WO2013175582A1 - 車両用動力伝達装置 - Google Patents

車両用動力伝達装置 Download PDF

Info

Publication number
WO2013175582A1
WO2013175582A1 PCT/JP2012/063171 JP2012063171W WO2013175582A1 WO 2013175582 A1 WO2013175582 A1 WO 2013175582A1 JP 2012063171 W JP2012063171 W JP 2012063171W WO 2013175582 A1 WO2013175582 A1 WO 2013175582A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
torque
shaft
continuously variable
output shaft
Prior art date
Application number
PCT/JP2012/063171
Other languages
English (en)
French (fr)
Inventor
倫生 吉田
博文 中田
小林 大介
弘紹 吉野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112012006415.1T priority Critical patent/DE112012006415T8/de
Priority to CN201280073372.6A priority patent/CN104334925A/zh
Priority to PCT/JP2012/063171 priority patent/WO2013175582A1/ja
Priority to JP2014516562A priority patent/JPWO2013175582A1/ja
Priority to US14/402,412 priority patent/US20150167802A1/en
Publication of WO2013175582A1 publication Critical patent/WO2013175582A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/026CVT layouts with particular features of reversing gear, e.g. to achieve compact arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0008Transmissions for multiple ratios specially adapted for front-wheel-driven vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means

Definitions

  • the present invention relates to a device for transmitting power output from a driving force source of a vehicle, and in particular, includes a transmission path including a continuously variable transmission and another transmission path provided in parallel to the transmission path.
  • the present invention relates to a power transmission device provided.
  • An internal combustion engine generally used as a driving force source of a vehicle has a characteristic that an output torque increases with an increase in the rotational speed.
  • the driving force required for a vehicle is generally large at a low vehicle speed and relatively small at a high vehicle speed. That is, in the vehicle, a torque opposite to the torque based on the output characteristics of the internal combustion engine is required.
  • the efficient operating points of the internal combustion engine are limited. Therefore, a vehicle that uses an internal combustion engine as a driving force source is equipped with a transmission that can change the gear ratio as appropriate. Then, by appropriately setting the gear ratio based on the vehicle running state such as the vehicle speed and the accelerator opening with the transmission, the required driving force is obtained and the internal combustion engine is operated at an efficient operating point. Yes.
  • the internal combustion engine is always operated at an efficient operating point.
  • the rotational speed of the internal combustion engine at an efficient operating point is a rotational speed that can be set by the gear ratio between the two shift speeds, the period from when one shift speed is switched to the other shift speed. In the operating state, the efficiency is lowered. Therefore, recently, a continuously variable transmission capable of continuously changing a gear ratio has been used instead of a stepped transmission.
  • the former belt-type continuously variable transmission has a power transmission belt and a pair of pulleys whose belt winding radius changes in size as the width of a groove around which the belt is wound is changed. Yes.
  • the gear ratio set between the pair of pulleys is changed steplessly by changing the groove width of each pulley to change the winding radius of the belt.
  • the power roller is sandwiched between a pair of disks arranged opposite to each other, and the line connecting the contact points of the power roller with each disk is the axis of rotation center of the disk. Is different from each other in the number of rotations. Then, the larger the tilt angle (tilt angle) of the power roller, the greater the difference in rotational speed between the disks, that is, the gear ratio becomes farther away from “1”.
  • the torque is transmitted using the frictional force between the pulley and the belt or the frictional force between the disk and the power roller. . Since the frictional force is the product of the friction coefficient at the contact point of the two members and the vertical load (or load in the normal direction), the vertical load is increased according to the torque to be transmitted.
  • the vertical load is a load with which the pulley pinches the belt. The load is generated by, for example, a hydraulic actuator integrally formed on the pulley and supplied to the hydraulic actuator.
  • a vehicle requires a large driving force when starting.
  • the driving force required at the time of a steady driving state, that is, cruising is smaller than that at the time of starting. Therefore, it is necessary to increase the vertical load for generating the frictional force when starting. That is, in the belt type continuously variable transmission, the hydraulic pressure for generating the clamping pressure is increased at the time of start. If a hydraulic device that generates a large hydraulic pressure is provided in preparation for a start in a relatively short period of time as a driving state of the vehicle, the drive device and the hydraulic device for the same increase in size and generate a high hydraulic pressure. There is a possibility that fuel consumption will deteriorate.
  • Apparatuses aimed at solving such problems are described in Japanese Patent Application Laid-Open Nos. 2005-308041, 2004-077686, and 2000-130548.
  • the device described in Japanese Patent Application Laid-Open No. 2005-308041 transmits the power output from the engine to the sun gear of the single pinion type planetary gear mechanism constituting the forward / reverse switching mechanism, and the sun gear is converted into a belt type.
  • a clutch connected to an input shaft integrated with a primary pulley of the continuously variable transmission is provided.
  • An input gear is fitted on the outer peripheral side of the input shaft via a one-way clutch, and this input gear is connected to a ring gear in the forward / reverse switching mechanism.
  • the one-way clutch is configured to be engaged when the input shaft rotates at a higher speed than the input gear on the outer peripheral side in the forward rotation direction.
  • An output gear is fitted on the outer peripheral side of the output shaft integral with the secondary pulley via another one-way clutch.
  • An idle gear is disposed between the input gear and the output gear, and the input gear and the output gear mesh with the idle gear. That is, both the input gear and the output gear are configured to rotate in the same direction.
  • the gear ratio (transmission ratio) between these input gears and output gears is slightly smaller than the largest transmission ratio that can be set by a continuously variable transmission comprising the above pulleys and the belt wound around them. Is set.
  • the other one-way clutch is configured to be engaged when the output shaft rotates at a higher speed than the output gear in the forward rotation direction.
  • a friction clutch is provided in parallel with the other one-way clutch.
  • a brake for fixing the carrier in the forward / reverse switching mechanism is provided to set the reverse state.
  • the sun gear and the input shaft are connected by the clutch, and the main transmission path mainly composed of a continuously variable transmission Torque is transmitted through the input shaft, and torque is transmitted when the one-way clutch is engaged with the sub-transmission path mainly composed of the gears.
  • the gear ratio by the gear train is somewhat smaller than the maximum gear ratio of the continuously variable transmission, the output gear rotates at a higher speed than the output shaft.
  • the one-way clutch on the output shaft side is released, and torque is transmitted to the drive wheels through the gear train. That is, the continuously variable transmission is not subjected to a large torque at the start.
  • the device described in Japanese Patent Application Laid-Open No. 2004-077686 includes a single pinion type planetary gear mechanism between an input shaft for transmitting power output from an engine and a primary pulley in a belt type continuously variable transmission.
  • a forward / reverse switching mechanism is provided.
  • the ring gear and the primary pulley in the forward / reverse switching mechanism are connected to rotate integrally, and the input shaft is connected to the sun gear. Accordingly, the sun gear and the ring gear are connected by the clutch to move forward, and the carrier is fixed by the brake to move backward.
  • a gear train having a gear ratio larger than the maximum gear ratio of the continuously variable transmission is provided between the input shaft and the output shaft integrated with the secondary pulley.
  • An input gear constituting the gear train is integrated with the input shaft, and an output gear connected to the input shaft via an idle gear is rotatably fitted to the output shaft.
  • a one-way clutch and a friction clutch are arranged in series between the output gear and the output shaft.
  • the clutch for connecting the input shaft to the primary pulley is released, and the clutch on the output shaft side is engaged, so that the gear train and the one-way clutch from the input shaft and Torque is transmitted to the output shaft through a clutch arranged in series with this.
  • the maximum transmission ratio of the continuously variable transmission is somewhat smaller than the transmission ratio by the gear train, so the secondary pulley and the output shaft integrated with it are larger than before.
  • the one-way clutch is disengaged at a higher rotational speed, more specifically, higher than the output gear. That is, torque is transmitted to the output shaft through the continuously variable transmission.
  • the gear train transmits torque at the time of starting, a large torque at the time of starting is not applied to the continuously variable transmission.
  • Japanese Patent Laid-Open No. 2000-130548 describes a transmission having the same configuration as the device described in Japanese Patent Laid-Open No. 2004-077686. That is, even in the transmission described in Japanese Patent Laid-Open No. 2000-130548, a one-way operation is performed between the output-side gear in the gear train that transmits torque when starting and the output shaft integrated with the secondary pulley. A clutch and a friction clutch are arranged in parallel.
  • a gear train is provided in parallel with the belt-type continuously variable transmission, and is configured to transmit torque for starting mainly through the gear train when starting. Yes.
  • the torque transmission path is switched in order to transmit the torque via the continuously variable transmission, and the switching is performed using a one-way clutch.
  • the torque transmission direction is limited to one direction, whereas when the vehicle actually travels, it is necessary to transmit the torque in either the forward or reverse direction.
  • both the device described in Japanese Patent Application Laid-Open No. 2005-308041 and the device described in Japanese Patent Application Laid-Open No. 2004-077686 include a forward / reverse switching mechanism including a planetary gear mechanism.
  • a forward / reverse switching mechanism including a planetary gear mechanism.
  • the present invention has been made paying attention to the above technical problem, and is a vehicle power transmission device equipped with a continuously variable transmission, and has a maximum gear ratio or a minimum gear ratio that can be set by the continuously variable transmission. It is an object of the present invention to provide a vehicular power transmission device that can set a transmission ratio exceeding that, is easy to downsize, and has excellent durability.
  • the present invention provides a continuously variable transmission that continuously changes a gear ratio between an input shaft to which torque output from a driving force source is input and an output shaft that outputs torque. And a gear train having an intermediate shaft arranged at a position different from the input shaft and the output shaft and setting at least one transmission ratio that cannot be set by the continuously variable transmission, respectively,
  • a vehicle power transmission device provided to transmit torque to and from an output shaft
  • the input element and the output element are rotated in opposite directions by stopping the input element, the output element, and the rotation.
  • a forward / reverse switching mechanism that performs differential action by three rotating elements of the reaction force element is disposed on the same axis as the output shaft or the intermediate shaft, and rotates at least any two of the three rotating elements.
  • a second clutch mechanism for transmitting and interrupting torque is provided in a torque transmission path from the continuously variable transmission to the output shaft, and the input shaft and the output shaft are connected to the gear train and the output shaft. It is connected through a forward / reverse switching mechanism.
  • the gear train according to the present invention is configured to set a speed ratio larger than a maximum speed ratio of the continuously variable transmission or a speed ratio smaller than a minimum speed ratio of the continuously variable transmission by the plurality of gears. can do.
  • the continuously variable transmission includes a drive-side member that transmits torque from the input shaft and an output-side member that outputs torque to the output shaft.
  • the second clutch mechanism may be configured to be provided between the input shaft and the driving side member so as to selectively connect the input shaft and the driving side member.
  • the continuously variable transmission includes a drive-side member that transmits torque from the input shaft and an output-side member that outputs torque to the output shaft.
  • the second clutch mechanism may be provided between the output side member and the output shaft so as to selectively connect the output side member and the output shaft.
  • first clutch mechanism and the second clutch mechanism in the present invention can be constituted by friction clutches, respectively.
  • the gear train according to the present invention includes a drive gear disposed on the same axis as the input shaft, and a single idle gear provided on the intermediate shaft or a plurality of idle gears that rotate together.
  • the driven gear is configured such that torque is transmitted from the drive gear via the idle gear and is integrally connected to the input element.
  • the gear train can be configured such that a transmission gear ratio is greater than 1 when torque is transmitted from the drive gear to the input element via the idle gear and the driven gear.
  • the gear train according to the present invention is disposed on the same axis as the drive gear, the driven gear disposed on the same axis as the output shaft, and the intermediate shaft.
  • the gear train transmits the torque to the input element from the drive gear through the first idle gear and the output element from the driven gear to the torque through the second idle gear. It can be configured such that at least one of the gear ratios for transmission is greater than one.
  • the forward / reverse switching mechanism includes a sun gear that is an external gear, a ring gear that is an internal gear disposed concentrically with the sun gear, a first pinion gear that meshes with the sun gear, A double pinion type planetary gear mechanism including a first pinion gear and a second pinion gear meshing with the ring gear and a carrier holding the first pinion gear and the second pinion gear so as to rotate and revolve can be used.
  • the forward / reverse switching mechanism in the present invention is constituted by the double pinion type planetary gear mechanism as described above, the sun gear is connected to the continuously variable transmission and the output shaft, and the carrier is connected to the gear train.
  • the ring gear can be connected to be stopped by the brake mechanism.
  • the sun gear is connected to the intermediate shaft and the first idle gear, and the carrier is coupled to the second idle gear.
  • the ring gear may be connected to a gear so that the rotation is stopped by the brake mechanism.
  • the forward / reverse switching mechanism according to the present invention is constituted by the double pinion type planetary gear mechanism as described above, the sun gear is connected to the intermediate shaft and the second idle gear, and the carrier is connected to the first idle gear.
  • the ring gear may be connected to a gear so that the rotation is stopped by the brake mechanism.
  • the forward / reverse switching mechanism includes a sun gear that is an external gear, a ring gear that is an internal gear arranged concentrically with the sun gear, a pinion gear that meshes with the sun gear and the ring gear,
  • the pinion gear can be constituted by a single pinion type planetary gear mechanism provided with a carrier that holds the pinion gear so as to rotate and revolve.
  • the forward / reverse switching mechanism in the present invention in the present invention is constituted by a single pinion type planetary gear mechanism as described above
  • the ring gear is connected to the continuously variable transmission and the output shaft
  • the sun gear is
  • the carrier can be connected to a gear train, and the carrier can be configured to stop rotation by the brake mechanism.
  • the forward / reverse switching mechanism in the present invention is constituted by a single pinion type planetary gear mechanism as described above
  • the ring gear is connected to the intermediate shaft and the first idle gear
  • the sun gear is
  • the carrier can be connected to a second idle gear so that the carrier can be stopped from rotating by the brake mechanism.
  • the forward / reverse switching mechanism according to the present invention is constituted by a single pinion type planetary gear mechanism as described above, the ring gear is connected to the intermediate shaft and the second idle gear, and the sun gear is The carrier can be configured to be coupled to a first idle gear so that the carrier is stopped from rotating by the brake mechanism.
  • the plurality of rotating elements are indicated by straight lines parallel to each other, and the lengths from the intersections with the base lines orthogonal to the straight lines and the positions of the rotating elements at the positions with respect to the base lines It can be configured by a planetary gear mechanism that can represent the respective rotation speeds of the input element, the output element, and the reaction force element by a collinear chart showing the speed.
  • the reaction force element is an element represented by a line located in the center of the collinear diagram
  • the input element is an element represented by one of the left and right lines in the collinear diagram.
  • the output element may be an element represented by one of the left and right lines in the alignment chart.
  • the gear train can transmit power through the forward / reverse switching mechanism between the input shaft and the output shaft.
  • the continuously variable transmission is disconnected with respect to the input shaft or the output shaft, and the gear train is connected to the output shaft via the forward / reverse switching mechanism. That is, the input shaft and the output shaft are connected via the gear train and the forward / reverse switching mechanism.
  • the gear ratio by the gear train is a gear ratio that cannot be set by the continuously variable transmission, and is a gear ratio that is larger than the maximum gear ratio in the continuously variable transmission or smaller than the minimum gear ratio. Therefore, the transmission gear ratio as a whole of the power transmission device can be made wider than the transmission gear ratio that can be set by the continuously variable transmission.
  • the reaction element of the forward / reverse switching mechanism is stopped from rotating and the output element rotates in the opposite direction with respect to the input element. That is, the vehicle can travel backward. In this case, torque is transmitted from the output element to the output shaft via the gear train and the forward / reverse switching mechanism. Therefore, the gear ratio set as a whole of the power transmission device in that case is a large gear ratio that cannot be set by the continuously variable transmission.
  • the continuously variable transmission when the continuously variable transmission is controlled so that the gear ratio thereof is close to the gear ratio in the gear train, the second clutch mechanism is engaged and the first clutch mechanism is released, so that the input shaft and the output
  • the shaft is connected via a second clutch mechanism and a continuously variable transmission.
  • the gear train is cut off with respect to the input shaft. That is, when the first clutch mechanism is released, the forward / reverse switching mechanism does not transmit torque to any of the rotating elements, and therefore the gear train and the front / rear position are between the input shaft and the output shaft. Transmission of torque through the advance switching mechanism is interrupted. Therefore, the gear ratio can be appropriately set by the continuously variable transmission.
  • the first clutch mechanism and the second clutch mechanism are constituted by a friction clutch capable of gradually changing the transmission torque capacity, the amount of torque handled by the first clutch mechanism and the second clutch mechanism is gradually changed. Thereby, the change of the torque of an output shaft can be made smooth. As a result, a sense of incongruity caused by a shift shock or a change in driving force can be prevented or suppressed.
  • the gear train and the forward / reverse switching mechanism are disconnected from both the input shaft and the output shaft by releasing the first clutch mechanism. It becomes. Therefore, when traveling with torque transmitted by a continuously variable transmission, the gear train is rotated, or torque is input not only from the input element of the forward / reverse switching mechanism but also from the output element, and the difference in rotational speed between the elements. Can be avoided. As a result, power loss can be reduced, durability can be improved, and noise and vibration can be suppressed.
  • the forward / reverse switching mechanism that has the three rotating elements of the input element, the output element, and the reaction force element and functions as a differential mechanism has an output shaft or an intermediate shaft other than the input shaft. They are arranged on the same axis. Therefore, when torque is transmitted between the input shaft and the output shaft via the continuously variable transmission, it is possible to suppress the differential between the rotating elements in the forward / reverse switching mechanism. That is, when the forward / reverse switching mechanism is arranged on the same axis as the output shaft, the gear ratio of the gear train that transmits torque from the input shaft to the input element of the forward / reverse switching mechanism is set to be larger than 1. The rotational speed of the torque transmitted to can be reduced.
  • the differential between the rotating elements in the forward / reverse switching mechanism can be suppressed.
  • a gear ratio between the drive gear that transmits torque from the input shaft to the input element of the forward / backward switching mechanism and the first idle gear By setting at least one of the gear ratio between the driven gear for transmitting torque from the output shaft to the output element of the forward / reverse switching mechanism and the second idle gear to be larger than 1, to at least one of the input element and the output element The rotational speed of the transmission torque can be reduced. As a result, the differential between the rotating elements in the forward / reverse switching mechanism is suppressed.
  • the differential rotation speed between each rotation element in the forward / reverse switching mechanism can be suppressed. Therefore, when transmitting torque to the input element and output element of the forward / reverse switching mechanism, it is not necessary to separately provide a clutch or the like for suppressing the differential between the rotating elements in the forward / reverse switching mechanism. Therefore, simplification and downsizing of the configuration of the power transmission device can be achieved.
  • the first clutch mechanism, the second clutch mechanism, and the brake mechanism can be configured by a single mechanism such as a friction clutch or a brake. Therefore, the configuration of the entire power transmission device can be simplified and downsized. Further, by configuring the forward / reverse switching mechanism with a single-pinion type or double-pinion type planetary gear mechanism, the axial length of the entire power transmission device can be shortened, and the on-vehicle performance can be improved.
  • FIGS. 1 and 4 are collinear diagrams (velocity diagram) that collectively show the rotational states of the rotating elements when the forward / reverse switching mechanism shown in FIGS. 1 and 4 is constituted by a double pinion type planetary gear mechanism (output shaft arrangement, carrier input). It is. It is a table
  • 10 and 11 is configured with a double pinion type planetary gear mechanism (intermediate shaft arrangement, carrier input). It is. It is a skeleton figure which shows the example of the forward / reverse switching mechanism which consists of a single pinion type planetary gear mechanism.
  • 1 and 4 are collinear charts (velocity diagram) that collectively show the rotational states of the rotating elements when the forward / reverse switching mechanism shown in FIGS. 1 and 4 is composed of a single pinion planetary gear mechanism (output shaft arrangement, sun gear input).
  • 5 and 6 is a collinear chart (velocity diagram) collectively showing the rotational state of each rotating element when the forward / reverse switching mechanism shown in FIG. 5 is configured with a single pinion type planetary gear mechanism (intermediate shaft arrangement, ring gear input). It is.
  • a power transmission device is a device for transmitting power output from a driving force source such as an engine or a motor to driving wheels and has a speed change function. That is, it is a device generally called a transmission or a transaxle.
  • the device targeted in the present invention is a power transmission device having a continuously variable transmission and a gear train having a predetermined gear ratio (gear ratio) arranged in parallel with each other between an input shaft and an output shaft.
  • the continuously variable transmission may be a conventionally known belt-type continuously variable transmission or toroidal continuously variable transmission.
  • the belt type continuously variable transmission is suitable for a power transmission device mounted on an FF vehicle (front engine / front drive vehicle).
  • the toroidal continuously variable transmission is suitable for a power transmission device mounted on an FR vehicle (front engine / rear drive vehicle).
  • the gear train may be any gear that can transmit torque from the input shaft to the output shaft.
  • a gear ratio that cannot be set by the continuously variable transmission is set by the gear train. . Therefore, the gear train is configured by meshing a plurality of gears.
  • the gear ratio (ratio of the number of teeth) can be set so that a gear ratio larger than the maximum gear ratio in the continuously variable transmission or smaller than the minimum gear ratio can be set.
  • the gear train may be configured so that a gear ratio larger than the maximum gear ratio of the continuously variable transmission can be set.
  • the gear train In order to reduce the rotational speed of the driving force source during traveling and to reduce fuel consumption, it is preferable that the gear train be configured so that a gear ratio smaller than the minimum gear ratio in the continuously variable transmission can be set.
  • FIG. 1 A specific example of such a power transmission device is shown in FIG.
  • the example shown here is an example configured to be suitable for an FF vehicle, and therefore, a belt-type continuously variable transmission is adopted as the continuously variable transmission 1.
  • the driving force source is constituted by an internal combustion engine (E / G; engine) 2 such as a gasoline engine or a diesel engine.
  • the torque converter 3 with a lock-up clutch is connected to the output shaft (crankshaft) of the engine 2.
  • the torque converter 3 has a configuration that has been widely known in the past. Specifically, a turbine runner 6 is disposed so as to face a pump impeller 5 integrated with the front cover 4. A stator 7 is disposed between the pump impeller 5 and the turbine runner 6 through a one-way clutch (not shown). A lockup clutch 8 that rotates integrally with the turbine runner 6 is disposed to face the inner surface of the front cover 4. The lockup clutch 8 is engaged / released according to the pressure difference between both sides of the lockup clutch 8.
  • the lock-up clutch 8 is brought into an engaged state in which the torque is transmitted by contacting the inner surface of the front cover 4, and on the contrary, a released state in which the torque transmission is interrupted away from the inner surface of the front cover 4. It is configured.
  • An input shaft 9 is connected to the turbine runner 6.
  • the continuously variable transmission 1 includes a primary pulley 10 that is a driving member, a secondary pulley 11 that is a driven member, and a belt 12 that is wound around the primary pulley 10 and the secondary pulley 11. And.
  • the primary pulley 10 and the secondary pulley 11 are configured such that the winding radius of the belt 12 is changed to be larger or smaller by changing the width of the groove around which the belt 12 is wound. . That is, the gear ratio is continuously changed by changing the groove widths of the primary pulley 10 and the secondary pulley 11 around which the belt 12 is wound.
  • the primary pulley 10 is disposed on the same axis as the input shaft 9 and on the opposite side of the engine 2 with the torque converter 3 interposed therebetween. That is, the primary shaft 13 integrated with the primary pulley 10 is connected to the input shaft 9 via the second clutch mechanism C2 described later. Further, the secondary pulley 11 is arranged so that the rotation center axis thereof is parallel to the rotation center axis of the primary pulley 10.
  • the secondary pulley 11 includes a secondary shaft 14 provided along the rotation center axis.
  • An output shaft 15 is disposed on the same axis as the secondary shaft 14, and the secondary shaft 14 and the output shaft 15 are integrally connected. Therefore, the output shaft 15 is parallel to the input shaft 9 described above.
  • the second clutch mechanism C2 is provided between the input shaft 9 and the primary shaft 13 described above.
  • the second clutch mechanism C2 is a mechanism for selectively connecting the input shaft 9 and the primary shaft 13.
  • the second clutch mechanism C2 only needs to be able to selectively transmit and block torque between the input shaft 9 and the primary shaft 13.
  • it may be either a friction clutch or a meshing clutch, but it is preferably constituted by a wet or dry friction clutch in which the transmission torque capacity gradually increases or decreases according to the engagement force.
  • the forward / reverse switching mechanism 16 is disposed on the same axis as the output shaft 15 connected to the secondary shaft 14 of the continuously variable transmission 1.
  • the forward / reverse switching mechanism 16 has a forward state in which the torque transmitted from the input shaft 9 is transmitted without changing its direction, and a reverse state in which the torque transmitted from the input shaft 9 is transmitted in a reverse direction. It is a mechanism for switching.
  • the forward / reverse switching mechanism 16 is constituted by a so-called differential mechanism in which the three rotating elements make a differential action with each other.
  • differential mechanisms of this type have been known in the past, and any differential mechanism can be employed in the present invention.
  • the forward / reverse switching mechanism 16 is constituted by a double pinion type planetary gear mechanism.
  • the double pinion type planetary gear mechanism includes a sun gear 17 that is an external gear, a ring gear 18 that is an internal gear disposed concentrically with the sun gear 17, a first pinion gear 19 that meshes with the sun gear 17, A second pinion gear 20 meshed with the first pinion gear 19 and the ring gear 18 and a carrier 21 holding the first pinion gear 19 and the second pinion gear 20 so as to be capable of rotating and revolving are provided.
  • the input shaft 9 is connected to the carrier 21 via a gear train 23 described later. Therefore, the carrier 21 is an input element.
  • a brake mechanism B that selectively stops the rotation of the ring gear 18 is provided. Therefore, the ring gear 18 is a reaction force element.
  • the brake mechanism B is provided between the ring gear 18 and a fixed portion 22 such as a casing, and can be constituted by a friction brake such as a multi-plate brake or a meshing brake.
  • the secondary shaft 14 and the output shaft 15 of the continuously variable transmission 1 are integrally connected to the sun gear 17. Therefore, the sun gear 17 is an output element.
  • a first clutch mechanism C1 for connecting the sun gear 17 and the carrier 21 so as to integrally rotate the entire planetary gear mechanism.
  • the first clutch mechanism C1 is a clutch that can be referred to as a forward clutch, and is for setting a forward traveling state.
  • the first clutch mechanism C1 only needs to be capable of selectively transmitting and interrupting torque.
  • it may be either a friction clutch or a meshing clutch, but it is preferably constituted by a wet or dry friction clutch in which the transmission torque capacity gradually increases or decreases according to the engagement force.
  • the first clutch mechanism C1 connects the at least two rotating elements of the three rotating elements in the planetary gear mechanism constituting the forward / reverse switching mechanism 16 so as to integrate the entire planetary gear mechanism. It suffices to be configured.
  • the “forward clutch” described in Japanese Patent Application Laid-Open Nos. 2010-276159 and 2010-216613 is used. In this way, the sun gear and the ring gear can be connected.
  • the carrier and the ring gear can be connected.
  • all the three rotating elements may be connected to each other so that the entire planetary gear mechanism is integrated.
  • the planetary gear mechanism constituting the forward / reverse switching mechanism 16 can be represented by a collinear diagram (speed diagram).
  • An example of an alignment chart representing the forward / reverse switching mechanism 16 shown in FIG. 1 is shown in FIG.
  • the sun gear 17, the ring gear 18, and the carrier 21 are represented by straight lines parallel to each other.
  • a straight line indicating the sun gear 17 and a straight line indicating the carrier 21 are located at both left and right ends, and a straight line indicating the ring gear 18 which is a reaction force element is arranged at the center thereof.
  • the distance between the straight line indicating the sun gear 17 and the straight line indicating the carrier 21 is “1”
  • the distance between the straight line indicating the sun gear 17 and the straight line indicating the ring gear 18 is the number of teeth of the carrier 21 and the teeth of the ring gear 18. It is set to a value corresponding to the ratio to the number (that is, gear ratio).
  • the distance from the intersection of each straight line with the base line L0 indicates the number of rotations of each rotating element.
  • the position with respect to the base line L0 indicates the rotation direction of each rotation element. Therefore, when the first clutch mechanism C1 is engaged, the entire forward / reverse switching mechanism 16 rotates as a whole, so that the rotational speed of each rotating element is indicated by a straight line L1.
  • the ring gear 18 is fixed by the brake mechanism B
  • the rotation speed and the rotation direction of each rotation element are as indicated by a straight line L2. That is, the sun gear 17 rotates in the opposite direction with respect to the carrier 21.
  • a gear train 23 composed of a plurality of parallel gears is provided in parallel with the continuously variable transmission 1.
  • the gear train 23 is configured as a speed reduction mechanism that sets a speed ratio larger than the maximum speed ratio in the continuously variable transmission 1 or a speed increase mechanism that sets a speed ratio smaller than the minimum speed ratio in the continuously variable transmission 1.
  • the gear train 23 is configured as a speed reduction mechanism when torque is transmitted from the input shaft 9 toward the output shaft 15.
  • a drive gear arranged on the same axis as the input shaft 9, an idle gear for making the rotation directions of the input shaft 9 and the output shaft 15 the same, and torque from the drive gear via the idle gear Is provided with a driven gear.
  • a counter shaft 24 corresponding to the intermediate shaft in the present invention is arranged in parallel to the input shaft 9 and the output shaft 15.
  • a drive gear 25 is disposed on the input shaft 9 so as to be able to rotate relative to the input shaft 9.
  • a counter driven gear 26 meshing with the drive gear 25 is attached to and integrated with the counter shaft 24.
  • a counter drive gear 27 having a smaller diameter than the counter driven gear 26 is attached to the counter shaft 24 and integrated therewith.
  • a driven gear 28 meshed with the counter drive gear 27 is integrally connected to a carrier 21 that is an input element in the forward / reverse switching mechanism 16. Therefore, the counter driven gear 26 and the counter drive gear 27 described above correspond to the idle gear in the present invention.
  • the counter driven gear 26 has a diameter larger than that of the drive gear 25, and is configured to generate a deceleration action when torque is transmitted from the drive gear 25 to the counter driven gear 26. Therefore, the speed ratio (gear ratio) of the gear train 23 is obtained by multiplying the speed ratio between the drive gear 25 and the counter driven gear 26 and the speed ratio between the counter drive gear 27 and the driven gear 28. It becomes. Specifically, the gear train 23 has a gear ratio that is greater than “1” when torque is transmitted from the drive gear 25 to the carrier 21 of the forward / reverse switching mechanism 16 via the counter driven gear 26 and the driven gear 27. It is configured to be large.
  • the gear train 23 shown in FIG. 1 is configured such that the value of the gear ratio is larger than the maximum gear ratio in the continuously variable transmission 1.
  • the example shown in FIG. 1 is an example configured to be suitable for an FF vehicle as described above. Accordingly, the torque is output from the output shaft 15 to the front differential 29 that is a final reduction gear. That is, an output gear 30 is attached to the output shaft 15, and a large-diameter gear 31 meshing with the output gear 30 is attached to the reduction gear shaft 32. A small-diameter gear 33 is attached to the reduction gear shaft 32, and the small-diameter gear 33 meshes with the ring gear 34 of the front differential 29.
  • the front differential 29 is configured to transmit torque transmitted through the ring gear 34 from the left and right drive shafts 35 to drive wheels (not shown).
  • the power transmission device transmits torque from the input shaft 9 to the output shaft 15 via the torque transmission path provided with the gear train 23 when starting in the forward direction and traveling backward.
  • control is performed so that torque is transmitted from the input shaft 9 to the output shaft 15 via a torque transmission path provided with the continuously variable transmission 1.
  • a drive position (drive range) is selected by a shift device (not shown)
  • the first clutch mechanism C1 is engaged, and the second clutch mechanism C2 and the brake mechanism B are released.
  • FIG. 3 shows a table showing such engagement and disengagement states. In FIG. 3, “ON” indicates engagement, and “OFF” indicates release.
  • the torque output from the engine 2 is the input shaft 9, the gear train 23, and It is transmitted to the output shaft 15 via the forward / reverse switching mechanism 16. That is, since the drive gear 25 in the gear train 23 is connected to the input shaft 9, the torque of the input shaft 9 is transmitted from the driven gear 28 to the carrier 21 of the forward / reverse switching mechanism 15 via the gear train 23. At the same time, it is transmitted to the sun gear 17 via the first clutch mechanism C1. At the time of forward movement, the forward / reverse switching mechanism 16 is integrated with the entire forward / reverse switching mechanism 16 because the two rotating elements of the sun gear 17 and the carrier 21 are connected by the first clutch mechanism C1. Therefore, the forward / reverse switching mechanism 16 transmits the torque input from the carrier 21 as it is from the sun gear 17 to the output shaft 15 without causing an acceleration / deceleration action.
  • the torque transmitted to the output shaft 15 is transmitted from the output gear 30 to the left and right drive wheels via the reduction gear train and the front differential 29, and the vehicle starts.
  • the continuously variable transmission 1 is always connected to the output shaft 15 or the sun gear 17. Therefore, the torque input to the forward / reverse switching mechanism 16 is also transmitted to the secondary pulley 11 of the continuously variable transmission 1.
  • the second clutch mechanism C2 is in a released state, and is separated so that torque is not transmitted between the continuously variable transmission 1 and the input shaft 9. Therefore, transmission of torque via the continuously variable transmission 1 does not occur between the input shaft 9 and the output shaft 15, and a so-called interlock state does not occur.
  • the first clutch mechanism C1 When the vehicle speed is increased to a predetermined vehicle speed after starting, the first clutch mechanism C1 is released with the gear ratio of the continuously variable transmission 1 set to a maximum value or a gear ratio close thereto. .
  • the second clutch mechanism C2 is engaged.
  • the forward / reverse switching mechanism 16 is in a state of so-called free rotation because the first clutch mechanism C1 is further released while the brake mechanism B is released.
  • the connection between the output shaft 15 and the gear train 23 is released.
  • the primary pulley 10 is connected to the input shaft 9 by the second clutch mechanism C2. Therefore, the input shaft 9 and the output shaft 15 are coupled so as to transmit torque via the continuously variable transmission 1. Therefore, the engine speed can be set to a speed with good fuel consumption by gradually decreasing the speed ratio of the continuously variable transmission 1 or changing the speed ratio according to the vehicle speed and the accelerator opening.
  • the gear ratio by the gear train 23 is greater than the maximum gear ratio of the continuously variable transmission 1. Since it is large, the gear ratio or the driving force changes. Therefore, when the first clutch mechanism C1 is released and the second clutch mechanism C2 is engaged, the first clutch mechanism C1 and the second clutch mechanism C2 are controlled to slip and engage. That is, by gradually increasing the engagement pressure of the second clutch mechanism C2, the transmission torque capacity is gradually increased. At the same time, the transmission torque capacity is gradually reduced by gradually reducing the engagement pressure of the first clutch mechanism C1.
  • This control is conventionally known as clutch-to-clutch control.
  • the gear ratio in this case is a gear ratio obtained by multiplying the gear ratio by the gear train 23 and the gear ratio by the planetary gear mechanism constituting the forward / reverse switching mechanism 16. Then, torque is transmitted from the output gear 30 to the left and right drive wheels via the reduction gear train and the front differential 29, and the vehicle travels backward.
  • the second clutch mechanism C2 is disengaged and is separated so that torque transmission does not occur between the continuously variable transmission 1 and the input shaft 9. Therefore, transmission of torque via the continuously variable transmission 1 does not occur between the input shaft 9 and the output shaft 15, and a so-called interlock state does not occur.
  • each clutch mechanism can have a single configuration such as a friction clutch or a meshing clutch. Therefore, it is possible to simplify the overall configuration of the power transmission device by reducing the number of necessary components. Further, the power transmission device can be reduced in size.
  • the power transmission device described above when torque is transmitted from the input shaft 9 to the carrier 21 of the forward / reverse switching mechanism 16, the torque is decelerated by the gear train 23 to the carrier 21. Communicated. Therefore, differential rotation between the rotating elements in the forward / reverse switching mechanism 16 is suppressed. Therefore, it is not necessary to separately provide a clutch or the like for suppressing the differential of the forward / reverse switching mechanism when torque is transmitted between the input shaft 9 and the output shaft 15 via the continuously variable transmission 1.
  • the configuration of the power transmission device can be simplified and downsized.
  • the second clutch mechanism C2 is provided on the input shaft 9. Therefore, the torque applied to the second clutch mechanism C2 from the input shaft 9 side during forward traveling is a torque that is not subjected to the speed increasing / decreasing action except for the torque converter 3. In other words, in the driving state, torque that is equal to or higher than the torque at the input shaft 9 is not applied to the second clutch mechanism C2. Therefore, the torque capacity of the second clutch mechanism C2 is smaller than that in the case where the second clutch mechanism C2 is provided on the output shaft 15 or the counter shaft 24 where a large torque may be applied to the second clutch mechanism C2. It can be a small clutch.
  • the torque transmission path including the continuously variable transmission 1 is the input shaft. 9 or the output shaft 15.
  • the torque transmission path provided with the gear train 23 is used as the input shaft 9.
  • the second clutch mechanism C2 is not necessarily provided at the position shown in FIG. That is, the second clutch mechanism C2 can be provided at an appropriate position as long as the original function is not impaired.
  • the forward / reverse switching mechanism 16 is not necessarily provided at the position shown in FIG.
  • the forward / reverse switching mechanism 16 is arranged on the same axis as the counter shaft 24 corresponding to the intermediate shaft in the present invention in addition to being arranged on the same axis as the output shaft 15 as in the above configuration example. it can.
  • the second clutch mechanism C2 of the configuration shown in FIG. 1 is arranged on the same axis as the output shaft 15 together with the forward / reverse switching mechanism 16, and the others are the same as in the example shown in FIG. It is configured. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 4 will be described, and the same reference numerals as those in FIG.
  • the second clutch mechanism C2 in the present invention is a clutch that transmits and interrupts torque through a torque transmission path from the input shaft 9 to the output shaft 15 via the continuously variable transmission 1.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the same axis as the output shaft 15, and selects transmission and interruption of torque between the secondary shaft 14 and the output shaft 15 of the continuously variable transmission 1. Is configured to perform automatically.
  • the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are directly connected to each other as the arrangement of the second clutch mechanism C2 is changed as described above with respect to the configuration shown in FIG.
  • the first clutch mechanism C1, the second clutch mechanism C2, and the brake mechanism B are used when starting in the forward direction, during forward travel, and during reverse travel. Each is engaged or released as shown in FIG.
  • torque transmission through the torque transmission path mainly including the gear train 23 and the forward / reverse switching mechanism 16 and the continuously variable transmission 1 as a main component are performed. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the so-called output side of the continuously variable transmission 1. Therefore, when the input shaft 9 and the output shaft 15 are connected via the gear train 23 and the forward / reverse switching mechanism 16, the continuously variable transmission 1 is moved to the output shaft 15 by the second clutch mechanism C2. It can be blocked. As a result, it is possible to avoid an excessive torque from acting on the continuously variable transmission 1 and improve the durability of the continuously variable transmission 1. That is, when the vehicle is decelerated with the first clutch mechanism C1 engaged, torque based on the traveling inertia force of the vehicle acts on the output shaft 15.
  • the second clutch mechanism C2 is in a released state and is disconnected. Therefore, so-called reverse input torque at the time of deceleration is not applied to the continuously variable transmission 1. Therefore, it is possible to reduce the torque that unnecessarily acts on the continuously variable transmission 1 and to suppress unnecessary rotation. As a result, the durability of the continuously variable transmission 1 can be improved.
  • the forward / reverse switching mechanism 16 in the configuration shown in FIG. 1 is arranged on the same axis as the counter shaft 24 of the gear train 23 corresponding to the intermediate shaft in the present invention.
  • the configuration is the same as the example shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 5 will be described, and the same reference numerals as those in FIG.
  • the forward / reverse switching mechanism 16 is a mechanism for switching between the forward state and the reverse state as described above.
  • the forward / reverse switching mechanism 16 is configured by a double pinion type planetary gear mechanism, as in the example shown in FIG.
  • the sun gear 17 and the counter shaft 24 are integrally connected. That is, the input shaft 9 is connected to the sun gear 17 via the drive gear 25 and the counter driven gear 26 of the gear train 23. Therefore, the sun gear 17 is an input element.
  • a brake mechanism B that selectively stops the rotation of the ring gear 18 is provided.
  • the ring gear 18 is a reaction force element.
  • the carrier 21 and the counter drive gear 27 of the gear train 23 are integrally connected. That is, the secondary shaft 14 and the output shaft 15 of the continuously variable transmission 1 are coupled to the carrier 21 via the counter drive gear 27 and the driven gear 28 of the gear train 23. Therefore, the carrier 21 is an output element.
  • a first clutch mechanism C1 is provided between the sun gear 17 and the carrier 21 for connecting the sun gear 17 and the carrier 21 and rotating the entire planetary gear mechanism integrally.
  • the counter driven gear 26 of the gear train 23 has a larger diameter than the drive gear 25, and when the torque is transmitted from the drive gear 25 toward the counter driven gear 26, a deceleration action is generated. It is configured. That is, in the example shown in FIG. 5, the gear train 23 transmits torque from the drive gear 25 to the sun gear 17 of the forward / reverse switching mechanism 16 via the counter driven gear 26 corresponding to the first idle gear of the present invention.
  • the gear ratio (gear ratio) is configured to be larger than “1”.
  • the gear train 23 is configured such that the value of the gear ratio is larger than the maximum gear ratio in the continuously variable transmission 1.
  • the first clutch mechanism C1, the second clutch mechanism C2, and the brake mechanism B are used when starting in the forward direction, when traveling forward, and when traveling backward. Each is engaged or released as shown in FIG.
  • torque transmission through the torque transmission path mainly including the gear train 23 and the forward / reverse switching mechanism 16 and the continuously variable transmission 1 as a main component are performed. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the second clutch mechanism C2 is arranged on the so-called input side of the continuously variable transmission 1, similarly to the configuration of the power transmission device shown in FIG. Therefore, as in the case of the power transmission device shown in FIG. 1 described above, when traveling forward with the power of the engine 2, a torque greater than the torque transmitted from the engine 2 to the input shaft 9 is applied to the second clutch mechanism. It doesn't run on C2. Therefore, also in the configuration shown in FIG. 5, the second clutch mechanism C2 can be downsized.
  • the power transmission device shown in FIG. 6 has the same configuration as that of the example shown in FIG. 5 except that the second clutch mechanism C2 is arranged on the same axis as the output shaft 15 in the configuration shown in FIG. Therefore, only the parts different from FIG. 5 in the configuration of FIG. 6 will be described, and the same reference numerals as those in FIG.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the same axis as the output shaft 15, and selects transmission and interruption of torque between the secondary shaft 14 and the output shaft 15 of the continuously variable transmission 1. Is configured to perform automatically.
  • the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are directly connected to each other as the arrangement of the second clutch mechanism C2 is changed as described above with respect to the configuration shown in FIG.
  • the first clutch mechanism C1, the second clutch mechanism C2, and the brake mechanism B are used when starting in the forward direction, during forward travel, and during reverse travel. Each is engaged or released as shown in FIG.
  • the torque transmission via the torque transmission path mainly composed of the gear train 23 and the forward / reverse switching mechanism 16 and the continuously variable transmission 1 are performed. Torque is transmitted through a torque transmission path mainly composed of. And it is made to act similarly to the power transmission device shown in FIGS. 1 and 5, and the same effect can be obtained.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the so-called output side of the continuously variable transmission 1. Therefore, when the input shaft 9 and the output shaft 15 are connected via the gear train 23 and the forward / reverse switching mechanism 16, the continuously variable transmission 1 is moved to the output shaft 15 by the second clutch mechanism C2. It can be blocked. As a result, it is possible to avoid an excessive torque from acting on the continuously variable transmission 1 and improve the durability of the continuously variable transmission 1. That is, when the vehicle is decelerated with the first clutch mechanism C1 engaged, torque based on the traveling inertia force of the vehicle acts on the output shaft 15.
  • the second clutch mechanism C2 is in a released state and is disconnected. Therefore, so-called reverse input torque at the time of deceleration is not applied to the continuously variable transmission 1. Therefore, it is possible to reduce the torque that unnecessarily acts on the continuously variable transmission 1 and to suppress unnecessary rotation. As a result, the durability of the continuously variable transmission 1 can be improved.
  • the planetary gear mechanism constituting the forward / reverse switching mechanism 16 can be represented by an alignment chart (speed diagram) shown in FIG.
  • FIG. 7 the sun gear 17, the ring gear 18, and the carrier 21 are represented by straight lines parallel to each other as in the collinear diagram shown in FIG.
  • the distance from the intersection of each straight line with the base line L0 indicates the number of rotations of each rotating element.
  • the position with respect to the base line L0 indicates the rotation direction of each rotation element. Therefore, when the first clutch mechanism C1 is engaged, the entire forward / reverse switching mechanism 16 rotates as a whole, so that the rotational speed of each rotating element is indicated by a straight line L3.
  • the carrier 21 rotates in the opposite direction with respect to the sun gear 17.
  • the carrier 21 serves as an input element, and torque in the same rotational direction as that of the crankshaft of the engine 2 (that is, forward rotation direction) is input.
  • the sun gear 17 takes the input element and the torque in the rotational direction opposite to the rotational direction of the crankshaft of the engine 2 (that is, the reverse direction) is input.
  • the forward / reverse switching mechanism 16 of the power transmission device shown in FIGS. 1, 4, 5, and 6 can be disposed as shown in FIGS. 8, 9, 10, and 11, respectively. .
  • the forward / reverse switching mechanism 16 of the power transmission device shown in FIGS. 1 and 4 changes the orientation of the forward / reverse switching mechanism 16 in the axial direction of the output shaft 15 as shown in FIGS. It can be placed in the opposite direction. That is, the forward / reverse switching mechanism 16 has the carrier 21, the driven gear 28, and the first clutch mechanism C 1 on the output shaft 15 toward the side closer to the engine 2 (right side in FIGS. 8 and 9). May be arranged toward the side close to the continuously variable transmission 1 (left side in FIGS. 8 and 9).
  • the first clutch mechanism C1, the second clutch mechanism C2, and the brake mechanism B are moved forward when starting in the forward direction. During running and reverse running, they are engaged or released as shown in FIG. And it is made to act similarly to the power transmission device shown in above-mentioned FIG. 1, and the same effect can be acquired.
  • the forward / reverse switching mechanism 16 shown in FIGS. 5 and 6 reverses the direction of the forward / reverse switching mechanism 16 in the axial direction of the output shaft 15 as shown in FIGS.
  • the output element can be interchanged and arranged. That is, the forward / reverse switching mechanism 16 has the carrier 21 and the driven gear 28 facing the first clutch mechanism C1 toward the side closer to the engine 2 (the right side in FIGS. 10 and 11) in the axial direction on the counter shaft 24. May be arranged toward the side close to the continuously variable transmission 1 (left side in FIGS. 10 and 11).
  • the carrier 21 may be integrally connected to the counter driven gear 26 as an input element
  • the sun gear 17 may be integrally connected to the counter shaft 24 as an output element.
  • the planetary gear mechanism constituting the forward / reverse switching mechanism 16 can be represented by an alignment chart (speed diagram) shown in FIG.
  • the sun gear 17, the ring gear 18, and the carrier 21 are represented by straight lines parallel to each other as in the collinear diagram shown in FIG.
  • the distance from the intersection of each straight line with the base line L0 indicates the number of rotations of each rotating element.
  • the position with respect to the base line L0 indicates the rotation direction of each rotation element. Therefore, when the first clutch mechanism C1 is engaged, the entire forward / reverse switching mechanism 16 rotates as a whole, so that the rotational speed of each rotating element is indicated by a straight line L5.
  • the sun gear 17 rotates in the opposite direction with respect to the carrier 21.
  • the sun gear 17 serves as an input element and torque in the rotation direction opposite to the rotation direction of the crankshaft of the engine 2 (that is, reverse rotation direction) is input.
  • the carrier 21 serves as an input element to input torque in the rotation direction opposite to the rotation direction of the crankshaft of the engine 2 (ie, the reverse rotation direction).
  • the power transmission device can be configured by a single pinion type planetary gear mechanism in place of the forward / reverse switching mechanism 16 in place of the double pinion type planetary gear mechanism described above.
  • FIG. 13 shows an example in which the forward / reverse switching mechanism 16 of the power transmission device shown in FIGS. 1, 4, 5, and 6 is configured by a single pinion type planetary gear mechanism.
  • the forward / reverse switching mechanism 16 shown in FIGS. 1 and 4 is configured using a single pinion type planetary gear mechanism 36
  • the sun gear 37 is an input element
  • the ring gear 38 is a reaction force element
  • the carrier 39 is It is an output element.
  • the carrier 39 is provided with a brake mechanism B that selectively stops the rotation of the carrier 39.
  • a first clutch mechanism C1 that selectively connects the sun gear 37 and the ring gear 38 is provided between the sun gear 37 and the ring gear 38.
  • FIG. 14 shows an example of a collinear diagram (velocity diagram) when the forward / reverse switching mechanism 16 shown in FIGS. 1 and 4 is configured by the single pinion type planetary gear mechanism 36 as described above.
  • the sun gear 37, the carrier 39, and the ring gear 38 are represented by straight lines parallel to each other.
  • a straight line indicating the sun gear 37 and a straight line indicating the ring gear 38 are located at both left and right ends, and a straight line indicating the carrier 39 as a reaction force element is arranged at the center thereof.
  • the distance between the straight line indicating the sun gear 37 and the straight line indicating the ring gear 38 is “1”
  • the distance between the straight line indicating the carrier 39 and the straight line indicating the ring gear 38 is the number of teeth of the sun gear 37 and the teeth of the carrier 39. It is set to a value corresponding to the ratio to the number (that is, gear ratio).
  • the distance from the intersection of each straight line with the base line L0 indicates the number of rotations of each rotating element.
  • the position with respect to the base line L0 indicates the rotation direction of each rotation element.
  • the planetary gear mechanism 36 that is, the entire forward / reverse switching mechanism 16 rotates as a whole, so that the rotational speed of each rotating element is represented by a straight line L7.
  • the rotation speed and the rotation direction of each rotation element are as indicated by a straight line L8. That is, the ring gear 38 rotates in the opposite direction with respect to the sun gear 37.
  • the ring gear 38 is an input element
  • the sun gear 37 is a reaction force element
  • the carrier 39 is an output element.
  • the counter shaft 24 of the gear train 23 is connected to the ring gear 38
  • the counter drive gear 27 of the gear train 23 is connected to the sun gear 37.
  • FIG. 15 shows an example of a collinear diagram (velocity diagram) when the forward / reverse switching mechanism 16 shown in FIGS. 5 and 6 is configured by the single pinion type planetary gear mechanism 36 as described above.
  • the sun gear 37, the carrier 39, and the ring gear 38 are represented by straight lines parallel to each other.
  • the distance from the intersection of each straight line with the base line L0 indicates the number of rotations of each rotating element.
  • the position with respect to the base line L0 indicates the rotation direction of each rotation element.
  • the planetary gear mechanism 36 that is, the entire forward / reverse switching mechanism 16 rotates together, so that the rotational speed of each rotating element is indicated by a straight line L9. .
  • the carrier 39 is fixed by the brake mechanism B, the rotation speed and the rotation direction of each rotation element are as indicated by a straight line L10. That is, the ring gear 38 rotates in the opposite direction with respect to the sun gear 37.
  • the sun gear 37 serves as an input element and torque in the same rotational direction as the crankshaft of the engine 2 (that is, forward rotation direction) is input.
  • the ring gear 38 serves as an input element so that torque in the rotation direction opposite to the rotation direction of the crankshaft of the engine 2 (ie, the reverse rotation direction) is input. It has become.
  • the forward / backward switching mechanism 16 functions in the same manner as the forward / backward switching mechanism 16 configured by the double-pinion type planetary gear mechanism. be able to.
  • the apparatus can be simplified by using the single pinion type planetary gear mechanism 36 instead of the double pinion type planetary gear mechanism.
  • the entire forward / reverse switching mechanism 16 is integrated by connecting at least two rotating elements of the forward / reverse switching mechanism 16 with the first clutch mechanism C1. Rotate.
  • the gear train 23 can transmit power between the input shaft 9 and the output shaft 15 via the forward / reverse switching mechanism 16.
  • the continuously variable transmission 1 is disconnected from the output shaft 15 and the gear train 23 is connected to the output shaft 15 via the forward / reverse switching mechanism 16. That is, the input shaft 9 and the output shaft 15 are connected via the gear train 23 and the forward / reverse switching mechanism 16.
  • the gear ratio by the gear train 23 is a gear ratio that cannot be set by the continuously variable transmission 1. That is, the speed ratio is larger than the maximum speed ratio in the continuously variable transmission 1 or smaller than the minimum speed ratio. Therefore, the gear ratio width as a whole of the power transmission device can be made wider than the gear ratio width that can be set by the continuously variable transmission 1.
  • the gear ratio set as a whole of the power transmission device in that case is a large gear ratio that cannot be set by the continuously variable transmission 1. That is, the speed ratio width as a whole of the power transmission device can be widened even during reverse travel.
  • the positions of the first clutch mechanism C1, the second clutch mechanism C2, and the gears in the axial direction described above can be determined as appropriate in design.
  • the positions of adjacent constituent members among the constituent members in the specific examples described above can be interchanged in the axial direction.
  • gear train 23 having one gear ratio (gear ratio)
  • gear train in the present invention has two or more gear ratios (gear ratios).
  • gear train that can select and set the gear ratios.

Abstract

 駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、それぞれ、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記出力軸もしくは前記中間軸と同一軸線上に配置され、前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至るトルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されている。

Description

車両用動力伝達装置
 この発明は、車両の駆動力源から出力された動力を伝達するための装置に関し、特に無段変速機を含む伝動経路と、その伝動経路に対して並列に設けられた他の伝動経路とを備えている動力伝達装置に関するものである。
 車両の駆動力源として一般に用いられている内燃機関は、回転数の増大に応じて出力トルクが大きくなる特性を有している。これに対して、車両に要求される駆動力は、低車速で大きく、高車速で相対的に小さいのが一般的である。すなわち、車両においては、内燃機関の出力特性に基づくトルクとは反対のトルクが要求される。また、内燃機関の効率の良い運転点は限られている。そのため、内燃機関を駆動力源とする車両では、変速比を適宜に変化させることのできる変速機が搭載されている。そして、その変速機で車速やアクセル開度などの車両の走行状態に基づいて変速比を適宜に設定することにより、必要とする駆動力を得るとともに内燃機関を効率の良い運転点で運転している。ただし、変速段毎に段階的に変速比を設定する有段変速機のように、変速機で設定する変速比に段差がある場合は、内燃機関を常に効率の良い運転点で運転することはできない。すなわち、効率の良い運転点における内燃機関の回転数が、2つの変速段の間の変速比で設定できる回転数であった場合には、一方の変速段から他方の変速段に切り替わるまでの間の運転状態では効率が低下してしまう。そこで最近では、有段変速機に替えて、変速比を連続的に変化させることが可能な無段変速機が使用されるようになってきている。
 車両用の無段変速機としては、ベルト式無段変速機とトロイダル型無段変速機とが広く知られている。前者のベルト式無段変速機は、動力伝達用のベルトと、そのベルトを巻き掛ける溝の幅を変化させることに伴ってベルトの巻き掛け半径が大小に変化する一対のプーリとを有している。そして、それぞれのプーリの溝幅を変化させてベルトの巻き掛け半径を変化させることにより、それら一対のプーリの間で設定する変速比を無段階に変化させるように構成されている。また、後者のトロイダル型無段変速機は、向かい合わせて配置されている一対のディスクの間にパワーローラを挟み込み、そのパワーローラの各ディスクに対する接触点を結んだ線が、ディスクの回転中心軸線に対して傾斜することにより、各ディスク同士の回転数に差が生じる構成となっている。そして、パワーローラの傾斜角度(傾転角度)が大きいほど、ディスク同士の回転数の差すなわち変速比が「1」から離れるように構成されている。
 これらの無段変速機では、変速比を連続的に変化させるために、プーリとベルトとの間の摩擦力、あるいはディスクとパワーローラとの間の摩擦力を利用してトルクを伝達している。摩擦力は、2つの部材の接触箇所における摩擦係数と垂直荷重(もしくは法線方向の荷重)との積であるから、伝達するべきトルクに応じて垂直荷重を大きくすることになる。その垂直荷重は車両用のベルト式無段変速機では、プーリがベルトを挟み付ける荷重である。そしてその荷重は、例えばプーリに油圧アクチュエータを一体に形成し、その油圧アクチュエータに供給する油圧によって発生させている。
 一方、車両においては発進時に大きい駆動力が要求される。これに対して定常的な走行状態すなわち巡航時に要求される駆動力は発進時に比較して小さい。そのため、上記の摩擦力を発生させるための垂直荷重は発進時に大きくする必要がある。すなわち、ベルト式無段変速機では、挟圧力を発生させるための油圧を発進時に高くすることになる。車両の駆動状態として比較的短時間である発進時に備えて、大きい油圧を発生させる油圧機器を設けるとすれば、駆動装置やそのための油圧装置が大型化し、また高油圧を発生させることに伴って燃費が悪化してしまう可能性がある。
 このような課題を解消することを目的とした装置が、特開2005-308041号公報、特開2004-076876号公報、および特開2000-130548号公報などに記載されている。これらのうち特開2005-308041号公報に記載された装置は、前後進切替機構を構成しているシングルピニオン型遊星歯車機構のサンギヤに、エンジンが出力した動力が伝達され、そのサンギヤをベルト式無段変速機のプライマリープーリと一体の入力軸に連結するクラッチが設けられている。その入力軸の外周側にワンウェイクラッチを介して入力ギヤが嵌合されており、この入力ギヤが前後進切替機構におけるリングギヤに連結されている。なお、ワンウェイクラッチは、前進回転方向で入力軸がその外周側の入力ギヤよりも高速で回転する場合に係合するように構成されている。また、セカンダリープーリと一体の出力軸の外周側には、他のワンウェイクラッチを介して出力ギヤが嵌合されている。そして、上記の入力ギヤと出力ギヤとの間にアイドルギヤが配置され、入力ギヤと出力ギヤとがこのアイドルギヤに噛み合っている。すなわち、入力ギヤと出力ギヤとが共に同方向に回転するように構成されている。これら入力ギヤと出力ギヤとのギヤ比(変速比)は、上記の各プーリとこれらに巻き掛けられたベルトとからなる無段変速機で設定できる最も大きい変速比よりも僅かに小さい変速比に設定されている。そして、上記の他のワンウェイクラッチは、前進回転方向で、出力軸が出力ギヤよりも高速で回転する場合に係合するように構成されている。また、上記の他のワンウェイクラッチと並列に摩擦式のクラッチが設けられている。さらに、後進状態を設定するために、前後進切替機構におけるキャリアを固定するブレーキが設けられている。
 したがって、上記の特開2005-308041号公報に記載された装置では、例えば前進走行するために発進する場合、サンギヤと入力軸とがクラッチによって連結され、無段変速機を主体とする主変速経路に入力軸を介してトルクが伝達され、上記の各ギヤを主体とする副変速経路にワンウェイクラッチが係合することによりトルクが伝達される。その場合、ギヤ列による変速比が無段変速機の最大変速比より幾分小さいので、出力ギヤが出力軸よりも高速で回転する。その結果、出力軸側のワンウェイクラッチが解放状態になり、トルクはギヤ列を介して駆動輪に伝達される。すなわち、無段変速機には発進時の大きいトルクが掛からない。そして発進後に、車速が増大するにつれて無段変速機の変速比を次第に小さくすると、セカンダリープーリと一体の出力軸の回転数がその外周側に設けられている出力ギヤの回転数に達し、変速比の低下によってその回転数が更に増大する。その結果、出力軸側のワンウェイクラッチが係合状態になり、駆動輪には無段変速機を介してトルクが伝達される。なお、その場合、入力軸側のワンウェイクラッチは解放状態になるので、インターロック状態は生じない。 
 また、特開2004-076876号公報に記載された装置は、エンジンが出力した動力を伝達する入力軸と、ベルト式無段変速機におけるプライマリープーリとの間に、シングルピニオン型遊星歯車機構からなる前後進切替機構が設けられている。そして、その前後進切替機構におけるリングギヤとプライマリープーリとが一体となって回転するように連結され、またサンギヤに入力軸が連結されている。したがって、サンギヤとリングギヤとをクラッチによって連結することにより前進状態となり、キャリアをブレーキによって固定することにより後進状態となる。さらに、入力軸と、セカンダリープーリに一体化されている出力軸との間には、無段変速機による最大変速比よりも大きい変速比のギヤ列が設けられている。そのギヤ列を構成している入力ギヤが入力軸に一体化され、またその入力軸にアイドルギヤを介して連結されている出力ギヤが、出力軸に回転可能に嵌合させられている。そして、出力ギヤと出力軸との間に、ワンウェイクラッチと摩擦クラッチとが直列に配列されている。
 したがって、前進状態で発進する場合、入力軸をプライマリープーリに連結するためのクラッチを解放しておき、また出力軸側のクラッチを係合させておくことにより、入力軸からギヤ列およびワンウェイクラッチならびにこれと直列に配列されているクラッチを介して出力軸にトルクが伝達される。その状態から入力軸とプライマリープーリとをクラッチによって連結すると、無段変速機の最大変速比がギヤ列による変速比よりも幾分小さいことから、セカンダリープーリおよびこれと一体の出力軸が従前より大きい回転数、より具体的には出力ギヤより高回転数になってワンウェイクラッチが解放状態になる。すなわち、トルクは無段変速機を介して出力軸に伝達される。このように、発進時はギヤ列がトルクの伝達を行うので、無段変速機には発進時の大きいトルクが掛かることがない。
 そして、特開2000-130548号公報には、上述した特開2004-076876号公報に記載されている装置と同様の構成の変速装置が記載されている。すなわち、この特開2000-130548号公報に記載された変速装置においても、発進時にトルクを伝達するギヤ列における出力側のギヤと、セカンダリープーリに一体化されている出力軸との間に、ワンウェイクラッチと摩擦クラッチとが並列に配列されている。
 これらいずれの公報に記載された装置においても、ベルト式無段変速機と並列にギヤ列が設けられ、主として発進時にそのギヤ列を介して、発進のためのトルクを伝達するように構成されている。そして、前進走行状態では無段変速機を介してトルクを伝達させるために、トルクの伝達経路を切り替えており、その切り替えをワンウェイクラッチを使用して行うように構成されている。しかしながら、ワンウェイクラッチはトルクの伝達方向が一方向に限られるのに対して、車両が実際に走行する際には、正逆いずれの方向にもトルクを伝達する必要がある。また、トルクの伝達経路の構成によってはワンウェイクラッチを機能させないようにする必要もある。そのため、上述した各公報に記載されているように、ワンウェイクラッチと摩擦クラッチとを併用する必要がある。したがって、上述した各公報に記載されている構成では、発進時の大きいトルクが無段変速機に作用することを回避もしくは抑制できるとしても、装置の全体としての構成が大型化し、車載性が損なわれてしまう可能性がある。
 また、特開2005-308041号公報に記載された装置および特開2004-076876号公報に記載された装置は、いずれも遊星歯車機構からなる前後進切替機構を備えている。前者の特開2005-308041号公報に記載された構成では、ベルト式無段変速機によってトルクを伝達して走行している場合、そのサンギヤにはエンジンからのトルクが伝達され、またリングギヤにはギヤ列からのトルクが伝達される。そのため、サンギヤ、ピニオンギヤ、およびリングギヤの間に大きな回転数差が生じ、これが動力の損失や潤滑油の劣化、あるいは騒音や振動の原因になる可能性がある。また、後者の特開2004-076876号公報に記載された構成では、ギヤ列がトルクを伝達して走行している場合に、前後進切替機構を構成している遊星歯車機構のサンギヤにエンジンからのトルクが伝達され、かつリングギヤには出力軸側から無段変速機を介してトルクが伝達される。その結果、上記の特開2005-308041号公報に記載された装置と同様に、サンギヤ、ピニオンギヤ、およびリングギヤの間に大きな回転数差が生じ、これが動力の損失や潤滑油の劣化、あるいは騒音や振動の原因になる可能性がある。
 この発明は上記の技術的課題に着目してなされたものであり、無段変速機を備えた車両用動力伝達装置であって、無段変速機で設定可能な最大変速比もしくは最小変速比を超える変速比を設定でき、しかも小型化が容易でかつ耐久性に優れた車両用動力伝達装置を提供することを目的とするものである。
 上記の目的を達成するために、この発明は、駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、それぞれ、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記出力軸もしくは前記中間軸と同一軸線上に配置され、前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至るトルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されていることを特徴とする
ものである。
 また、この発明における前記ギヤ列は、前記複数のギヤによって、前記無段変速機の最大変速比より大きい変速比、もしくは前記無段変速機の最小変速比より小さい変速比を設定するように構成することができる。
 また、この発明における前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有しており、その場合、この発明における前記第2クラッチ機構は、前記入力軸と前記駆動側部材との間に設けられてこれら入力軸と駆動側部材とを選択的に連結するように構成することができる。
 また、この発明における前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有しており、その場合、この発明における前記第2クラッチ機構は、前記出力側部材と前記出力軸との間に設けられてこれら出力側部材と出力軸とを選択的に連結するように構成することができる。
 また、この発明における前記第1クラッチ機構と前記第2クラッチ機構とは、それぞれ、摩擦クラッチによって構成することができる。
 また、この発明における前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記中間軸上に設けられた1つのアイドルギヤもしくは互いに一体となって回転する複数のアイドルギヤと、そのアイドルギヤを介して前記駆動ギヤからトルクが伝達されかつ前記入力要素に一体的に連結された従動ギヤとによって構成することができる。その場合、前記ギヤ列は、前記入力要素に前記駆動ギヤから前記アイドルギヤおよび前記従動ギヤを介してトルクを伝達する場合の変速比が1よりも大きくなるように構成することができる。
 また、この発明における前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する第1アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する第2アイドルギヤとによって構成することができる。その場合、前記ギヤ列は、前記入力要素に駆動ギヤから前記第1アイドルギヤを介してトルクを伝達する場合の変速比および前記出力要素に前記従動ギヤから前記第2アイドルギヤを介してトルクを伝達する場合の変速比の少なくとも一方が1よりも大きくなるように構成することができる。
 また、この発明における前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤに噛み合っている第1ピニオンギヤと、その第1ピニオンギヤおよび前記リングギヤに噛み合っている第2ピニオンギヤと、これら第1ピニオンギヤおよび第2ピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたダブルピニオン型遊星歯車機構によって構成することができる。
 また、この発明における前記前後進切替機構は、上記のようにダブルピニオン型遊星歯車機構によって構成する場合、前記サンギヤを前記無段変速機および前記出力軸に連結し、前記キャリアを前記ギヤ列に連結し、前記リングギヤを前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明における前記前後進切替機構は、上記のようにダブルピニオン型遊星歯車機構によって構成する場合、前記サンギヤを前記中間軸および前記第1アイドルギヤに連結し、前記キャリアを前記第2アイドルギヤに連結し、前記リングギヤを前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明における前記前後進切替機構は、上記のようにダブルピニオン型遊星歯車機構によって構成する場合、前記サンギヤを前記中間軸および前記第2アイドルギヤに連結し、前記キャリアを前記第1アイドルギヤに連結し、前記リングギヤを前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明における前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤおよび前記リングギヤに噛み合っているピニオンギヤと、そのピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたシングルピニオン型遊星歯車機構によって構成することができ
る。
 また、この発明におけるこの発明における前記前後進切替機構は、上記のようにシングルピニオン型遊星歯車機構によって構成する場合、前記リングギヤを前記無段変速機および前記出力軸に連結し、前記サンギヤを前記ギヤ列に連結し、前記キャリアを前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明におけるこの発明における前記前後進切替機構は、上記のようにシングルピニオン型遊星歯車機構によって構成する場合、前記リングギヤを前記中間軸および前記第1アイドルギヤに連結し、前記サンギヤを前記第2アイドルギヤに連結し、前記キャリアを前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明におけるこの発明における前記前後進切替機構は、上記のようにシングルピニオン型遊星歯車機構によって構成する場合、前記リングギヤを前記中間軸および前記第2アイドルギヤに連結し、前記サンギヤを前記第1アイドルギヤに連結し、前記キャリアを前記ブレーキ機構によって回転が止められるように構成することができる。
 そして、この発明における前記前後進切替機構は、複数の回転要素を互いに平行な直線で示し、かつ前記直線に直交する基線との交点からの長さおよび前記基線に対する位置で前記各回転要素の回転速度を示す共線図によって、前記入力要素、前記出力要素、および前記反力要素のそれぞれの回転速度を表すことのできる遊星歯車機構によって構成することができる。その場合、前記反力要素は、前記共線図における中央に位置する線で表される要素であり、前記入力要素は、前記共線図における左右いずれか一方の線で表される要素であり、さらに前記出力要素は、前記共線図における左右いずれか一方の線で表される要素であってよい。
 したがって、この発明によれば、前後進切替機構における少なくとも2つの回転要素を第1クラッチ機構によって連結することにより、前後進切替機構の全体が一体となって回転する。その結果、入力軸と出力軸との間でギヤ列が前後進切替機構を介して動力伝達可能な状態になる。その状態で第2クラッチ機構を解放させることにより、入力軸もしくは出力軸に対して無段変速機が遮断され、かつギヤ列が前後進切替機構を介して出力軸に連結される。すなわち、入力軸と出力軸とがギヤ列および前後進切替機構を介して連結される。そのギヤ列による変速比は、無段変速機で設定することのできない変速比であって、無段変速機での最大変速比より大きい変速比、もしくは最小変速比より小さい変速比である。そのため、動力伝達装置の全体としての変速比幅を、無段変速機で設定することのできる変速比幅よりも広くすることができる。
 また、第1クラッチ機構に替えてブレーキ機構を係合させれば、前後進切替機構の反力要素の回転が止められて出力要素が入力要素に対して反対方向に回転する。すなわち、後進走行することができる。その場合、トルクは、ギヤ列、および前後進切替機構を介して、出力要素から出力軸に伝達される。したがって、その場合に動力伝達装置の全体として設定される変速比は、無段変速機では設定することのできない大きい変速比となる。
 また、車両の減速時などは出力軸側からトルクが入力されるが、第2クラッチ機構を無段変速機の従動側部材と出力軸との間に設けてその第2クラッチ機構を解放しておくことにより、出力軸から無段変速機に入力するトルクを遮断して無段変速機を保護することができる。
 また、無段変速機をその変速比がギヤ列での変速比に近くなるように制御した状態で第2クラッチ機構を係合するとともに、第1クラッチ機構を解放させれば、入力軸と出力軸とが第2クラッチ機構および無段変速機を介して連結される。そして、ギヤ列は入力軸に対して遮断される。すなわち、第1クラッチ機構が解放されることにより、前後進切替機構がいずれの回転要素に対してもトルクを伝達しない状態になり、したがって、入力軸と出力軸との間で、ギヤ列および前後進切替機構を介したトルクの伝達が遮断される。そのため、無段変速機によって適宜に変速比を設定することができる。その場合、第1クラッチ機構および第2クラッチ機構が伝達トルク容量を次第に変化させることのできる摩擦クラッチによって構成されていれば、第1クラッチ機構および第2クラッチ機構で受け持つトルクの量を次第に変化させることにより、出力軸のトルクの変化を滑らかにすることができる。その結果、変速ショックや駆動力の変化に起因する違和感を防止もしくは抑制することができる。
 上記のように第2クラッチ機構が係合された場合に、第1クラッチ機構を解放することにより、ギヤ列および前後進切替機構は、入力軸および出力軸のいずれに対しても遮断された状態となる。そのため、無段変速機によってトルクを伝達して走行している場合にギヤ列を連れ回したり、前後進切替機構の入力要素だけでなく出力要素からもトルクが入力されて各要素の回転数差が大きくなるなどの事態を回避することができる。その結果、動力の損失を低減できるだけでなく、耐久性を向上させ、また騒音や振動を抑制することができる。
 また、この発明によれば、入力要素、出力要素、および反力要素の3つの回転要素を有して差動機構として機能する前後進切替機構が、入力軸以外の、出力軸もしくは中間軸と同一軸線上に配置されている。そのため、入力軸と出力軸との間で無段変速機を介してトルクを伝達する場合に、前後進切替機構における各回転要素間の差動を抑制することができる。すなわち、前後進切替機構を出力軸と同一軸線上に配置した場合は、入力軸から前後進切替機構の入力要素へトルクを伝達するギヤ列の変速比を1よりも大きくすることにより、入力要素へ伝達されるトルクの回転数を減速することができる。その結果、前後進切替機構における各回転要素間の差動を抑制することができる。また、前後進切替機構を中間軸と同一軸線上に配置した場合には、入力軸から前後進切替機構の入力要素へトルクを伝達する駆動ギヤと第1アイドルギヤとの間の変速比、および、出力軸から前後進切替機構の出力要素へトルクを伝達する従動ギヤと第2アイドルギヤとの間の変速比の少なくとも一方を1よりも大きくすることにより、入力要素および出力要素の少なくとも一方へ伝達トルクの回転数を減速することができる。その結果、前後進切替機構における各回転要素間の差動が抑制される。このように、この発明では、前後進切替機構における各回転要素間の差動回転数を抑制できる。したがって、前後進切替機構の入力要素や出力要素に対するトルクの伝達時に、その前後進切替機構における各回転要素間の差動を抑制するためのクラッチ等を別途設けなくともよい。そのため、この動力伝達装置の構成の簡素化および小型化を図ることができる。
 そして、この発明によれば、第1クラッチ機構、第2クラッチ機構、およびブレーキ機構を、摩擦式のクラッチやブレーキなど、それぞれ単一の機構によって構成することができる。そのため、動力伝達装置の全体としての構成を簡素化および小型化することができる。また、前後進切替機構をシングルピニオン型あるいはダブルピニオン型の遊星歯車機構によって構成することにより、動力伝達装置の全体としての軸長を短くし、車載性を向上させることができる。
この発明に係る車両用動力伝達装置の一例を説明するためのスケルトン図である。 図1,図4に示す前後進切替機構をダブルピニオン型の遊星歯車機構で構成した場合(出力軸配置,キャリア入力)の各回転要素の回転状態をまとめて示す共線図(速度線図)である。 各クラッチ機構およびブレーキ機構の動作状態をまとめて示す図表である。 この発明の第2の具体例を説明するためのスケルトン図である。 この発明の第3の具体例を説明するためのスケルトン図である。 この発明の第4の具体例を説明するためのスケルトン図である。 図5,図6に示す前後進切替機構をダブルピニオン型の遊星歯車機構で構成した場合(中間軸配置,サンギヤ入力)の各回転要素の回転状態をまとめて示す共線図(速度線図)である。 この発明の他の具体例を説明するためのスケルトン図である。 この発明の他の具体例を説明するためのスケルトン図である。 この発明の他の具体例を説明するためのスケルトン図である。 この発明の他の具体例を説明するためのスケルトン図である。 図10,図11に示す前後進切替機構をダブルピニオン型の遊星歯車機構で構成した場合(中間軸配置,キャリア入力)の各回転要素の回転状態をまとめて示す共線図(速度線図)である。 シングルピニオン型の遊星歯車機構からなる前後進切替機構の例を示すスケルトン図である。 図1,図4に示す前後進切替機構をシングルピニオン型の遊星歯車機構で構成した場合(出力軸配置,サンギヤ入力)の各回転要素の回転状態をまとめて示す共線図(速度線図)である。 図5,図6に示す前後進切替機構をシングルピニオン型の遊星歯車機構で構成した場合(中間軸配置,リングギヤ入力)の各回転要素の回転状態をまとめて示す共線図(速度線図)である。
 次に、この発明を具体例を参照して説明する。この発明に係る動力伝達装置は、エンジンやモータなどの駆動力源が出力した動力を駆動輪に伝達するための装置であって、変速機能のある装置である。すなわち、一般にはトランスミッションあるいはトランスアクスルと称されている装置である。特に、この発明で対象とする装置は、入力軸と出力軸との間に互いに並列に配列された無段変速機と所定の変速比(ギヤ比)のギヤ列とを有する動力伝達装置である。その無段変速機は、従来知られているベルト式の無段変速機やトロイダル型無段変速機であってよい。ベルト式無段変速機は、FF車(フロントエンジン・フロントドライブ車)に搭載する動力伝達装置に適している。トロイダル型無段変速機は、FR車(フロントエンジン・リヤドライブ車)に搭載する動力伝達装置に適している。また、ギヤ列は、要は、入力軸から出力軸にトルクを伝達できるギヤであればよいが、この発明では、無段変速機では設定できない変速比をギヤ列で設定する構成となっている。したがって、ギヤ列は、複数のギヤを噛み合わせて構成されている。そしてそのギヤ比(歯数の比)が、無段変速機での最大変速比より大きい変速比あるいは最小変速比より小さい変速比を設定できるように構成されている。なお、車両が発進する際の大きいトルクが無段変速機に掛からないようにするためには、ギヤ列は無段変速機での最大変速比より大きい変速比を設定できるように構成することが好ましい。また、走行中における駆動力源の回転数を低くして燃費を低下させるためには、ギヤ列は無段変速機での最小変速比より小さい変速比を設定できるように構成することが好ましい。
 そのような動力伝達装置の具体例を図1に示してある。ここに示す例はFF車に適するように構成した例であり、したがって無段変速機1としてベルト式の無段変速機が採用されている。また、駆動力源は、ガソリンエンジンやディーゼルエンジンなどの内燃機関(E/G;エンジン)2によって構成されている。
 エンジン2の出力軸(クランク軸)にロックアップクラッチ付のトルクコンバータ3が連結されている。このトルクコンバータ3は従来広く知られている構成のものである。具体的には、フロントカバー4と一体のポンプインペラー5に対向してタービンランナー6が配置されている。また、これらポンプインペラー5とタービンランナー6との間に、図示しない一方向クラッチを介して保持されたステータ7が配置されている。また、タービンランナー6と一体となって回転するロックアップクラッチ8がフロントカバー4の内面に対向して配置されている。そして、そのロックアップクラッチ8を挟んだ両側の圧力差に応じてロックアップクラッチ8が係合・解放動作するようになっている。すなわち、ロックアップクラッチ8がフロントカバー4の内面に接触してトルクを伝達する係合状態になり、また反対に、フロントカバー4の内面から離れてトルクの伝達を遮断する解放状態になるように構成されている。そして、そのタービンランナー6に入力軸9が連結されている。
 無段変速機1は、従来知られているように、駆動側部材であるプライマリープーリ10と、従動側部材であるセカンダリープーリ11と、これらプライマリープーリ10およびセカンダリープーリ11に巻き掛けられたベルト12とを備えている。そして、プライマリープーリ10およびセカンダリープーリ11は、ベルト12が巻き掛けられている溝の幅を広げるもしくは狭めるように変化させることにより、ベルト12の巻き掛け半径が大小に変化するように構成されている。すなわち、ベルト12が巻き掛けられているプライマリープーリ10およびセカンダリープーリ11の溝幅を変化させて変速比を無段階に変更するように構成されている。
 プライマリープーリ10は入力軸9と同一軸線上で、上記のトルクコンバータ3を挟んでエンジン2とは反対側に配置されている。すなわち、プライマリープーリ10と一体のプライマリーシャフト13が、後述する第2クラッチ機構C2を介して入力軸9に連結されている。また、セカンダリープーリ11は、その回転中心軸線が上記のプライマリープーリ10の回転中心軸線と平行になるように配置されている。そしてセカンダリープーリ11は、その回転中心軸線に沿うように設けられたセカンダリーシャフト14を備えている。そのセカンダリーシャフト14と同一軸線上に出力軸15が配置されており、それらセカンダリーシャフト14と出力軸15とが一体に連結されている。したがって出力軸15は、前述した入力軸9と平行になっている。
 前述の入力軸9とプライマリーシャフト13との間に、第2クラッチ機構C2が設けられている。この第2クラッチ機構C2は、入力軸9とプライマリーシャフト13とを選択的に連結するための機構である。要は、この第2クラッチ機構C2は、入力軸9とプライマリーシャフト13との間におけるトルクの伝達および遮断を選択的に行うことができるものであればよい。例えば摩擦クラッチや噛み合いクラッチのいずれであってもよいが、係合力に応じて伝達トルク容量が次第に増大もしくは減少する湿式もしくは乾式の摩擦クラッチによって構成されていることが好ましい。
 この発明に係る動力伝達装置では、上記の無段変速機1のセカンダリーシャフト14に連結された出力軸15と同一軸線上に、前後進切替機構16が配置されている。この前後進切替機構16は、入力軸9から伝達されたトルクをその方向を変えずに伝達する前進状態と、入力軸9から伝達されたトルクをその方向を反転して伝達する後進状態とに切り替えるための機構である。この発明では、3つの回転要素が互いに差動作用をなすいわゆる差動機構によって前後進切替機構16が構成されている。この種の差動機構は、従来種々知られており、この発明ではいずれの差動機構も採用することができる。図1に示す例では、ダブルピニオン型の遊星歯車機構によって前後進切替機構16が構成されている。
 ダブルピニオン型の遊星歯車機構は、外歯歯車であるサンギヤ17と、そのサンギヤ17と同心円上に配置された内歯歯車であるリングギヤ18と、サンギヤ17に噛み合っている第1ピニオンギヤ19と、その第1ピニオンギヤ19およびリングギヤ18に噛み合っている第2ピニオンギヤ20と、これら第1ピニオンギヤ19および第2ピニオンギヤ20を自転かつ公転可能に保持しているキャリア21とを備えている。キャリア21には、後述するギヤ列23を介して入力軸9が連結されている。したがってキャリア21が入力要素となっている。また、リングギヤ18の回転を選択的に止めるブレーキ機構Bが設けられている。したがってリングギヤ18が反力要素となっている。このブレーキ機構Bは、リングギヤ18とケーシングなどの固定部22との間に設けられており、多板ブレーキなどの摩擦式ブレーキや噛み合い式のブレーキによって構成することができる。
 また、サンギヤ17に無段変速機1のセカンダリーシャフト14および出力軸15が一体に連結されている。したがってサンギヤ17が出力要素となっている。そして、このサンギヤ17とキャリア21との間に、これらサンギヤ17とキャリア21とを連結して遊星歯車機構の全体を一体回転させるための第1クラッチ機構C1が設けられている。この第1クラッチ機構C1は前進走行状態を設定するためのものであって、フォワードクラッチと称することのできるクラッチである。この第1クラッチ機構C1は、トルクの伝達および遮断を選択的に行うことができるものであればよい。例えば摩擦クラッチや噛み合いクラッチのいずれであってもよいが、係合力に応じて伝達トルク容量が次第に増大もしくは減少する湿式もしくは乾式の摩擦クラッチによって構成されていることが好ましい。
 要は、第1クラッチ機構C1は、前後進切替機構16を構成している遊星歯車機構における3つの回転要素のうちの少なくとも2つの回転要素を連結して遊星歯車機構の全体を一体化させるように構成されていればよい。この図1に示す例のようなサンギヤ17とキャリア21とを連結する構成の他に、例えば、特開2010-276159号公報や特開2010-216613号公報に記載されている「フォワードクラッチ」のように、サンギヤとリングギヤとを連結するように構成することもできる。あるいは、特開2005-337360号公報に記載されている「フォワードクラッチ」のように、キャリアとリングギヤとを連結するように構成することもできる。また、3つの回転要素の全てを相互に連結して遊星歯車機構の全体を一体化させるように構成することもできる。
 なお、前後進切替機構16を構成している遊星歯車機構は、共線図(速度線図)によって表すことができる。図1に示す前後進切替機構16を表す共線図の例を図2に示してある。図2において、サンギヤ17、リングギヤ18、およびキャリア21が互いに平行な直線で表されている。それら各直線のうち、サンギヤ17を示す直線とキャリア21を示す直線とが左右の両端に位置し、それらの中央に反力要素であるリングギヤ18を示す直線が配置される。また、サンギヤ17を示す直線とキャリア21を示す直線との間隔を「1」とした場合、サンギヤ17を示す直線とリングギヤ18を示す直線との間隔が、キャリア21の歯数とリングギヤ18の歯数との比(すなわちギヤ比)に相当する値に設定される。そして、各直線の基線L0との交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0に対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、前後進切替機構16の全体が一体となって回転するので、各回転要素の回転数は直線L1で示すようになる。これに対して、ブレーキ機構Bによってリングギヤ18を固定した場合には、各回転要素の回転数および回転方向は直線L2で示すようになる。すなわち、サンギヤ17がキャリア21に対して反対方向に回転する。
 そして、この発明に係る動力伝達装置では、上記の無段変速機1と並列に、複数の平行ギヤにより構成されるギヤ列23が設けられている。このギヤ列23は、無段変速機1での最大変速比より大きい変速比を設定する減速機構、もしくは、無段変速機1での最小変速比より小さい変速比を設定する増速機構として構成されている。この図1に示す例では、ギヤ列23は、入力軸9から出力軸15に向けてトルクを伝達する場合の減速機構として構成されている。そして、入力軸9と同一軸線上に配置された駆動ギヤと、入力軸9と出力軸15との回転方向を同一にするためのアイドルギヤと、そのアイドルギヤを介して上記の駆動ギヤからトルクが伝達される従動ギヤとが設けられている。
 具体的には、入力軸9および出力軸15に対して平行に、この発明における中間軸に相当するカウンタシャフト24が配置されている。そして、入力軸9上に、その入力軸9に対して相対回転できるように駆動ギヤ25が配置されている。その駆動ギヤ25に噛み合っているカウンタドリブンギヤ26が、カウンタシャフト24に取り付けられて一体化されている。また、カウンタシャフト24には、カウンタドリブンギヤ26よりも径が小さいカウンタドライブギヤ27が取り付けられて一体化されている。そして、そのカウンタドライブギヤ27に噛み合っている従動ギヤ28が、前後進切替機構16における入力要素であるキャリア21に一体的に連結されている。したがって、上記のカウンタドリブンギヤ26およびカウンタドライブギヤ27が、この発明におけるアイドルギヤに相当している。
 上記のカウンタドリブンギヤ26は、駆動ギヤ25よりも大径であって、駆動ギヤ25からカウンタドリブンギヤ26に向けてトルクを伝達する場合には減速作用が生じるように構成されている。したがって、ギヤ列23の変速比(ギヤ比)は、上記の駆動ギヤ25とカウンタドリブンギヤ26との間の変速比と、カウンタドライブギヤ27と従動ギヤ28との間の変速比を乗算した変速比となる。具体的には、ギヤ列23は、上記の駆動ギヤ25からカウンタドリブンギヤ26および従動ギヤ27を介して前後進切替機構16のキャリア21にトルクを伝達する場合の変速比が、「1」よりも大きくなるように構成されている。そして、この図1に示すギヤ列23は、その変速比の値が無段変速機1での最大変速比より大きくなるように構成されている。
 この図1に示す例は、前述したようにFF車に適するように構成した例である。したがって、出力軸15から終減速機であるフロントデファレンシャル29にトルクを出力するように構成されている。すなわち、出力軸15に出力ギヤ30が取り付けられ、この出力ギヤ30に噛み合っている大径ギヤ31が減速ギヤシャフト32に取り付けられている。この減速ギヤシャフト32には小径ギヤ33が取り付けられており、この小径ギヤ33がフロントデファレンシャル29のリングギヤ34に噛み合っている。そして、フロントデファレンシャル29はそのリングギヤ34を介して伝達されたトルクを左右のドライブシャフト35から駆動輪(図示せず)に伝達するように構成されている。
 この発明に係る上記の動力伝達装置は、前進方向に発進する場合および後進走行する場合に、ギヤ列23を備えたトルク伝達経路を経由して入力軸9から出力軸15にトルクを伝達し、ある程度車速が増大した状態で前進走行する場合に、無段変速機1を備えたトルク伝達経路を経由して入力軸9から出力軸15にトルクを伝達するように制御される。例えば、図示しないシフト装置によってドライブポジション(ドライブレンジ)が選択されると、第1クラッチ機構C1が係合させられ、また第2クラッチ機構C2とブレーキ機構Bとが解放させられる。図3にはこのような係合および解放の状態を表にまとめて示してある。なお、図3で「ON」は係合していることを示し、「OFF」は解放していることを示している。
 前進方向への発進時に、各クラッチ機構C1,C2、およびブレーキ機構Bをこの図3に示す表のように設定することにより、エンジン2が出力したトルクは、入力軸9、ギヤ列23、および前後進切替機構16を介して、出力軸15に伝達される。すなわち、ギヤ列23における駆動ギヤ25が入力軸9に連結されているので、入力軸9のトルクは、ギヤ列23を介して従動ギヤ28から前後進切替機構15のキャリア21に伝達される。それとともに、第1クラッチ機構C1を介してサンギヤ17に伝達される。前進時には、前後進切替機構16は、サンギヤ17およびキャリア21の2つの回転要素が第1クラッチ機構C1によって連結されているので、前後進切替機構16の全体が一体化されている。したがって、前後進切替機構16は増減速作用を生じずに、キャリア21から入力されたトルクをそのままサンギヤ17から出力軸15に伝達する。
 そして、出力軸15に伝達されたトルクが出力ギヤ30から減速ギヤ列およびフロントデファレンシャル29を介して左右の駆動輪に伝達され、車両が発進する。なお、無段変速機1は、出力軸15もしくはサンギヤ17に常時連結されている。そのため、前後進切替機構16に入力されたトルクは、無段変速機1のセカンダリープーリ11にも伝達される。ただし、発進時には、第2クラッチ機構C2が解放状態になっていて、無段変速機1と入力軸9との間ではトルクの伝達が生じないように切り離されている。そのため、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達は生じず、いわゆるインターロック状態となることはない。
 このように発進時には、ギヤ列23を経由して入力軸9から出力軸15にトルクが伝達される。そしてギヤ列23が減速機構として機能することにより、入力軸9と出力軸15との間の変速比は、無段変速機1で設定できる最大変速比よりも大きい変速比となる。その結果、車両としては大きい駆動力を得ることができる。また、無段変速機1には発進時の大きいトルクが掛からないので、伝達トルク容量を設定する油圧を高くする必要がない。そのため、高圧の油圧を発生させるための動力の消費が少なくなって燃費を改善することができ、また無段変速機1の耐久性を向上させることができる。
 発進後、予め決められている所定の車速にまで増速した際には、無段変速機1の変速比を最大値もしくはそれに近い変速比に設定した状態で、第1クラッチ機構C1を解放させる。それとともに、第2クラッチ機構C2を係合させる。前後進切替機構16は、ブレーキ機構Bが解放されている状態で、更に第1クラッチ機構C1が解放されるので、いわゆる自由回転する状態になる。その結果、出力軸15とギヤ列23との連結が解かれる。これに対して、プライマリープーリ10が第2クラッチ機構C2によって入力軸9に連結される。そのため、入力軸9と出力軸15とは無段変速機1を経由してトルクを伝達するように連結される。したがって、無段変速機1による変速比を徐々に減少させ、あるいは車速とアクセル開度とに応じて変化させることにより、エンジン回転数を燃費の良い回転数に設定することができる。
 上記のようにしてギヤ列23を経由するトルクの伝達状態から無段変速機1を経由するトルクの伝達状態に切り替える場合、ギヤ列23による変速比が無段変速機1の最大変速比よりも大きいため、変速比あるいは駆動力が変化することになる。したがって、第1クラッチ機構C1を解放し、かつ第2クラッチ機構C2を係合させる場合、過渡的にそれら第1クラッチ機構C1および第2クラッチ機構C2を滑り係合させるように制御する。すなわち、第2クラッチ機構C2の係合圧を徐々に増大させることにより、その伝達トルク容量を次第に増大させる。これに併せて、第1クラッチ機構C1の係合圧を徐々に低下させることにより、その伝達トルク容量を次第に減少させる。この制御は、従来クラッチ・ツウ・クラッチ制御として知られている制御である。このように第1クラッチ機構C1および第2クラッチ機構C2をそれぞれ制御することにより、出力軸15のトルクが滑らかに変化して変速ショックや違和感が生じることを回避もしくは抑制することができる。
 第1クラッチ機構C1が完全に解放され、かつ第2クラッチ機構C2が完全に係合された状態では、前後進切替機構16のキャリア21に入力軸9からのトルクが伝達され、サンギヤ17にセカンダリープーリ11からのトルクが伝達される。しかしながら、リングギヤ18およびキャリア21が自由に回転できる状態になっているため、前後進切替機構16を構成している各回転要素同士の間に回転数差が発生する。しかしながら、上述のように、ギヤ列23が、駆動ギヤ25からアイドルギヤおよび従動ギヤ28を介して前後進切替機構16のキャリア21にトルクを伝達する場合の変速比が「1」よりも大きくなるように構成されている。したがって、この点において、前後進切替機構16の各回転要素同士の間の回転数差は小さくなる。そのため、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達時に、前後進切替機構16での各回転要素同士の間の回転数差が大きくなることによる動力損失や耐久性の低下、あるいは騒音もしくは振動を抑制することができる。
 一方、後進走行する場合には、図3に示すように、第1クラッチ機構C1および第2クラッチ機構C2を解放するとともに、ブレーキ機構Bを係合させる。この場合、前後進切替機構16においては、リングギヤ18がブレーキ機構Bによって固定された状態で、キャリア21にギヤ列23を経由してエンジン2からのトルクが入力される。そのため、サンギヤ17がキャリア21に対して反対方向に回転する。したがって、前進走行の際の発進時と同様に、ギヤ列23を経由して、入力軸9から出力軸15にトルクが伝達される。そしてこの場合は、出力軸15が後進走行する方向に回転する。また、この場合の変速比は、ギヤ列23による変速比と、前後進切替機構16を構成している遊星歯車機構による変速比とを乗算した変速比となる。そして、出力ギヤ30から減速ギヤ列およびフロントデファレンシャル29を介して左右の駆動輪にトルクが伝達され、車両が後進走行する。なお、第2クラッチ機構C2が解放されていて、無段変速機1と入力軸9との間ではトルクの伝達が生じないように切り離されている。そのため、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達は生じず、いわゆるインターロック状態となることはない。
 上述したように、この発明に係る上記の動力伝達装置によれば、前進方向への発進時や後進走行する場合、無段変速機1では設定することのできない大きい変速比を設定できる。そのため、発進加速性を向上させることができ、また後進走行時の動力性能を向上させることができる。また、これらの場合に無段変速機1は走行のためのトルクの伝達には関与しないので、無段変速機1でのベルト挟圧力を高くする必要がない。そのため、挟圧力を発生させるための動力の消費を少なくして動力損失を低減できる。また、無段変速機1の耐久性を向上させることができる。さらに、この発明に係る動力伝達装置では、各クラッチ機構を摩擦クラッチや噛み合いクラッチなどの単一の構成のものとすることができる。そのため、必要とする構成部品を少なくして、動力伝達装置の全体としての構成を簡素化することができる。また動力伝達装置を小型化することができる。
 また、上記の動力伝達装置によれば、入力軸9から前後進切替機構16のキャリア21にトルクが伝達される際には、そのトルクは、ギヤ列23により回転数が減速されてキャリア21に伝達される。したがって、前後進切替機構16における各回転要素同士の間の差動回転が抑制される。そのため、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達時における前後進切替機構の差動を抑制するためのクラッチ等を別途設けずに済み、その分、この動力伝達装置の構成の簡素化および小型化を図ることができる。
 また、上述の図1に示す構成の動力伝達装置では、第2クラッチ機構C2が入力軸9上に設けられている。そのため、前進走行中に入力軸9側から第2クラッチ機構C2に掛かるトルクは、トルクコンバータ3以外では増減速作用を受けていないトルクになる。すなわち、駆動状態においては、入力軸9におけるトルク以上のトルクが第2クラッチ機構C2に掛かることがない。したがって、第2クラッチ機構C2に大きなトルクが掛かる可能性がある出力軸15上やカウンタシャフト24上に第2クラッチ機構C2を設けた場合と比較して、第2クラッチ機構C2をトルク容量が小さい小型のクラッチとすることができる。
 この発明に係る動力伝達装置は、ギヤ列23を備えたトルク伝達経路を介して入力軸9から出力軸15にトルクを伝達する場合に、無段変速機1を備えたトルク伝達経路が入力軸9もしくは出力軸15から切り離される。また反対に、無段変速機1を備えたトルク伝達経路を介して入力軸9と出力軸15との間でトルクを伝達する場合には、ギヤ列23を備えたトルク伝達経路が入力軸9もしくは出力軸15から切り離される。そのため、第2クラッチ機構C2は、必ずしも上述した図1に示す位置に設けられている必要はない。すなわち、第2クラッチ機構C2は、本来の機能を損なわない範囲で適宜な位置に設けることができる。また、前後進切替機構16も、必ずしも上述した図1に示す位置に設けられている必要はない。したがって、前後進切替機構16は、上記の構成例のように出力軸15と同一軸線上に配置される他に、この発明における中間軸に相当するカウンタシャフト24と同一軸線上に配置することもできる。以下、それら他の構成例を図4,図5,図6に示して説明する。
 図4に示す動力伝達装置は、図1に示す構成のうち第2クラッチ機構C2が、前後進切替機構16と共に出力軸15と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図4の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図4に図1と同じ符号を付けてその説明を省略する。
 この発明における第2クラッチ機構C2は、入力軸9から無段変速機1を経由して出力軸15に至るトルク伝達経路でトルクの伝達と遮断とを行うクラッチである。この図4に示す例では、第2クラッチ機構C2は、出力軸15と同一軸線上に配置され、無段変速機1のセカンダリーシャフト14と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図1に示す構成に対して第2クラッチ機構C2の配置が上記のように変更されたことに伴って、入力軸9と無段変速機1のプライマリーシャフト13とが直接連結されている。
 この図4に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列23および前後進切替機構16を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図4に示す構成では、第2クラッチ機構C2が無段変速機1のいわゆる出力側に配置されている。そのため、ギヤ列23および前後進切替機構16を介して入力軸9と出力軸15とが連結されている状態で減速する場合に、第2クラッチ機構C2によって無段変速機1を出力軸15に対して遮断することができる。その結果、無段変速機1に過大なトルクが作用することを回避し、無段変速機1の耐久性を向上させることができる。すなわち、第1クラッチ機構C1を係合させた状態で減速する場合、車両の走行慣性力に基づくトルクが出力軸15に作用する。その場合、出力軸15と無段変速機1のセカンダリーシャフト14との間は、第2クラッチ機構C2が解放状態になっていて遮断されている。したがって、減速時のいわゆる逆入力トルクが無段変速機1に掛かることがない。そのため、無段変速機1に不必要に作用するトルクを低減し、かつ不必要な回転を抑制することができる。その結果、無段変速機1の耐久性を向上させることができる。
 図5に示す動力伝達装置は、図1に示す構成のうち前後進切替機構16が、この発明における中間軸に相当しているギヤ列23のカウンタシャフト24と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図5の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図5に図1と同じ符号を付けてその説明を省略する。
 前後進切替機構16は、前述したように前進状態と後進状態とを切り替えるための機構であり、図1に示す例のように出力軸15と同一軸線上に配置される以外に、カウンタシャフト24と同一軸線上に配置することもできる。この図5に示す例では、前後進切替機構16は、上述の図1に示す例と同様に、ダブルピニオン型の遊星歯車機構によって構成されている。そして、この図5に示す例では、サンギヤ17とカウンタシャフト24とが一体に連結されている。すなわち、サンギヤ17に、ギヤ列23の駆動ギヤ25およびカウンタドリブンギヤ26を介して、入力軸9が連結されている。したがってサンギヤ17が入力要素となっている。また、リングギヤ18の回転を選択的に止めるブレーキ機構Bが設けられている。したがってリングギヤ18が反力要素となっている。また、キャリア21とギヤ列23のカウンタドライブギヤ27とが一体に連結されている。すなわち、キャリア21に、ギヤ列23のカウンタドライブギヤ27および従動ギヤ28を介して、無段変速機1のセカンダリーシャフト14および出力軸15が連結されている。したがってキャリア21が出力要素となっている。そして、サンギヤ17とキャリア21との間に、これらサンギヤ17とキャリア21とを連結して遊星歯車機構の全体を一体回転させるための第1クラッチ機構C1が設けられている。
 この図5に示す例では、ギヤ列23のカウンタドリブンギヤ26は、駆動ギヤ25よりも大径であって、駆動ギヤ25からカウンタドリブンギヤ26に向けてトルクを伝達する場合には減速作用が生じるように構成されている。すなわち、この図5に示す例では、ギヤ列23は、駆動ギヤ25からこの発明の第1アイドルギヤに相当するカウンタドリブンギヤ26を介して前後進切替機構16のサンギヤ17にトルクを伝達する場合の変速比(ギヤ比)が、「1」よりも大きくなるように構成されている。そして、ギヤ列23は、その変速比の値が無段変速機1での最大変速比より大きくなるように構成されている。
 この図5に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列23および前後進切替機構16を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図5に示す構成では、前述の図1に示す動力伝達装置の構成と同様に、第2クラッチ機構C2が無段変速機1のいわゆる入力側に配置されている。したがって、前述の図1に示す動力伝達装置の場合と同様に、エンジン2の動力で前進走行している場合には、エンジン2から入力軸9に伝達されたトルク以上のトルクが第2クラッチ機構C2に掛かることがない。そのため、この図5に示す構成においても、第2クラッチ機構C2の小型化を図ることができる。
 そして、この図5に示す構成では、上記のように入力軸9からサンギヤ17すなわち前後進切替機構16の入力要素にトルクが伝達される際には、そのトルクは、ギヤ列23の駆動ギヤ25とカウンタドリブンギヤ26とにより回転数が減速されてサンギヤ17に伝達される。したがって、この図5に示す構成においても、前後進切替機構16における各回転要素同士の間の差動回転が抑制される。そのため、前後進切替機構の差動を抑制するためのクラッチ等を別途設けずに済み、その分、この動力伝達装置の構成の簡素化および小型化を図ることができる。
 図6に示す動力伝達装置は、上記の図5に示す構成のうち第2クラッチ機構C2が出力軸15と同一軸線上に配置され、その他は図5に示す例と同様に構成されている。したがって、この図6の構成のうち図5と異なる部分のみ説明し、図5と同様の構成の部分には図6に図5と同じ符号を付けてその説明を省略する。
 この図6に示す例では、第2クラッチ機構C2は、出力軸15と同一軸線上に配置され、無段変速機1のセカンダリーシャフト14と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図5に示す構成に対して第2クラッチ機構C2の配置が上記のように変更されたことに伴って、入力軸9と無段変速機1のプライマリーシャフト13とが直接連結されている。
 この図6に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1,図5に示す動力伝達装置の場合と同様にして、ギヤ列23および前後進切替機構16を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1,図5に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図6に示す構成では、第2クラッチ機構C2が無段変速機1のいわゆる出力側に配置されている。そのため、ギヤ列23および前後進切替機構16を介して入力軸9と出力軸15とが連結されている状態で減速する場合に、第2クラッチ機構C2によって無段変速機1を出力軸15に対して遮断することができる。その結果、無段変速機1に過大なトルクが作用することを回避し、無段変速機1の耐久性を向上させることができる。すなわち、第1クラッチ機構C1を係合させた状態で減速する場合、車両の走行慣性力に基づくトルクが出力軸15に作用する。その場合、出力軸15と無段変速機1のセカンダリーシャフト14との間は、第2クラッチ機構C2が解放状態になっていて遮断されている。したがって、減速時のいわゆる逆入力トルクが無段変速機1に掛かることがない。そのため、無段変速機1に不必要に作用するトルクを低減し、かつ不必要な回転を抑制することができる。その結果、無段変速機1の耐久性を向上させることができる。
 なお、上記の図5,図6に示す例では、前後進切替機構16を構成している遊星歯車機構は、図7に示す共線図(速度線図)によって表すことができる。図7において、前述の図2に示す共線図と同様に、サンギヤ17、リングギヤ18、およびキャリア21が互いに平行な直線で表されている。そして、各直線の基線L0との交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0に対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、前後進切替機構16の全体が一体となって回転するので、各回転要素の回転数は直線L3で示すようになる。これに対して、ブレーキ機構Bによってリングギヤ18を固定した場合には、各回転要素の回転数および回転方向は直線L4で示すようになる。すなわち、キャリア21がサンギヤ17に対して反対方向に回転する。図2の共線図に示す遊星歯車機構では、キャリア21が入力要素となりエンジン2のクランク軸の回転方向と同じ回転方向(すなわち正転方向)のトルクが入力されるのに対して、この図7の共線図に示す遊星歯車機構では、サンギヤ17が入力要素とりエンジン2のクランク軸の回転方向と反対の回転方向(すなわち逆転方向)のトルクが入力されるようになっている。
 また、上記の図1,図4,図5,図6に示す動力伝達装置の前後進切替機構16は、それぞれ、図8,図9,図10,図11に示すように配置することができる。具体的には、図1,図4に示す動力伝達装置の前後進切替機構16は、それぞれ、図8,図9に示すように、出力軸15の軸線方向において前後進切替機構16の向きを反対にして配置することができる。すなわち、前後進切替機構16は、出力軸15上でその軸線方向において、第1クラッチ機構C1をエンジン2に近い側(図8,図9での右側)に向け、キャリア21と従動ギヤ28との連結部分を無段変速機1に近い側(図8,図9での左側)に向けて配置してもよい。
 これら図8,図9に示すように前後進切替機構16を配置した動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、図5,図6に示す前後進切替機構16は、それぞれ、図10,図11に示すように、出力軸15の軸線方向において前後進切替機構16の向きを反対にするとともに、入力要素と出力要素とを入れ替えて配置することができる。すなわち、前後進切替機構16は、カウンタシャフト24上でその軸線方向において、第1クラッチ機構C1をエンジン2に近い側(図10,図11での右側)に向け、キャリア21と従動ギヤ28との連結部分を無段変速機1に近い側(図10,図11での左側)に向けて配置してもよい。そして、キャリア21を入力要素としてカウンタドリブンギヤ26と一体的に連結し、サンギヤ17を出力要素としてカウンタシャフト24と一体的に連結してもよい。
 これら図10,図11に示すように前後進切替機構16を配置した動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 なお、上記の図10,図11に示す例では、前後進切替機構16を構成している遊星歯車機構は、図12に示す共線図(速度線図)によって表すことができる。図12において、前述の図7に示す共線図と同様に、サンギヤ17、リングギヤ18、およびキャリア21が互いに平行な直線で表されている。そして、各直線の基線L0との交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0に対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、前後進切替機構16の全体が一体となって回転するので、各回転要素の回転数は直線L5で示すようになる。これに対して、ブレーキ機構Bによってリングギヤ18を固定した場合には、各回転要素の回転数および回転方向は直線L6で示すようになる。すなわち、サンギヤ17がキャリア21に対して反対方向に回転する。図7の共線図に示す遊星歯車機構では、サンギヤ17が入力要素となってエンジン2のクランク軸の回転方向と反対の回転方向(すなわち逆転方向)のトルクが入力されるのに対して、この図12の共線図に示す遊星歯車機構では、キャリア21が入力要素となってエンジン2のクランク軸の回転方向と反対の回転方向(すなわち逆転方向)のトルクが入力されるようになっている。
 この発明に係る動力伝達装置は、前後進切替機構16を、上述したダブルピニオン型の遊星歯車機構に替えて、シングルピニオン型の遊星歯車機構によって構成することもできる。例えば、上述の図1,図4,図5,図6に示す動力伝達装置の前後進切替機構16をシングルピニオン型の遊星歯車機構によって構成した例を、図13に示してある。図1,図4に示す前後進切替機構16をシングルピニオン型の遊星歯車機構36を使用して構成する場合、サンギヤ37が入力要素とされ、リングギヤ38が反力要素とされ、そしてキャリア39が出力要素とされている。したがってキャリア39に、そのキャリア39の回転を選択的に止めるブレーキ機構Bが設けられている。また、サンギヤ37にギヤ列23の従動ギヤ28が連結され、リングギヤ38に出力軸15が連結されるようになっている。そして、サンギヤ37とリングギヤ38との間に、それらサンギヤ37とリングギヤ38とを選択的に連結する第1クラッチ機構C1が設けられている。
 上記のように、図1,図4に示す前後進切替機構16をシングルピニオン型の遊星歯車機構36で構成した場合の共線図(速度線図)の例を図14に示してある。図14において、サンギヤ37、キャリア39、およびリングギヤ38が互いに平行な直線で表されている。それら各直線のうち、サンギヤ37を示す直線とリングギヤ38を示す直線とが左右の両端に位置し、それらの中央に反力要素であるキャリア39を示す直線が配置される。また、サンギヤ37を示す直線とリングギヤ38を示す直線との間隔を「1」とした場合、キャリア39を示す直線とリングギヤ38を示す直線との間隔が、サンギヤ37の歯数とキャリア39の歯数との比(すなわちギヤ比)に相当する値に設定される。そして、各直線の基線L0との交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0に対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、遊星歯車機構36すなわち前後進切替機構16の全体が一体となって回転するので、各回転要素の回転数は直線L7で示すようになる。これに対して、ブレーキ機構Bによってキャリア39を固定した場合には、各回転要素の回転数および回転方向は直線L8で示すようになる。すなわち、リングギヤ38がサンギヤ37に対して反対方向に回転する。
 また、図5,図6に示す前後進切替機構16をシングルピニオン型の遊星歯車機構36を使用して構成する場合、リングギヤ38が入力要素とされ、サンギヤ37が反力要素とされ、そしてキャリア39が出力要素とされている。そして、リングギヤ38にギヤ列23のカウンタシャフト24が連結され、サンギヤ37にギヤ列23のカウンタドライブギヤ27が連結されるようになっている。
 上記のように、図5,図6に示す前後進切替機構16をシングルピニオン型の遊星歯車機構36で構成した場合の共線図(速度線図)の例を図15に示してある。図15において、サンギヤ37、キャリア39、およびリングギヤ38が互いに平行な直線で表されている。図14の共線図と同様に、各直線の基線L0との交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0に対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、遊星歯車機構36すなわち前後進切替機構16の全体が一体となって回転するので、各回転要素の回転数は直線L9で示すようになる。これに対して、ブレーキ機構Bによってキャリア39を固定した場合には、各回転要素の回転数および回転方向は直線L10で示すようになる。すなわち、リングギヤ38がサンギヤ37に対して反対方向に回転する。図14の共線図に示す遊星歯車機構36では、サンギヤ37が入力要素となってエンジン2のクランク軸の回転方向と同じ回転方向(すなわち正転方向)のトルクが入力されるのに対して、この図15の共線図に示す遊星歯車機構36では、リングギヤ38が入力要素となってエンジン2のクランク軸の回転方向と反対の回転方向(すなわち逆転方向)のトルクが入力されるようになっている。
 上記のように、前後進切替機構16をシングルピニオン型の遊星歯車機構36で構成した場合であっても、前述したダブルピニオン型の遊星歯車機構で構成した前後進切替機構16と同様に機能させることができる。また、ダブルピニオン型の遊星歯車機構に替えてシングルピニオン型の遊星歯車機構36を使用することにより、装置を簡素化することができる。
 以上のように、この発明に係る動力伝達装置によれば、前後進切替機構16における少なくとも2つの回転要素を第1クラッチ機構C1によって連結することにより、前後進切替機構16の全体が一体となって回転する。その結果、入力軸9と出力軸15との間でギヤ列23が前後進切替機構16を介して動力伝達可能な状態になる。その状態で第2クラッチ機構C2を解放させることにより、出力軸15に対して無段変速機1が遮断され、かつギヤ列23が前後進切替機構16を介して出力軸15に連結される。すなわち、入力軸9と出力軸15とが、ギヤ列23および前後進切替機構16を介して連結される。その場合、ギヤ列23による変速比は、無段変速機1で設定することのできない変速比である。すなわち、無段変速機1での最大変速比より大きい変速比、もしくは最小変速比より小さい変速比である。そのため、動力伝達装置の全体としての変速比幅を、無段変速機1で設定することのできる変速比幅よりも広くすることができる。
 また、第1クラッチ機構1に替えてブレーキ機構Bを係合させることにより、前後進切替機構16における反力要素の回転が止められ、その結果、前後進切替機構16における出力要素が入力要素に対して反対方向に回転する。すなわち、車両を後進走行させることができる。その場合、トルクは、ギヤ列23および前後進切替機構16を介して前後進切替機構16の出力要素から出力軸15に伝達される。したがって、その場合に動力伝達装置の全体として設定される変速比は、無段変速機1では設定することのできない大きい変速比となる。すなわち、後進走行時においても、動力伝達装置の全体としての変速比幅を広くすることができる。
 なお、上述した第1クラッチ機構C1、第2クラッチ機構C2、および各ギヤのそれぞれの軸線方向での位置は、設計上適宜に決めることができる。例えば、上述した各具体例における構成部材のうち隣接する構成部材同士の位置を軸線方向で相互に入れ替えることもできる。
 また、上述した各具体例では、1つの変速比(ギヤ比)を有するギヤ列23を用いた構成を示しているが、この発明におけるギヤ列は、2つ以上の変速比(ギヤ比)を有し、それらの変速比を選択して設定できるギヤ列であってもよい。

Claims (16)

  1.  駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、それぞれ、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、
     入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記出力軸もしくは前記中間軸と同一軸線上に配置され、
     前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、
     前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至るトルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、
     前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されている
    ことを特徴とする車両用動力伝達装置。
  2.  前記ギヤ列は、前記複数のギヤによって、前記無段変速機の最大変速比よりも大きい変速比、もしくは前記無段変速機の最小変速比よりも小さい変速比を設定するように構成されていることを特徴とする請求項1に記載の車両用動力伝達装置。
  3.  前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有し、
     前記第2クラッチ機構は、前記入力軸と前記駆動側部材との間に設けられてこれら入力軸と駆動側部材とを選択的に連結するように構成されていることを特徴とする請求項1または2に記載の車両用動力伝達装置。
  4.  前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有し、
     前記第2クラッチ機構は、前記出力側部材と前記出力軸との間に設けられてこれら出力側部材と出力軸とを選択的に連結するように構成されていることを特徴とする請求項1または2に記載の車両用動力伝達装置。
  5.  前記第1クラッチ機構と前記第2クラッチ機構とは、それぞれ、摩擦クラッチによって構成されていることを特徴とする請求項1から4のいずれかに記載の車両用動力伝達装置。
  6.  前記ギヤ列は、
     前記入力軸と同一軸線上に配置された駆動ギヤと、前記中間軸上に設けられた1つのアイドルギヤもしくは互いに一体となって回転する複数のアイドルギヤと、そのアイドルギヤを介して前記駆動ギヤからトルクが伝達されかつ前記入力要素に一体的に連結された従動ギヤとを含み、
     前記駆動ギヤから前記アイドルギヤおよび前記従動ギヤを介して前記入力要素にトルクを伝達する場合の変速比が1よりも大きくなるように構成されている
    ことを特徴とする請求項1から5のいずれかに記載の車両用動力伝達装置。
  7.  前記ギヤ列は、
     前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する第1アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する第2アイドルギヤとを含み、
     前記入力要素に前記駆動ギヤから前記第1アイドルギヤを介してトルクを伝達する場合の変速比および前記出力要素に前記従動ギヤから前記第2アイドルギヤを介してトルクを伝達する場合の変速比の少なくとも一方が1よりも大きくなるように構成されている
    ことを特徴とする請求項1から5のいずれかに記載の車両用動力伝達装置。
  8.  前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤに噛み合っている第1ピニオンギヤと、その第1ピニオンギヤおよび前記リングギヤに噛み合っている第2ピニオンギヤと、これら第1ピニオンギヤおよび第2ピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたダブルピニオン型遊星歯車機構を含むことを特徴とする請求項1から7のいずれかに記載の車両用動力伝達装置。
  9.  前記サンギヤは、前記無段変速機および前記出力軸に連結され、
     前記キャリアは、前記ギヤ列に連結され、
     前記リングギヤは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項8に記載の車両用動力伝達装置。
  10.  前記サンギヤは、前記中間軸および前記第1アイドルギヤに連結され、
     前記キャリアは、前記第2アイドルギヤに連結され、
     前記リングギヤは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項8に記載の車両用動力伝達装置。
  11.  前記サンギヤは、前記中間軸および前記第2アイドルギヤに連結され、
     前記キャリアは、前記第1アイドルギヤに連結され、
     前記リングギヤは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項8に記載の車両用動力伝達装置。
  12.  前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤおよび前記リングギヤに噛み合っているピニオンギヤと、そのピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたシングルピニオン型遊星歯車機構を含むことを特徴とする請求項1から7のいずれかに記載の車両用動力伝達装置。
  13.  前記リングギヤは、前記無段変速機および前記出力軸に連結され、
     前記サンギヤは、前記ギヤ列に連結され、
     前記キャリアは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項12に記載の車両用動力伝達装置。
  14.  前記リングギヤは、前記中間軸および前記第1アイドルギヤに連結され、
     前記サンギヤは、前記第2アイドルギヤに連結され、
     前記キャリアは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項12に記載の車両用動力伝達装置。
  15.  前記リングギヤは、前記中間軸および前記第2アイドルギヤに連結され、
     前記サンギヤは、前記第1アイドルギヤに連結され、
     前記キャリアは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項12に記載の車両用動力伝達装置。
  16.  前記前後進切替機構は、複数の回転要素を互いに平行な直線で示し、かつ前記直線に直交する基線との交点からの長さおよび前記基線に対する位置で前記各回転要素の回転速度を示す共線図によって、前記入力要素、前記出力要素、および前記反力要素のそれぞれの回転速度を表すことのできる遊星歯車機構を含み、
     前記反力要素は、前記共線図における中央に位置する線で表される要素であり、前記入力要素は、前記共線図における左右いずれか一方の線で表される要素であり、さらに前記出力要素は、前記共線図における左右いずれか一方の線で表される要素である
    ことを特徴とする請求項1から15のいずれかに記載の車両用動力伝達装置。
PCT/JP2012/063171 2012-05-23 2012-05-23 車両用動力伝達装置 WO2013175582A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012006415.1T DE112012006415T8 (de) 2012-05-23 2012-05-23 Leistungsübertragungseinheit für Fahrzeuge
CN201280073372.6A CN104334925A (zh) 2012-05-23 2012-05-23 车辆用动力传递装置
PCT/JP2012/063171 WO2013175582A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置
JP2014516562A JPWO2013175582A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置
US14/402,412 US20150167802A1 (en) 2012-05-23 2012-05-23 Power transmission unit for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063171 WO2013175582A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置

Publications (1)

Publication Number Publication Date
WO2013175582A1 true WO2013175582A1 (ja) 2013-11-28

Family

ID=49623313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063171 WO2013175582A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置

Country Status (5)

Country Link
US (1) US20150167802A1 (ja)
JP (1) JPWO2013175582A1 (ja)
CN (1) CN104334925A (ja)
DE (1) DE112012006415T8 (ja)
WO (1) WO2013175582A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150308552A1 (en) * 2014-04-25 2015-10-29 GM Global Technology Operations LLC Split input continuously variable transmission
JP2015218797A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 車両用変速機
CN105782385A (zh) * 2014-09-23 2016-07-20 现代自动车株式会社 用于车辆的连续可变变速器
CN105813877A (zh) * 2013-12-09 2016-07-27 舍弗勒技术股份两合公司 Cvt驱动系

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377084B2 (en) * 2014-07-31 2016-06-28 GM Global Technology Operations LLC Automated manual transmission with dynamic torque transfer device
JP6308911B2 (ja) * 2014-08-12 2018-04-11 アイシン・エィ・ダブリュ株式会社 自動変速機
JP6241445B2 (ja) * 2015-04-17 2017-12-06 トヨタ自動車株式会社 動力伝達装置の制御装置
JP6455606B2 (ja) * 2015-10-30 2019-01-23 アイシン・エィ・ダブリュ株式会社 自動変速機
US10941840B2 (en) 2016-06-16 2021-03-09 GM Global Technology Operations LLC Continuously variable transmission with wedge actuation mechanism
JP2018184990A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 車両用動力伝達装置
US10473200B2 (en) * 2017-12-01 2019-11-12 GM Global Technology Operations LLC Continuously variable transmission with wedge actuation mechanism
US10473213B2 (en) 2017-12-01 2019-11-12 GM Global Technology Operations LLC Method of controlling clamping of wedge-actuated CVT and powertrain with wedge-actuated CVT
CN108621786B (zh) * 2018-05-30 2024-03-22 湖南科技大学 一种纯电动汽车用传动系统
JP2020122559A (ja) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 車両用動力伝達装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697661A (en) * 1979-12-28 1981-08-06 Toyota Motor Corp Automatic transmission
JPS59110954A (ja) * 1982-12-13 1984-06-27 Toyota Motor Corp 無段変速装置
JPS62102058U (ja) * 1985-12-18 1987-06-29
US5853343A (en) * 1996-09-05 1998-12-29 Ford Global Technologies, Inc. Dual mode continually variable transmission
JP2001056045A (ja) * 1999-08-13 2001-02-27 Fuji Heavy Ind Ltd 車両用ベルト式無段変速装置
JP2002048213A (ja) * 2000-08-01 2002-02-15 Toyota Motor Corp 無段変速機構を備えた変速機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1440883A (fr) * 1964-05-02 1966-06-03 Zahnradfabrik Friedrichshafen Système de transmission
JPS5690155A (en) * 1979-12-21 1981-07-22 Toyota Motor Corp Speed change gear
JP3778141B2 (ja) * 2002-07-22 2006-05-24 トヨタ自動車株式会社 車両用駆動装置
JP4151607B2 (ja) * 2004-05-06 2008-09-17 トヨタ自動車株式会社 ベルト式無段変速機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697661A (en) * 1979-12-28 1981-08-06 Toyota Motor Corp Automatic transmission
JPS59110954A (ja) * 1982-12-13 1984-06-27 Toyota Motor Corp 無段変速装置
JPS62102058U (ja) * 1985-12-18 1987-06-29
US5853343A (en) * 1996-09-05 1998-12-29 Ford Global Technologies, Inc. Dual mode continually variable transmission
JP2001056045A (ja) * 1999-08-13 2001-02-27 Fuji Heavy Ind Ltd 車両用ベルト式無段変速装置
JP2002048213A (ja) * 2000-08-01 2002-02-15 Toyota Motor Corp 無段変速機構を備えた変速機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813877A (zh) * 2013-12-09 2016-07-27 舍弗勒技术股份两合公司 Cvt驱动系
US20160312869A1 (en) * 2013-12-09 2016-10-27 Schaeffler Technologies AG & Co. KG Cvt drive train
US10240667B2 (en) * 2013-12-09 2019-03-26 Schaeffler Technologies AG & Co. KG CVT drive train
US20150308552A1 (en) * 2014-04-25 2015-10-29 GM Global Technology Operations LLC Split input continuously variable transmission
KR20150123708A (ko) * 2014-04-25 2015-11-04 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 스플릿 입력 무단 트랜스미션
CN105020352A (zh) * 2014-04-25 2015-11-04 通用汽车环球科技运作有限责任公司 分路输入无级变速器
US9523418B2 (en) * 2014-04-25 2016-12-20 Gm Global Technology Operations, Llc Split input continuously variable transmission
KR101722526B1 (ko) 2014-04-25 2017-04-03 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 스플릿 입력 무단 트랜스미션
JP2015218797A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 車両用変速機
CN105782385A (zh) * 2014-09-23 2016-07-20 现代自动车株式会社 用于车辆的连续可变变速器

Also Published As

Publication number Publication date
CN104334925A (zh) 2015-02-04
DE112012006415T8 (de) 2015-04-16
JPWO2013175582A1 (ja) 2016-01-12
US20150167802A1 (en) 2015-06-18
DE112012006415T5 (de) 2015-02-19

Similar Documents

Publication Publication Date Title
JP5765485B2 (ja) 車両用動力伝達装置
WO2013175582A1 (ja) 車両用動力伝達装置
JP5800088B2 (ja) 車両用動力伝達装置
CN108138931B (zh) 车辆用驱动装置及车辆
JP5835477B2 (ja) 車両用動力伝達装置
JP5861778B2 (ja) 車両用動力伝達装置
US10030751B2 (en) Infinite variable transmission with planetary gear set
JP5832002B2 (ja) 無段変速機
JP2002048213A (ja) 無段変速機構を備えた変速機
JP5861777B2 (ja) 車両用動力伝達装置
JP2015031312A (ja) 動力伝達機構
JP2002005259A (ja) 無段変速機
JP5595598B2 (ja) 無段変速機
JP2008002550A (ja) 動力伝達装置
JP5835476B2 (ja) 車両用動力伝達装置
WO2014147779A1 (ja) 自動変速機の制御装置
JP6594084B2 (ja) 動力分割式無段変速機
JP2002122207A (ja) 変速機
JP2022084046A (ja) ハイブリッド車用動力伝達装置
JP2017211013A (ja) 動力伝達装置
JP2018167747A (ja) 車両用駆動装置
JP2017062012A (ja) 車両用駆動装置
JP2015045364A (ja) 車両用変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516562

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120064151

Country of ref document: DE

Ref document number: 112012006415

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14402412

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12877382

Country of ref document: EP

Kind code of ref document: A1