子を製造する方法であって、前記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする。
 本発明1によれば、BKT単体、BMT単体(常圧では合成困難)及びBFO単体のそれぞれよりも大きな圧電定数を有した圧電組成物を提供できる。また、BKT-BMT-BFOの複合組成とすることにより圧電体組成物の製造が簡便となる。
 また、本発明2によれば、BFO系圧電組成物を用いた非鉛圧電素子において、自発分極や残留分極が大きくかつリーク電流が少なく、高い圧電特性を有する非鉛圧電素子とその製造方法を提供できる。
図1は、本発明1の圧電組成物の組成領域を示す三角座標である。 図2は、本発明1の圧電組成物のより好ましい組成領域を示す三角座標である。 図3は、原料準備工程を除いた本発明1の第1の圧電組成物の製造方法を示す概略図である。 図4は、原料準備工程を除いた本発明1の第2の圧電組成物の製造方法を示す概略図である。 図5は、原料準備工程を除いた本発明1の第3の圧電組成物の製造方法を示す概略図である。 図6は、本発明1の圧電素子の一例を示す斜視図である。 図7は、実施例1-1~1-6及び比較例1-1~1-2の圧電組成物の組成を示す三角座標である。 図8は、圧電組成物中のBMTの割合と圧電定数との関係図である。 図9は、実施例1-7~1-26及び比較例1-3~1-6の圧電組成物の組成を示す三角座標である。 図10は、圧電組成物中のBFOの割合と圧電定数との関係図である。 図11は、圧電組成物中のMn添加量と圧電定数との関係図である。 図12は、圧電組成物中のMn添加量と誘電損失との関係図である。 図13は、実施例1-1~1-31及び比較例1-1~1-6に基づく圧電組成物の組成領域を示す三角座標である。 図14は、実施例1-1~1-31及び比較例1-1~1-6に基づく圧電組成物のより好ましい組成領域を示す三角座標である。 図15は、本発明2の非鉛圧電素子の一例を示す斜視図である。 図16は、本発明2の非鉛圧電素子の他の例を示す斜視図である。 図17A、Bは、BiFeOを含む圧電組成物を用いた非鉛圧電素子のドメインピンニングとその回避状態を説明する模式図である。 図18は、原料準備工程を除いた本発明2の第1の非鉛圧電素子の製造方法を示す概略図である。 図19は、原料準備工程を除いた本発明2の第2の非鉛圧電素子の製造方法を示す概略図である。 図20は、本発明2の超音波プローブの概略断面図である。 図21は、本発明2の画像診断装置の概略斜視図である。 図22は、本発明2の実施例2-1の圧電素子の比誘電率と温度との関係を示す図である。 図23は、本発明2の実施例2-1の圧電素子の誘電損失と温度との関係を示す図である。 図24は、本発明2の実施例2-1の圧電素子の電界-歪み特性を示す図である。 図25は、本発明2の実施例2-1の圧電素子の電界-分極特性を示す図である。 図26は、本発明2の実施例2-2の圧電素子の比誘電率と温度との関係を示す図である。 図27は、本発明2の実施例2-2の圧電素子の誘電損失と温度との関係を示す図である。 図28は、本発明2の実施例2-2の圧電素子の電界-歪み特性を示す図である。 図29は、本発明2の実施例2-2の圧電素子の電界-分極特性を示す図である。 図30は、比較例2-1の圧電素子の比誘電率と温度との関係を示す図である。 図31は、比較例2-1の圧電素子の誘電損失と温度との関係を示す図である。 図32は、比較例2-1の圧電素子の電界-歪み特性を示す図である。 図33は、比較例2-1の圧電素子の電界-分極特性を示す図である。 図34は、BFOの量とd33との関係を示す図である。 図35は、本発明2の実施例2-8の圧電素子の比誘電率と温度との関係を示す図である。 図36は、本発明2の実施例2-8の圧電素子の誘電損失と温度との関係を示す図である。 図37は、原料準備工程を除いた実施例2-9の圧電素子の製造方法を示す概略図である。 図38は、本発明2の実施例2-9の圧電素子の比誘電率と温度との関係を示す図である。 図39は、本発明2の実施例2-9の圧電素子の誘電損失と温度との関係を示す図である。
 [本発明1]
 以下、本発明1について説明する。
 (実施形態1-1)
 先ず、本発明1の圧電組成物について説明する。
 本発明1の圧電組成物は、一般式ABOで表されるペロブスカイト構造を有し、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、上記組成式において、x+y+z=1である。また、上記組成式中のx、y及びzを用いた三角座標において、点A(1,0,0)、点B(0.7,0.3,0)、点C(0.1,0.3,0.6)、点D(0.1,0.1,0.8)、点E(0.2,0,0.8)を頂点とする5角形ABCDEで囲まれ、かつ点A(1,0,0)と点E(0.2,0,0.8)とを結ぶ線分AE上を含まない領域で表される組成を有している。
 上記BKT-BMT-BFOの複合組成とすることにより、BKT単体、BMT単体及びBFO単体のそれぞれよりも大きな圧電定数を有した圧電組成物を得ることが可能となるとともに、その製造が簡便となる。
 図1は、上記組成式中のx、y及びzを用いた三角座標において、点A(1,0,0)、点B(0.7,0.3,0)、点C(0.1,0.3,0.6)、点D(0.1,0.1,0.8)、点E(0.2,0,0.8)を頂点とする5角形ABCDEで囲まれる組成領域1を示したものである。但し、本発明1では、点A(1,0,0)と点E(0.2,0,0.8)とを結ぶ線分AE上の組成領域は含まれない。
 上記組成領域1にある圧電組成物は、原料成分の焼結が比較的容易であり、また電界-歪み特性の傾きの最大値から求めた圧電定数d33が大きくなる。
 一方、BFOの量が0.8を超える組成(z>0.8の組成)においては、リーク電流が大きくなったり、ドメインの動きがピンニングされたりする現象が顕著となり、大きな圧電特性を示さなくなるので好ましくない。
 また、z=0の場合は、点A(1,0,0)と点B(0.7,0.3,0)とを結ぶ線分AB上であって、点A(1,0,0)を除く組成が本発明1の組成となる。点A(1,0,0)の組成を含まないのは、点Aではy=z=0となり、その組成ではBKT単独の組成となり、d33としてあまり大きな値を得ることができず、更に製造時の焼結条件が著しく厳しくなるからである。例えば、BKT単体では、1060℃程度で焼結できるが、その温度より数度低い温度では焼結密度が上がらず、それより数度高い温度では、原料が部分的に溶解してしまう。従って、圧電組成物を製造するための焼結最適温度が非常に狭くなり、焼結が難しくなる。本発明者らは、BKTにBMTやBMT-BFOを固溶すると著しく焼結が容易になることを見出した。
 更に、BMTの量が0.3を超える組成(y>0.3の組成)では、しばしばペロブスカイト構造以外の異相が発生したり、圧電定数d33が小さくなってしまう。また、BMTの量が0.02未満の組成(y<0.02の組成)では、BKT-BFOにあまりに近いので、BKT-BFO同様に焼結が困難であるという不都合ある。
 次に、本発明1の圧電組成物の更に好ましい形態について説明する。
 BKTは正方晶であり、BFOは菱面体晶である。従って、この間には相境界が存在する。ここで、相境界とは、少なくとも2種類以上の結晶構造が共存する組成領域をいう。従来、BMTは高温・高圧の条件のみでしか製造できないため、固溶体として製造することも困難であると考えられ、BKT-BMT又はBKT-BMT-BFOの組み合わせは全く検討されておらず、相境界もまったく不明であった。本発明者らは、BKT-BMT-BFOの固溶体組成においても、正方晶と疑立方晶との相境界及び菱面体晶と疑立法晶との相境界が存在することを初めて明らかにした。更に、相境界の近傍では、後述する本発明1の圧電組成物の製造方法に示すように、アニール処理や比較的速い空冷を行うことにより、通常の方法で圧電組成物を製造した場合に比べて飛躍的に大きな圧電特性を有する圧電組成物が実現できることを初めて見出した。
 具体的には、本発明1の圧電組成物は、上記三角座標において、点A(1,0,0)、点F(0.8,0.2,0)、点G(0.7,0.2,0.1)、点H(0.7,0.1,0.2)、点I(0.8,0,0.2)を頂点とする5角形AFGHIで囲まれ、かつ点A(1,0,0)と点I(0.8,0,0.2)とを結ぶ線分AI上を含まない領域で表される組成が好ましく、更に、正方晶と疑立方晶との相境界を含む組成、又は相境界の近傍の組成がより好ましい。
 また、本発明1の圧電組成物は、上記三角座標において、点J(0.6,0,0.4)、点K(0.5,0.2,0.3)、点L(0.2,0.2,0.6)、点M(0.2,0.1,0.7)、点N(0.3,0,0.7)を頂点とする5角形JKLMNで囲まれ、かつ点J(0.6,0,0.4)と点N(0.3,0,0.7)とを結ぶ線分JN上を含まない領域で表される組成が好ましく、更に、菱面体晶と疑立方晶との相境界を含む組成、又は相境界の近傍の組成がより好ましい。
 図2は、上記三角座標において、点A(1,0,0)、点F(0.8,0.2,0)、点G(0.7,0.2,0.1)、点H(0.7,0.1,0.2)、点I(0.8,0,0.2)を頂点とする5角形AFGHIで囲まれる組成領域2、及び、点J(0.6,0,0.4)、点K(0.5,0.2,0.3)、点L(0.2,0.2,0.6)、点M(0.2,0.1,0.7)、点N(0.3,0,0.7)を頂点とする5角形JKLMNで囲まれる組成領域3を示したものである。但し、本発明1の組成領域2では点A(1,0,0)と点I(0.8,0,0.2)とを結ぶ線分AI上の組成領域、及び、本発明1の組成領域3では点J(0.6,0,0.4)と点N(0.3,0,0.7)とを結ぶ線分JN上の組成領域は含まれない。
 本発明1の圧電組成物は、ペロブスカイト構造を有し、一般組成式ABOで表され、Aサイト元素とBサイト元素と酸素との標準モル比は1:1:3であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で標準モル比から外れていてもよい。
 また、本発明1の圧電組成物は、上記組成式中のMgの一部をZnに置換することが好ましく、上記組成式中のBiの一部をLa、Sm、Ndの少なくとも一種類で置換することが好ましい。更に、上記組成式中のTiの一部をZrで置換することが好ましい。これらの元素の置換により、キュリー温度(Tc)又は誘電率の極大温度(Tm)を下げることができ、更にリラクサー特性を示す本発明1の圧電組成物において、Tc(又はTm)の低下により大きな圧電定数と大きな誘電率が期待できる。
 更に、本発明1の圧電組成物は、Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素を2重量%以下の割合で含有することが好ましい。Mn、Co、Ni又はVを含むことにより、Feの価数のずれを3価に戻すことが可能となり、リーク電流の低減が期待できる。また、Nb、Ta、V、Wはドナーとして寄与するために、これらを含むことにより材料をソフト化することが期待できる。Si又はGeを含むことにより、焼結密度の向上と電気機械結合係数の向上が期待できる。Sr又はCaを含むことにより、BiやKの蒸発の低減が期待でき、その結果、特性向上や信頼性向上が可能となる。
 上記Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素は、圧電組成物の結晶中に固溶している必要はなく、結晶粒内や粒界に析出していてもよいし、偏析していてもよい。
 (実施形態1-2)
 次に、本発明1の圧電組成物の製造方法について図面に基づき説明する。下記製造方法とすることにより、上記実施形態1-1で説明した圧電組成物を簡便に得ることが可能となる。
 〔第1の製造方法〕
 図3は、原料準備工程を除いた本発明1の第1の圧電組成物の製造方法を示す概略図である。本発明1の第1の圧電組成物の製造方法は、原料準備工程と、昇温工程と、熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 <原料準備工程>
 先ず、本発明1の圧電組成物を構成する元素の酸化物や炭酸塩、炭酸水素塩、各種酸塩などを出発原料として準備する。例えば、酸化物としては、Bi、Fe、TiO、MgOなど、また、炭酸塩としては、KCOやKHCOを用いることができる。
 本発明1の圧電組成物のカリウム原料としては、上記のとおりKCOやKHCOを用いることができるが、KHCOを用いことが好ましい。これは、KHCOの吸湿性がKCOに比べて特に小さいため、原料としての秤量誤差を小さくできるためである。
 次に、必要量を秤量した出発原料を用いて、原料粉の混合物を作製する。混合物を作製する方法としては、乾式法、湿式法のいずれでもよく、例えばボールミルやジェットミルなどによる湿式粉砕が適宜利用できる。湿式粉砕をボールミルによって行う場合には、上記原料を分散媒と混合し、粉砕装置に投入する。分散媒としては、メタノール、エタノールなどの各種アルコール系材料や各種有機液体や純水を用いることができるが、水溶性のKCOやKHCOを原料に用いるので、廃液処理や水を含まない観点よりアルコール系材料が望ましい。更に、粉砕装置に、ジルコニアボールやアルミナボールなどの粉砕メディアを加えて、出発原料の粒度が微細で、均一となるまで混合・粉砕を行う。次に、粉砕メディアを取り除き、吸引ろ過や乾燥器を利用して分散媒を除去する。次に、得られた原料粉を坩堝などの容器に入れて仮焼成を行う。仮焼成の温度は、例えば、600~1000℃の温度で行うことができる。これによって、混合物の組成の均一化や、焼結後の焼結密度の向上を図ることができる。但し、上記仮焼成は、必ずしも必須ではなく、分散媒を乾燥除去した原料粉を用いて以下の成形体作製工程を行ってもよい。一方、均一性や焼結密度の向上のために仮焼成を2回以上行ってもよい。
 仮焼成を行う場合は、粉砕装置を用いて原料粉を粉砕した場合と同様に、仮焼成後に仮焼成粉を再度粉砕する。仮焼成後の粉砕工程では、その工程の最初、途中又は最終のいずれかの段階で、バインダーなどを加えてから、再度乾燥して原料粉を作製する。バインダーとしては、例えば、ポリビニルアルコール(PVA)や、ポリビニルブチラール(PVB)などを用いることができる。
 次に、得られた有機成分とセラミックスとの混合粉末を、例えば、プレス機械を用いて、直径10mm、厚み1mm程度から直径50mm、厚み5mm程度の円柱状のペレットに成形する。最後に、得られた成形体を電気炉に入れて、500~750℃で数時間から20時間程度加熱することにより、脱バインダー処理を行い、原料成形体を得る。
 上記原料準備工程では通常の固相法の場合を示したが、原料準備工程は固相法に限定されず、例えば、水熱合成法や、アルコキシドを出発原料として用いる方法でもよい。
 <昇温工程>
 次に、図3に示すように、得られた原料成形体を再度坩堝などに入れ、熱処理工程の温度まで昇温する。昇温速度は、原料成形体のサイズにもよるが、通常50~300℃/hrとする。なお、例えば水分を除去する目的で100~200℃で一定時間保持したり、昇温速度を遅くすることも本発明1の昇温工程に含めるものとする。
 <熱処理工程>
 次に、図3に示すように、原料成形体を900~1080℃で、5分~4時間熱処理する。
 <冷却工程>
 最後に、図3に示すように、熱処理後の成形体を室温まで冷却する。この冷却工程は、圧電組成物の各種欠陥がドメイン壁に集合してくることを避けるために行う。冷却速度は、0.01~200℃/秒が好ましく、より好ましくは、5~100℃/秒である。冷却速度を200℃/秒以下とすることにより、例えば温度800℃から70℃のお湯に浸漬するような超高速クエンチの場合の冷却速度の1/10~1/100程度以下とすることが可能となり、圧電組成物の破壊を避けることができる。
 〔第2の製造方法〕
 図4は、原料準備工程を除いた本発明1の第2の圧電組成物の製造方法を示す概略図である。本発明1の第2の圧電組成物の製造方法は、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 <原料準備工程>
 第2の製造方法の原料準備工程は、上記第1の製造方法の原料準備工程と同様に行う。
 <昇温工程>
 第2の製造方法の昇温工程は、図4に示すように、上記第1の製造方法の昇温工程と同様に行う。
 <第1熱処理工程>
 次に、図4に示すように、原料成形体を900~1080℃で熱処理する。熱処理時間は、目的とする圧電組成物がセラミックスの場合には、2~300時間であり、より好ましくは6~200時間である。圧電組成物としてセラミックスを得る場合、この第1熱処理工程は原料成形体の焼結工程となり、この熱処理時間を制御することにより、セラミックスの粒径を制御することができる。圧電組成物がセラミックスの場合の粒径は、0.5~200μmが好ましく、より好ましくは1~100μmである。これらの好ましい圧電組成物の粒径は、上記熱処理時間(焼結時間)を6~300時間とすることにより実現できる。
 また、目的とする圧電組成物が単結晶の場合には、熱処理温度は、6~3000時間である。圧電組成物として単結晶を得る場合、この第1熱処理工程は原料成形体の結晶成長工程となる。
 <降温工程>
 後述するように第2熱処理工程はアニール工程となるため、第1熱処理工程と第2熱処理工程との間は、図4に示すように、降温工程となる。降温速度は特に限定されないが、セラミックスの場合は50~1000℃/hr、単結晶の場合は0.1~200℃/hrとすればよい。
 <第2熱処理工程>
 次に、図4に示すように、原料成形体に対して第2熱処理工程を行う。この第2熱処理工程はアニール工程であり、アニール温度は300~900℃、より好ましくは400~800℃とし、アニール時間は5分~100時間とする。このアニール工程は、圧電組成物の各種欠陥を除去するために行う。
 また、上記アニール工程は、それぞれ異なる温度で2回以上に分けて行うことが好ましい。これは、各種欠陥の除去温度が同一温度ではないためである。
 <冷却工程>
 第2の製造方法の冷却工程は、図4に示すように、上記第1の製造方法の冷却工程と同様に行う。
 〔第3の製造方法〕
 図5は、原料準備工程を除いた本発明1の第3の圧電組成物の製造方法を示す概略図である。本発明1の第3の圧電組成物の製造方法は、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする。
 <原料準備工程>
 第3の製造方法の原料準備工程は、上記第1の製造方法の原料準備工程と同様に行う。
 <第1昇温工程>
 第3の製造方法の第1昇温工程は、図5に示すように、上記第1の製造方法の昇温工程と同様に行う。
 <第1熱処理工程>
 第3の製造方法の第1熱処理工程は、図5に示すように、上記第2の製造方法の第1熱処理工程と同様に行う。
 <第1冷却工程>
 次に、図5に示すように、熱処理後の成形体を室温まで冷却する。冷却速度は、上記第1の製造方法の冷却工程の冷却速度とほぼ同様の冷却速度で行うことができる。更に、図5には示していないが、第1冷却工程後の成形体をより小さい形状の成形体に加工する工程を加えてもよい。これにより、後述する第2熱処理工程(アニール工程)を小さい形状の成形体に対して実施できるため、その結果、後述する第2冷却工程において圧電組成物の熱衝撃による破壊をより確実に防止することができる。
 <第2昇温工程>
 後述するように第2熱処理工程はアニール工程となるため、第1冷却工程後は、図5に示すように、昇温工程を行う。昇温速度は特に限定されないが、50~1000℃/hrとすればよい。
 <第2熱処理工程>
 第3の製造方法の第2熱処理工程は、図5に示すように、上記第2の製造方法の第2熱処理工程と同様に行う。
 <第2冷却工程>
 第3の製造方法の第2冷却工程は、図5に示すように、上記第2の製造方法の冷却工程と同様に行う。
 (実施形態1-3)
 次に、本発明1の圧電素子について図面に基づき説明する。図6は、本発明1の圧電素子の一例を示す斜視図である。本発明1の圧電素子は、上記実施形態1-1で説明した圧電組成物と、上記圧電組成物に電圧を印加するための電極とを備えている。具体的には、図6において、本発明1の圧電素子10は、圧電組成物11と、圧電組成物11に電圧を印加するための電極12とを備えている。
 本発明1の圧電素子の電界-歪曲線より求めた圧電定数d33は、140pm/V以上が好ましく、200pm/V以上がより好ましく、250pm/V以上が最も好ましい。
 以下、本発明1を実施例に基づき説明する。下記実施例では、圧電組成物としてバルクセラミックスを用いた例を示したが、本発明1の圧電組成物の形態としてセラミックスに限定されるものではなく、本発明1の圧電組成物は、配向セラミックス、厚膜、単結晶の形態でもよい。
 先ず、本発明1の第1の圧電組成物の製造方法に基づく実施例について説明する。
 (実施例1-1)
 <原料準備工程>
 圧電組成物の組成が、組成式0.95(Bi0.50.5)TiO-0.05Bi(Mg0.5Ti0.5)O〔x=0.95、y=0.05、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量し、合計30gの原料を準備した。次に、秤量した原料を、エタノール及びジルコニアボールと共にポットに入れ、ボールミルで16時間粉砕した。その後、原料を乾燥して、更に原料粉を800℃で6時間仮焼成した。得られた原料粉を再びエタノール及びジルコニアボールと共にポットに入れ、ボールミルで再度16時間粉砕した後、バインダーとしてPVBを添加して乾燥した。次に、得られた原料粉を1軸プレス装置で約200~250MPaの圧力を加えて、直径10mm、厚さ1.5mmのペレットを作製した。得られたペレットを700℃で10時間加熱してバインダーを除去して、原料成形体を得た。
 <昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1060℃まで昇温した。
 <熱処理工程>
 続いて、原料成形体を1060℃で2時間焼結した。
 <冷却工程>
 最後に、焼結後の成形体を1060℃/5時間(0.058℃/秒)の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。
 (実施例1-2)
 圧電組成物の組成が、組成式0.9(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O〔x=0.9、y=0.1、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1070℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-3)
 圧電組成物の組成が、組成式0.85(Bi0.50.5)TiO-0.15Bi(Mg0.5Ti0.5)O〔x=0.85、y=0.15、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1080℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-4)
 圧電組成物の組成が、組成式0.8(Bi0.50.5)TiO-0.2Bi(Mg0.5Ti0.5)O〔x=0.8、y=0.2、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1080℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-5)
 圧電組成物の組成が、組成式0.7(Bi0.50.5)TiO-0.3Bi(Mg0.5Ti0.5)O〔x=0.7、y=0.3、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1070℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-6)
 圧電組成物の組成が、組成式0.98(Bi0.50.5)TiO-0.02Bi(Mg0.5Ti0.5)O〔x=0.98、y=0.02、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1063℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-1)
 圧電組成物の組成が、組成式(Bi0.50.5)TiO〔x=1、y=0、z=0〕を満たすように、原料として、Bi、KHCO、TiOを秤量して合計30gの原料を用い、焼結温度を1060±5℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-2)
 圧電組成物の組成が、組成式0.6(Bi0.50.5)TiO-0.4Bi(Mg0.5Ti0.5)O〔x=0.6、y=0.4、z=0〕を満たすように、原料として、Bi、KHCO、TiO、MgOを秤量して合計30gの原料を用い、焼結温度を1080℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 次に、実施例1-1~1-6及び比較例1-1~1-2の圧電組成物と圧電素子とを用いて、下記の測定を行った。
 <圧電組成物の結晶構造の解析>
 得られた圧電組成物の結晶構造を粉末X線回折により解析した。
 <圧電素子の圧電定数d33の測定>
 得られた圧電素子の電界-歪曲線は、東陽テクニカ(株)製の強誘電体特性評価システム“FCE-3”又は接触式変位計を用いた自作の評価システムを用いて作成し、この電界-歪曲線から圧電定数d33を測定した。この測定は、圧電定数d33が既知のPZTの値で校正してから行った。
 以上の結果を表1、図7及び図8に示す。また、表1では、圧電組成物の組成式のx、y、zを用いた三角座標も示した。
Figure JPOXMLDOC01-appb-T000001
 上記圧電素子の圧電定数は、図7及び図8に示す矢印30に沿って測定した。表1から、実施例1-1~1-6の圧電素子は、比較例1-1~1-2の圧電素子に比べて大きな圧電定数を実現できていることが分かる。また、表1及び図8から、圧電組成物の三角座標のyが0.05≦y≦0.15の範囲にある実施例1-1、1-2及び1-3の圧電素子の圧電定数d33が特に大きいことが分かる。これは、図7において、実施例1-1、1-2及び1-3の圧電組成物の組成が、正方晶と疑立方晶との相境界35を含む組成、又は相境界35の近傍の組成であるためと考えられる。
 (実施例1-7)
 圧電組成物の組成が、組成式0.85(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.05BiFeO〔x=0.85、y=0.1、z=0.05〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1070℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-8)
 圧電組成物の組成が、組成式0.8(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.1BiFeO〔x=0.8、y=0.1、z=0.1〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1055℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-9)
 圧電組成物の組成が、組成式0.7(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.2BiFeO〔x=0.7、y=0.1、z=0.2〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1030℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-10)
 圧電組成物の組成が、組成式0.6(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.3BiFeO〔x=0.6、y=0.1、z=0.3〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-11)
 圧電組成物の組成が、組成式0.5(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.4BiFeO〔x=0.5、y=0.1、z=0.4〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-12)
 圧電組成物の組成が、組成式0.45(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.45BiFeO〔x=0.45、y=0.1、z=0.45〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-13)
 圧電組成物の組成が、組成式0.4(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.5BiFeO〔x=0.4、y=0.1、z=0.5〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-14)
 圧電組成物の組成が、組成式0.3(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.6BiFeO〔x=0.3、y=0.1、z=0.6〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-15)
 圧電組成物の組成が、組成式0.2(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.7BiFeO〔x=0.2、y=0.1、z=0.7〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を950℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-16)
 圧電組成物の組成が、組成式0.1(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.8BiFeO〔x=0.1、y=0.1、z=0.8〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を950℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-3)
 圧電組成物の組成が、組成式0.05(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.85BiFeO〔x=0.05、y=0.1、z=0.85〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を900℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-4)
 圧電組成物の組成が、組成式0.2(Bi0.50.5)TiO-0.4Bi(Mg0.5Ti0.5)O-0.4BiFeO〔x=0.2、y=0.4、z=0.4〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-5)
 圧電組成物の組成が、組成式0.1(Bi0.50.5)TiO-0.4Bi(Mg0.5Ti0.5)O-0.5BiFeO〔x=0.1、y=0.4、z=0.5〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 次に、実施例1-7~1-16及び比較例1-3~1-5の圧電組成物と圧電素子とを用いて、実施例1-1と同様にして、圧電組成物の結晶構造の解析及び圧電素子の圧電定数d33の測定を行った。その結果を表2、図9及び図10(アニール工程なしが該当)に示す。また、表2では、圧電組成物の組成式のx、y、zを用いた三角座標も示した。
Figure JPOXMLDOC01-appb-T000002
 上記圧電素子の圧電定数は、図9及び図10に示す矢印40に沿って測定した。表2から、実施例1-7~1-16の圧電素子は、比較例1-3~1-5の圧電素子に比べて大きな圧電定数を実現できていることが分かる。
 次に、本発明1の第2の圧電組成物の製造方法に基づく実施例について説明する。
 (実施例1-17)
 <原料準備工程>
 圧電組成物の組成が、組成式0.85(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.05BiFeO〔x=0.85、y=0.1、z=0.05〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用いた以外は、実施例1-1と同様にして、原料成形体を得た。
 <昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1070℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1070℃で2時間焼結した。
 <降温工程>
 次に、焼結後の成形体を800℃まで300℃/hrで降温した。
 <第2熱処理工程(アニール工程)>
 続いて、降温した成形体を800℃で20時間アニールを行った。
 <冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。
 (実施例1-18)
 圧電組成物の組成が、組成式0.8(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.1BiFeO〔x=0.8、y=0.1、z=0.1〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1055℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-19)
 圧電組成物の組成が、組成式0.7(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.2BiFeO〔x=0.7、y=0.1、z=0.2〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1030℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-20)
 圧電組成物の組成が、組成式0.6(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.3BiFeO〔x=0.6、y=0.1、z=0.3〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-21)
 圧電組成物の組成が、組成式0.5(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.4BiFeO〔x=0.5、y=0.1、z=0.4〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-22)
 圧電組成物の組成が、組成式0.45(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.45BiFeO〔x=0.45、y=0.1、z=0.45〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-23)
 圧電組成物の組成が、組成式0.4(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.5BiFeO〔x=0.4、y=0.1、z=0.5〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-24)
 圧電組成物の組成が、組成式0.3(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.6BiFeO〔x=0.3、y=0.1、z=0.6〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-25)
 圧電組成物の組成が、組成式0.2(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.7BiFeO〔x=0.2、y=0.1、z=0.7〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-26)
 圧電組成物の組成が、組成式0.1(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.8BiFeO〔x=0.1、y=0.1、z=0.8〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を950℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (比較例1-6)
 圧電組成物の組成が、組成式0.05(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.85BiFeO〔x=0.05、y=0.1、z=0.85〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を900℃とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 次に、実施例1-17~1-26及び比較例1-6の圧電組成物と圧電素子とを用いて、実施例1-1と同様にして、圧電組成物の結晶構造の解析及び圧電素子の圧電定数d33の測定を行った。その結果を表3、図9及び図10(アニール工程ありが該当)に示す。また、表3では、圧電組成物の組成式のx、y、zを用いた三角座標も示した。
Figure JPOXMLDOC01-appb-T000003
 上記圧電素子の圧電定数は、図9及び図10に示す矢印40に沿って測定した。表3から、実施例1-17~1-26の圧電素子は、比較例1-6の圧電素子に比べて大きな圧電定数を実現できていることが分かる。また、表3及び図10から、圧電組成物の三角座標のzが0.4≦y≦0.45の範囲にある実施例1-21及び1-22の圧電素子の圧電定数が特に大きいことが分かる。これは、図9において、実施例1-21及び1-22の圧電組成物の組成が、疑立方晶と菱面体晶との相境界45を含む組成、又は相境界45の近傍の組成であるためと考えられる。
 なお、実施例1-22で更に第1熱処理工程である焼結時間を20~300時間に増加させた場合、d33が378~410pm/Vのより大きな圧電特性を得ることができた。
 次に、本発明1の圧電組成物に対する添加物の影響について検討する。
 (実施例1-27)
 圧電組成物の組成が、組成式0.45(Bi0.50.5)TiO-0.1Bi(Mg0.5Ti0.5)O-0.45BiFeO〔x=0.45、y=0.1、z=0.45〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、更にこの原料30gに対して0.2重量%(0.06g)のMnCOを添加して、焼結温度を1000℃、焼結時間を20時間とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 また、MnCOの添加量を0.05~0.5重量%に変更した以外は、上記と同様にして圧電組成物と圧電素子を製造した。
 次に、製造した圧電素子を用いて、実施例1-1と同様にして、圧電素子の圧電定数d33の測定を行った。その結果を図11に示す。また、製造した圧電素子の誘電損失(tanδ)をWayne Kerr社製のLCRメータ(型番6440B)を用いて、周波数100Hz、温度150℃で測定した。その結果を図12に示す。
 図11より、圧電定数d33の値は、MnCOの添加量が0.3重量%までほとんど低下しないことが分かる。また、図12より、誘電損失(tanδ)は、MnCOを添加すると急激に低下することが分かる。これは、高電圧印加時にリーク電流が低減することを意味する。この結果、MnCOの添加は高電圧印加時のリーク電流を低減し、更に添加量が少ない場合にも圧電定数d33をほとんど低下させないので、分極処理に非常に有利であることが判明した。また、本実施例では、Mn添加物としてMnCOを用いたが、MnO、Mn、MnO2、Mnなどを用いても、150℃での低周波の誘電損失(tanδ)を同様に低減することができる。
 (実施例1-28)
 圧電組成物の組成が、組成式0.427(Bi0.50.5)TiO-0.05Bi(Mg0.5Ti0.5)O-0.523BiFeO〔x=0.427、y=0.05、z=0.523〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃、焼結時間を20時間とした以外は、実施例1-1と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-29)
 圧電組成物の組成が、組成式0.427(Bi0.50.5)TiO-0.05Bi(Mg0.5Ti0.5)O-0.523BiFeO〔x=0.427、y=0.05、z=0.523〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、焼結温度を1000℃、焼結時間を20時間とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 次に、実施例1-28~1-29の圧電組成物と圧電素子とを用いて、実施例1-1と同様にして、圧電組成物の結晶構造の解析及び圧電素子の圧電定数d33の測定を行った。その結果を表4に示す。また、表4では、圧電組成物の組成式のx、y、zを用いた三角座標も示した。
Figure JPOXMLDOC01-appb-T000004
 表4から、実施例1-28~1-29の圧電素子は、比較例1-3~1-5及び比較例1-6に比べて、焼結時間を長時間に変更したのみであり、第2熱処理工程がない場合でも、大きな圧電定数を実現できていることが分かる。これは、後述する図13及び図14に示すように、実施例1-28及び1-29の組成が、疑立方晶と菱面体晶との相境界45を含む組成であるためと考えられる。
 (実施例1-30)
 圧電組成物の組成が、組成式0.427(Bi0.50.5)TiO-0.05Bi(Mg0.5Ti0.5)O-0.523BiFeO〔x=0.427、y=0.05、z=0.523〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、更にこの原料30gに対して0.1重量%(0.03g)のNbを添加して、焼結温度を1000℃、焼結時間を20時間とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 (実施例1-31)
 圧電組成物の組成が、組成式0.427(Bi0.50.5)TiO-0.05Bi(Mg0.5Ti0.5)O-0.523BiFeO〔x=0.427、y=0.05、z=0.523〕を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量して合計30gの原料を用い、更にこの原料30gに対して0.1重量%(0.03g)のWOを添加して、焼結温度を1000℃、焼結時間を20時間とした以外は、実施例1-17と同様にして圧電組成物と圧電素子を製造した。
 次に、実施例1-30~1-31の圧電素子を用いて、実施例1-1と同様にして、圧電定数d33の測定を行った。その結果を表5に示す。また、表5では、圧電組成物の組成式のx、y、zを用いた三角座標も示した。
Figure JPOXMLDOC01-appb-T000005
 表5から、実施例1-30~1-31の圧電素子は、実施例1-29の圧電組成物に添加物を加えたのみで、大きな圧電定数を実現できていることが分かる。また、実施例1-27~1-31では、添加物としてMnCO、Nb、WOをそれぞれ別々に添加して用いたが、これらを同時に添加することにより、絶縁性が高くかつ圧電性の高い圧電組成物及び圧電素子を実現できる。
 最後に、図13及び図14に、上記実施例1-1~1-31及び比較例1-1~1-6の組成領域をまとめて示す。図13において5角形ABCDEで囲まれる組成領域1(線分AE上の組成領域を除く。)にある圧電組成物の圧電定数d33が大きく、図14において5角形AFGHIで囲まれる組成領域2(線分AI上の組成領域は除く。)及び5角形JKLMNで囲まれる組成領域3(線分JN上の組成領域は除く。)にある圧電組成物の圧電定数d33が特に大きい。
 以上のように本発明1の圧電組成物は、圧電定数が大きく、簡便な方法で再現性よく製造可能な非鉛系の圧電組成物であり、鉛を含まない環境対応型の圧電組成物として、超音波プローブ、トランスデューサ、センサなどへの適用が期待できる。
 [本発明2]
 以下、本発明2について説明する。
 (実施形態2-1)
 先ず、本発明2の非鉛圧電素子について説明する。
 本発明2の非鉛圧電素子は、圧電組成物と、上記圧電組成物に電圧を印加するための電極とを備えている。また、上記圧電組成物は、一般組成式ABOで表されるペロブスカイト構造を有し、上記圧電組成物は、BiFeOと、Bi複合酸化物とを含み、上記BiFeOの含有量が、上記圧電組成物の全体に対して3~80mol%であり、上記Bi複合酸化物は、上記一般組成式において、AサイトがBiであり、Bサイトが異なる価数の複数元素からなり、25℃(室温)での比誘電率εrが400以上であり、かつ誘電損失tanδが0.2以下であり、電界-歪曲線から求めた圧電定数d33が、250pm/V以上であること特徴とする。
 上記圧電組成物を用いることにより、自発分極や残留分極が大きくかつリーク電流が少なく、高い圧電特性を有する非鉛圧電素子を提供できる。
 上記圧電組成物は、ペロブスカイト構造を有し、一般組成式ABOで表され、Aサイト元素とBサイト元素と酸素との標準モル比は1:1:3であるが、これらのモル比はペロブスカイト構造を取り得る範囲内で標準モル比から外れていてもよい。また、本発明2ではBサイトが異なる価数の複数元素からなるが、Bサイトの元素としては、例えば、Mg、Zn、Ti、Zr、Fe、Mn、Co、Ni、Nb、Ta、Wなどが挙げられる。
 また、上記圧電組成物は、少なくとも2種類の結晶構造の相境界を含む組成、又は相境界近傍の組成を有することが好ましい。これにより、更に非鉛圧電素子の圧電特性を向上できる。ここで、相境界とは、少なくとも2種類の結晶構造が共存する組成領域であり、更に本発明2の相境界近傍の組成とは、所定の組成から15mol%以内の範囲で、少なくとも相境界を含み更に電界-歪み曲線より求めた圧電定数d33の極大値が存在する組成領域、と定義する。具体的には、上記相境界は、菱面体晶と、疑立方晶、正方晶、斜方晶及び単斜晶からなる群から選ばれるいずれか一つの結晶構造とが共存する組成領域であってもよく、また、正方晶と疑立方晶とが共存する組成領域であってもよい。
 また、上記圧電定数d33は、330pm/V以上であることが好ましく、上記BiFeOの含有量は、上記圧電組成物の全体に対して30~80mol%であることが好ましい。これにより、更に非鉛圧電素子の圧電特性を向上できる。
 また、上記圧電組成物は、リラクサー材料からなることが好ましい。本発明2のリラクサーとは、一般組成式ABOで表わされるペロブスカイト構造を有する複合酸化物であり、Aサイト又はBサイトが複数の元素で構成され、温度変化に対して誘電率がブロードなピークを有するものをいう。上記非鉛圧電素子がリラクサー特性であるブロードな誘電率のピークを有することにより、ピーク温度から離れた温度においても高い誘電率を示す。リラクサー特性を示す圧電素子は、超音波プローブのように高い誘電率が必要とされるデバイスにおいて有用となる。
 上記圧電組成物は、粒径が0.5μm以上200μm以下のセラミックスからなることが好ましく、粒径が1μm以上100μm以下のセラミックスからなることがより好ましい。上記粒径を0.5μm以上とすることにより、極大温度Tmでの比誘電率の大きさεmを大きくでき、これにより、室温での誘電率や残留分極を大きくするのに有利となる。また、上記粒径の上限は圧電組成物の加工性に基づくものであり、上記粒径が200μm以下であるとセラミックスの割れを防止することができる。
 また、上記圧電組成物は、単結晶から形成されていてもよい。単結晶の場合は、粒径は問題とならず、圧電材料として加工される際に、その加工に耐えるだけの強度を有していることが必要である。
 上記圧電組成物は、(Bi0.50.5)TiO及びBi(Mg0.5Ti0.5)Oを更に含むことが好ましい。より具体的には、上記圧電組成物は、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、上記組成式においてx+y+z=1であることが好ましい。上記圧電組成物をBKT-BMT-BFOの複合組成とすることにより、BKT単体、BMT単体及びBFO単体のそれぞれよりも大きな圧電定数とすることができる。
 また、上記圧電組成物は、上記組成式中のMgの一部をZnに置換することが好ましく、上記組成式中のBiの一部をLa、Sm、Ndの少なくとも一種類で置換することが好ましい。更に、上記組成式中のTiの一部をZrで置換することが好ましい。これらの元素の置換により、キュリー温度(Tc)又は誘電率の極大温度(Tm)を下げることができ、更にリラクサー特性を示す本発明2の圧電組成物において、Tc(又はTm)の低下により大きな圧電定数と大きな誘電率が期待できる。
 更に、上記圧電組成物は、Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素を2重量%以下の割合で更に含有することが好ましい。Mn、Co、Ni又はVを含むことにより絶縁性を高くすることが可能となり、リーク電流の低減が期待できる。ここでMn源としては、MnCO、MnO、Mn、Mn、MnOなどを用いることが可能である。V、Nb、Ta、Wは圧電組成物をソフト化するのに有利なドーパントとして好ましい。Si又はGeを含むことにより、焼結密度の向上と電気機械結合係数の向上に有利である。Ca又はSrを含むことにより、BiやKの蒸発の低減が期待でき、その結果、特性向上や信頼性向上が可能となる。
 上記Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素は、圧電組成物の結晶中に固溶している必要はなく、結晶粒内や粒界に析出していてもよいし、偏析していてもよい。
 本発明2の非鉛圧電素子は、極大温度Tmでの比誘電率εmが7000以上であることが好ましく、13000以上であることがより好ましい。ここで、極大温度Tmとは、比誘電率が最大を示す温度をいう。また、本発明2の非鉛圧電素子の誘電損失tanδは0.2以下が好ましい。更に、本発明2の非鉛圧電素子においては、極大温度Tmは、130℃以上400℃以下であることが好ましい。これにより、実用的な温度範囲で使用が可能となり、更に、BFOに比べて極大温度Tm又はキュリー温度Tcが低くなり、室温での非誘電率εrを大きくしやすくなる。本発明2の比誘電率は、特に断らない限り、測定周波数1MHzでの値とする。また、本発明2の非鉛圧電素子の残留分極Prは、20μC/cm以上であることが好ましい。
 次に、本発明2の非鉛圧電素子を図面に基づき説明する。
 図15は、本発明2の非鉛圧電素子の一例を示す斜視図である。図15において、本発明2の圧電素子10は、圧電組成物11と、圧電組成物11に電圧を印加するための電極12とを備えている。また、図16は、本発明2の非鉛圧電素子の他の例を示す斜視図である。図16において、本発明2の圧電素子20は、圧電組成物21と、圧電組成物21に電圧を印加するための電極22とを備えている。圧電組成物11、21としては、本実施形態で説明した圧電組成物を用いる。電極12、22は、圧電組成物11、21に電圧を印加するためのものである。電極12、22の材質、製法などは特に限定されないが、金、銀、白金、パラジウム、ニッケル、銅、各種貴金属の合金などの金属をスパッタリング、蒸着、印刷などすることにより形成することができる。
 上記非鉛圧電素子の形状は特に限定されず、図15及び図16に示した形状以外であってもよく、例えば、ドーナッツ型、円柱型、角柱型などの形状を非鉛圧電素子の用途によって適宜使用できる。
 (実施形態2-2)
 次に、本発明2の非鉛圧電素子の製造方法について説明する。下記製造方法とすることにより、上記実施形態2-1で説明した非鉛圧電素子を簡便に得ることが可能となる。
 本発明2の第1の非鉛圧電素子の製造方法は、上記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。
 また、本発明2の第2の非鉛圧電素子の製造方法は、上記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする。
 本発明2の第1及び第2の非鉛圧電素子の製造方法によれば、自発分極や残留分極が大きくかつリーク電流が少なく、高い圧電特性を有する非鉛圧電素子を提供できる。これは、従来の圧電組成物の製造工程は、原料準備工程と、昇温工程と、熱処理工程と、冷却工程とを備えるのみであったのに対し、本発明2における圧電組成物の製造工程は、第1熱処理工程及び第2熱処理工程を備えているためと考えられる。これについて、以下図面に基づき説明する。
 図17A、Bは、BiFeOを含む圧電組成物を用いた非鉛圧電素子(以下、BFO系非鉛圧電素子ともいう。)のドメインピンニングとその回避状態を説明する模式図である。図17A、Bにおいて、ドメイン壁31により区切られたドメイン32の内部やドメイン壁に接して欠陥33(欠陥対を含む。)が存在する。
 通常、BFO系非鉛圧電素子においては、図17Aに示すように、Bi空孔、酸素空孔、Fe2+などの欠陥33によって、ドメイン32やドメイン壁31がピンニングされている。更に、本来Fe3+であるべき鉄の価数が、例えば酸素空孔などが生じることによりFe2+となると、圧電組成物の絶縁性が劣化する。上記ピンニングと上記圧電組成物の絶縁性の劣化を防止するには、上記第1熱処理工程と上記第2熱処理工程とが重要となる。
 先ず、主として焼結工程となる第1熱処理工程において、焼結時間を長くすることにより圧電組成物の粒径を大きくし、更に結晶粒内の結晶性を向上させることができるので、ドメイン壁の移動度を大きくすると考えられる。また、圧電組成物の粒径を大きくする時に、結晶粒外に不純物を排出するので、特に低周波側の絶縁抵抗を向上させる作用があり、分極処理や誘電損失tanδを低減するのに有効である。
 次に、アニール工程となる第2熱処理工程においては、酸素空孔やFe2+などの欠陥の量を減らすことができ、欠陥密度を低減することが可能となる。また、焼結温度よりも低いアニール温度から次の冷却工程を開始できるので、完全になくすことのできない欠陥や欠陥対をドメイン壁に集まる前に固定化できると考えられる。その結果、図17Bに示すように、各種欠陥や欠陥対がドメイン及びドメイン壁をピンニングすることを抑えることができる。また、アニール温度は焼結温度よりも低いので、比較的早い速度で冷却しても、室温との温度差が小さくなり、熱衝撃を小さくでき、冷却工程中に圧電組成物が破壊されることを防止できる。
 また、上記圧電組成物が2種類の結晶構造の相境界を含む場合、リークやドメイン壁のピンニングがなくなれば、従来課題であった再現性の問題も解決可能となる。その結果、圧電素子が本来持っている圧電性能を再現性よく発現することが可能となる。これにより、室温での誘電率や残留分極を大きくすることが可能となり、25℃での比誘電率εrが400以上でかつ誘電損失tanδが0.2以下であり、電界-歪曲線より求めた圧電定数d33が250pm/V以上の非鉛圧電素子を実現することができる。
 上記圧電組成物は、実施形態2-1で説明したとおり、BiFeOを3~80mol%含むものであり、より好ましくは30~80mol%含むものである。これはリークやドメイン壁のピンニングがなくなれば、本来圧電特性の高いBFO系圧電組成物の性能を発揮しやすいためである。
 また、実施形態2-1で説明したとおり、上記圧電組成物はリラクサー材料からなることが好ましい。これは、誘電率の温度に対するピークがブロードであり、室温での誘電率を向上しやすいためである。特に、圧電素子としては比較的駆動周波数の高い1MHzから100MHz程度で駆動する超音波デバイスの場合、信号処理回路を50オーム系で構成しやすく、信号元・伝送路及び圧電素子とのインピーダンス整合がとりやすいという特徴がある。
 続いて、本発明2の非鉛圧電素子の製造方法について更に図面に基づき説明する。なお、説明の都合上、(Bi0.50.5)TiO-Bi(Mg0.5Ti0.5)O-BiFeO系の場合について主に説明するが、本発明2の製造方法は特にこの系に限られるのもではなく、他の本発明2の非鉛圧電素子に用いられる系にも適用可能である。
 〔第1の製造方法〕
 図18は、原料準備工程を除いた本発明2の第1の非鉛圧電素子の製造方法を示す概略図である。本発明2の第1の非鉛圧電素子の製造方法は、非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする。以下、各工程について説明する。
 <原料準備工程>
 先ず、圧電組成物を構成する元素の酸化物や炭酸塩、炭酸水素塩、各種酸塩などを出発原料として準備する。例えば、酸化物としては、Bi、Fe、TiO、MgOなど、また、炭酸塩としては、KCOやKHCOを用いることができる。
 本発明2の圧電組成物のカリウム原料としては、上記のとおりKCOやKHCOを用いることができるが、KHCOを用いことが好ましい。これは、KHCOの吸湿性がKCOに比べて特に小さいため、原料としての秤量誤差を小さくできるためである。
 次に、必要量を秤量した出発原料を用いて、原料粉の混合物を作製する。混合物を作製する方法としては、乾式法、湿式法のいずれでもよく、例えばボールミルやジェットミルなどによる湿式粉砕が適宜利用できる。湿式粉砕をボールミルによって行う場合には、上記原料を分散媒と混合し、粉砕装置に投入する。分散媒としては、純水;メタノール、エタノールなどの各種アルコール系材料、各種有機液体などを用いることができる。更に、粉砕装置に、ジルコニアボールやアルミナボールなどの粉砕メディアを加えて、出発原料の粒度が微細で、均一となるまで混合・粉砕を行う。次に、ジルコニアボールやアルミナボールなどの粉砕メディアを取り除き、吸引ろ過や乾燥器を利用して分散媒を除去する。次に、得られた原料粉を坩堝などの容器に入れて仮焼成を行う。仮焼成の温度は、例えば、600~1000℃の温度で行うことができる。これによって、混合物の組成の均一化や、焼結後の焼結密度の向上を図ることができる。但し、上記仮焼成は、必ずしも必須ではなく、分散媒を乾燥除去した原料粉を用いて以下の成形体作製工程を行ってもよい。一方、均一性や焼結密度の向上のために仮焼成を2回以上行ってもよい。
 仮焼成を行う場合は、粉砕装置を用いて原料粉を粉砕した場合と同様に、仮焼成後に仮焼成粉を再度粉砕する。仮焼成後の粉砕工程では、その工程の最初、途中又は最終のいずれかの段階で、バインダーなどを加えてから、再度乾燥して原料粉を作製する。バインダーとしては、例えば、ポリビニルアルコール(PVA)や、ポリビニルブチラール(PVB)などを用いることができる。
 次に、得られた有機成分とセラミックスとの混合粉末を、例えば、プレス機械を用いて、直径10mm、厚み1mm程度から直径50mm、厚み5mm程度の円柱状のペレットに成形する。最後に、得られた成形体を電気炉に入れて、500~750℃で数時間から20時間程度加熱することにより、脱バインダー処理を行い、原料成形体を得る。
 上記原料準備工程では通常の固相法の場合を示したが、原料準備工程は固相法に限定されず、例えば、水熱合成法や、アルコキシドを出発原料として用いる方法でもよい。
 <昇温工程>
 次に、図18に示すように、得られた原料成形体を再度坩堝などに入れ、第1熱処理工程の温度まで昇温する。昇温速度は特に限定されないが、原料成形体のサイズと加熱装置の容量などにもよるが、通常50~1000℃/hrとする。なお、例えば水分を除去する目的で100~200℃で一定時間保持したり、昇温速度を遅くすることも本発明2の昇温工程に含めるものとする。
 <第1熱処理工程>
 次に、図18に示すように、原料成形体を800~1150℃で熱処理する。熱処理時間は、目的とする圧電組成物がセラミックスの場合には、2~300時間であり、より好ましくは6~200時間である。圧電組成物としてセラミックスを得る場合、この第1熱処理工程は原料成形体の焼結工程となり、この熱処理時間を制御することにより、セラミックスの粒径を制御することができる。前述のとおり、圧電組成物がセラミックスの場合の粒径は、0.5~200μmが好ましく、より好ましくは1~100μmである。これらの好ましい圧電組成物の粒径は、上記熱処理時間(焼結時間)を6~300時間とすることにより実現できる。第1熱処理工程は、空気中で行ってもよく、酸素雰囲気や還元雰囲気やあるいは同じ組成の雰囲気(即ち、同一組成の仮焼成粉で成形体を覆うなどの雰囲気)で行ってもよい。
 また、目的とする圧電組成物が単結晶の場合には、熱処理温度は、2~3000時間であり、より好ましくは6~3000時間である。圧電組成物として単結晶を得る場合、この第1熱処理工程は原料成形体の結晶成長工程となる。
 <降温工程>
 後述するように第2熱処理工程はアニール工程となるため、第1熱処理工程と第2熱処理工程との間は、図18に示すように、降温工程となる。降温速度は特に限定されないが、原料成形体のサイズと加熱装置の降温性能などにもよるが、通常50~1000℃/hrとする。
 <第2熱処理工程>
 次に、図18に示すように、原料成形体に対して第2熱処理工程を行う。この第2熱処理工程はアニール工程であり、アニール温度は300~900℃、より好ましくは400~800℃とし、アニール時間は5分~100時間とする。このアニール工程は、圧電組成物の各種欠陥を除去するために行う。なお、第2熱処理工程の温度は第1熱処理工程の温度より低く設定する。第2熱処理温度が第1熱処理温度より高いと焼結が更に進んだり、原料成形体が溶解してしまうためである。アニール工程は、空気中で行ってもよく、酸素雰囲気、酸素-窒素混合ガス雰囲気等の酸化雰囲気、又は還元雰囲気、又は同じ組成の雰囲気(即ち、同一組成の仮焼成粉で成形体を覆うなどの雰囲気)で行ってもよい。還元雰囲気に用いる還元ガスとしては、例えば、窒素ガス、アルゴンガス、窒素-水素混合ガス等を用いることができる。
 また、上記アニール工程は、連続して行ってもよく、それぞれ異なる温度で2回以上に分けて行ってもよい。具体的には、上記アニール工程は、高温側の第1アニール温度で加熱した後、一度室温まで冷却し、再度低温側の第2アニール温度まで昇温して加熱することが好ましい。これは、各種欠陥の除去温度が同一温度ではないためである。上記アニール工程をそれぞれ異なる温度で2回行う場合、異なる温度が、高温側で600~900℃であり、低温側で300~600℃であることが好ましく、異なる温度が、高温側で700~900℃であり、低温側で400~600℃であることがより好ましい。
 <冷却工程>
 最後に、図18に示すように、熱処理後の成形体を室温まで冷却する。この冷却工程は、圧電組成物の各種欠陥がドメイン壁に集合してくることを避けるために行う。冷却速度は、0.01~200℃/秒が好ましく、より好ましくは、5~100℃/秒である。冷却速度を200℃/秒以下とすることにより、例えば温度900℃の成形体を70℃のお湯に浸漬するような超高速クエンチの場合の冷却速度の1/10~1/100程度以下とすることが可能となり、圧電組成物の破壊を避けることができる。
 〔第2の製造方法〕
 図19は、原料準備工程を除いた本発明2の第2の非鉛圧電素子の製造方法を示す概略図である。本発明2の第2の非鉛圧電素子の製造方法は、非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする。以下、各工程について説明する。
 <原料準備工程>
 第2の製造方法の原料準備工程は、上記第1の製造方法の原料準備工程と同様に行う。
 <第1昇温工程>
 第2の製造方法の第1昇温工程は、図19に示すように、上記第1の製造方法の昇温工程と同様に行う。
 <第1熱処理工程>
 第2の製造方法の第1熱処理工程は、図19に示すように、上記第1の製造方法の第1熱処理工程と同様に行う。
 <第1冷却工程>
 次に、図19に示すように、熱処理後の成形体を室温まで冷却する。冷却速度は、上記第1の製造方法の冷却工程の冷却速度とほぼ同様の冷却速度で行うことができる。更に、図19には示していないが、第1冷却工程後の成形体をより小さい形状の成形体に加工する工程を加えてもよい。これにより、後述する第2熱処理工程(アニール工程)を小さい形状の成形体に対して実施できるため、後述する第2冷却工程において圧電組成物の熱衝撃による破壊をより確実に防止することができる。更に、上記加工工程の後に、電極作製工程を行うこともできる。
 <第2昇温工程>
 後述するように第2熱処理工程はアニール工程となるため、第1冷却工程後は、図19に示すように、昇温工程を行う。昇温速度は特に限定されないが、例えば50~1000℃/hrとすればよい。
 <第2熱処理工程>
 第2の製造方法の第2熱処理工程は、アニール工程であり、図19に示すように、上記第1の製造方法の第2熱処理工程と同様に行う。また、上記アニール工程は、上記第1の製造方法の第2熱処理工程と同様に連続して行ってもよく、後述する実施例2-9のように、それぞれ異なる温度で2回以上に分けて行ってもよい。
 <第2冷却工程>
 第2の製造方法の第2冷却工程は、図19に示すように、上記第1の製造方法の冷却工程と同様に行う。
 (実施形態2-3)
 次に、本発明2の超音波プローブについて説明する。本発明2の超音波プローブは、実施形態2-1で説明した非鉛圧電素子を備えている。
 図20は、本発明2の超音波プローブの概略断面図である。本発明2の超音波プローブの製造は次のようにして行うことができる。先ず、圧電素子202を所望の分極条件で一度分極する。分極条件としては、一般的な圧電素子の分極条件を用いることができるが、例えばオイルバス中で、圧電素子202を100~150℃に加熱して、10~80kV/cmの条件で5分から1時間程度保持した後、圧電素子202の温度を室温まで降下させて分極を完成させる。次に、分極処理を完了した圧電素子202(切断前)を、背面負荷材220に固定した下側リード電極206の上に導電性接着剤などで固定する。次に、同じく導電性接着剤などを用いて上側リード電極204を接着する。更に、その上に第1整合層230及び第2整合層232を接着して固定する。次に、この状態で、ダイシング装置を用いて、圧電素子を分割する。例えば、幅200~400μmピッチに切断する。更に、音響レンズ240を接着して、必要なケーシング(図示せず。)をして、超音波プローブ200を製造することができる。
 上記では、圧電素子を分割するタイプの超音波プローブについて説明したが、もちろん単板式の超音波プローブであってもよい。
 (実施形態2-4)
 次に、本発明2の画像診断装置について説明する。本発明2の画像診断装置は、実施形態2-3で説明した超音波プローブを備えている。
 図21は、本発明2の画像診断装置の概略斜視図である。図21において、超音波画像診断装置300は、超音波プローブ302、超音波画像診断装置本体304及びディスプレイ306を備えている。超音波プローブ302を除けば、超音波画像診断装置本体304としては従来の超音波診断装置本体を用いることが可能である。また、非鉛圧電素子を用いた超音波プローブ302に超音波画像診断装置本体304の特性を合わせるためには、超音波画像診断装置本体304の信号処理回路と、超音波プローブ302の電気的インピーダンス整合回路とを、超音波プローブ302用に調整することができる。また、超音波プローブ302の電気的なインピーダンスを、従来の鉛系圧電素子を備えた超音波プローブのインピーダンスにみかけ上近づけるために、超音波プローブ302の中にインピーダンス微調整回路を含むことも可能である。画像診断装置300は、特定疾患用の画像診断装置、例えば、血管内の内膜厚を測定する超音波診断装置や他用途の超音波画像診断装置として使用することが可能である。
 以下、本発明2を実施例に基づき説明する。但し、本発明2は下記実施例に限定されるものではない。
 (実施例2-1)
 以下のとおり圧電素子を作製した。
 <原料準備工程>
 圧電組成物の組成が、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOにおいてz=0.45(x=0.45、y=0.1)を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量し、合計30gの原料を準備した。上記原料は、純度99.9~99.99%の試薬を用いた。次に、秤量した原料を、エタノール及びジルコニアボールと共にポットに入れ、ボールミルで16時間粉砕した。その後、原料を乾燥して、更に原料粉を800℃で6時間仮焼成した。得られた原料粉を再びエタノール及びジルコニアボールと共にポットに入れ、ボールミルで再度16時間粉砕した後、バインダーとしてPVBを添加して乾燥した。次に、得られた原料粉を1軸プレス装置で約200~250MPaの圧力を加えて、直径10mm、厚さ1.5mmのペレットを作製した。得られたペレットを700℃で10時間加熱してバインダーを除去して、原料成形体を得た。
 <昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で2時間焼結した。
 <降温工程>
 次に、焼結後の成形体を800℃まで300℃/hrで降温した。
 <第2熱処理工程(アニール工程)>
 続いて、降温した成形体を800℃で20時間アニールを行った。
 <冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。作製した圧電素子の電極の表面抵抗を端子間2mmで測定したところ、数オーム以下と良好であった。
 続いて、作製した圧電素子の誘電特性及び圧電特性を測定した。
 先ず、誘電特性として、作製した圧電素子の比誘電率及び誘電損失をWayne Kerr社製のLCRメータ(型番6440B)を用いて測定した。図22に圧電素子の比誘電率の温度特性を示し、図23に圧電素子の誘電損失の温度特性を示す。低周波では、温度を500℃まで上げた場合に誘電損失(tanδ)が1以上と大きくなってしまうので、ここでは1MHzの値で、比誘電率及び誘電損失を評価する。その結果、25℃において、比誘電率εrは430であり、誘電損失tanδは0.12であった。また、極大温度Tm(376℃)において、比誘電率εmは7700であり、誘電損失tanδは0.09であった。
 次に、圧電特性として、作製した圧電素子の電界-歪み特性及び電界-分極特性を、東洋テクニカ(株)製の強誘電体評価システム“FCE-3”又は接触型変位計及び積分器を用いた自作の測定システムを用いて、測定した。この圧電特性の測定は、圧電定数d33及び残留分極が既知の市販のPZTの値で校正してから行った。図24に圧電素子の電界-歪み特性を示し、図25に圧電素子の電界-分極特性を示す。図24より求めた圧電定数d33は331pm/Vであり、図25より求めた残留分極Prは13.6μC/cmであり、電界-歪特性に非対称性はあるものの、非鉛圧電素子としては大きな圧電特性を示した。
 また、走査型電子顕微鏡(SEM)を用いて圧電素子の圧電組成物を観察したところ、圧電組成物(セラミックス)の粒径は0.5~1.5μmであった。
 (実施例2-2)
 以下のとおり圧電素子を作製した。
 <原料準備工程>
 実施例2-1と同様にして原料成形体を作製した。
 <昇温工程>
 次に、得られた原料成形体を昇温速度100℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で20時間焼結した。
 <降温工程>
 次に、焼結後の成形体を800℃まで100℃/hrで降温した。
 <第2熱処理工程(アニール工程)>
 続いて、降温した成形体を800℃で20時間アニールを行った。
 <冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。作製した圧電素子の電極の表面抵抗を端子間2mmで測定したところ、数オーム以下と良好であった。
 続いて、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。図26に圧電素子の比誘電率の温度特性を示し、図27に圧電素子の誘電損失の温度特性を示す。その結果、25℃において、比誘電率εrは491であり、誘電損失tanδは0.11であった。また、極大温度Tm(371℃)において、比誘電率εmは13500であり、誘電損失tanδは0.12であった。
 また、図28に圧電素子の電界-歪み特性を示し、図29に圧電素子の電界-分極特性を示す。図28より求めた圧電定数d33は378pm/Vであり、図29より求めた残留分極Prは27μC/cmであり、非鉛圧電素子としては大きな圧電特性を示した。
 また、走査型電子顕微鏡(SEM)を用いて圧電素子の圧電組成物を観察したところ、圧電組成物(セラミックス)の粒径は2~5μmであった。
 本実施例では、実施例2-1に比べて焼結時間を延ばしたことにより、実施例2-1に比べて比誘電率εr及び残留分極Prを共に大きくすることができた。
 (実施例2-3)
 第1熱処理工程の焼結時間を200時間とした以外は、実施例2-2と同様にして圧電素子を作製した。次に、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。その結果、25℃において、比誘電率εrは490であり、誘電損失tanδは0.08であり、極大温度Tm(370℃)において、比誘電率εmは14000であり、誘電損失tanδは0.12であった。また、圧電定数d33は410pm/Vであり、残留分極Prは27μC/cmであった。
 また、走査型電子顕微鏡(SEM)を用いて圧電素子の圧電組成物を観察したところ、圧電組成物(セラミックス)の粒径は3~10μmであった。
 (実施例2-4)
 第1熱処理工程の焼結時間を300時間とした以外は、実施例2-2と同様にして圧電素子を作製した。次に、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定したところ、実施例2-3とほぼ同様の結果となった。
 (比較例2-1)
 以下のとおり圧電素子を作製した。
 <原料準備工程>
 実施例2-1と同様にして原料成形体を作製した。
 <昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 続いて、原料成形体を1000℃で2時間焼結した。
 <降温工程>
 降温工程は行わなかった。
 <第2熱処理工程(アニール工程)>
 第2熱処理工程は行わなかった。
 <冷却工程>
 最後に、焼結後の成形体を0.055℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。
 続いて、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。図30に圧電素子の比誘電率の温度特性を示し、図31に圧電素子の誘電損失の温度特性を示す。その結果、25℃において、比誘電率εrは440であり、誘電損失tanδは0.14であった。また、極大温度Tm(305℃)において、比誘電率εmは3590であり、誘電損失tanδは0.13であった。
 また、図32に圧電素子の電界-歪み特性を示し、図33に圧電素子の電界-分極特性を示す。図32より求めた圧電定数d33は84pm/Vであり、図33より求めた残留分極Prはリーク電流のため正確な測定はできなかった。
 (実施例2-5)
 以下のとおり圧電組成物を作製した。
 <原料準備工程>
 原料成形体の大きさを直径50mm、厚さ5mmとした以外は、実施例2-1と同様にして原料成形体を作製した。
 <第1昇温工程>
 次に、得られた原料成形体を昇温速度100℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で20時間焼結した。
 <第1冷却工程>
 次に、焼結後の成形体を1000℃から12時間かけて室温まで冷却した。
 <加工工程>
 次に、降温した成形体を研削により切り出して、直径15mm、厚さ3mmの成形体に加工した。
 <第2昇温工程>
 次に、加工した成形体を800℃まで2時間40分かけて昇温した。
 <第2熱処理工程(アニール工程)>
 次に、昇温した成形体を800℃で20時間アニールを行った。
 <第2冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、直径13mm、厚さ1mmに加工した後、圧電組成物の両面に金電極をスパッタリングにより形成して、圧電素子を得た。
 次に、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。その結果、25℃において、比誘電率εrは460であり、誘電損失tanδは0.11であり、極大温度Tm(371℃)において、比誘電率εmは12500であり、誘電損失tanδは0.12であった。また、圧電定数d33は360pm/Vであり、残留分極Prは24μC/cmであった。
 (実施例2-6)
 以下のとおり圧電組成物を作製した。
 <原料準備工程>
 圧電組成物の組成が、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOにおいてz=0.4(x=0.5、y=0.1)を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量し、合計30gの原料を準備した以外は、実施例2-1の原料準備工程と同様にして、原料成形体を得た。
 <昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で2時間焼結した。
 <降温工程>
 次に、焼結後の成形体を800℃まで100℃/hrで降温した。
 <第2熱処理工程(アニール工程)>
 続いて、降温した成形体を800℃で20時間アニールを行った。
 <冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、実施例2-1と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。また、上記組成式のBFOの量(モル比)zを0.1~0.85(この時x=0.9-z、y=0.1)で変化させ、第1熱処理工程の焼結温度を焼結密度が最大になるように900~1065℃に変更し、冷却工程の冷却速度を40~100℃/秒に変更した以外は、上記と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。以上の結果を図34の●印で示す。
 (実施例2-7)
 第1熱処理工程の焼結時間を20時間にした以外は、実施例2-6と同様にして圧電組成物を作製した。次に、実施例2-1と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。また、実施例2-6の原料準備工程で示した組成式のBFOの量(モル比)zを0.4~0.5(この時x=0.9-z、y=0.1)に変化させた以外は、上記と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。以上の結果を図34の□印で示す。
 (比較例2-2)
 降温工程及び第2熱処理工程(アニール工程)を行わず、冷却工程で焼結後の成形体を5時間かけて冷却した以外は、実施例2-6と同様にして圧電組成物を作製した。次に、実施例2-1と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。また、実施例2-6の原料準備工程で示した組成式のBFOの量(モル比)zを0.05~0.85(この時x=0.9-z、y=0.1)に変化させた以外は、上記と同様にして圧電素子を作製し、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。以上の結果を図34の◆印で示す。
 (比較例2-3)
 降温工程及び第2熱処理工程(アニール工程)を行わず、比較例2-1と同様にしてz=0.4~0.6(この時x=0.9-z、y=0.1)の圧電組成物を作製した。更に、この圧電組成物を公知例のように900℃で5分アニールした後、70℃の水に浸漬した(この時の冷却速度は約830℃/秒以上)以外は、比較例2-1と同様にして圧電組成物を作製した。この時、圧電組成物はしばしば破壊した。破壊のなかった圧電組成物から、実施例2-1と同様にして圧電素子を作製した。次に、実施例2-1と同様にして、作製した圧電素子の圧電定数d33を測定した。以上の結果を図34の△印で示す。
 図34から、アニール工程を行った実施例2-6及び2-7の圧電定数d33は、BFOの量(モル比)zが0.45でピークに達していることが分かる。また、実施例2-6の圧電定数d33は、BFOの量(モル比)zが0.1でも増大していることが分かる。実施例2-6の圧電組成物の結晶構造を粉末X線回折により解析したところ、z=0.1の組成では、正方晶と疑立方晶との相境界近傍であることが認められた。また、別に作製した圧電組成物のX線回折の結果及び、その圧電組成物を用いた圧電素子の結果より、例えばx=0.92、y=0.04、z=0.04に正方晶と疑立方晶との相境界が存在することが確認された。更に、z=0.45の組成では、菱面体晶と疑立方晶との相境界を含むことが認められた。
 次に、本発明2の圧電素子に対する添加物の影響について説明する。
 (実施例2-8)
 以下のとおり圧電素子を作製した。
 <原料準備工程>
 圧電組成物の組成が、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOにおいてz=0.45(x=0.45、y=0.1)を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量し、合計30gの原料を用い、更にこの原料30gに対して0.1重量%(0.03g)のMnCOを添加して原料を準備した以外は、実施例2-1の原料準備工程と同様にして、原料成形体を作製した。
 <第1昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で20時間焼結した。
 <第1冷却工程>
 次に、焼結後の成形体を300℃/hrの冷却速度で室温まで冷却した。
 <第2昇温工程>
 次に、冷却した成形体を昇温速度300℃/hrで800℃まで昇温した。
 <第2熱処理工程(アニール工程)>
 次に、昇温した成形体を800℃で20時間アニールを行った。
 <第2冷却工程>
 最後に、アニール後の成形体を40~100℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、縦4mm、横1.5mmの大きさに切断し、圧電素子の両面に金電極をスパッタリングにより形成して、図16に示すような圧電素子を得た。
 続いて、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。図35に圧電素子の比誘電率の温度特性を示し、図36に圧電素子の誘電損失の温度特性を示す。その結果、25℃において、比誘電率εrは483であり、誘電損失tanδは0.12であった。また、極大温度Tm(367℃)において、比誘電率εmは12000であり、誘電損失tanδは0.09であった。また、圧電定数d33は372pm/Vであり、残留分極Prは24μC/cmであり、非鉛圧電素子としては大きな圧電特性を示した。また、分極処理時に大きな影響を与える高温時の絶縁性の評価として、温度150℃、100Hzでの誘電損失tanδを測定したところ0.13と比較的低損失であった。
 (実施例2-9)
 第2熱処理工程と第2冷却工程とを以下のように変更した以外は、実施例2-8と同様にして圧電素子を作製した。図37に原料準備工程を除いた本実施例の圧電素子の製造方法の概略図を示す。
 <第2熱処理工程(アニール工程)>
 本実施例では、下記のとおりアニール工程を第1アニール工程と第2アニール工程との2段階で行った。
 (第1アニール工程:図37では、2-A工程と表示)
 第2昇温工程後の成形体を800℃で20時間アニールを行った。
 (冷却工程:図37では、2-B工程と表示)
 次に、第1アニール工程後の成形体を40~100℃/秒の冷却速度で室温まで冷却した。
(昇温工程:図37では、2-C工程と表示)
 次に、冷却後の成形体を500℃まで昇温速度250℃/hrで昇温した。
 (第2アニール工程:図37では、2-D工程と表示)
 次に、昇温した成形体を500℃で10分アニールを行った。
 <第2冷却工程>
 最後に、第2アニール後の成形体を200~300℃/hr(0.06~0.08℃/秒)の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。図38に圧電素子の比誘電率の温度特性を示し、図39に圧電素子の誘電損失の温度特性を示す。その結果、25℃において、比誘電率εrは493であり、誘電損失tanδは0.12であった。また、極大温度Tm(367℃)において、比誘電率εmは11400であり、誘電損失tanδは0.08であった。また、圧電定数d33は370pm/Vであり、残留分極Prは21μC/cmであり、非鉛圧電素子としては大きな圧電特性を示した。また、分極処理時に大きな影響を与える高温時の絶縁性の評価として、温度150℃、100Hzでの誘電損失tanδを測定したところ、0.06と実施例2-8の半分以下であり非常に低損失であった。
 表6に実施例2-8及び実施例2-9の圧電素子の代表的な特性値を示す。
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、詳細は不明であるが、Mnの微量添加と2段階の第2熱処理工程(アニール工程)とが、単純にMnを添加して焼結しただけでは得られない圧電素子の低損失化に特に有効であることが分かる。
 上記のように本発明2の圧電素子に対する添加物の影響については、MnCOの添加量として0.1重量%を用いた例を示したが、添加量が0.05~0.3重量%程度であればほぼ同様の効果が得られた。また、実施例2-8及び実施例2-9では、Mn添加物としてMnCOを用いたが、MnO、Mn、Mn、MnOなどの他のMn添加物も同様に有効である。
 次に、本発明2の圧電素子に対する還元雰囲気中における熱処理の影響について説明する。
 (実施例2-10)
 以下のとおり圧電素子を作製した。
 <原料準備工程>
 圧電組成物の組成が、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOにおいてz=0.523(x=0.427、y=0.05)を満たすように、原料として、Bi、KHCO、TiO、MgO、Feを秤量し、合計30gの原料を用い、更にこの原料30gに対して0.1重量%(0.03g)のMnCOを添加して原料を準備した以外は、実施例2-1の原料準備工程と同様にして、原料成形体を作製した。
 <第1昇温工程>
 次に、得られた原料成形体を昇温速度300℃/hrで1000℃まで昇温した。
 <第1熱処理工程>
 次に、原料成形体を1000℃で20時間焼結した。
 <第1冷却工程>
 次に、焼結後の成形体を300℃/hrの冷却速度で室温まで冷却した。
 <第2昇温工程>
 次に、冷却した成形体を窒素雰囲気中で昇温速度300℃/hrで800℃まで昇温した。
 <第2熱処理工程(アニール工程)>
 次に、昇温した成形体を窒素雰囲気中で800℃で20時間アニールを行った。
 <第2冷却工程>
 最後に、アニール後の成形体を窒素雰囲気中で0.01~0.05℃/秒の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、縦4mm、横1.5mmの大きさに切断し、圧電素子の両面に金電極をスパッタリングにより形成して、図16に示すような圧電素子を得た。
 続いて、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。その結果、25℃において、比誘電率εrは460であり、誘電損失tanδは0.11であった。また、極大温度Tm(373℃)において、比誘電率εmは11400であり、誘電損失tanδは0.1であった。また、圧電定数d33は293pm/Vであり、残留分極Prは27μC/cmであり、非鉛圧電素子としては大きな圧電特性を示した。また、分極処理時に大きな影響を与えるリーク電流の目安として、温度150℃、100Hzでの誘電損失tanδを測定したところ0.36と比較的低損失であった。
 (実施例2-11)
 第2熱処理工程と第2冷却工程とを以下のように変更した以外は、実施例2-10と同様にして圧電素子を作製した。
 <第2熱処理工程(アニール工程)>
 本実施例では、下記のとおりアニール工程を第1アニール工程と第2アニール工程との2段階で行った。
 (第1アニール工程)
 第2昇温工程後の成形体を窒素雰囲気中で800℃で20時間アニールを行った。
 (冷却工程)
 次に、第1アニール工程後の成形体を窒素雰囲気中で0.01~0.05℃/秒の冷却速度で室温まで冷却した。
(昇温工程)
 次に、冷却後の成形体を空気中で500℃まで昇温速度200℃/hrで昇温した。
 (第2アニール工程)
 次に、昇温した成形体を空気中で500℃で30分アニールを行った。
 <第2冷却工程>
 最後に、第2アニール後の成形体を200~300℃/hr(0.06~0.08℃/秒)の冷却速度で室温まで冷却して圧電組成物を得た。
 次に、得られた圧電組成物を研磨して、約0.4mmの厚みに加工した後、縦4mm、横1.5mmの大きさに切断し、圧電素子の両面に金電極をスパッタリングにより形成して、図16に示すような圧電素子を得た。
 続いて、作製した圧電素子の誘電特性及び圧電特性を実施例2-1と同様にして測定した。その結果、25℃において、比誘電率εrは470であり、誘電損失tanδは0.12であった。また、極大温度Tm(376℃)において、比誘電率εmは11100であり、誘電損失tanδは0.09であった。また、圧電定数d33は309pm/Vであり、残留分極Prは26μC/cmであり、非鉛圧電素子としては大きな圧電特性を示した。また、分極処理時に大きな影響を与えるリーク電流の目安として、温度150℃、100Hzでの誘電損失tanδを測定したところ0.08と、実施例2-10に比べて1/4以下に低減でき、分極に有利な圧電素子を実現できることが分かった。
 上記本実施例では還元雰囲気用ガスとして窒素ガスを用いたが、アルゴンガス、窒素-水素混合ガス等を用いてもよい。
 以上より、図18、図19、図37に示す熱処理工程を経る本発明2の製造方法を用いて作製した圧電素子は、従来の方法により作製した圧電素子に比べて、高い圧電特性や強誘電特性を有することが確認でき、本発明2の製造方法は、再現性よく高い圧電特性や強誘電特性を有する圧電素子を提供するのにきわめて有効な方法であることが分かる。
 以上のように本発明2の非鉛圧電素子は圧電特性が高く、また、本発明2の非鉛圧電素子の製造方法は、圧電特性が高く、鉛を含まない環境対応型の非鉛圧電素子を簡便な方法で再現性よく製造可能であり、超音波プローブ、トランスデューサ、センサなどへの適用が期待でき、更に非鉛圧電素子を用いた超音波画像診断装置に適応可能である。
 1 本発明1の圧電組成物の組成領域(線分AE上の組成領域を除く。)
 2 本発明1の圧電組成物のより好ましい組成領域(線分AI上の組成領域は除く。)
 3 本発明1の圧電組成物のより好ましい組成領域(線分JN上の組成領域は除く。)
10、20、202 圧電素子
11、21 圧電組成物
12、22 電極
31 ドメイン壁
32 ドメイン
33 欠陥
35 正方晶と疑立法晶との相境界を示す線
45 菱面体晶と疑立法晶との相境界を示す線
200、302 超音波プローブ
204 上側リード電極
206 下側リード電極
220 背面負荷材
230 第1整合層
232 第2整合層
240 音響レンズ
300 超音波画像診断装置
304 超音波画像診断装置本体
306 ディスプレイ

Claims (62)

  1.  一般式ABOで表されるペロブスカイト構造を有し、
     組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、
     前記組成式において、x+y+z=1であり、
     前記組成式中のx、y及びzを用いた三角座標において、
     点A(1,0,0)、点B(0.7,0.3,0)、点C(0.1,0.3,0.6)、点D(0.1,0.1,0.8)、点E(0.2,0,0.8)を頂点とする5角形ABCDEで囲まれ、かつ点A(1,0,0)と点E(0.2,0,0.8)とを結ぶ線分AE上を含まない領域で表される組成を有することを特徴とする圧電組成物。
  2.  前記三角座標において、
     点A(1,0,0)、点F(0.8,0.2,0)、点G(0.7,0.2,0.1)、点H(0.7,0.1,0.2)、点I(0.8,0,0.2)を頂点とする5角形AFGHIで囲まれ、かつ点A(1,0,0)と点I(0.8,0,0.2)とを結ぶ線分AI上を含まない領域で表される組成を有する請求項1に記載の圧電組成物。
  3.  正方晶と疑立方晶との相境界を含む組成を有する請求項1又2に記載の圧電組成物。
  4.  前記三角座標において、
     点J(0.6,0,0.4)、点K(0.5,0.2,0.3)、点L(0.2,0.2,0.6)、点M(0.2,0.1,0.7)、点N(0.3,0,0.7)を頂点とする5角形JKLMNで囲まれ、かつ点J(0.6,0,0.4)と点N(0.3,0,0.7)とを結ぶ線分JN上を含まない領域で表される組成を有する請求項1に記載の圧電組成物。
  5.  菱面体晶と疑立方晶との相境界を含む組成を有する請求項1又は4に記載の圧電組成物。
  6.  前記組成式中のTiの一部をZrに置換した請求項1~5のいずれかに記載の圧電組成物。
  7.  前記組成式中のBiの一部をLa、Sm又はNdで置換した請求項1~6のいずれかに記載の圧電組成物。
  8.  Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素を2重量%以下の割合で更に含む請求項1~7のいずれかに記載の圧電組成物。
  9.  請求項1~8のいずれかに記載の圧電組成物の製造方法であって、
     原料準備工程と、昇温工程と、熱処理工程と、冷却工程とをこの順番で含むことを特徴とする圧電組成物の製造方法。
  10.  請求項1~8のいずれかに記載の圧電組成物の製造方法であって、
     原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする圧電組成物の製造方法。
  11.  請求項1~8のいずれかに記載の圧電組成物の製造方法であって、
     原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする圧電組成物の製造方法。
  12.  請求項1~8のいずれかに記載の圧電組成物と、前記圧電組成物に電圧を印加するための電極とを含むことを特徴とする圧電素子。
  13.  圧電組成物と、前記圧電組成物に電圧を印加するための電極とを含む非鉛圧電素子であって、
     前記圧電組成物は、一般組成式ABOで表されるペロブスカイト構造を有し、
     前記圧電組成物は、BiFeOと、Bi複合酸化物とを含み、
     前記BiFeOの含有量が、前記圧電組成物の全体に対して3~80mol%であり、
     前記Bi複合酸化物は、前記一般組成式において、AサイトがBiであり、Bサイトが異なる価数の複数元素からなり、
     25℃での比誘電率εrが400以上であり、かつ誘電損失tanδが0.2以下あり、
     電界-歪曲線から求めた圧電定数d33が、250pm/V以上であること特徴とする非鉛圧電素子。
  14.  前記圧電組成物は、少なくとも2種類の結晶構造の相境界を含む組成、又は、相境界近傍の組成を有する請求項13に記載の非鉛圧電素子。
  15.  前記相境界が、菱面体晶と、疑立方晶、正方晶、斜方晶及び単斜晶からなる群から選ばれるいずれか一つの結晶構造との相境界である請求項14に記載の非鉛圧電素子。
  16.  前記相境界が、正方晶と疑立方晶との相境界である請求項14に記載の非鉛圧電素子。
  17.  前記圧電定数d33が、330pm/V以上である請求項13~16のいずれかに記載の非鉛圧電素子。
  18.  前記圧電定数d33が、360pm/V以上である請求項13~16のいずれかに記載の非鉛圧電素子。
  19.  前記BiFeOの含有量が、前記圧電組成物の全体に対して30~80mol%である請求項13~18のいずれかに記載の非鉛圧電素子。
  20.  前記圧電組成物が、リラクサー材料からなる請求項13~19のいずれかに記載の非鉛圧電素子。
  21.  前記圧電組成物は、粒径が0.5μm以上200μm以下のセラミックスからなる請求項13~20のいずれかに記載の非鉛圧電素子。
  22.  前記圧電組成物は、粒径が1μm以上100μm以下のセラミックスからなる請求項13~20のいずれかに記載の非鉛圧電素子。
  23.  前記圧電組成物は、単結晶からなる請求項13~20のいずれかに記載の非鉛圧電素子。
  24.  前記圧電組成物が、(Bi0.50.5)TiO及びBi(Mg0.5Ti0.5)Oを更に含む請求項13~23のいずれかに記載の非鉛圧電素子。
  25.  前記圧電組成物が、組成式x(Bi0.50.5)TiO-yBi(Mg0.5Ti0.5)O-zBiFeOで表され、前記組成式においてx+y+z=1である請求項24に記載の非鉛圧電素子。
  26.  前記圧電組成物が、Mn、Co、Ni、V、Nb、Ta、W、Si、Ge、Ca及びSrからなる群から選ばれる少なくとも1種の元素を2重量%以下の割合で更に含む請求項13~25のいずれかに記載の非鉛圧電素子。
  27.  極大温度Tmでの比誘電率εmが7000以上であり、誘電損失tanδが0.2以下である請求項13~26のいずれかに記載の非鉛圧電素子。
  28.  極大温度Tmでの比誘電率εmが13000以上であり、誘電損失tanδが0.2以下である請求項13~26のいずれかに記載の非鉛圧電素子。
  29.  150℃、100Hzでの誘電損失tanδが0.36以下である請求項13~28のいずれかに記載の非鉛圧電素子。
  30.  150℃、100Hzでの誘電損失tanδが0.1以下である請求項13~28のいずれかに記載の非鉛圧電素子。
  31.  極大温度Tmが、130℃以上400℃以下である請求項27又は28に記載の非鉛圧電素子。
  32.  残留分極Prが、20μC/cm以上である請求項13~31のいずれかに記載の非鉛圧電素子。
  33.  請求項13~32のいずれかに記載の非鉛圧電素子を含むことを特徴とする超音波プローブ。
  34.  請求項33に記載の超音波プローブを含むことを特徴とする画像診断装置。
  35.  請求項13~32のいずれかに記載の非鉛圧電素子の製造方法であって、
     前記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、昇温工程と、第1熱処理工程と、降温工程と、第2熱処理工程と、冷却工程とをこの順番で含むことを特徴とする非鉛圧電素子の製造方法。
  36.  前記第1熱処理工程の熱処理温度が、800~1150℃である請求項35に記載の非鉛圧電素子の製造方法。
  37.  前記第1熱処理工程の熱処理時間が、2~300時間である請求項35又は36に記載の非鉛圧電素子の製造方法。
  38.  前記第1熱処理工程の熱処理時間が、2~3000時間である請求項35又は36に記載の非鉛圧電素子の製造方法。
  39.  前記第2熱処理工程の熱処理温度が、300~900℃である請求項35~38のいずれかに記載の非鉛圧電素子の製造方法。
  40.  前記第2熱処理工程の熱処理温度が、400~800℃である請求項35~38のいずれかに記載の非鉛圧電素子の製造方法。
  41.  前記第2熱処理工程の熱処理時間が、5分~100時間である請求項35~40のいずれかに記載の非鉛圧電素子の製造方法。
  42.  前記第2熱処理工程は、それぞれ異なる温度で2回以上に分けて行う請求項35に記載の非鉛圧電素子の製造方法。
  43.  前記異なる温度が、高温側で600~900℃であり、低温側で300~600℃である請求項42に記載の非鉛圧電素子の製造方法。
  44.  前記異なる温度が、高温側で700~900℃であり、低温側で400~600℃である請求項42に記載の非鉛圧電素子の製造方法。
  45.  前記冷却工程の冷却速度が、0.01~200℃/秒である請求項35~44のいずれかに記載の非鉛圧電素子の製造方法。
  46.  前記冷却工程の冷却速度が、5~100℃/秒である請求項35~44のいずれかに記載の非鉛圧電素子の製造方法。
  47.  前記圧電組成物がカリウムを含む場合、そのカリウム原料としてKHCOを用いる請求項35~46のいずれかに記載の非鉛圧電素子の製造方法。
  48.  請求項13~32のいずれかに記載の非鉛圧電素子の製造方法であって、
     前記非鉛圧電素子に含まれる圧電組成物の製造工程として、原料準備工程と、第1昇温工程と、第1熱処理工程と、第1冷却工程と、第2昇温工程と、第2熱処理工程と、第2冷却工程とをこの順番で含むことを特徴とする非鉛圧電素子の製造方法。
  49.  前記第1熱処理工程の熱処理温度が、800~1150℃である請求項48に記載の非鉛圧電素子の製造方法。
  50.  前記第1熱処理工程の熱処理時間が、2~300時間である請求項48又は49に記載の非鉛圧電素子の製造方法。
  51.  前記第1熱処理工程の熱処理時間が、2~3000時間である請求項48又は49に記載の非鉛圧電素子の製造方法。
  52.  前記第2熱処理工程の熱処理温度が、300~900℃である請求項48~51のいずれかに記載の非鉛圧電素子の製造方法。
  53.  前記第2熱処理工程の熱処理温度が、400~800℃である請求項48~51のいずれかに記載の非鉛圧電素子の製造方法。
  54.  前記第2熱処理工程の熱処理時間が、5分~100時間である請求項48~53のいずれかに記載の非鉛圧電素子の製造方法。
  55.  前記第2熱処理工程は、それぞれ異なる温度で2回以上に分けて行う請求項48に記載の非鉛圧電素子の製造方法。
  56.  前記異なる温度が、高温側で600~900℃であり、低温側で300~600℃である請求項55に記載の非鉛圧電素子の製造方法。
  57.  前記異なる温度が、高温側で700~900℃であり、低温側で400~600℃である請求項55に記載の非鉛圧電素子の製造方法。
  58.  前記第2冷却工程の冷却速度が、0.01~200℃/秒である請求項48~57のいずれかに記載の非鉛圧電素子の製造方法。
  59.  前記第2冷却工程の冷却速度が、5~100℃/秒である請求項48~57のいずれかに記載の非鉛圧電素子の製造方法。
  60.  前記圧電組成物がカリウムを含む場合、そのカリウム原料としてKHCOを用いる請求項48~59のいずれかに記載の非鉛圧電素子の製造方法。
  61.  前記第1冷却工程と、前記第2昇温工程との間に、前記圧電組成物の加工工程を更に含む請求項48~60のいずれかに記載の非鉛圧電素子の製造方法。
  62.  前記加工工程の後に、電極作製工程を更に含む請求項61に記載の非鉛圧電素子の製造方法。
PCT/JP2013/003130 2012-05-21 2013-05-16 圧電組成物及びその製造方法、並びに圧電素子/非鉛圧電素子及びその製造方法、並びに超音波プローブ及び画像診断装置 WO2013175740A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014516658A JP6229653B2 (ja) 2012-05-21 2013-05-16 圧電組成物及びその製造方法、並びに圧電素子
US14/402,659 US9812633B2 (en) 2012-05-21 2013-05-16 Piezoelectric composition and method for producing same, piezoelectric element/non-lead piezoelectric element and method for producing same, ultrasonic probe and diagnostic imaging device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012115713 2012-05-21
JP2012115712 2012-05-21
JP2012-115713 2012-05-21
JP2012-115712 2012-05-21
JP2012199742 2012-09-11
JP2012-199742 2012-09-11
JP2012-199743 2012-09-11
JP2012199743 2012-09-11

Publications (1)

Publication Number Publication Date
WO2013175740A1 true WO2013175740A1 (ja) 2013-11-28

Family

ID=49623453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003130 WO2013175740A1 (ja) 2012-05-21 2013-05-16 圧電組成物及びその製造方法、並びに圧電素子/非鉛圧電素子及びその製造方法、並びに超音波プローブ及び画像診断装置

Country Status (3)

Country Link
US (1) US9812633B2 (ja)
JP (2) JP6229653B2 (ja)
WO (1) WO2013175740A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165552A (ja) * 2014-02-05 2015-09-17 Tdk株式会社 圧電組成物および圧電素子
JP2016085141A (ja) * 2014-10-27 2016-05-19 京セラ株式会社 センサ基板、センサ装置およびセンサ基板の製造方法
JP2016163027A (ja) * 2015-03-05 2016-09-05 コニカミノルタ株式会社 圧電組成物、圧電素子およびその製造方法ならびに超音波探触子
CN111435699A (zh) * 2019-01-11 2020-07-21 Tdk株式会社 压电薄膜、压电薄膜元件、压电致动器和压电传感器
JP2021086861A (ja) * 2019-11-25 2021-06-03 Tdk株式会社 積層型電子部品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683029B2 (ja) * 2016-06-20 2020-04-15 コニカミノルタ株式会社 圧電素子、超音波探触子および超音波撮像装置
EP4340734A1 (en) * 2021-05-19 2024-03-27 Boston Scientific Scimed Inc. Devices, systems, and methods for reducing signal noise in endoscopic rotational imaging
CN114292102B (zh) * 2021-12-20 2022-10-14 中国科学院上海硅酸盐研究所 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126421A (ja) * 2008-11-28 2010-06-10 Seiko Epson Corp セラミックスの製造方法
CN101973763A (zh) * 2010-09-16 2011-02-16 合肥工业大学 钛酸铋钾基固溶体无铅压电陶瓷及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290548A (ja) * 2003-03-28 2004-10-21 Toshiba Corp 画像診断装置、診断・治療装置及び診断・治療方法
JP4838032B2 (ja) * 2006-03-31 2011-12-14 テルモ株式会社 画像診断装置およびその処理方法
JP2007287745A (ja) * 2006-04-12 2007-11-01 Seiko Epson Corp 圧電材料および圧電素子
JP2008069051A (ja) 2006-09-15 2008-03-27 Hosokawa Funtai Gijutsu Kenkyusho:Kk 圧電セラミックス及びその製造方法
US8299688B2 (en) 2009-03-12 2012-10-30 Canon Kabushiki Kaisha Piezoelectric material, method of manufacturing the same, and piezoelectric device
JP5578310B2 (ja) * 2010-01-05 2014-08-27 セイコーエプソン株式会社 圧電セラミックス膜形成用組成物、圧電素子及び液体噴射ヘッド並びに液体噴射装置
GB201012637D0 (en) 2010-07-28 2010-09-15 Univ Leeds Ceramic
JP5864168B2 (ja) * 2010-12-28 2016-02-17 キヤノン株式会社 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置
JP5967988B2 (ja) * 2012-03-14 2016-08-10 キヤノン株式会社 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置
JP2016004854A (ja) * 2014-06-16 2016-01-12 セイコーエプソン株式会社 圧電素子、液体噴射ヘッド、液体噴射装置、アクチュエーター、センサー及び圧電材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126421A (ja) * 2008-11-28 2010-06-10 Seiko Epson Corp セラミックスの製造方法
CN101973763A (zh) * 2010-09-16 2011-02-16 合肥工业大学 钛酸铋钾基固溶体无铅压电陶瓷及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICHIRO FUJII ET AL.: "Structual, Dielectric, and Piezoelectric Properties of Mn-Doped BaTi03-Bi (Mg1/2 Ti1/2) 03-BiFe03 Ceramics", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 50, 20 September 2011 (2011-09-20), pages 09ND07 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165552A (ja) * 2014-02-05 2015-09-17 Tdk株式会社 圧電組成物および圧電素子
JP2016085141A (ja) * 2014-10-27 2016-05-19 京セラ株式会社 センサ基板、センサ装置およびセンサ基板の製造方法
JP2016163027A (ja) * 2015-03-05 2016-09-05 コニカミノルタ株式会社 圧電組成物、圧電素子およびその製造方法ならびに超音波探触子
CN111435699A (zh) * 2019-01-11 2020-07-21 Tdk株式会社 压电薄膜、压电薄膜元件、压电致动器和压电传感器
JP2020113649A (ja) * 2019-01-11 2020-07-27 Tdk株式会社 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
US11532781B2 (en) * 2019-01-11 2022-12-20 Tdk Corporation Piezoelectric thin film, piezoelectric thin film device, piezoelectric actuator, piezoelectric sensor, piezoelectric transducer, hard disk drive, printer head, and ink jet printer device
JP7298159B2 (ja) 2019-01-11 2023-06-27 Tdk株式会社 圧電薄膜、圧電薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP2021086861A (ja) * 2019-11-25 2021-06-03 Tdk株式会社 積層型電子部品
JP7331659B2 (ja) 2019-11-25 2023-08-23 Tdk株式会社 積層型電子部品

Also Published As

Publication number Publication date
JPWO2013175740A1 (ja) 2016-01-12
US9812633B2 (en) 2017-11-07
US20150141834A1 (en) 2015-05-21
JP6229653B2 (ja) 2017-11-15
JP2017178780A (ja) 2017-10-05
JP6402800B2 (ja) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6402800B2 (ja) 非鉛圧電組成物の製造方法、非鉛圧電素子の製造方法、超音波プローブの製造方法及び画像診断装置の製造方法
Wang et al. (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics
Hou et al. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5 PZN–0.5 PZT systems
JP5214373B2 (ja) 圧電セラミックス及びその製造方法並びに圧電デバイス
JP5576365B2 (ja) 圧電セラミックスおよびその製造方法ならびに圧電デバイス
JP5710077B2 (ja) 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
US9382163B2 (en) Amorphous dielectric film and electronic component
KR20100098662A (ko) 반도체 자기 조성물
US9643890B2 (en) Dielectric composition and electronic component
Sakamoto et al. Fabrication and properties of nonreducible lead-free piezoelectric Mn-doped (Ba, Ca) TiO3 ceramics
TWI586626B (zh) 介電組成物及電子元件
JP7188438B2 (ja) 誘電体組成物および電子部品
Ramam et al. Effect of acceptor and donor dopants on ferroelectric and piezoelectric properties of lead zirconate titanate ceramics
KR102370082B1 (ko) 무연 세라믹스 조성물 및 그의 제조방법
Peng et al. Controllable defects and electrical properties of nonstoichiometric Na0. 5-xBi0. 5+ xBi2Nb2O9 high temperature piezoceramics
KR100607532B1 (ko) 티탄산 화합물계 배리스터 및 그의 제조 방법
Wang et al. Competition of Li+ and Cu2+ ions dopant in BiAlO3–Pb (Zr, Ti) O3 piezoelectric ceramics in low temperature sintering processes
Gul et al. Effect of Manganese Addition on 94NBT-6BT Lead Free Multilayer Ceramics
Dimitriu et al. Structural and Piezoelectric Properties of Rare Earth Doped PbTiO 3 Ceramics
KR100554498B1 (ko) 저온소결 압전세라믹 조성물 및 그 제조방법
JP2002184611A (ja) 電圧依存性非直線抵抗体磁器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793192

Country of ref document: EP

Kind code of ref document: A1