WO2013172396A1 - 樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材 - Google Patents

樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材 Download PDF

Info

Publication number
WO2013172396A1
WO2013172396A1 PCT/JP2013/063614 JP2013063614W WO2013172396A1 WO 2013172396 A1 WO2013172396 A1 WO 2013172396A1 JP 2013063614 W JP2013063614 W JP 2013063614W WO 2013172396 A1 WO2013172396 A1 WO 2013172396A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
polymer
pellets
copolymer
particles
Prior art date
Application number
PCT/JP2013/063614
Other languages
English (en)
French (fr)
Inventor
宏章 余田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013172396A1 publication Critical patent/WO2013172396A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin pellet, a manufacturing method thereof, and a solar cell sealing material.
  • An ethylene-unsaturated ester copolymer is used for the solar cell encapsulant.
  • the ethylene-unsaturated ester copolymer pellets may stick together.
  • various measures have been taken for adhesive pellets of adhesive resin to adhere to each other during storage, transportation, product processing, and the like.
  • JP-A-9-77890 discloses a release agent component obtained by reacting a saponified product of a polyvinyl acetate (co) polymer with an isocyanate group or the like, a fatty acid or a metal salt thereof, and / or an acid-modified product.
  • a surface treatment method for resin pellets characterized in that a water-dispersed release agent composition dispersed in water together with a polyolefin (co) polymer is attached to the resin surface and then dried.
  • the molded product obtained by using the ethylene-unsaturated ester copolymer pellets after the mutual adhesion prevention treatment by the method described in the above-mentioned patent document has not been sufficient in electrical insulation.
  • the present invention has been made in view of the above problems, and its purpose is to prevent resin pellets from sticking to each other and to provide a molded article excellent in electrical insulation, a method for producing the same, and It is providing the solar cell sealing material obtained using a resin pellet.
  • the present inventors have intensively studied to solve the above problems, and as a result, the present invention has been completed.
  • the first of the present invention on the surface of the ethylene copolymer pellets containing a structural unit derived from ethylene and a structural unit derived from a compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids, Resin pellets containing a polymer selected from the group consisting of an olefin polymer and an unsaturated ester polymer and having an average particle size of 0.01 ⁇ m or more and 100 ⁇ m or less and metakaolin particles It depends on.
  • the second of the present invention contains a polymer selected from the group consisting of an olefin polymer and an unsaturated ester polymer, a polymer particle having an average particle size of 0.01 ⁇ m to 100 ⁇ m, a metakaolin particle and a dispersion
  • a dispersion containing a medium was applied to the surface of an ethylene copolymer pellet containing a structural unit derived from ethylene and a structural unit derived from a compound selected from the group consisting of an unsaturated ester and an unsaturated carboxylic acid. Then, it relates to a method for producing resin pellets in which the dispersion medium is removed from the applied dispersion.
  • the third aspect of the present invention relates to a solar cell encapsulant obtained by using the above resin pellets.
  • the ethylene-based copolymer of the present invention has a structural unit derived from ethylene and a structural unit derived from a compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids.
  • unsaturated esters include carboxylic acid vinyl esters and unsaturated carboxylic acid esters.
  • carboxylic acid vinyl ester include vinyl acetate and vinyl propionate.
  • unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, and the like.
  • the unsaturated carboxylic acid include acrylic acid and methacrylic acid.
  • Examples of the ethylene copolymer of the present invention include an ethylene-unsaturated ester copolymer, an ethylene-unsaturated carboxylic acid copolymer, and an ethylene-unsaturated ester-unsaturated carboxylic acid copolymer.
  • Examples of the ethylene-unsaturated ester copolymer include an ethylene-carboxylic acid vinyl ester copolymer, an ethylene-unsaturated carboxylic acid ester copolymer, an ethylene-carboxylic acid vinyl ester-unsaturated carboxylic acid ester copolymer, and the like. It is done.
  • Examples of the ethylene-carboxylic acid vinyl ester copolymer include an ethylene-vinyl acetate copolymer and an ethylene-vinyl propionate copolymer.
  • Examples of the ethylene-unsaturated carboxylic acid ester copolymer include ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, and ethylene-methyl methacrylate copolymer.
  • Ethylene-ethyl methacrylate copolymer ethylene-glycidyl methacrylate copolymer, and the like.
  • Examples of the ethylene-carboxylic acid vinyl ester-unsaturated carboxylic acid ester copolymer include an ethylene-vinyl acetate-methyl methacrylate copolymer.
  • Examples of the ethylene-unsaturated carboxylic acid copolymer include an ethylene-methacrylic acid copolymer and an ethylene-acrylic acid copolymer.
  • Examples of the ethylene-unsaturated ester-unsaturated carboxylic acid copolymer include ethylene-vinyl acetate-methacrylic acid copolymer, ethylene-methyl methacrylate-methacrylic acid copolymer, ethylene-methyl acrylate-acrylic acid copolymer. A polymer etc. are mentioned.
  • the amount of the structural unit derived from the compound selected from the group consisting of the unsaturated ester and unsaturated carboxylic acid of the ethylene copolymer is preferably 20% by mass or more and 35% by mass from the viewpoint of improving processability and transparency. % Or less, more preferably 25% by mass or more and 32% by mass or less (however, derived from a compound selected from the group consisting of an amount of a structural unit derived from ethylene and an unsaturated ester and an unsaturated carboxylic acid) The total amount with the amount of structural units is 100% by mass).
  • the ethylene copolymer of the present invention contains two or more types of structural units derived from a compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids
  • the ethylene copolymer contains.
  • the total amount of structural units derived from a compound selected from the group consisting of all unsaturated esters and unsaturated carboxylic acids is the amount of structural units derived from the compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids.
  • the melt flow rate (MFR) of the ethylene copolymer is preferably 4 g / 10 min or more and 50 g / 10 min or less from the viewpoint of improving processability.
  • the upper limit of MFR is more preferably 40 g / 10 minutes.
  • the lower limit of MFR is more preferably 5 g / 10 minutes.
  • MFR refers to a value measured under the conditions of a temperature of 190 ° C. and a load of 21.18 N by the method defined in JIS K7210-1995.
  • the molecular weight distribution (Mw / Mn) of the ethylene copolymer is preferably 2 or more and 8 or less, more preferably 2.5 or more and 4 or less, from the viewpoint of improving processability.
  • Mw represents the weight average molecular weight of polyethylene of the said copolymer
  • Mn represents the number average molecular weight of polyethylene of the said copolymer.
  • the weight average molecular weight in terms of polyethylene of the ethylene copolymer is preferably 40,000 to 80,000, and more preferably 50,000 to 70,000.
  • the weight average molecular weight in terms of polyethylene is determined by the following method. First, the polystyrene equivalent weight average molecular weight of the ethylene copolymer is determined by gel permeation chromatography. The product of the weight average molecular weight in terms of polystyrene and the ratio of the Q factor of polyethylene and polystyrene (17.7 / 41.3) is the weight average molecular weight in terms of polyethylene.
  • Examples of the method for producing the ethylene copolymer include a slurry polymerization method, a solution polymerization method, a bulk polymerization method, and a gas phase polymerization method.
  • Examples of the shape of the ethylene copolymer pellet include a spherical shape, an elliptical spherical shape, a cylindrical shape, an elliptical columnar shape, a prismatic shape, and a rod shape.
  • the size of the ethylene copolymer pellet is preferably 3 mm or more and 5 mm or less in diameter or length.
  • the polymer particles of the present invention contain a polymer selected from the group consisting of olefin polymers and unsaturated ester polymers, and the average particle size is 0.01 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size of the polymer particles is preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter of the polymer particles is measured by the following method. First, polymer particles are dispersed in water to obtain a dispersion. The dispersion is irradiated with a laser beam, and the particle size distribution is measured on a volume basis from the diffraction (scattering). The central particle size of the measured particle size distribution is the average particle size of the polymer particles.
  • the olefin polymer examples include polyethylene, ethylene- ⁇ -olefin copolymers, structural units derived from ethylene, and structural units derived from a compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids. Examples thereof include ethylene-based copolymers. Examples of the ethylene copolymer contained in the polymer particles include the same as those exemplified as the ethylene copolymer of the ethylene copolymer pellet.
  • the olefin polymer may be a modified olefin polymer. Examples of the modified olefin polymer include maleic anhydride-modified polyethylene, maleic anhydride-modified ethylene-propylene copolymer, or a neutralized product thereof.
  • the polymer particles contain an ethylene copolymer containing a structural unit derived from ethylene and a structural unit derived from a compound selected from the group consisting of an unsaturated ester and an unsaturated carboxylic acid
  • the ethylene copolymer The amount of the structural unit derived from the compound selected from the group consisting of the unsaturated ester of the coalescence and the unsaturated carboxylic acid is preferably 10 to 35% by mass, more preferably 10 to 24% by mass (however, The total of the amount of structural units derived from ethylene and the amount of structural units derived from a compound selected from the group consisting of unsaturated esters and unsaturated carboxylic acids is 100% by mass).
  • Examples of the unsaturated ester polymer include a homopolymer of an unsaturated ester, a copolymer of two or more different unsaturated esters, and the like.
  • Examples of the unsaturated ester include those exemplified as the unsaturated ester derived from the structural unit contained in the ethylene copolymer of the ethylene copolymer pellet.
  • Examples of the unsaturated ester polymer include polyvinyl acetate, polymethyl methacrylate, vinyl acetate-methyl methacrylate copolymer, and the like.
  • the polymer particles may be composed of one polymer selected from the group consisting of olefin polymers and unsaturated ester polymers, or may be a mixture of different polymer particles.
  • the polymer particles may contain a surfactant.
  • the surfactant include ionic surfactants and nonionic surfactants.
  • the ionic surfactant include an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • Anionic surfactants include higher alcohol sulfates, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfone salts. Examples include succinate.
  • cationic surfactants include alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt, alkylpyridium salts such as cetylpyridium salt and decylpyridium salt, oxyalkylenetrialkylammonium salt, dioxyalkylenedialkylammonium salt Salts, allyltrialkylammonium salts, diallyldialkylammonium salts and the like.
  • alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt
  • alkylpyridium salts such as cetylpyridium salt and decylpyridium salt
  • oxyalkylenetrialkylammonium salt such as cetylpyridium salt and decylpyridium salt
  • oxyalkylenetrialkylammonium salt such as cetylpyridium salt and decylpyridium salt
  • Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkylphenyl ethers, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, ethylene Examples thereof include compounds having a polyoxyethylene structure such as an oxide-propylene oxide copolymer, and sorbitan derivatives such as polyoxyethylene sorbitan fatty acid esters.
  • polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkylphenyl ethers, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, ethylene Examples thereof include compounds having a polyoxyethylene structure such as an oxide-propylene oxide copolymer, and sorbitan derivatives such as polyoxyethylene sorbitan fatty acid esters.
  • the surfactant examples include a surfactant represented by the formula (I) and a copolymer of an ⁇ , ⁇ -unsaturated carboxylic acid and an acrylate ester described in JP-A No. 58-127752. A neutralized product or the like may be used.
  • a surfactant represented by the formula (I) latemul AD-25 (manufactured by Kao Corporation), latemul E-1000A (manufactured by Kao Corporation) represented by the formula (A), and formula (B) Neugen EA-177 (Daiichi Kogyo Seiyaku Co., Ltd.) and the like, and Latem E-1000A (Kao Co., Ltd.) represented by the formula (A) are preferable.
  • X represents a hydrogen atom or —SO 3 M
  • M represents a hydrogen atom or NH 4
  • n represents an integer of 1 to 3
  • m represents 1 Represents an integer of ⁇ 100
  • Metakaolin particles of the present invention are those represented by Al 2 O 3 ⁇ 2SiO 2, be produced by firing at kaolinite (Al 2 O 3 ⁇ 2SiO 2 ⁇ 2H 2 O) of about 500 ° C. or higher
  • kaolinite Al 2 O 3 ⁇ 2SiO 2 ⁇ 2H 2 O
  • Insulite registered trademark
  • MC series Mizusawa Chemical Co., Ltd.
  • the average particle diameter of the metakaolin particles of the present invention is from the viewpoint that the metakaolin particles are more uniformly dispersed in the ethylene-based copolymer when the resin pellets of the present invention are melt-kneaded, and from the viewpoint of suppressing the mutual adhesion of the pellets.
  • the thickness is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle diameter of the metakaolin particles is measured by the following method. First, metakaolin particles are dispersed in ethanol to obtain a dispersion. The dispersion is irradiated with a laser beam, and the particle size distribution is measured on a volume basis from the diffraction (scattering). The central particle size of the measured particle size distribution is the average particle size of the metakaolin particles.
  • the metakaolin particles having an average particle size of 0.01 ⁇ m or more and 100 ⁇ m or less may be used by grinding the metakaolin particles having a large average particle size in a mortar or by pulverizing with a jet mill.
  • the resin pellet of the present invention has a structure unit derived from ethylene and a surface of an ethylene copolymer pellet containing a structure unit derived from a compound selected from the group consisting of an unsaturated ester and an unsaturated carboxylic acid.
  • ethylene copolymer pellet refers to a pellet to which the above-mentioned metakaolin particles and polymer particles are not attached
  • resin pellet refers to the above-described metakaolin particles and polymer particles that are ethylene-based copolymer pellets. It refers to pellets attached to the surface of polymer pellets.
  • the metakaolin particles adhering to the surface of the ethylene copolymer pellets are 0.01 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the ethylene copolymer pellets. It is preferably no greater than 0.5 parts by mass, more preferably no greater than 0.05 parts by mass and no greater than 0.5 parts by mass, and even more preferably no greater than 0.3 parts by mass.
  • the polymer particles attached to the surface of the ethylene copolymer pellets are preferably 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the ethylene copolymer pellets. The amount is more preferably no less than 0.5 parts by mass and even more preferably no greater than 0.3 parts by mass.
  • the resin pellet of the present invention may contain additives such as a light resistance stabilizer, an ultraviolet absorber, an antioxidant, and a lubricant as necessary.
  • the additive may be attached to the surface of the ethylene copolymer pellet together with the metakaolin particles and the polymer particles.
  • the light-resistant stabilizer include hindered amine compounds.
  • the ultraviolet absorber include benzophenone compounds.
  • the antioxidant include phenolic compounds and phosphorus compounds.
  • the lubricant include fatty acid amide compounds such as oleic acid amide, erucic acid amide, stearic acid amide, behenic acid amide, ethylene bisoleic acid amide, and ethylene bis stearic acid amide.
  • the dispersion medium used is preferably water.
  • the dispersion may be prepared by adding metakaolin particles to a preliminary dispersion containing the polymer particles and the dispersion medium.
  • the preliminary dispersion containing the polymer particles and the dispersion medium may be a commercially available product.
  • Examples of a method for dispersing the metakaolin particles and the polymer particles in a dispersion medium include a high-speed stirring method or a method using ultrasonic waves.
  • the coated dispersion media is removed by drying the coated ethylene copolymer pellets.
  • a dispersion liquid containing the polymer particles, the metakaolin particles and the dispersion medium is applied to the surface of the ethylene copolymer pellet, and then the dispersion medium is removed from the applied dispersion liquid.
  • Step 1a) Extruding the ethylene copolymer from the extruder and cutting it into pellets in water to produce ethylene copolymer pellets;
  • Step 1b) While transferring the ethylene copolymer pellets to the next step through the air feed line, in the air feed line, the dispersion containing the polymer particles, the metakaolin particles, and the dispersion medium is transferred to the ethylene copolymer.
  • Step 1c) A step of drying the ethylene copolymer pellets to which the dispersion liquid has been applied to the surface to remove the water attached in Step 1a) and the dispersion medium attached in Step 1c) to obtain resin pellets;
  • Step 1d) a method having a step of packaging resin pellets, Step 2a) Extruding the ethylene copolymer from the extruder and cutting it into pellets in water to produce ethylene copolymer pellets;
  • Step 2b) a step of transferring the ethylene copolymer pellets to the hopper through an air feed line;
  • Step 2c) In the hopper, a step of applying a dispersion containing the polymer particles, metakaolin particles, and a dispersion medium to the surface of the ethylene copolymer pellets;
  • Step 2d) drying the ethylene copolymer pellets to which the dispersion is applied to the surface, removing the water adhering in Step 2a) and the dispersion medium adhering in Step 2c
  • the amount of metakaolin particles adhering to the surface of the ethylene copolymer pellet of the present invention can be calculated by the following method.
  • the resin pellet is burned at 500 ° C. while observing its mass. Stop burning when there is no change in mass.
  • the amount of ash obtained is the amount of metakaolin particles.
  • the amount of polymer particles adhering to the surface of the ethylene copolymer pellet of the present invention can be calculated by the following method.
  • the resin pellet is ultrasonically washed in water.
  • the polymer particles and metakaolin particles eluted in water are dried and weighed.
  • the value obtained by subtracting the amount of metakaolin particles obtained by the above method from the value is the amount of polymer particles.
  • a molded product obtained using the resin pellets of the present invention has a higher volume resistivity than pellets that have not been subjected to a mutual adhesion prevention treatment, that is, ethylene copolymer pellets. Therefore, the sheet
  • a conventional solar cell is used under a high voltage, the power generation performance may be reduced due to poor insulation of the sealing material. Since the solar cell encapsulant of the present invention is excellent in insulation, it is possible to suppress a decrease in power generation performance.
  • Examples of the method for producing the sheet-shaped solar cell encapsulant include a method of processing the resin pellet using a T-die extruder, a calendar molding machine, or the like.
  • coupling agents peroxides, silane coupling agents, crosslinking aids
  • antifogging agents plasticizers
  • surfactants colorants, antistatic agents, anti-discoloring agents, Flame retardants, crystal nucleating agents, lubricants and the like.
  • Test method The pellet mutual adhesion test and the measurement of physical properties in Examples and Comparative Examples were performed by the following methods.
  • the sheet was placed on a large-diameter electrode for a flat plate sample (SME-8310 manufactured by Toa DKK Corporation), a voltage of 500 V was applied, and after 1 minute with a digital insulation meter (DSM-8103 manufactured by Toa DKK Corporation) was measured, and the volume specific resistance value was calculated based on the measured resistance value. The larger the volume resistivity value, the better the electrical insulation.
  • the average particle diameter of the metakaolin particles was calculated by the following method. Metakaolin particles were added to ethanol and dispersed with a homogenizer for 10 minutes. The dispersion was irradiated with a laser beam, and its diffraction (scattering) was measured as a volume-based particle size distribution with a Microtrac particle size analyzer (MT-3000EX II, manufactured by Nikkiso Co., Ltd.) to determine the central particle size of the particle size distribution. The average particle size of the polymer particles was determined by the same method as above except that water was used as the dispersion medium.
  • the average particle diameter of the metakaolin particles and the average particle diameter of the polymer particles adhering to the surface of the ethylene copolymer pellets are the average particles measured in the dispersion of the metakaolin particles and the polymer particles, respectively. It was considered to be the same as the diameter.
  • melt flow rate (MFR, unit: g / 10 min)
  • MFR melt flow rate
  • Example 1 100 parts by mass of ethylene-vinyl acetate copolymer pellets (manufactured by Sumitomo Chemical Co., Ltd., KA-40, amount of structural unit derived from vinyl acetate 28% by mass, MFR 20 g / 10 min, pellet mass 32 g, Mw / Mn 3.8) And 0.15 parts by mass of metakaolin particles (Insulite MC-6, manufactured by Mizusawa Chemical Industry Co., Ltd., average particle size 6 ⁇ m, mass 0.048 g), and emulsion composition (Likabond ES-90S, acrylic resin as the main component)
  • An aqueous dispersion of polymer particles manufactured by Chuo Rika Kogyo Co., Ltd., average particle size of polymer particles 0.1 ⁇ m, amount of polymer particles in emulsion composition 51 mass% (however, the amount of emulsion composition is 100 0.094 g) (0.15 parts by mass of polymer particles) is placed in a
  • Example 2 The same procedure as in Example 1 was performed except that the amount of metakaolin particles used was changed to 0.20 parts by mass and the amount of polymer particles was changed to 0.10 parts by mass. The evaluation results are shown in Table 1.
  • Example 3 The metakaolin particles and the emulsion composition were mixed and stirred in advance in a beaker using a stirrer and then added to the pellets in the same manner as in Example 2 except that they were added.
  • the evaluation results are shown in Table 1.
  • Example 4 100 parts by mass of ethylene-methyl methacrylate copolymer pellets (manufactured by Sumitomo Chemical Co., Ltd., WK-402, amount of structural units derived from methyl methacrylate 25% by mass, MFR 20 g / 10 min, pellet mass 32 g, Mw / Mn 3.5) And 0.20 parts by mass of metakaolin (Insulite MC-6, manufactured by Mizusawa Chemical Co., Ltd., average particle size 6 ⁇ m, 0.064 g) as an emulsion composition (Likabond ES-90S, a polymer mainly composed of an acrylic resin) Water dispersion of particles, manufactured by Chuo Rika Kogyo Co., Ltd., average particle diameter of polymer particles 0.1 ⁇ m, amount of polymer particles in emulsion composition 51% by mass (however, the amount of emulsion composition is 100% by mass) ), 0.063 g) (0.10 parts by mass of polymer particles) is put
  • Example 1 was used except that 0.30 parts by mass of calcium stearate (AR-42, manufactured by Kyodo Pharmaceutical Co., Ltd., average particle size 10 ⁇ m, 0.096 g) was used instead of the metakaolin particles and the emulsion composition. Carried out. The evaluation results are shown in Table 1.
  • AR-42 manufactured by Kyodo Pharmaceutical Co., Ltd., average particle size 10 ⁇ m, 0.096 g
  • resin pellets capable of providing a molded article in which mutual adhesion between pellets is suppressed and excellent in electrical insulation, a manufacturing method thereof, and a solar cell sealing material obtained using the resin pellets. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

ペレット同士の互着が抑えられ、かつ、電気絶縁性に優れる成形品を提供できる樹脂ペレット、その製造方法、及び当該樹脂ペレットを用いて得られる太陽電池封止材を提供する。本発明は、エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体ペレットの表面に、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子と、メタカオリン粒子とが付着している樹脂ペレットに関する。

Description

樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材
 本発明は、樹脂ペレット、その製造方法、及び太陽電池封止材に関するものである。
 太陽電池封止材には、エチレン−不飽和エステル共重合体が使用されている。エチレン−不飽和エステル共重合体ペレットは、互着することがある。
 従来から、粘着性を有する樹脂のペレットが、保管、輸送、製品加工時等に、ペレット同士で互着することについて、種々の対策が行われている。例えば、特開昭59−124829号公報には、ゴムペレットと、高級脂肪酸又は/及びその塩とを混合する方法が記載されている。特開平9−77890号公報には、ポリ酢酸ビニル(共)重合体の鹸化物に、イソシアネート基等を反応させて得られる離型剤成分が、脂肪酸もしくはその金属塩、及び/又は、酸変性ポリオレフィン(共)重合体と共に水中に分散されて成る水分散系離型剤組成物を、樹脂表面に付着させた後、乾燥することを特徴とする樹脂ペレットの表面処理方法が記載されている。
 しかしながら、上記特許文献に記載された方法で互着防止処理をしてエチレン−不飽和エステル共重合体ペレットを用いて得られる成形品は、電気絶縁性が十分ではなかった。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、ペレット同士の互着が抑えられ、かつ、電気絶縁性に優れる成形品を提供できる樹脂ペレット、その製造方法、及び当該樹脂ペレットを用いて得られる太陽電池封止材を提供することにある。
 本発明者らは上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。
 すなわち、本発明の第一は、エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体ペレットの表面に、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子と、メタカオリン粒子とが付着している樹脂ペレットにかかるものである。
 本発明の第二は、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子とメタカオリン粒子と分散媒とを含む分散液を、エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体ペレットの表面に付与した後、付与された前記分散液から分散媒を除去する樹脂ペレットの製造方法にかかるものである。
 本発明の第三は、上記樹脂ペレット用いて得られる太陽電池封止材にかかるものである。
 〔エチレン系共重合体〕
 本発明のエチレン系共重合体は、エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを有する。
 不飽和エステルとしては、例えばカルボン酸ビニルエステル、不飽和カルボン酸エステル等が挙げられる。カルボン酸ビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル等が挙げられる。不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸グリシジル等が挙げられる。
 不飽和カルボン酸としては、アクリル酸、メタクリル酸等が挙げられる。
 本発明のエチレン系共重合体としては、エチレン−不飽和エステル共重合体、エチレン−不飽和カルボン酸共重合体、エチレン−不飽和エステル−不飽和カルボン酸共重合体が挙げられる。
 エチレン−不飽和エステル共重合体としては、エチレン−カルボン酸ビニルエステル共重合体、エチレン−不飽和カルボン酸エステル共重合体、エチレン−カルボン酸ビニルエステル−不飽和カルボン酸エステル共重合体等が挙げられる。
 エチレン−カルボン酸ビニルエステル共重合体としては、例えば、エチレン−酢酸ビニル共重合体、エチレン−プロピオン酸ビニル共重合体等が挙げられる。
 エチレン−不飽和カルボン酸エステル共重合体としては、例えば、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸グリシジル共重合体等が挙げられる。
 エチレン−カルボン酸ビニルエステル−不飽和カルボン酸エステル共重合体としては、例えば、エチレン−酢酸ビニル−メタクリル酸メチル共重合体等が挙げられる。
 エチレン−不飽和カルボン酸共重合体としては、例えば、エチレン−メタクリル酸共重合体、エチレン−アクリル酸共重合体等が挙げられる。
 エチレン−不飽和エステル−不飽和カルボン酸共重合体としては、例えば、エチレン−酢酸ビニル−メタクリル酸共重合体、エチレン−メタクリル酸メチル−メタクリル酸共重合体、エチレン−アクリル酸メチル−アクリル酸共重合体等が挙げられる。
 上記エチレン系共重合体の不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量は、加工性、透明性を高める観点から、好ましくは20質量%以上、35質量%以下であり、より好ましくは25質量%以上、32質量%以下である(ただし、エチレンに由来する構造単位の量と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量との合計を100質量%とする)。なお、本発明のエチレン系共重合体が、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位を二種類以上含有する場合は、当該エチレン系共重合体が含有する全ての不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量の合計を、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量とする。
 上記エチレン系共重合体のメルトフローレート(MFR)は、加工性を高める観点から、好ましくは4g/10分以上、50g/10分以下である。MFRの上限はより好ましくは40g/10分である。MFRの下限はより好ましくは5g/10分である。MFRは、JIS K7210−1995に規定された方法により、温度190℃、荷重21.18Nの条件で測定されるものをいう。
 上記エチレン系共重合体の分子量分布(Mw/Mn)は、加工性を高める観点から、2以上、8以下であることが好ましく、より好ましくは2.5以上、4以下である。なお、Mwは、上記共重合体のポリエチレン換算の重量平均分子量を表し、Mnは、上記共重合体のポリエチレン換算の数平均分子量を表す。
 上記エチレン系共重合体のポリエチレン換算の重量平均分子量は、40000~80000であることが好ましく、50000~70000であることがより好ましい。ポリエチレン換算の重量平均分子量は、次の方法で求められる。まず、ゲル・パーミエイション・クロマトグラフ測定によって、エチレン系共重合体のポリスチレン換算の重量平均分子量を求める。上記ポリスチレン換算の重量平均分子量と、ポリエチレンとポリスチレンのQファクターの比(17.7/41.3)との積が、ポリエチレン換算の重量平均分子量である。
 上記エチレン系共重合体の製造方法としては、例えば、スラリー重合法、溶液重合法、塊状重合法、気相重合法等が挙げられる。
 〔エチレン系共重合体ペレット〕
 エチレン系共重合体ペレットの形状は、例えば、球状、楕円球状、円柱状、楕円柱状、角柱状、棒状等が挙げられる。また、エチレン系共重合体ペレットの大きさは、直径又は長さが3mm以上で5mm以下が好ましい。
 〔重合体粒子〕
 本発明の重合体粒子は、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、その平均粒径は0.01μm以上100μm以下である。重合体粒子の平均粒径は好ましくは0.1μm以上、30μm以下である。
 重合体粒子の平均粒径は、次の方法で測定される。まず、重合体粒子を水に分散させて分散液を得る。該分散液にレーザー光線を照射し、その回折(散乱)から、体積基準で粒度分布を測定する。測定した粒度分布の中心粒径が、重合体粒子の平均粒径である。
 上記オレフィン系重合体としては、例えば、ポリエチレン、エチレン−α−オレフィン共重合体、エチレンに由来する構造単位と不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体などが挙げられる。重合体粒子に含有されるエチレン系共重合体としては、上記エチレン系共重合体ペレットのエチレン系共重合体として例示したものと同じものが挙げられる。
 オレフィン系重合体は、変性オレフィン系重合体であってもよく、変性オレフィン系重合体としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性エチレン−プロピレン共重合体、もしくはそれらの中和物などが挙げられる。
 重合体粒子が、エチレンに由来する構造単位と不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体を含有する場合、当該エチレン系共重合体の不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量は、10~35質量%であることが好ましく、10~24質量%であることがより好ましい(ただし、エチレンに由来する構造単位の量と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位の量との合計を100質量%とする)。
 上記不飽和エステル系重合体は、不飽和エステルの単独重合体、異なる二種類以上の不飽和エステルの共重合体等が挙げられる。
 不飽和エステルとしては、上記エチレン系共重合体ペレットのエチレン系共重合体が含む構造単位の由来となる不飽和エステルとして例示したものと同じものが挙げられる。
不飽和エステル系重合体としては、例えばポリ酢酸ビニル、ポリメタクリル酸メチル、酢酸ビニル−メタクリル酸メチル共重合体などが挙げられる。
 重合体粒子は、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる1種の重合体からなるものであってもよく、異なる重合体粒子の混合物であってもよい。
 重合体粒子は、界面活性剤を含んでいてもよい。
 界面活性剤としては、イオン性界面活性剤、非イオン性界面活性剤が挙げられる。
 イオン性界面活性剤としては、アニオン性の界面活性剤、カチオン性の界面活性剤、両性の界面活性剤が挙げられる。
 アニオン性の界面活性剤としては、高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート等が挙げられる。
 カチオン性の界面活性剤としては、ドデシルトリメチルアンモニウム塩及びセチルトリメチルアンモニウム塩等のアルキルアンモニウム塩、セチルピリジウム塩及びデシルピリジウム塩等のアルキルピリジウム塩、オキシアルキレントリアルキルアンモニウム塩、ジオキシアルキレンジアルキルアンモニウム塩、アリルトリアルキルアンモニウム塩、ジアリルジアルキルアンモニウム塩等が挙げられる。
 両性の界面活性剤としては、ラウリルベタイン、ラウリルジメチルアミンオキサイド等が挙げられる。
 非イオン性界面活性剤としては、ポリオキシエチレンプロピレンエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、エチレンオキサイドプロピレンオキサイドブロック共重合体、ポリオキシエチレン脂肪酸アミド、エチレンオキサイド−プロピレンオキサイド共重合体などのポリオキシエチレン構造を有する化合物やポリオキシエチレンソルビタン脂肪酸エステルなどのソルビタン誘導体等が挙げられる。
 また、界面活性剤としては、式(I)で表される界面活性剤や特開昭58−127752号公報に記載されたα,β−不飽和カルボン酸とアクリル酸エステルとの共重合体の中和物等を用いてもよい。式(I)で表される界面活性剤としては、ラテムルAD−25(花王株式会社製)、式(A)で表されるラテムルE−1000A(花王株式会社製)、式(B)で表されるノイゲンEA−177(第一工業製薬株式会社製)等が挙げられ、式(A)で表されるラテムルE−1000A(花王株式会社製)が好ましい。
Figure JPOXMLDOC01-appb-I000001
(式(I)、(A)、(B)中、Xは水素原子又は−SOMを表し、Mは水素原子又はNHを表す。nは1~3の整数を表す。mは1~100の整数を表す。)
 〔メタカオリン粒子〕
 本発明のメタカオリン粒子は、Al・2SiOで表されるものであり、カオリナイト(Al・2SiO・2HO)を約500℃以上で焼成して製造することができ、市販品としては、例えばインシュライト(登録商標)MCシリーズ(水澤化学工業(株))を挙げることができる。
 本発明のメタカオリン粒子の平均粒径は、本発明の樹脂ペレットを溶融混練する場合にエチレン系共重合体中により均一にメタカオリン粒子が分散するという観点、およびペレット同士の互着を抑えるという観点から、好ましくは0.01μm以上、100μm以下であり、より好ましくは1μm以上、10μm以下である。
 メタカオリン粒子の平均粒径は、次の方法で測定される。まず、メタカオリン粒子をエタノールに分散させて分散液を得る。該分散液にレーザー光線を照射し、その回折(散乱)から、体積基準で粒度分布を測定する。測定した粒度分布の中心粒径が、メタカオリン粒子の平均粒径である。
 平均粒径の大きいメタカオリン粒子を乳鉢ですりつぶすことにより、またはジェットミルで粉砕することにより、平均粒径を0.01μm以上、100μm以下にしたメタカオリン粒子を用いてもよい。
 〔樹脂ペレット〕
 本発明の樹脂ペレットは、エチレンに由来する構造体単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造体単位とを含むエチレン系共重合体ペレットの表面に、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子と、メタカオリン粒子とが付着している樹脂ペレットである。
 なお、本明細書において、「エチレン系共重合体ペレット」とは上記メタカオリン粒子および重合体粒子が付着していないペレットを指し、「樹脂ペレット」とは上記メタカオリン粒子および重合体粒子がエチレン系共重合体ペレットの表面に付着しているペレットを指す。
 例えば、樹脂ペレットを太陽電池封止材に用いる場合は、エチレン系共重合体ペレットの表面に付着したメタカオリン粒子は、エチレン系共重合体ペレット100質量部に対して0.01質量部以上、5質量部以下であることが好ましく、0.05質量部以上、0.5質量部以下であることがより好ましく、0.3質量部以下であることがさらに好ましい。また、エチレン系共重合体ペレットの表面に付着した重合体粒子は、エチレン系共重合体ペレット100質量部に対して0.01質量部以上、5質量部以下であることが好ましく、0.05質量部以上、0.5質量部以下であることがより好ましく、0.3質量部以下であることがさらに好ましい。
 本発明の樹脂ペレットは、必要に応じて耐光安定剤、紫外線吸収剤、酸化防止剤、滑剤等の添加剤を含有してもよい。上記添加剤は、メタカオリン粒子および重合体粒子と共に、エチレン系共重合体ペレットの表面に付着させてもよい。
 耐光安定剤としては、例えばヒンダードアミン系化合物等が挙げられる。紫外線吸収剤としては、例えばベンゾフェノン系化合物等が挙げられる。酸化防止剤としては、例えばフェノール系化合物、リン系化合物等が挙げられる。滑剤としては、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド化合物等が挙げられる。
 〔樹脂ペレットの製造方法〕
 上記樹脂ペレットを製造する方法としては、オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる上記重合体を含有する重合体粒子と上記メタカオリン粒子と分散媒とを含む分散液を、上記エチレン系共重合体ペレットの表面に付与した後、付与された分散液から分散媒を除去する方法が挙げられる。
 用いられる分散媒としては、好ましくは水である。
 分散液は、上記重合体粒子と分散媒とを含有する予備分散液にメタカオリン粒子を加えて作製してもよい。上記重合体粒子と分散媒とを含有する予備分散液は市販品でもよく、例えば、リカボンド(登録商標)ES−90、ES−63、アクアテックス(登録商標)909(いずれも中央理化工業(株)製)、ノプコマル(登録商標)MS−40(サンノプコ(株)製)などが挙げられる。
 上記メタカオリン粒子と上記重合体粒子を分散媒に分散させる方法としては、例えば、高速攪拌方法又は超音波を用いる方法等が挙げられる。
 上記重合体粒子と上記メタカオリン粒子と分散媒とを含む分散液を、上記エチレン系共重合体ペレットの表面に付与した後、付与された分散液から分散媒を除去する方法としては、例えば、後述するホッパー内又は空送ライン内に当該分散液を噴霧してエチレン系共重合体ペレットを分散液で被覆後、被覆されたエチレン系共重合体ペレットを乾燥することにより付与された分散媒を除去する方法が挙げられる。
 また、包装(例えば、袋、ドラム缶、プラスチック容器等に詰めること)などの作業(包装工程の一例)を連続的かつ簡単な操作で行うことが必要な場合は、具体的には、以下のような方法で、上記重合体粒子と上記メタカオリン粒子と分散媒とを含む分散液をエチレン系共重合体ペレットの表面に付与した後、付与された分散液から分散媒を除去する方法が挙げられる。
 樹脂ペレットの製造を、上記重合体粒子と上記メタカオリン粒子と分散媒とを含む分散液を、上記エチレン系共重合体ペレットの表面に付与した後、付与された分散液から分散媒を除去する方法としては、
工程1a) エチレン系共重合体を押出機から押し出して、水中でペレット状に切断してエチレン系共重合体ペレットを製造する工程と、
工程1b) エチレン系共重合体ペレットを、空送ラインを通じて次工程へ移送しながら、当該空送ライン内において、上記重合体粒子とメタカオリン粒子と分散媒とを含む分散液をエチレン系共重合体ペレット表面に付与する工程と、
工程1c) 上記分散液が表面に付与されたエチレン系共重合体ペレットを乾燥し、工程1a)において付着した水と工程1c)において付着した分散媒とを除去して樹脂ペレットを得る工程と、
工程1d) 樹脂ペレットを包装する工程と
を有する方法や、
工程2a) エチレン系共重合体を押出機から押し出して、水中でペレット状に切断してエチレン系共重合体ペレットを製造する工程と、
工程2b) エチレン系共重合体ペレットを、空送ラインを通じて、ホッパーへ移送する工程と、
工程2c) ホッパー内において、上記重合体粒子とメタカオリン粒子と分散媒とを含む分散液をエチレン系共重合体ペレット表面に付与する工程と、
工程2d) 上記分散液が表面に付与されたエチレン系共重合体ペレットを乾燥し、工程2a)において付着した水と工程2c)において付着した分散媒とを除去して樹脂ペレットを得る工程と、
工程2e) 樹脂ペレットを包装する工程と
を有する方法が挙げられる。
 工程2d)は、工程2c)を行ったホッパー内で行ってもよい。
 工程1a)と工程1b)との間に、または、工程2a)と工程2b)との間に、工程b’) エチレン系共重合体ペレットの水切りを行う工程
を設けてもよい。
〔メタカオリン粒子含有量の算出方法〕
 本発明のエチレン系共重合体ペレットの表面に付着しているメタカオリン粒子の量は、次の方法で算出することが可能である。樹脂ペレットを、その質量を観測しながら500℃で燃焼する。質量変化がなくなったら燃焼をやめる。得られた灰分量が、メタカオリン粒子の量である。
〔重合体粒子含有量の算出方法〕
 本発明のエチレン系共重合体ペレットの表面に付着している重合体粒子の量は、次の方法で算出することが可能である。樹脂ペレットを水中で超音波洗浄する。水中に溶出した重合体粒子およびメタカオリン粒子を乾燥し秤量する。その値から、上記方法で求めたメタカオリン粒子の量を差し引いた値が、重合体粒子の量である。
 〔太陽電池封止材〕
 下記の実施例で示されるように、本発明の樹脂ペレットを用いて得られる成形品は、互着防止処理をしていないペレット、すなわちエチレン系共重合体ペレットよりも体積固有抵抗が高い。そのため、本発明の樹脂ペレットを用いて作製したシート等は、太陽電池素子(結晶、多結晶、アモルファス等)の封止及び保護に用いられる太陽電池封止材に好適に用いられる。従来の太陽電池は、高電圧下で用いると、封止材の絶縁不良によって発電性能が低下することがあった。本発明の太陽電池封止材は絶縁性に優れるため、発電性能の低下を抑制可能である。
 シート状の太陽電池封止材の製造方法は、T−ダイ押出機、カレンダー成形機等を用いて上記樹脂ペレットを加工する方法が挙げられる。樹脂ペレットをシートに加工する段階で、カップリング剤(過酸化物、シランカップリング剤、架橋助剤)、防曇剤、可塑剤、界面活性剤、着色剤、帯電防止剤、変色防止剤、難燃剤、結晶核剤、滑剤等を添加してもよい。
 以下、本発明を実施例によりさらに詳細に説明する。
 (試験の方法)
 実施例及び比較例における、ペレット互着試験及び物性の測定は、以下の方法で行った。
 〔ペレット互着試験1〕60mm×85mmのチャック付ポリ袋に試料ペレット32gを入れ、チャックを閉じた。次いで、40℃の雰囲気下で、上記袋に900g/cmの荷重をかけ、その状態を96時間保った後、温度のみを5℃に変更し、その状態を24時間保った。その後、荷重を取り除き、袋を破り、ペレットを取り出してペレットの状態を観察し、下記の○、×で評価した。
 ○:ペレットの互着なし
 ×:ペレット同士が5粒以上互着している
 〔ペレット互着試験2〕60mm×85mmのチャック付ポリ袋に試料ペレット32gを入れ、チャックを閉じた。次いで、40℃の雰囲気下で、上記袋に900g/cmの荷重をかけ、その状態を48時間保った後、温度のみを5℃に変更し、その状態を24時間保った。その後、荷重を取り除き、袋を破り、ペレットを取り出してペレットの状態を観察し、下記の○、×で評価した。
 ○:ペレットの互着なし
 ×:ペレット同士が5粒以上互着している
 〔体積固有抵抗(単位:Ω・cm)〕互着試験後の樹脂ペレットを、ラボプラストミルにより5分間混練した。混練した樹脂を150℃の熱プレス機により2MPaの圧力で5分間プレスした後、30℃の冷却プレス機で5分間冷却して、厚さ約500μmのシートを作製した。平板試料用大径電極(東亜ディーケーケー株式会社製 SME−8310)に、該シートを設置して、500Vの電圧を印加し、デジタル絶縁計(東亜ディーケーケー株式会社製 DSM−8103)にて1分後の抵抗値を測定し、その値をもとに体積固有抵抗値を算出した。体積固有抵抗値が大きいほど、電気絶縁性に優れる。
 〔光線透過率(単位:%)〕互着試験後の樹脂ペレットを、ラボプラストミルにより5分間混練した。混練した樹脂を150℃の熱プレス機により10MPaの圧力で5分間プレスした後、150℃の熱プレス機により10MPaの圧力で20分プレスし、30℃の冷却プレス機で5分間冷却して、厚さ約500μmのシートを作製した。該シートの厚み方向の光線透過スペクトルを分光光度計(株式会社 島津製作所製 UV−3150)を用いて測定し、波長範囲400~1200nmにおける光線透過率の平均値を算出した。
 〔平均粒径(単位:μm)〕メタカオリン粒子の平均粒径は、以下の方法で算出した。
メタカオリン粒子をエタノールに加え、ホモジナイザで10分間分散した。上記分散液にレーザー光線を照射し、その回折(散乱)をマイクロトラック粒度分析計(日機装株式会社製 MT−3000EX II)で体積基準の粒度分布として測定し、粒度分布の中心粒径を求めた。
 重合体粒子の平均粒径は、分散媒に水を用いること以外は、上記と同様な方法で求めた。
 エチレン系共重合体ペレットの表面に付着しているメタカオリン粒子の平均粒径および重合体粒子の平均粒径は、それぞれ、当該メタカオリン粒子、当該重合体粒子の上記分散液中で測定された平均粒径と同じであるとみなした。
 〔メルトフローレート(MFR、単位:g/10分)〕エチレン−酢酸ビニル共重合体のメルトフローレートは、JIS K7210−1995に規定された方法により、温度190℃、荷重21.18Nの条件で測定した。
 〔酢酸ビニルに由来する構造単位の含有率(単位:質量%)〕
 エチレン−酢酸ビニル共重合体に含有される酢酸ビニルに由来する構造単位の含有率は、エチレンに由来する構造単位の含有量と、酢酸ビニルに由来する構造単位の含有量の総和を100質量%とするときの値であり、JIS K7192に従い測定した。
 <実施例1>
 エチレン−酢酸ビニル共重合体ペレット(住友化学社製、KA−40、酢酸ビニルに由来する構造単位の量 28質量%、MFR20g/10分、ペレット質量32g、Mw/Mn 3.8)100質量部と、メタカオリン粒子(インシュライトMC−6、水澤化学工業株式会社製、平均粒径6μm、質量0.048g)0.15質量部と、エマルション組成物(リカボンド ES−90S、アクリル樹脂を主成分とする重合体粒子の水分散液、中央理化工業株式会社製、重合体粒子の平均粒径0.1μm、エマルション組成物中の重合体粒子の量51質量%(ただし、エマルション組成物の量を100質量%とする)、0.094g)(重合体粒子0.15質量部)をポリエチレン製のカップへ入れ5分間攪拌後、乾燥窒素を吹き付けながら2時間乾燥させて、樹脂ペレットを得た。該樹脂ペレットの互着試験〔ペレット互着試験1〕を実施した。互着試験後の樹脂ペレットを用い体積固有抵抗を測定した。評価結果を表1に示した。
 <実施例2>
 用いるメタカオリン粒子の量を0.20質量部、重合体粒子の量を0.10質量部に変えたこと以外は実施例1と同様にして実施した。評価結果を表1に示した。
 <実施例3>
 メタカオリン粒子とエマルション組成物をあらかじめビーカー中にてスターラーを用いて混合攪拌した後に、ペレットへ添加したこと以外は実施例2と同様にして実施した。評価結果を表1に示した。
<実施例4>
 エチレン−メチルメタクリレート共重合体ペレット(住友化学社製、WK−402、メチルメタクリレートに由来する構造単位の量25質量%、MFR20g/10分、ペレット質量32g、Mw/Mn 3.5)100質量部と、メタカオリン(インシュライトMC−6、水澤化学工業株式会社製、平均粒径6μm、0.064g)0.20質量部をエマルション組成物(リカボンド ES−90S、アクリル樹脂を主成分とする重合体粒子の水分散液、中央理化工業株式会社製、重合体粒子の平均粒径0.1μm、エマルション組成物中の重合体粒子の量51質量%(ただし、エマルション組成物の量を100質量%とする)、0.063g)(重合体粒子0.10質量部)をポリエチレン製のカップへ入れ5分間攪拌後、乾燥窒素を吹き付けながら2時間乾燥させて、樹脂ペレットを得た。該樹脂ペレットの互着試験〔ペレット互着試験2〕を実施した。互着試験後の樹脂ペレットを用い体積固有抵抗を測定した。評価結果を表2に示した。
 <比較例1>
 メタカオリン粒子およびエマルション組成物を用いなかったこと以外は、実施例1と同様にして実施した。評価結果を表1に示した。
 <比較例2>
 メタカオリン粒子を用いず、重合体粒子の量を0.30質量部に変えたこと以外は、実施例1と同様にして実施した。評価結果を表1に示した。
 <比較例3>
 メタカオリン粒子およびエマルション組成物のかわりに、ステアリン酸カルシウム(AR−42、共同薬品株式会社製、平均粒径10μm、0.096g)0.30質量部を用いたこと以外は、実施例1と同様にして実施した。評価結果を表1に示した。
 <比較例4>
 メタカオリン粒子を用いなかったこと以外は、実施例1と同様にして実施した。評価結果を表1に示した。
<比較例5>
 メタカオリン粒子およびエマルション組成物を用いなかったこと以外は、実施例4と同様にして実施した。評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明により、ペレット同士の互着が抑えられ、かつ、電気絶縁性に優れる成形品を提供できる樹脂ペレット、その製造方法、及び当該樹脂ペレットを用いて得られる太陽電池封止材を提供することができる。

Claims (3)

  1.  エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体ペレットの表面に、
    オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子と、メタカオリン粒子と
    が付着している樹脂ペレット。
  2.  オレフィン系重合体および不飽和エステル系重合体からなる群より選ばれる重合体を含有し、平均粒径が0.01μm以上100μm以下である重合体粒子とメタカオリン粒子と分散媒とを含む分散液を、
    エチレンに由来する構造単位と、不飽和エステルおよび不飽和カルボン酸からなる群より選ばれる化合物に由来する構造単位とを含むエチレン系共重合体ペレットの表面に付与した後、付与された前記分散液から分散媒を除去する樹脂ペレットの製造方法。
  3.  第1項に記載の樹脂ペレットを用いて得られる太陽電池封止材。
PCT/JP2013/063614 2012-05-17 2013-05-09 樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材 WO2013172396A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113140 2012-05-17
JP2012-113140 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172396A1 true WO2013172396A1 (ja) 2013-11-21

Family

ID=49583800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063614 WO2013172396A1 (ja) 2012-05-17 2013-05-09 樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材

Country Status (3)

Country Link
JP (1) JP2013256107A (ja)
TW (1) TW201410750A (ja)
WO (1) WO2013172396A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843029A (ja) * 1971-09-28 1973-06-22
JPS62199625A (ja) * 1986-02-25 1987-09-03 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− シリカ被覆オレフイン−酸系共重合体成形用ペレツト
JPH01288408A (ja) * 1988-05-17 1989-11-20 Du Pont Mitsui Polychem Co Ltd 樹脂ペレットの製造方法
JP2005036235A (ja) * 2003-07-17 2005-02-10 Wacker Polymer Systems Gmbh & Co Kg 水中で再分散可能なポリマー粉末組成物、その製造法および該組成物の使用
JP2007090600A (ja) * 2005-09-28 2007-04-12 Sumitomo Chemical Co Ltd 樹脂ペレットのサイロ保管方法
JP2010535924A (ja) * 2007-08-14 2010-11-25 ワッカー ケミー アクチエンゲゼルシャフト 連続的重合法
WO2013031788A1 (ja) * 2011-09-01 2013-03-07 住友化学株式会社 樹脂組成物、樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843029A (ja) * 1971-09-28 1973-06-22
JPS62199625A (ja) * 1986-02-25 1987-09-03 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− シリカ被覆オレフイン−酸系共重合体成形用ペレツト
JPH01288408A (ja) * 1988-05-17 1989-11-20 Du Pont Mitsui Polychem Co Ltd 樹脂ペレットの製造方法
JP2005036235A (ja) * 2003-07-17 2005-02-10 Wacker Polymer Systems Gmbh & Co Kg 水中で再分散可能なポリマー粉末組成物、その製造法および該組成物の使用
JP2007090600A (ja) * 2005-09-28 2007-04-12 Sumitomo Chemical Co Ltd 樹脂ペレットのサイロ保管方法
JP2010535924A (ja) * 2007-08-14 2010-11-25 ワッカー ケミー アクチエンゲゼルシャフト 連続的重合法
WO2013031788A1 (ja) * 2011-09-01 2013-03-07 住友化学株式会社 樹脂組成物、樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材

Also Published As

Publication number Publication date
TW201410750A (zh) 2014-03-16
JP2013256107A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
TWI615264B (zh) 太陽電池封裝材片的製造方法
JP5200475B2 (ja) 水性樹脂分散組成物の製造方法
TW200904886A (en) Flame-retardant polyolefin resin composition and adhesive tape substrate composed of the composition, and adhesive tape
JP2010500424A (ja) オレフィン系プラスチックならびに非オレフィン系プラスチックを着色および改質するための高充填着色剤組成物
JP2012207167A (ja) 変性ポリオレフィン樹脂分散組成物
JP2008195832A (ja) 水性分散体およびその製造方法
CN109153905B (zh) 粘接剂、粘接性树脂组合物及由其形成的层叠体
JP5979985B2 (ja) オレフィン系重合体組成物および該組成物からなるフィルム
US9460829B2 (en) Resin composition, resin pellet, method for producing resin pellet, and solar cell encapsulant
JP6486170B2 (ja) ポリオレフィンまたはポリエステル用アンチブロッキング剤
WO2019180118A1 (en) Aqueous polyolefin dispersion
JP2004217753A (ja) 変性ポリプロピレン樹脂
JP5037012B2 (ja) ポリオレフィン樹脂水性分散体の製造方法
WO2013172396A1 (ja) 樹脂ペレット、樹脂ペレットの製造方法及び太陽電池封止材
JP2008115274A (ja) マスターバッチおよびそれを用いた成形体の製造方法
WO2010079737A1 (ja) マスターバッチの製造方法、マスターバッチおよびその用途
JP2008038055A (ja) 水性分散液およびその製造方法
JP2004217754A (ja) 変性ポリプロピレン樹脂
JP2011252082A (ja) プロピレン系樹脂組成物、マスターバッチ、ポリプロピレン系フィルム用組成物およびポリプロピレン系フィルム
JP4122766B2 (ja) エチレン系共重合体ペレット及びホットメルト接着剤
JP2016188327A (ja) 互着防止剤
JP2006176619A (ja) キャリアテープ用カバーテープ
JP2014189617A (ja) 水性エマルション
JP4192628B2 (ja) エチレン系共重合体ペレット
JP5989763B2 (ja) 太陽電池封止材用ペレットの互着防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790216

Country of ref document: EP

Kind code of ref document: A1