WO2013174061A1 - 利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法 - Google Patents

利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法 Download PDF

Info

Publication number
WO2013174061A1
WO2013174061A1 PCT/CN2012/078166 CN2012078166W WO2013174061A1 WO 2013174061 A1 WO2013174061 A1 WO 2013174061A1 CN 2012078166 W CN2012078166 W CN 2012078166W WO 2013174061 A1 WO2013174061 A1 WO 2013174061A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
acid
filtrate
titanium dioxide
sulfuric acid
Prior art date
Application number
PCT/CN2012/078166
Other languages
English (en)
French (fr)
Inventor
廖延武
向书刚
董禄银
孙素
Original Assignee
四川龙蟒磷化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川龙蟒磷化工有限公司 filed Critical 四川龙蟒磷化工有限公司
Publication of WO2013174061A1 publication Critical patent/WO2013174061A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/322Preparation by neutralisation of orthophosphoric acid

Definitions

  • the invention relates to the technical field of wet process phosphoric acid, in particular to a preparation process of wet process calcium hydrogen phosphate.
  • phosphate is mainly wet sulfuric acid by sulfuric acid method.
  • acid leaching is carried out by mixing concentrated sulfuric acid with phosphate rock to form phosphoric acid, and then phosphate is obtained by removing impurities.
  • the quality of phosphate rock is declining, and the quality of phosphate products is degraded: Concentrated sulfuric acid will release a large amount of heat during phosphoric acid leaching, causing excessive acid leaching temperature, affecting the crystallization and filtration effect of phosphogypsum in acid production process. Therefore, the cooling device is required to remove a large amount of heat energy.
  • the low-level flashing method is used to remove the heat energy, which requires a large amount of equipment input and high running cost, and wastes a large amount of thermal energy resources; a large amount of sulfuric acid is consumed in the preparation process of phosphoric acid. .
  • titanium dioxide In the process of titanium dioxide, a large amount of waste 25% sulfuric acid is generated, which causes considerable pressure on the environment.
  • sulfuric acid method no matter what process is used, 25% sulfuric acid by-product produced per ton of titanium dioxide. 6-8 tons, due to the large amount of impurities in the waste sulfuric acid, the direct use of concentrated titanium dioxide production will affect the quality of titanium dioxide; in the current titanium dioxide production industry, the full utilization of titanium white waste acid is not widespread, most After being neutralized and filtered by calcium calcification, the titanium gypsum is piled up in a special stack, and the filtrate is discharged after being sedimented.
  • the waste sulfuric acid produced in the production process of titanium dioxide is used for the pre-reaction of phosphate rock to remove the calcium carbonate salt in the phosphoric acid, and can be used for the decomposition reaction of phosphate rock to prepare phosphoric acid, phosphoric acid.
  • the impurities in the middle can be neutralized by two stages to remove excess impurities in the phosphoric acid.
  • the quality of the produced hydrogen calcium product is stable and meets the national standard requirements of GB/T22549-2008. Therefore, the use of titanium white waste acid to produce feed grade phosphoric acid is utilized. Hydrogen hydride can not only achieve the goal of turning waste into treasure, comprehensive utilization of resources, but also has great environmental benefits.
  • the object of the present invention is to provide a method for preparing feed grade calcium hydrogen phosphate by using titanium dioxide to produce by-product waste acid, and effectively solve the problem of waste acid, waste reuse, environmental pollution caused by titanium dioxide production by-product, waste acid Reusable, the prepared calcium hydrogen phosphate product is non-polluting and pollution-free and can be used as a feed additive.
  • the method for preparing feed grade calcium hydrogen phosphate by using titanium white powder to produce by-product waste acid according to the invention is a phosphorus ore slurry which is a mixture of the phosphate ore crushed and ground and mixed with water. Specifically, including the following steps -
  • the solid-liquid separation may be by pressure filtration or
  • the filter cake has a moisture content of not more than 30% (wt%) by filtration through a filter, a rotary table, or a filtration device ;
  • the mass fraction of the phosphoric acid is 5 wt% to 20 wt%, and the acid and concentrated sulfuric acid are disposed
  • the amount of the mixture is such that the heat of the mixture is such that the liquidus temperature of the mixture reaches 60-90 Torr.
  • the amount of phosphoric acid and the repulp slurry is such that the liquid-solid ratio of the leached slurry after the reaction reaches 1.8-3.0:1.
  • the ratio of the total amount of acid to concentrated sulfuric acid to the ratio of repulping slurry is such that the concentration of sulfuric acid in the liquid phase of the obtained leachate (in terms of S0 3 ) is 20-60 g L.
  • Replacement page (Article 26) (6) adjusting the pH of the desulfurization filtrate to 1.5-1.8, stirring for at least 1 hour, filtering and adjusting the pH of the filtrate to 2. 2-2.6, stirring for at least 1 hour, then filtering again and controlling to filter the filtrate again.
  • concentration of total phosphorus (as P 2 0 5 ) is 60-72 g / L
  • the ratio of total phosphorus concentration to total fluorine (in F) is 230-350
  • the filtrate is neutralized.
  • step (6) adjusting the pH of the neutralized filtrate obtained in step (6) is 6.0-6.5, and then adding lime milk to adjust the total phosphorus concentration in the filtrate (as P 2 0 5 ) is not more than lg L;
  • step (1) controls the water content of the filter cake, because the water content of the filter cake carries a large amount of metal ions, and this step controls the water content of the phosphate rock cake to avoid excessive
  • the metal ions enter the subsequent process through the filter cake;
  • the demagnetization treatment can refer to the existing process, and the particle size of the solid material above 50 ⁇ vt1 ⁇ 4 in the phosphate rock slurry is not more than 100 mesh, and the specific demagnetization treatment process such as sulfuric acid (or titanium)
  • the waste sulfuric acid produced during the production of white powder reacts with the phosphate ore, and the reaction formula is:
  • CaC03+3 ⁇ 4S0 4 CaS0 4 +3 ⁇ 40+C0 2 ⁇
  • the mixture of concentrated sulfuric acid and the disposed acid (ie, mixed acid) and the repulped slurry undergo a metathesis reaction during the stirring process, and Ca 5 F(P0 4 ) 3 in the phosphate rock.
  • the reaction takes place and generates pity acid.
  • the reactions that occur during this process are as follows:
  • the heat released during the mixing process of the acid and the concentrated sulfuric acid can make the liquidus temperature of the mixture reach 60-9 CTC, fully utilizing the heat released by the concentrated sulfuric acid dilution, and reducing Energy consumption, cost saving, on the other hand, the liquidus temperature of the material has an important influence on the decomposition rate of the phosphate rock raw material and the crystal form of the phosphogypsum obtained by the reaction. The temperature is too high, the phosphate rock decomposes too fast, the phosphogypsum is formed rapidly, and a large amount of crystal is produced.
  • the core, the phosphogypsum crystals are fine and difficult to filter, and the temperature is too low, the phosphate rock decomposes slowly, and the reaction time is too long, which is unfavorable for improving production efficiency.
  • the 60-90 ⁇ is suitable.
  • the reaction is further controlled by controlling the amount of the repulped slurry relative to the mixed acid.
  • the solid-liquid ratio of the obtained leaching slurry is (1.8-3.0): 1; this is because the liquid-solid ratio has an important influence on the process of material decomposition and crystallization, and when the liquid-solid is relatively large, it is advantageous for the decomposition process and the crystallization process. However, it will increase the load of the filter and reduce the production capacity of the acid hydrolysis tank. However, if the liquid-solid ratio is too low, it means that the solid content in the slurry is too high, which will not only increase the viscosity of the slurry, but also increase the agitation. The load is not conducive to the decomposition of the phosphate rock and the growth of the crystal.
  • the liquid to solid ratio described in the present invention is suitable.
  • the step (4) also controls the total sulfur concentration of the liquid phase of the leaching slurry (in terms of S0 3 ), which can be achieved by adjusting the acid to mineral ratio before the reaction.
  • the present invention can also pass Sulfuric acid is added to the leaching slurry obtained after the reaction to control the total sulfur concentration in the liquid phase of the leaching slurry; the total sulfur concentration on the decomposition of the phosphate rock, the nucleation of calcium sulphate, the growth of the crystal, the crystal shape and size A large effect, the total sulfur concentration is suitable for the inventive solution.
  • the filter cake obtained in the step (5) may be washed several times with water, and after each washing, the flocculant may be added to the material containing the washing water and then precipitated.
  • the flocculant may be added to the material containing the washing water and then precipitated.
  • a part of the filtrate obtained after solid-liquid separation can be used as a substitute for the phosphoric acid used in the step (2) (ie, phosphoric acid).
  • the addition of the phosphate slurry can reduce the concentration of the liquid phase S0 3 of the leaching slurry, but does not reduce the concentration of the phosphoric acid, thereby minimizing the production cost.
  • Step (6) of the solution of the present invention continuously adjusts and filters the pH of the desulfurized filtrate, because the by-product waste sulfuric acid produced by the titanium dioxide contains various heavy metal ions, and these ions are converted into various impurities in the reaction process of the present invention.
  • Some impurities (such as FeP0 4 ' 3 ⁇ 40, ⁇ 1 ⁇ 0 4 ⁇ ⁇ 2 0, Ca 3 (As0 3 ) 2 , CaF 2 and SiO 2 , etc.) are insoluble or slightly soluble under the pH conditions described in step (6), and are controlled.
  • the pH facilitates the removal of such impurities and ensures that the product meets feed grade requirements.
  • Fe 3+ +P0 4 3 -+H 2 0 FeP0 4 ⁇ H 2 0 i
  • the mass fraction of H 2 S0 4 of the acid is 50-80%, and under the condition of the mass fraction, the dilution heat release effect of the mixed acid and concentrated sulfuric acid is better, and the concentrated sulfuric acid is better. The lowest dosage.
  • the liquid-solid ratio of the leaching slurry in the step (4) is 2.2:1.
  • the liquidus temperature in the step (5) is 60-95 Torr.
  • the demagnetization treatment in the step (1) is to mix the waste sulfuric acid obtained in the titanium dioxide production process with the phosphate rock slurry, and the reaction material has a pH value of 2.5-4.5 during the reaction.
  • the reaction material has a pH value of 2.5-4.5 during the reaction.
  • the present invention provides a method for preparing feed grade calcium hydrogen phosphate by using titanium dioxide to produce by-product waste acid, and overcomes the defect that titanium white waste acid is high in impurity content and difficult to utilize.
  • the quality of the produced calcium hydrogen phosphate product is superior to the quality of the calcium hydrogen phosphate product produced by the traditional process, and fully meets the production standard of the feed grade calcium hydrogen phosphate of GB/T 22549-2008, meeting the production requirements of the feed additive, and the present invention is added due to
  • the waste of titanium dioxide production solves the environmental pollution problem of waste sulfuric acid with a mass fraction of 25 ⁇ % produced by titanium dioxide production, and develops a new path of sustainable development of production waste recycling, and at the same time, due to the addition of low concentration sulfuric acid, The amount of supplementary water added to the water balance of the leaching system is reduced, the production consumption is reduced, and the production cost is saved.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Industrial sulfuric acid having a mass fraction of 98% (wt%) (composition of: S0 4 98.0% (wt%), specific gravity 1.84, Fe 2 0 3 0.63% (wt%), Al 2 0 3 0.02% (wt. /.) and MgO 0.08% (wt%)) mixed with the waste sulfuric acid obtained in the titanium dioxide production process in the mixing tank to prepare a mixed acid, the mass fraction of H 2 S0 4 in the mixed acid liquid phase is 36% (wt%) After being prepared, the slag is removed by filtration, and the mass fraction of 3 ⁇ 4S0 4 is 35.14% (wt%).
  • the acid was disposed at a specific gravity of 1.31, Fe 2 0 3 3.23% (wt%), A1 2 0 3 0.28% (wt%), and MgO 0.36% (wt%), and was used.
  • phosphate rock (phosphorus ore composition: P 2 0 5 3 l.2% (wt%), CaO 43.66% (wt%), S0 3 2.98% (wt%), Fe 2 0 3 2.54% (wt %), A1 2 0 3 3.01% (wt%), MgO 2.51% ( ⁇ %) and H 2 0 8.0% (wt%)) are crushed by a compound pendulum jaw crusher, and the crushed phosphate rock is over 10 The mesh is sieved, and water is added to the ball mill. The phosphate ore which has passed through the 10-mesh sieve is mixed with water and ball-milled to form an initial mine. The primary slurry is passed through a 100 mesh sieve to finally obtain a phosphorus slurry of 43.84t. The content of 0 was 35% (wt%).
  • step 2 43.84 tons of rock slurry is continuously added to the pre-reaction tank, and the mixer is started at the same time.
  • the acid prepared in step 1 is added to the pre-reaction tank under stirring, and stirred for 1.5 h, so that the liquid phase pH of the slurry is 1.5;
  • the post slurry was pumped into a filter press of the XMZFG500/1500-V filter to obtain a filter cake of 35.62 t (composition: reduced dry basis: P 2 0 5 was 31.2% (wt%), CaO was 43.66 % (wt%), S0 3 is 3.04% (wt%), Fe 2 0 3 % is 2.62% (t%), A1 2 0 3 is 2.86% (wt%), MgO is 1.98% (wt%), and 020% (wt%)), the filter cake is sent to the specification model ⁇ 4000*3000 re-slurry tank, adding 8.22t of phosphoric acid (phosphoric acid mass fraction (as P 2
  • the obtained 43.85t repulp slurry was added to the leaching tank of the specification model ⁇ 1500*300, and the concentrated sulfuric acid lit and return phosphoric acid with a mass fraction of 35% sulfuric acid 25.06t and a mass fraction of 98% were prepared.
  • the mass fraction of phosphoric acid is 15wt%) 45.36 tons is added to the leaching tank and mixed and stirred.
  • the mixed slurry ie, leaching slurry
  • the liquid temperature of the mixed slurry is 62'
  • the reaction rate was 96.83%
  • the mixed slurry contained 87.7 t of phosphoric acid solution (the liquid phase composition: P 2 0 5 was 243.14 g/L, Ca was 1.12 g/L, F was 13.75 g L, and S0 3 was 28.29 g L, Fe. 2 0 3 is 4.55 g/L, A1 2 0 3 is ⁇ 4.25 g L and MgO is 13.52 g/L) and anhydrous phosphogypsum is 38.9 t.
  • 116.7t of the mixed slurry obtained in step 4) was transferred to the preliminary filtration zone of the rotary table vacuum filter of the model number HDZP-I 120m 2 for solid-liquid separation, and the initial filtrate and the filter cake were obtained, and the counter-flowing three-time washing cake was carried out with 21.5 tons of water. After washing, filtering and mixing the obtained filtrate with the initial filtrate to obtain a mixed filtrate, and taking a mixed filtrate of 45.36 tons.
  • step 5 Take the supernatant obtained in step 5) 10t into the neutralization tank, and add 8.75t water, 5.5t calcium slurry (the composition: CaC0 3 content 19.5%, moisture 20%), adjust the pH to 1.7, after the sedimentation
  • the bucket is cleared (can also be separated by other filtering equipment for solid-liquid separation), and the clear liquid is added and neutralized to pH 2.3 by adding 6t of lime milk.
  • the filter cake is obtained by pressure filtration and the filtrate is neutralized.
  • the cake weight is 2.4t ( Its composition (in dry basis mass fraction): P 2 0 5 14.86%
  • the 27.85t neutralization filtrate obtained in step 6) is re-delivered into the neutralization tank, and the pH is adjusted to 6.2 by adding Ht lime milk, and the liquid phase total phosphorus (as P 2 0 5 ) is not more than lg/L.
  • the resulting slurry was fed into a thickener and added to 3.11 t 3%. (wt%)
  • the concentration of the flocculant settles 15tnin, and the thick slurry and the clear liquid are obtained.
  • the weight of the thick slurry is 22.32t
  • the mass fraction of H 2 0 in the thick slurry is 80.2% (wt%)
  • the weight of the clear liquid is 5.53t.
  • the total phosphorus concentration in the phase was 0.31 g/L.
  • the 22.32t thick slurry obtained in step 6) is sent to a centrifuge for centrifugation to obtain a centrifugal material of 5.5t.
  • the moisture content of the centrifuged material is 20.45% (wt%), and the centrifuged material is continuously fed into the specification model ⁇ 2500*25000.
  • the converter is subjected to a drying treatment to obtain 4.4 tons of the desired feed grade calcium hydrogen phosphate, and the composition thereof (the composition of the materials described in the present invention means the composition expressed in the form of an element or an oxide) is as follows: P17.30% (wt% ), ⁇ solubility P17.00% (wt%), Ca 21.04% (wt%), F 0.16% (wt%), S0 3 1.13% (wt%), Fe 2 0 3 0.18% (wt%) , AI2O3 0.19% (wt%), MgO 0.19% (t%), H 2 0 1.67% (wt%), As 8PPm,
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Example 1 1) repeating the steps 1) to 3) of Example 1; the difference is that the H 2 S0 4 mass fraction of the acid is 55% (wt%)
  • the obtained 43.85t re-slurry was added to the leaching tank of the specification model ⁇ 1500*300, and the mass fraction was 55°/. 15.94t of sulfuric acid, 98% concentrated sulfuric acid lit and return phosphoric acid (the mass fraction of phosphoric acid contained in it is 20wt%) 54.46 tons, mixed into the leaching tank and stirred, stirred for 4 hours, the mixture was obtained.
  • the slurry has a liquidus temperature of 81.26' (:, a reaction rate of 97.03%, and a mixed slurry containing phosphoric acid solution of 87.7t (the liquid phase composition: P 2 0 5 is 248 g L, Ca is 1.32 g/L, F is 14.75 g/L, S0 3 is 30.29 g/L, Fe 2 0 3 is 5.08 g/L, A1 2 0 3 is 14.45 g/L, and MgO is 14.52 g/L) and anhydrous phosphogypsum is 38.9 t.
  • the 116.7t mixed slurry obtained in step 2) is transferred into the initial filter zone of the rotary table vacuum filter of the model number HDZP-I 120m 2 for solid-liquid separation, and a 2.32t 33 ⁇ 4> (wi%) concentration flocculant is added. And washing with countercurrent three times with 16.45t of water, washing and filtering, and mixing the obtained filtrate with the initial filtrate to obtain mixed filtrate, taking 54.46 tons of mixed filtrate and returning to the leaching process as a phosphoric acid substitute (ie, phosphoric acid), and the remaining mixture.
  • a phosphoric acid substitute ie, phosphoric acid
  • Filtrate (composition: P 2 0 5 is 248.5 g/L, Ca is 1.32 g/L, F is 14.75 g/L, S0 3 is 30.29 g L, Fe 2 0 3 is 5.08 g/L, Al 2 O 3 For 14.45 g/L and MgO 14.52 g/L) 41.15t, clarify in a clarified barrel of ⁇ 19000*17000, and take the supernatant.
  • the difference is that in the step 6), the first ⁇ adjustment value is 1.5, and the second ⁇ adjustment value is 2.2, and calcium hydrogen phosphate is obtained.
  • the finished product has a composition of P17.35% (wt%), ⁇ solubility P17.00% (wt%), Ca 2L 24% (wt%), F 0.15% (wt%), S0 3 1.23% (wt%), Fe 2 0 3 0.20% (wt%), A1 2 0 3 0.18% (wt%), MgO 1.2% (wt%), H 2 0 2.3% (wt%), As 8.2PPm, Pb 9.5PPm and Cd 3.5 PPm, its fineness is 99wt% finished product 00 mesh screening.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Example 1 1) Repeat the steps of Example 1 1) to 3); the difference is that the mass fraction of the configured acid is 80% (wt%)
  • the obtained 43.85t repulp slurry was added to the leaching tank of the specification model ⁇ 1500*300, and the concentrated sulfuric acid lit and return phosphoric acid with the mass fraction of 79.52% sulfuric acid 10.96t and mass fraction of 98% were included.
  • the mass fraction of the acid is 5wt%) 41.65 tons, which is added to the leaching tank and mixed and stirred. After stirring for 3 hours, the mixed slurry is obtained.
  • the liquid temperature of the mixed slurry is 88° (the reaction rate is 96.83%).
  • the obtained mixed slurry contains phosphoric acid solution 87.7t (the liquid phase composition: P205 is 248.56g / L, Ca is 1.32g / L, F is 13.65g / L, S0 3 is 29.29 g / L, Fe 2 0 3 is 4.65 g/L, A1 2 0 3 was 14.75 g/L and MgO was 13.52 g/L) and anhydrous phosphogypsum was 38.9 t.
  • P205 is 248.56g / L
  • Ca is 1.32g / L
  • F is 13.65g / L
  • S0 3 is 29.29 g / L
  • Fe 2 0 3 is 4.65 g/L
  • A1 2 0 3 was 14.75 g/L and MgO was 13.52 g/L
  • anhydrous phosphogypsum was 38.9 t.
  • step 2 The mixed slurry 116.7t mixed slurry is transferred into the initial filter zone of the rotary table vacuum filter of the model number HDZP-1 120m 2 for solid-liquid separation, and 2.32t 3% is added at the same time. (wt%) concentration of flocculant, and counter-current three-time washing with 21.95t water, washing, filtering and mixing the filtrate with the initial filtrate to obtain mixed filtrate, taking 59.44 tons of mixed filtrate back to the leaching process as a phosphate substitute (That is, return phosphoric acid), the remaining mixed filtrate (its composition: P 2 0 5 245.6 g / L, Ca 1.25 g / L, F 14.75 g / L, S0 3 27.41 g / L, Fe 2 0 3 5.85 g / L. A1 2 0 3 15.25 g/L and MgO g/L 14.52 ) 4t is sent to a clarified barrel of ⁇ 19000* 17000 for clarification and clear solution.
  • the difference is that in the step 6), the first pH adjustment value is 1.8, and the second pH adjustment value is 2.6, and calcium hydrogen phosphate is obtained.
  • the finished product has passed 100 mesh screening.
  • the process of the invention can simultaneously produce feed grade and fertilizer grade calcium hydrogen phosphate (ie white fertilizer), and the quality of feed grade calcium hydrogen phosphate and fertilizer grade calcium hydrogen phosphate can meet the national standard.
  • feed grade and fertilizer grade calcium hydrogen phosphate ie white fertilizer
  • the method of the invention has simple process, and because of the use of waste sulfuric acid, it does not account for the consumption of niobate production,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种利用钛白粉生产副产废酸制备饲料级磷酸氢钙的方法,以磷矿浆为原料,磷矿浆是磷矿石破碎、粉磨后与水混合得到的混合物,包括如下步骤:(1)对磷矿浆脱镁,液固分离,得到磷矿滤饼;(2)将磷矿滤饼与磷酸混合,制得再浆浆料;(3)将钛白粉生产过程中所得废硫酸与浓硫酸混合,得配制酸;(4)取浓硫酸、配制酸、再浆浆料和磷酸,混合并搅拌,得浸取浆料;(5)向浸取浆料中加入磷矿浆,并搅拌,得到脱硫物料,经固液分离后,得脱硫滤液和滤饼;(6)调节所述脱硫滤液的pH值,搅拌,过滤,得中和滤液;(7)调节步骤(6)所得中和滤液的pH,加入石灰乳;(8)向步骤(7)所得液体中加入絮凝剂,静置沉淀,取沉淀物离心、烘干,得饲料级磷酸氢钙。

Description

利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的 方法 技术领域
本发明涉及湿法磷酸技术领域, 具体涉及湿法磷酸氢钙的制备工艺。
背景技术
目前,磷酸盐的生产以硫酸法湿法磷酸为主,首先通过浓硫酸与磷矿石混合 酸浸, 生成磷酸, 再通过除杂后制取磷酸盐。 主要存在以下几个问题, 磷矿质量 不断下降, 使磷酸盐产品质量下降: 磷酸酸浸时浓硫酸会释放大量的热, 造成酸 浸温度过高,影响制酸过程磷石膏的结晶及过滤效果, 因此需要降温设备移除大 量的热能,现如采用低位闪蒸的方式移除热能,需大量的设备投入且运行费用高, 同时浪费大量的热能资源; 磷酸的制备过程中需消耗大量的硫酸。
而在钛白粉的过程中产生大量的废 25%硫酸,对环保造成相当大的压力,在 用硫酸法生产钛白粉时,不论采用何种工艺,每吨钛白粉所产生的 25%硫酸副产 物 6-8吨, 因废硫酸中含有大量的杂质, 经过直接浓縮再次利用于钛白粉生产会 影响钛白粉质量; 就目前钛白粉生产行业, 钛白废酸的充分利用还不广泛, 大部 份通过氢钙化钙中和过滤后, 钛石膏选用专门堆场堆放, 滤液经沉清后排放。
在湿法磷酸氢钙的生产时,利用钛白粉生产过程中所产的废硫酸,用于磷矿 的预反应除去磷酸中的炭酸钙盐,并可用于磷矿的分解反应制取磷酸,磷酸中的 杂质可通过二段中和除杂,除去磷酸中过量的杂质,所生产的氢钙成品质量稳定, 达到 GB/T22549-2008的国家标准要求, 因此充分利用钛白废酸生产饲料级磷酸 氢钙不仅能达到变废为宝, 资源综合利用的目的, 而且具有极大的环保效益。
"钛白废硫酸生产普通过磷酸钙的研究"(磷肥与复肥 2000年第三期、 总 第十五卷)中提出将废硫酸用于生产普通过磯酸钙。但普钙生产与湿法磷酸氢钙 生产工艺又有所不同, 普钙是将硬石膏与磷酸盐一起做成品, 而湿法磷酸氢钙则 采用了分离技术, 将磷石膏和磷酸先进行了分离, 再通过除杂工艺, 对磷酸进行 净化操作, 氢钙的纯度较普钙更高、 操作难度更大、 操作精细度更高。
"一种钛白粉副产物废硫酸用于湿法磷酸的生产方法"(四川龙蟒集团有限 责任公司 2002 5 9专利号 02113711.0) 中曾提出将钛白废酸经过浓缩除铁后,
1
替换页 (细则第 26条) 达到约 60%后与商品硫酸混合、冷却后与磷矿反应萃取磷酸,但本发明已经更为 先进, 生产成本更低。
"低比例硫酸湿法生产饲料级磷酸氢钙"(云南易门矿务局 1990 12 26专利 号 90100845.1 )—文, 该方法采用低比例硫酸对磷矿石进行浸泡处理, 对磷矿石 的浸取率较低、 运转周期较长、 生产成本较高, 不利于工厂的连续化生产。 发明内容
本发明的发明目的在于:提供一种利用钛白粉生产副产物废酸制备饲料级磷 酸氢钙的方法, 有效解决钛白粉生产副产物废酸、废弃物再利用、 对环境污染的 问题, 废酸能够再利用, 制备的磷酸氢钙产品无污染无公害, 能够作为饲料添加 剂。
本发明所述的利用钛白粉生产副产物废酸制备饲料级磷酸氢钙的方法,是以 磷矿浆为原料,所述磷矿浆是将磷矿石破碎粉磨后与水混合所得的混合物,具体 包括如下步骤 -
( 1 )对磷矿浆进行脱镁处理, 调节脱镁矿浆的 pH值为 2.5-4.5, 进行固液分离, 得到磯矿滤饼; 本步骤中, 固液分离可以采用压滤方式, 也可通过盘滤、 转台、 带滤等过滤设备过滤), 所得滤饼水分质量分数不大于 30% (wt%);
(2) 将所述磷矿滤饼与磷酸混合, 制得比重为 1.60-1.95的再浆料浆;
C3) 将钛白粉生产过程中所得的废硫酸液与浓硫酸混合, 得配置酸, 配置酸 中 H2S04的质量分数为 35-80wt%;
(4) 取浓硫酸、 配置酸、 再浆浆料和磷酸, 混合并搅拌至少 2小时, 得浸取 浆料; 所述磷酸的质量分数为 5wt%-20wt%, 所述配置酸与浓硫酸的用量比以其 混合时所放热量能够使混合物液相温度达到 60-90Ό为准, 磷酸与再浆浆料的用 量以能够使反应后浸取浆料液固比达到 1.8-3.0: 1为准, 配置酸与浓硫酸的总用 量与再浆浆料间用量比以能够使所得浸取楽料液相的硫酸浓度(以 S03计)达到 20-60g L为准
(5 ) 向浸取浆料中加入磷矿浆, 并搅拌, 待物料液相中硫含量 (以 S03含量 计) 不大于 20g/L后停止搅拌, 得脱硫物料; 对脱硫物料进行经固液分离, 得脱 硫滤液和脱硫滤饼; 反应式如下:
Ca5F(PO4)3+5¾SO4+10H2O=5CaSO4 · 2H20 1 +3H3P04+HF f
2
替换页 (细则第 26条) (6) 调节所述脱硫滤液的 pH为 1.5-1.8, 搅拌至少 1小时后, 过滤并调节滤液 的 pH为 2. 2-2.6后, 搅拌至少 1小时, 然后再次过滤并控制再次过滤所得滤液 的总磷(以 P205计)浓度为 60-72 g/L、总磷浓度与总氟(以 F计)浓度比为 230-350, 得中和滤液 ·,
(7) 调节步骤(6 )所得中和滤液的 pH为 6.0-6.5, 然后加入石灰乳调节中和 滤液中总磷浓度 (以 P205计) 不大于 lg L;
(8) 向步骤(7)所得液体中加入絮凝剂, 静置沉淀后, 弃清液, 取沉淀物进行 离心处理, 烘千离心所得的固料, 得饲料级磷酸氢钙。
在本发明的技术方案中, 步骤(1 )控制滤饼的含水量, 这是由于滤饼所含 水分中会携带大量的金属离子,本步骤通过控制磷矿滤饼含水量, 以避免过多金 属离子经由滤饼进入到后续工艺中;所述脱镁处理可以参照现有工艺, 磷矿浆中 50 \vt¼以上固料的粒度不大于 100目,具体的脱镁处理工艺如硫酸(或者钛白粉 生产过程中产生的废硫酸) 与磷矿桨反应, 反应式为:
Figure imgf000004_0001
CaC03+¾S04=CaS04+¾0+C02 ί
在本发明的技术方案的步骤 (4) 中, 浓硫酸与配置酸的混合物 (即混合酸) 与再浆浆料在搅拌过程中发生复分解反应,磷矿中的 Ca5F(P04)3发生反应,生成 憐酸, 在此过程中所发生的反应如下:
Ca5F(PO4)3+5H2SO4+10¾O=5CaSO4 · 2H20 \ +3H3P04+HF†
7 P04十 Ca5F(P04)3=5Ca(H2P04)2+HF t
CaC03+H2S04+2H20-CaS04 · 2H20 I +H20+C02
该步骤 (4)通过控制配置酸与浓硫酸的用量比, 使得配置酸与浓硫酸混合过程 中释放的热量能够使混合物液相温度达到 60-9CTC , 充分利用了浓硫酸稀释释放 的热量, 降低能耗, 节约成本, 另一方面, 物料液相温度对磷矿原料分解速率、 反应所得磷石膏的结晶形态有着重要影响, 温度过高, 磷矿分解过快, 磷石膏生 成迅速, 产生大量晶核, 磷石膏结晶细小, 不易过滤, 而温度过低, 磷矿分解缓 慢, 反应时间太长, 对提高生产效率不利, 对本方案而言, 所述 60-90Ό是适宜 的。
在该步骤(4)中, 还通过控制再浆浆料相对于混合酸的用量, 使反应后得
3
替换页 (细则第 26条) 到的浸取浆料的固液比为 (1.8-3.0): 1 ; 这是由于液固比对物料分解和结晶的过 程有重要影响, 液固比较大时, 虽有利于分解过程和结晶过程, 但会增大过滤机 的负荷和降低酸解槽的生产能力,但若液固比过低, 则意味着料浆中固相含量过 高, 这不仅会使料浆粘度增大, 增加搅拌负荷, 而且不利于磷矿粉的分解和晶体 的长大。 本发明所述的液固比是较为合适的。
该步骤 (4) 同时还控制浸取浆料的液相总硫浓度 (以 S03计), 该浓度控制 可以通过调节反应前的酸矿比来实现, 作为等同替代方式,本发明还可通过向反 应后所得浸取浆料中添加硫酸来控制浸取浆料的液相总硫浓度;总硫浓度对磷矿 粉的分解、 硫酸钙晶核生成、 晶体的成长、 晶体外形和大小均有很大影响, 对本 发明方案来说, 该总硫浓度是适宜的。
对于本发明方案的步骤 (5 ), 在实际操作中, 可以用水对步骤 (5) 所得滤 饼进行多次洗條, 各次洗涤后,可以向含洗涤水的物料中加入絮凝剂沉淀后再进 行固液分离 (也可不添加絮凝剂直接压滤等), 可以取固液分离后所得的一部分 滤液作为步骤 (2 ) 所用磷酸的替代物 (即返磷酸)。 步骤 (5 ) 加入磷矿浆可以 降低浸取料浆液相 S03浓度、但不会降低磷酸浓度, 能够最大限度地降低生产成 本。
本发明方案的步骤 (6) 连续对脱硫滤液进行 pH值调节及过滤, 这是因为 钛白粉生产的副产物废硫酸含有各种重金属离子,这些离子在本发明的反应过程 中转变为各种杂质,一些杂质(如 FeP04 ' ¾0、 Α1Ρ04 · Η20、 Ca3(As03)2、 CaF2 和 Si02等) 在步骤 (6) 所述的 pH值条件下不溶或微溶, 控制 pH有利于此类 杂质的去除, 保证产品能够达到饲料级要求。
步骤 (6) 中反应的方程式如下-
Figure imgf000005_0001
CaC03+2H3P04=Ca(H2P04)2+ C02 t + H20
Figure imgf000005_0002
2HF+Ca(OH)2=CaF2 \ +H20
Fe3++P04 3-+H20=FeP04 · H20 i
A13++P0 3"+H20=A1P0 · H20 t
Figure imgf000005_0003
替换页 (细则第 26条)
Figure imgf000006_0001
2H3P04+Ca(OH)2=Ca(H2P04)2 1 +2H20
优选的, 步骤 (3 ) 中, 配置酸的 H2S04质量分数为 50-80%, 在该质量分数条 件下, 配置酸与浓硫酸混合后的稀释热释放效果更好, 而浓硫酸的用量最低。
优选的, 步骤(4) 中浸取浆料的液固比为 2.2:1。
优选的, 步骤 (5 ) 中液相温度为 60-95Ό。
优选的, 步骤(1 )中所述脱镁处理是使钛白粉生产过程中所得废硫酸与磷矿 浆混合反应, 反应过程中控制反应物料的 ρΗ值为 2.5-4.5。 在所述的 ΡΗ2.5-4.5 范围内, 酸性越强, 脱镁反应越彻底, 脱镁效果越好, 但酸性超过所述范围, 对 脱镁率提高不明显, 同时会造成脱镁处理过程中的磷损失增加。
本发明的有益效果:
综上所述,相比于现有技术, 本发明提供了一种利用钛白粉生产副产物废酸制备 饲料级磷酸氢钙的方法, 克服了钛白废酸因杂质含量高、 难以利用的缺陷, 生产 的磷酸氢钙产品质量优于传统工艺生产的磷酸氢钙产品质量, 完全符合 GB/T 22549-2008的询料级磷酸氢钙生产标准,满足饲料添加剂生产要求,本发明由于 加入的是钛白粉生产废弃物,解决钛白粉生产所产生的质量分数 25^%的废硫酸 的环境污染问题, 开发了生产废弃物再利用的可持续发展的新路径, 同时由于低 浓度硫酸的加入,使得浸取系统水平衡中补充水的加入量减少,降低了生产消耗, 节约了生产成本。
具体实施方式
下面结合具体实施方式对本发明作进一步的详细描述。但不应将此理解为本 发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属 于本发明的范围
实施例一:
1 ) 配制 H2S04质量分数为 35% (wt%)配置酸
用质量分数为 98% (wt%) 的工业硫酸 (其组成为: S04 98.0%(wt%), 比重 1.84、 Fe203 0.63%(wt%)、 Al203 0.02%(wt。/。)和 MgO 0.08%(wt%))在混合槽内与 钛白粉生产过程中所得废硫酸进行混合,配制成混酸,混酸液相中 H2S04的质量 分数为 36%(wt%),配制好后再通过过滤除渣,得 ¾S04质量分数为 35.14%( wt%)
5
替换页 (细则第 26条) 配置酸 、 其 比重 1.31 、 Fe203 3.23%(wt%) 、 A1203 0.28%(wt%)和 MgO0.36%(wt%)), 备用。
2) 磷矿浆的制备
取 30t 磷矿石 (磷矿石组成: P205 3 l.2%(wt%) , CaO 43.66%(wt%) , S03 2.98%(wt%), Fe203 2.54%(wt%), A1203 3.01%(wt%), MgO 2.51%(^%)和 H20 8.0%(wt%))通过复摆颚式破碎机进行破碎, 破碎后的磷矿石过 10目筛, 再向球 磨机加入水, 过 10目筛的磷矿石与水混合并通过球磨后制成初矿衆, 初矿浆过 100目筛, 最终制得磷矿浆 43.84t, 磷矿浆中 0含量为 35%(wt%)。
3 ) 制备脱镁矿浆
将 43.84吨磯矿浆连续加入预反应槽, 同时启动搅拌机, 于搅拌条件下将步骤 1 制得的配置酸加入预反应槽中, 同时搅拌 1.5h, 使矿浆的液相 pH在 1.5; 再将 处理后的矿浆用泵入规格为 XMZFG500/1500-V的压滤机进行压滤处理,得到滤 饼 35.62t (其组成: 折合干基: P205 为 31.2%(wt%)、 CaO 为 43.66%(wt%)、 S03 为 3.04%(wt%)、 Fe203%为 2.62%( t%)、 A1203 为 2.86%(wt%)、 MgO 为 1.98%(wt%)和 020%(wt%)), 将滤饼送入规格型号为 Φ4000*3000再浆槽中, 加入磷酸 8.22t (磷酸质量分数 (以 P205计)为 13.2%(wt%〕)进行再浆, 得到再 浆浆料量为 43.85t, 比重为 1.89。
4) 浸取
将所得 43.85t再浆浆料加入规格型号为 Φ 1500*300的浸取槽, 同时将配置好的 质量分数为 35%硫酸 25.06t、 质量分数为 98%的浓硫酸 lit和返磷酸 (其所含磷 酸的质量分数为 15wt%) 45.36吨加入浸取槽中混合并搅拌, 搅拌 2小时后, 得 混合料浆(即浸取浆料), 此混合浆料的液相温度为 62' (、 反应率 96.83%, 混合 浆料含有磷酸液 87.7t (其液相组成: P205 为 243.14g/L、 Ca为 1.12g/L、 F为 13.75g L, S03为 28.29 g L、 Fe203为 4.55g/L、 A1203为 ί4.25 g L和 MgO为 13.52g/L) 和无水磷石膏 38.9t。
5) 过滤
将步骤 4) 所得混合料浆 116.7t输送入规格型号为 HDZP-I 120m2的转台真空过 滤机初滤区进行固液分离,得初滤液和滤饼,用 21.5t水进行逆流三次洗涤滤饼, 洗涤后过滤并将所得滤液与初滤液混合, 得混合滤液, 取混合滤液共 45.36吨作
6
替换页 (细则第 26条) 为返磷酸送回浸取工序作为磷酸替代物(即返磷酸)使用, 余下的混合滤液(其 组成为: P205 208.7 g L, Ca 0.95 g/L、 F 10.75 g/L、 S03 24.41 g/L, Fe2034.55 g L、 A1203 14.25 g/L和 MgO g/L 13.52) 50t送入规格为 Φ 19000*17000的澄清桶内澄 清, 取清液。
6) 中和、 压滤
取步骤 5)所得清液 10t加入中和槽中, 同时加入 8.75t水、 5.5t钙粉浆(其组成: CaC03含量 19.5%, 水份 20%), 调节 PH值至 1.7之后, 经沉清桶沉清(也可釆 用其它过滤设备进行固液分离),取澄清液并加入 6t石灰乳中和至 pH为 2.3,经 压滤得滤饼和中和滤液,滤饼重 2.4t (其组成(以干基质量分数计): P205 14.86%
(wt%)、 C 9.66% (wt%)、 S03 6.28% (wt%)、 Fe203 1.99% (wt%)、 A1203 4.59%
(wt%)、 MgO 0.39% (wt%) m H20 47.6% (wt%) ), 中和滤液重 27.85t (其组 成(以干基质量浓度计): P205 65.10g L、 Ca 2.48 g/L、 F 8.12 g/L、 S03 11.26 g/L、 F 03 2.33 g/L、 A1203 5.26 g/L MgO 7.50 g/L), 滤饼烘干后即为肥料级磷酸氢 钙 (即白肥), 重量为 .22t, 其组成为: 有效 P205 25.80% (wt%)、 Ca 18.57%
(wt%), F 0.23% (wt%)、 S03 8.48% (wt%)、 Fe203 2.48% (wt%)、 A1203 9.01%
(wt%)、 MgO 0.62% (wt%) 和 H2O 0.90% (wt%)。
7)再中和、 增稠用于词料级磷酸氢钙
将歩骤 6) 所得 27.85t中和滤液再次输送入中和槽内, 同时加入 Ht石灰乳调节 pH为 6.2, 得液相总磷(以 P205计) 浓度不大于 lg/L的中和料浆, 将所得料浆 输送进增稠器内并加入 3.11t 3%。 (wt%) 浓度的絮凝剂沉降 15tnin, 得到稠浆和 清液, 稠浆重量为 22.32t, 稠浆中 H20质量分数为 80.2% (wt%) ), 清液重量为 5.53t, 液相中总磷浓度 (以 P205计) 为 0.31 g/L。
8) 离心、 烘干、 包装
将步骤 6)所得 22.32t稠浆输送进离心机内离心, 得到离心料 5.5t, 离心料中水 分含量为 20.45% (wt%), 再将离心料连续送入规格型号为 Φ2500*25000的回转 炉进行烘干处理,得到所需饲料级磷酸氢钙 4.4吨,其组成 (本发明中所述的物料 组成均是指以元素或氧化物形式表示的组成)如下: P17.30% ( wt%)、 枸溶性 P17.00%( wt%)、 Ca 21.04%(wt%) , F 0.l6%(wt%) , S03 1.13%(wt%) , Fe203 0.18%(wt%)、 AI2O3 0.19%(wt%)、 MgO 0.19%( t%) 、 H20 1.67%(wt%)、 As 8PPm、
替换页 (细则第 26条) Pb 9PPm、 Cd 3PPm, 细度为 99wt%产品过 100目筛选。
实施例二:
1 )重复实施例 1的步骤 1 )一 3 )操作;区别在于配置酸的 H2S04质量分数为 55% (wt%)
2) 浸取
将所得 43.85t再 浆料加入规格型号为 Φ 1500*300的浸取槽, 同时配置好的质 量分数为 55°/。硫酸 15.94t、 质量分数为 98%的浓硫酸 lit和返磷酸 (其所含磷酸 的质量分数为 20wt%) 54.46吨, 一并加入浸取槽中混合并搅拌, 搅拌 4小时后, 得混合料浆, 此混合浆料的液相温度为 81.26' (:、 反应率 97.03%, 混合浆料含有 磷酸液 87.7t (其液相组成: P205 为 248g L、 Ca为 1.32g/L、 F为 14.75g/L、 S03 为 30.29 g/L、 Fe203为 5.08g/L、 A1203为 14.45 g/L和 MgO为 14.52g/L) 和无水 磷石膏 38.9t。
3 ) 过滤
将步骤 2) 所得混合料浆 116.7t混合料浆输送入规格型号为 HDZP-I 120m2的转 台真空过滤机初滤区进行固液分离, 同时加入 2.32t 3¾> (wi%) 浓度的絮凝剂, 并用 16.45t水进行逆流三次洗涤,洗涤后过滤并将所得滤液与初滤液混合, 得混 合滤液, 取混合滤液 54.46吨混合返回浸取工序作为磷酸替代物 (即返磷酸)使 用, 余下的混合滤液(其组成: P205 为 248.5g/L、 Ca为 1.32g/L、 F为 14.75g/L、 S03为 30.29 g L、Fe203为 5.08g/L、Al2O3为 14.45 g/L和 MgO为 14.52g/L))41.15t 送入规格为 Φ 19000*17000的澄清桶内澄清, 取清液。
5) 成盐
再按实施例一的步骤 6)—— 8) 操作, 区别在于步骤 6) 中, 第一次 ρΗ调节值 为 1.5, 第二次 ρΗ调节值为 2.2, 制得磷酸氢钙.所得磷酸氢钙成品, 其组成为 P17.35% (wt%)、 枸溶性 P17.00%(wt%)、 Ca 2L24%(wt%)、 F 0.15%(wt%), S03 1.23%(wt%)、 Fe203 0.20%(wt%)、 A1203 0.18%(wt%), MgO 1.2%(wt%) 、 H20 2.3%(wt%), As 8.2PPm、 Pb 9.5PPm和 Cd 3.5PPm, 其细度为 99wt%成品过】00 目筛选。
实施例三:
1)重复实施例 1的步骤 1 )一 3 )操作; 区别在于配置酸的质量分数为 80% (wt%)
8
替换页 (细则第 26条) 2)浸取
将所得 43.85t再浆浆料加入规格型号为 Φ 1500*300的浸取槽, 同时配置好的质 量分数为 79.52%硫酸 10.96t、质量分数为 98%的浓硫酸 lit和返磷酸(其所含磯 酸的质量分数为 5wt%) 41.65吨,一并加入浸取槽中混合并搅拌,搅拌 3小时后, 得混合料浆, 此混合浆料的液相温度为 88° ( 、 反应率 96.83%, 所得混合桨料含 有磷酸液 87.7t (其液相组成: P205 为 248.56g/L、 Ca为 1.32g/L、 F为 13.65g/L、 S03为 29.29 g/L、 Fe203为 4.65g/L、 A1203为 14.75 g/L和 MgO为 13.52g/L) 和 无水磷石膏 38.9t。
3)过滤
取步骤 2) 所得混合浆料 116.7t混合料浆输送入规格型号为 HDZP-1 120m2的转 台真空过滤机初滤区进行固液分离, 同时加入 2.32t 3%。 (wt%) 浓度的絮凝剂, 并用 21.95t水进行逆流三次洗涤,洗涤后过滤并将所得滤液与初滤液混合,得混 合滤液, 取混合滤液 59.44吨泡合返回浸取工序作为磷酸替代物(即返磷酸) 使 用, 余下混合滤液(其组成: P205 245.6 g/L、 Ca 1.25 g/L, F 14.75 g/L, S03 27.41 g/L, Fe203 5.85 g/L. A1203 15.25 g/L 和 MgO g/L 14.52 ) 4t送入规格为 Φ 19000* 17000的澄清桶内澄清, 取清液。
4) 成盐
再按实施例一的步骤 6)—— 8 )操作, 区别在于步骤 6) 中, 第一次 pH调节值 为 1.8, 第二次 pH 调节值为 2.6 , 制得磷酸氢钙.所得磷酸氢钙成品, 其组成 P 17.25% (wt%)、 枸溶性 P17.00% (wt%)> Ca 21.08%(wt%), F 0.135%(wt%), S03 ] .33%(wt%), Fe203 0.】8%(wt%)、 A1203 0.19%(wt%), MgO 1.39%(wt%) 、 ¾0 2.2°/。(wt%)、 As 8.5PPm、 Pb 9.7PPm和 Cd 3.3PPm, 其细度为 99wt°/。成 品过 100目筛选。
本发明工艺可同时生产饲料级及肥料级的磷酸氢钙 (即白肥), 饲料级磷酸 氢钙及肥料级磷酸氢钙产品质量均能够符合国家标准。
上述实施例数据显示,本发明方案所得饲料级磷酸氢钙品质有较大幅度的提 高,磷酸氢钙产品磷、钙、氟含量稳定,重金属含量远低于国标 GB/T22549— 2008 中的规定值对肥料级磷酸氢钙的枸溶性磷无影响, 完全满足作物生长所需。
本发明方法工艺简单, 由于采用了废硫酸, 其不计入轔酸盐生产耗量, 大大
9
替换页 (细则第 26条) 降低了磷酸盐生产过程中的硫酸耗量, 改善了磷酸浸取过程中的磷石膏结晶效 果, 提高了过滤能力, 降低了生产成本, 同时由于加入的是钛白粉生产废弃物, 有效解决了钛白粉生产所产生的 25% Cwt%)废硫酸的消化问题和钛白粉生产所 带来的环境问题, 同吋在磷酸盐的生产过程中由于低浓度酸的加入,带入了一部 分补充水, 降低了生产用水量, 且最大限度利用废酸中的硫酸与磷矿反应, 降低 了饲料磷酸盐的生产成本, 实现了变废为宝, 资源综合利用的循环经济模式。
最后需要说明的是, 以上实施例仅用于说明本发明的技术方案而非限制, 尽 管参照较佳实施例对本发明的技术方案进行了详细说明,本领域技术人员应当理 解, 可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的宗旨和 范围, 其均应涵盖在本发明的保护范围当中。
10
替换页 (细则第 26条)

Claims

权利要求书
1. 利用钛白粉生产副产物废酸制备饲料级磷酸氢钙的方法,是以磷矿浆为原料, 所述磷矿浆是将磷矿石破碎粉磨后与水混合所得的混合物,其特征在于:包括如 下步骤:
( 1 ) 对磷矿桨进行脱镁处理后, 进行固液分离, 得到磷矿滤饼; 磷矿滤饼中所 含水分的质量分数不大于 30% (wt%):
(2) 将所述磷矿滤饼与磷酸混合, 制得比重为 1. 60-1. 95的再浆料浆;
(3) 将钛白粉生产过程中所得的废硫酸液与浓硫酸混合, 得配置酸, 配置酸中 H2S04的质量分数为 35- 80wt%;
( 4) 取浓硫酸、 配置酸、 再浆浆料和磷酸, 混合并搅拌至少 2小时, 得浸取浆 料;
所述磷酸的质量分数为 5wt%-20wt%, 所述配置酸与浓硫酸的用量比以其混合时 所放热量能够使混合物液相温度达到 60-90'C为准, 磷酸与再浆浆料的用量以能 够使反应后浸取浆料液固比达到 1. 8- 3. 0: 1为准, 配置酸与浓硫酸的总用量与 再桨浆料间用量比以能够使所得浸取浆料液相的硫酸浓度 (以 S03计) 达到 20-60g/L为准;
( 5) 向浸取浆料中加入磷矿浆, 并搅拌, 待物料液相中硫含量 (以 S03含量计) 不大于 20g/L后停止搅拌, 得脱硫物料; 对脱硫物料进行经固液分离, 得脱硫滤 液和脱硫滤饼;
(6)调节所述脱硫滤液的 pH为 1. 5-1. 8, 搅拌至少 1小时后, 过滤并调节滤液 的 pH为 2. 2-2. 6后, 搅拌至少 1小时, 然后再次过滤并控制再次过滤所得滤液 的总磷(以 PA计)浓度为 60-72 g/L、总磷浓度与总氟(以 F计)浓度比为 230-350, 得中和滤液;
(7) 调节步骤 (6 ) 所得中和滤液的 pH为 6. 0-6. 5, 然后加入石灰乳调节中和 滤液中总磷浓度 (以 ΡΛ计) 不大于 lg/L;
(8) 向步骤(7 )所得液体中加入絮凝剂, 静置沉淀后, 弃清液, 取沉淀物进行 离心处理, 烘干离心所得的固料, 得词料级磷酸氢钙。
2. 根据权利要 1所述的一种利用钛白粉生产副产物废酸制备饲料级磷酸氢钙的 生产方法,其特征在于: 步骤(3)中,配置酸中的 H2S04的质量分数为 50- 80vrt9L
3. 根据权利要求 1至 2任一权利要求所述的一种利用钛白粉生产副产物废酸制
11
替换页 (细则第 26条) 备饲料级磷酸氢钙的方法, 其特征在于: 步骤 (4〉 中混合所得物料的液固比为 2. 2: 1。
4.根据权利要求 3所述的利用钛白粉生产副产物废酸制备饲料级磷酸氢钙的方法, 其特征 在于: 步骤 (1 ) 中所述脱镁处理是使钛白粉生产过程中所得废硫酸与磷矿浆混合反应, 反 应过程中控制反应物料的 pH值为 2.5-4.5。
12
替换页 (细则第 26条)
PCT/CN2012/078166 2012-05-25 2012-07-04 利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法 WO2013174061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210164927XA CN102674286B (zh) 2012-05-25 2012-05-25 利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法
CN201210164927.X 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013174061A1 true WO2013174061A1 (zh) 2013-11-28

Family

ID=46806931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078166 WO2013174061A1 (zh) 2012-05-25 2012-07-04 利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法

Country Status (2)

Country Link
CN (1) CN102674286B (zh)
WO (1) WO2013174061A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950911A (zh) * 2014-05-06 2014-07-30 云南磷化集团有限公司 利用渣酸与黄磷炉渣制备饲料级磷酸氢钙联产水玻璃的方法
CN106115645A (zh) * 2016-06-28 2016-11-16 四川省汉源化工总厂 一种饲料级磷酸二氢钙的生产方法
CN108046228A (zh) * 2017-12-29 2018-05-18 四川绵竹三佳饲料有限责任公司 一种高纯度磷酸氢钙的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073034B (zh) * 2013-01-17 2014-09-10 贵州开磷(集团)有限责任公司 一种超低品位磷矿石脱镁并生产氢氧化镁的方法
CN107055494A (zh) * 2017-04-13 2017-08-18 云南胜威化工有限公司 一种利用硫酸法钛白粉生产工艺中的废酸选磷矿的方法
CN107128890B (zh) * 2017-06-20 2019-08-27 四川龙蟒磷化工有限公司 钛白废酸用于磷矿脱镁的封闭循环工艺
CN109553372B (zh) * 2018-12-26 2022-06-21 四川绵筑新材料有限公司 一种可循环使用的磷石膏路基材料的制备和使用方法
CN109941971A (zh) * 2019-04-24 2019-06-28 成都先进金属材料产业技术研究院有限公司 利用磷酸二氢钙处理废硫酸溶液的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183378A (zh) * 1995-10-20 1998-06-03 四川联合大学 饲料磷酸氢钙的生产方法
CN101759166A (zh) * 2009-12-31 2010-06-30 四川龙蟒钛业股份有限公司 一种利用钛白粉生产过程中的酸性废水预处理磷矿的方法
CN101774557A (zh) * 2010-02-21 2010-07-14 安徽安纳达钛业股份有限公司 一种钛白废酸用于生产磷酸的方法
CN102030318A (zh) * 2010-11-02 2011-04-27 昆明川金诺化工有限公司 一种节硫萃取磷酸的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376635A (zh) * 2002-05-09 2002-10-30 四川龙蟒集团有限责任公司 一种钛白粉副产废硫酸用于湿法磷酸的生产方法
CN100548875C (zh) * 2004-12-17 2009-10-14 冯孝桂 采用硫酸法生产饲料磷酸氢钙的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183378A (zh) * 1995-10-20 1998-06-03 四川联合大学 饲料磷酸氢钙的生产方法
CN101759166A (zh) * 2009-12-31 2010-06-30 四川龙蟒钛业股份有限公司 一种利用钛白粉生产过程中的酸性废水预处理磷矿的方法
CN101774557A (zh) * 2010-02-21 2010-07-14 安徽安纳达钛业股份有限公司 一种钛白废酸用于生产磷酸的方法
CN102030318A (zh) * 2010-11-02 2011-04-27 昆明川金诺化工有限公司 一种节硫萃取磷酸的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950911A (zh) * 2014-05-06 2014-07-30 云南磷化集团有限公司 利用渣酸与黄磷炉渣制备饲料级磷酸氢钙联产水玻璃的方法
CN103950911B (zh) * 2014-05-06 2016-03-16 云南磷化集团有限公司 利用渣酸与黄磷炉渣制备饲料级磷酸氢钙联产水玻璃的方法
CN106115645A (zh) * 2016-06-28 2016-11-16 四川省汉源化工总厂 一种饲料级磷酸二氢钙的生产方法
CN108046228A (zh) * 2017-12-29 2018-05-18 四川绵竹三佳饲料有限责任公司 一种高纯度磷酸氢钙的制备方法

Also Published As

Publication number Publication date
CN102674286A (zh) 2012-09-19
CN102674286B (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2013174061A1 (zh) 利用钛白粉副产物废酸制备高质量饲料级磷酸氢钙的方法
CN107720716B (zh) 从粗品磷酸锂回收锂磷制备电池级碳酸锂和磷酸铁的工艺
CN103318925B (zh) 一种用锂精矿生产高纯碳酸锂的方法
CN108455547B (zh) 一种低杂质高铁磷比大比表面积电池级磷酸铁的制备方法
CN110683528B (zh) 一种磷酸铁废料的再生方法
CN112551498A (zh) 一种磷酸铁锂提锂后磷铁渣的回收方法
CN101993256B (zh) 利用富钾岩石制取农用硫酸钾的方法
CN101439878A (zh) 用生物质自热还原低品位氧化锰矿制取硫酸锰的方法
CN103950956A (zh) 一种锂辉石精矿硫酸法生产碳酸锂工艺
CN110342483B (zh) 一种利用磷酸锂废料制备电池级磷酸铁的方法
CN110088043B (zh) 从磷酸锂制备氢氧化锂的方法
CN102502721B (zh) 一种从锂矿石中提锂制备碳酸锂的方法
CN108975364A (zh) 一种拜耳法赤泥酸处理除碱回收钠的方法
CN114906830B (zh) 一种由硫铁矿烧渣可控制备电池级磷酸铁的方法
CN109250725B (zh) 一种利用膨润土精制蒙脱石生产工艺
CN103224221A (zh) 一种利用一水硫酸亚铁渣分离硫酸与硫酸亚铁的方法
CN114506831A (zh) 一种利用液态粗制磷酸一铵制备电池级无水磷酸铁的方法
CN106145164A (zh) 从锂云母中制备碳酸锂的方法
CN106219614A (zh) 利用钛白废酸生产低钛亚铁渣的方法
CN107683262A (zh) 被处理水中的磷的回收系统、被处理水中的磷的回收方法、肥料及肥料原料以及黄磷原料
CN1220970A (zh) 在钛白粉废硫酸液的治理中生产硫酸镁的工艺
CN109319896A (zh) 用粉煤灰和钒钛磁铁矿制备絮凝剂的方法
CN115744851A (zh) 回收制备电池级磷酸铁的方法
CN114976337A (zh) 一种报废磷酸铁锂综合回收的方法
CN103803517B (zh) 高硅磷矿生产磷酸副产低硅磷石膏的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877267

Country of ref document: EP

Kind code of ref document: A1