WO2013168698A1 - Conductive film - Google Patents

Conductive film Download PDF

Info

Publication number
WO2013168698A1
WO2013168698A1 PCT/JP2013/062830 JP2013062830W WO2013168698A1 WO 2013168698 A1 WO2013168698 A1 WO 2013168698A1 JP 2013062830 W JP2013062830 W JP 2013062830W WO 2013168698 A1 WO2013168698 A1 WO 2013168698A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
film according
mesh
shape
conductive
Prior art date
Application number
PCT/JP2013/062830
Other languages
French (fr)
Japanese (ja)
Inventor
栗城匡志
橋本明裕
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380024150.XA priority Critical patent/CN104395864B/en
Publication of WO2013168698A1 publication Critical patent/WO2013168698A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a conductive film capable of suppressing the occurrence of moire.
  • the touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a display for a personal computer.
  • PDA personal digital assistant
  • moire may occur due to interference with the pixel arrangement pattern of the display device.
  • a moire suppressing portion is formed at the intersection of the lattice (see Japanese Patent Application Laid-Open No. 2008-282924), or a moire is formed on a line connecting the intersection in the opening of the lattice.
  • a method of forming a suppression unit has been proposed (see Japanese Patent Application Laid-Open No. 2008-306177).
  • the thin metal wire when a thin metal wire is used as an electrode of the touch panel, the thin metal wire is made of an opaque material, and thus transparency and visibility become a problem.
  • a conductive film using a fine metal wire as an electrode is placed on a display panel of a display device and used, good visibility is required even in the following two modes.
  • the fine metal lines are difficult to be seen, the visible light transmittance is high, and the pixel period of the display device (for example, the black matrix pattern of the liquid crystal display) and the conductive pattern It is difficult for noise such as moire caused by optical interference to occur.
  • the second mode is that when the display device is turned off and the screen is black, and the observation is performed under external light such as fluorescent light, sunlight, LED light, etc., the thin metal wire is difficult to see.
  • the configuration described in Japanese Patent Application Laid-Open No. 2008-282924 increases the area of the intersection by forming a metal layer at the intersection, which makes the intersection of the lattice more noticeable and disadvantageous in terms of visibility. Become.
  • a metal layer is formed in the opening, so that the aperture ratio may decrease and transparency may decrease.
  • the present invention has been made in consideration of such a problem, and even when an electrode such as a touch panel is configured by arranging a large number of grids configured with fine metal wires, it is possible to reduce the occurrence of moire,
  • An object of the present invention is to provide a conductive film in which a fine metal wire is difficult to be visually recognized and high transparency can be secured.
  • the conductive film according to the present invention is a conductive film having a conductive portion and an opening made of a fine metal wire, and the conductive portion has an intersection of the plurality of fine metal wires, and the fine metal wire An overhanging portion is disposed on a line and at a portion other than the intersection.
  • the metal thin wire has a form in which an intersection portion centered on the intersection and a pseudo intersection portion centered on the intersection of the metal thin wire and the overhanging portion are arranged. It becomes irregular and does not converge to a specific spatial frequency. As a result, even when the conductive film is placed on the display panel of the display device, for example, interference with the pixel arrangement pattern does not occur, and the generation of moire can be reduced.
  • the combined shape of the conductive portion and the opening may be a mesh shape.
  • the projecting portion is at least one side of the plurality of sides constituting the mesh shape, and at a position that does not overlap the intersection of the mesh shape. It is preferable that they are arranged to cross each other.
  • the overhanging portion is arranged so as to extend across the one side, and the shape of the overhanging portion is a line segment shape, an elliptical shape, or a rhombus shape having the extending direction as a major axis. It may be a parallelogram shape or a polygonal shape.
  • the projecting portion may have a line segment shape having the extending direction as a major axis.
  • the other side intersecting with the one side and the major axis of the projecting portion are substantially parallel.
  • the line width of the projecting portion is preferably 30 ⁇ m or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less.
  • the length of the one side is preferably 50 ⁇ m or more and 900 ⁇ m or less. More preferably, they are 50 micrometers or more and 600 micrometers or less, More preferably, they are 50 micrometers or more and 500 micrometers or less.
  • the conductive portion has a mesh pattern having a plurality of mesh shapes, and the plurality of protruding portions are randomly arranged with respect to the mesh pattern.
  • a mesh shape in which the protruding portion is not arranged may be present at random.
  • the arrangement position of the overhanging portion with respect to one or more mesh shapes in which the overhanging portion is arranged may be random.
  • the arrangement positions of the overhang portions on the plurality of sides are random. May be.
  • At least one of the overhang portions has a distance from the one intersection to a center position, May be different.
  • the overhanging portions arranged on the adjacent sides may have different distances from the corresponding intersections.
  • the arrangement ratio of the overhang portions is (Nb / Na) ⁇ 100%
  • the arrangement ratio is 10% or more and 100%. The following is preferable.
  • the line width of the fine metal wire is preferably 30 ⁇ m or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less. The lower limit is 0.1 ⁇ m or more.
  • the aperture ratio is preferably 90% or more.
  • FIG. 4A to 4E are process diagrams showing an example of a method for manufacturing a conductive film according to the present embodiment.
  • 5A and 5B are process diagrams showing another example of a method for manufacturing a conductive film according to the present embodiment.
  • 6A and 6B are process diagrams showing still another example of the method for manufacturing a conductive film according to the present embodiment. It is process drawing which shows the further another example of the manufacturing method of the electroconductive film which concerns on this Embodiment.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the conductive film 10 includes a transparent base 12 (see FIG. 2) and a conductive portion 14 formed on one main surface of the base 12.
  • the conductive portion 14 has a mesh pattern 20 including a metal fine wire (hereinafter referred to as a metal fine wire 16) and an opening 18.
  • the thin metal wire 16 is made of, for example, gold (Au), silver (Ag), or copper (Cu).
  • the conductive portion 14 extends in the first direction (x direction) and is arranged in the second direction (y direction in FIG. 1), and a plurality of first metal fine wires 16 a. And a plurality of second metal wires 16b extending in the second direction and arranged in the first direction, each having a mesh pattern 20 formed.
  • the mesh pattern 20 has a large number of intersections 22 formed by a plurality of first metal fine wires 16a and a plurality of second metal fine wires 16b.
  • one mesh shape of the mesh pattern 20, that is, a combined shape (hereinafter, referred to as a lattice 24) of one opening 18 and four thin metal wires 16 surrounding the one opening 18 is shown in FIG.
  • a square or a rhombus may be used.
  • the shape of one side of the lattice 24 may be a curved shape or a circular arc shape in addition to a linear shape.
  • an arc shape for example, two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • the moire suppression part 26 (overhang
  • the moire suppressing unit 26 is a single side 28 at a position that is at least one side 28 of the plurality of sides 28 constituting the grid 24 and does not overlap the intersection 22 of the grid 24. It is arranged so as to extend across.
  • the shape of the moire suppressing portion 26 is a line segment shape with the extending direction as a major axis in FIG. Of course, an elliptical shape, a rhombus shape, a parallelogram shape, or a polygonal shape whose long axis is the extending direction may be used.
  • the moire suppressing part 26 may be formed of the same metal material as that of the thin metal wire 16 or may be formed of another metal material.
  • the plurality of moire suppressing units 26 are randomly arranged with respect to the mesh pattern 20.
  • the meaning of “randomly arranged” means at least one of the following (a) to (e).
  • the mesh pattern 20 has the lattice point 24 with the original intersection point 22 as the center.
  • a cross-shaped crossing portion 30 and a pseudo cross-shaped crossing portion 34 centering on the intersection 32 between the side 28 of the lattice 24 and the moire suppressing portion 26 are arranged. Since the arrangement is random, the arrangement of the intersecting portions 30 and 34 becomes irregular and does not converge to a specific spatial frequency. As a result, even when the conductive film 10 according to the present embodiment is installed on, for example, a display panel of a display device, interference with the pixel arrangement pattern does not occur and generation of moire can be reduced.
  • the width of one side 28 of the lattice 24 is Wa
  • the length of one side 28 (the length between two intersections 22)
  • the moire suppressing portion 26 extends in the extending direction.
  • the length is Lb
  • the lower limit of the length Lb is preferably 2 ⁇ Wa or more, more preferably 3 ⁇ Wa or more, and more preferably 4 ⁇ Wa or more.
  • the upper limit of the length Lb is preferably La or less, more preferably La / 2 or less, more preferably La / 3 or less, and particularly preferably La / 4 or less.
  • the length of the first overhanging portion 26a to the one opening 18a of the moire suppressing portion 26 (the overhanging length Lb1) and the length of the second overhanging portion 26b to the other opening 18b (the overhanging length Lb2).
  • the lower limit of each overhang length Lb1 and Lb2 is preferably Wa or more, more preferably 1.5 ⁇ Wa or more, and more preferably 2 ⁇ Wa or more.
  • the upper limit of each overhang length Lb1 and Lb2 is preferably La / 2 or less, more preferably La / 4 or less, more preferably La / 6 or less, and particularly preferably La / 8 or less.
  • the length Lb in the extending direction of the moire suppressing portion 26 is too short, the pseudo cross-shaped crossing portion 34 cannot be formed, and the effect of reducing the occurrence of moire cannot be obtained. If the length Lb is too long, the aperture ratio decreases and high transparency cannot be ensured. The same applies to the overhang lengths Lb1 and Lb2.
  • the line width Wb of the moiré suppressing portion 26 is preferably 30 ⁇ m or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less.
  • the line width Wb of the moire suppressing portion 26 is too small, it does not substantially become a pseudo cross-shaped crossing portion 34, and the effect of reducing the occurrence of moire cannot be obtained. If the line width Wb is too large, the aperture ratio decreases and high transparency cannot be ensured.
  • the other side intersecting with one side 28 where the moire suppressing part 26 is arranged and the extending direction (long axis) of the moire suppressing part 26 are substantially parallel.
  • substantially parallel means that the angle formed by the extending direction of the one side 28 and the extending direction of the moire suppressing portion 26 is ⁇ 1, and the extending direction of the one side 28 and the other side described above. When the angle is ⁇ 2, 0 ° ⁇
  • the shape of the lattice 24 is square or rectangular, it is preferable that the one side 28 described above and the extending direction of the moire suppressing portion 26 are substantially orthogonal. As a result, a pseudo cross-shaped crossing portion 34 can be formed by the moire suppressing portion 26 and one side 28.
  • may be different. In this case, it is preferable that 0 ° ⁇
  • the moire suppressing portion 26 is disposed close to the intersection 22 of the lattice 24. As a result, the intersection 22 of the lattice 24 is obtained.
  • the line width of the cross-shaped intersecting portion 30 centering on is increased, and it is easy to visually recognize as so-called line thickening.
  • the range of the distance Da is narrower than the above range, the degree of freedom of random arrangement is reduced. Therefore, it is preferable to set the range of the distance Da to the above range.
  • the arrangement rate of the moire suppressing units 26 is (Nb / Na) ⁇ 100%
  • the arrangement rate is 10% or more. It is preferable that it is 100% or less.
  • An arrangement rate of 100% indicates that one moire suppressing unit 26 is arranged on each side 28.
  • the arrangement ratio is too small, a region of the mesh pattern 20 where the pseudo cross-shaped intersection 34 is not formed becomes wide, and there is a problem that moire becomes conspicuous in the region. If the arrangement ratio is too large, the aperture ratio decreases, and high transparency cannot be ensured. On the other hand, if the arrangement rate range is narrower than the above range, the degree of freedom of random arrangement is reduced. Therefore, it is preferable to set the range of the arrangement ratio within the above range.
  • the length La of one side 28 of the lattice 24 can be selected from 50 ⁇ m to 900 ⁇ m. Preferably they are 50 micrometers or more and 600 micrometers or less, More preferably, they are 50 micrometers or more and 500 micrometers or less. Further, the line width Wa of the fine metal wire 16 can be selected from 30 ⁇ m or less. Preferably it is 10 micrometers or less, More preferably, it is 7 micrometers or less. The lower limit is 0.1 ⁇ m or more.
  • the opening ratio of the conductive film 10 is preferably 90% or more. Thereby, high transparency can be ensured.
  • the silver salt photosensitive layer provided on the substrate 12 is exposed, developed, and fixed to form a metal silver portion or a metal silver portion and a conductive metal carried on the metal silver portion. And a method of forming the moire suppressing portion 26.
  • a silver salt photosensitive layer 40 obtained by mixing silver halide 36 (for example, silver bromide grains, silver chlorobromide grains or silver iodobromide grains) with gelatin 38 is used as a substrate 12. Apply on top.
  • silver halide 36 for example, silver bromide grains, silver chlorobromide grains or silver iodobromide grains
  • gelatin 38 is used as a substrate 12. Apply on top.
  • the silver halide 36 is expressed as “grains”, but it is exaggerated to help the understanding of the present invention, and the size, concentration, etc. are shown. It is not a thing.
  • the silver salt photosensitive layer 40 is subjected to exposure necessary for forming the mesh pattern 20.
  • silver halide 36 receives light energy, it is exposed to light and generates minute silver nuclei called “latent images” that cannot be observed with the naked eye.
  • development processing is performed as shown in FIG. 4C.
  • the silver salt photosensitive layer 40 on which the latent image is formed is developed with a development processing solution (both alkaline solution and acidic solution, but usually alkaline solution is large).
  • a development processing solution both alkaline solution and acidic solution, but usually alkaline solution is large.
  • silver ions supplied from silver halide grains or a developer are reduced to metallic silver by using a latent image silver nucleus as a catalyst nucleus by a reducing agent called a developing agent in the developer, and as a result
  • the image silver nuclei are amplified to form a visualized silver image (developed silver 42).
  • a fixing processing solution (either an acidic solution or an alkaline solution is used as shown in FIG. 4D). However, fixing is usually performed by using an acidic solution.
  • the metal silver portion 44 is formed in the exposed portion, and only the gelatin 38 remains in the unexposed portion to become the light transmissive portion 46. That is, the mesh pattern 20 and the moire suppressing portion 26 are formed on the base 12 by a combination of the fine metal wires 16 formed by the metal silver portions 44 and the openings 18 formed by the light transmitting portions 46.
  • the reaction formula of the fixing process when silver bromide is used as the silver halide 36 and the fixing process is performed with thiosulfate is as follows. AgBr (solid) + 2 S 2 O 3 ions ⁇ Ag (S 2 O 3 ) 2 (excellent water-soluble complex) That is, two thiosulfate ions S 2 O 3 and silver ions in gelatin 38 (silver ions from AgBr) form a silver thiosulfate complex. Since the silver thiosulfate complex is highly water-soluble, it is eluted from the gelatin 38. As a result, the developed silver 42 is fixed and remains as the metallic silver portion 44.
  • the development step is a step of causing the developing agent to react with the latent image to precipitate the developed silver 42
  • the fixing step is a step of eluting the silver halide 36 that has not become the developed silver 42 into water.
  • a plating process (electroless plating or electroplating alone or in combination) is performed, and the conductive metal 48 is supported only on the metallic silver portion 44, thereby the metallic silver portion 44 and the conductive metal.
  • the mesh pattern 20 and the moire suppression part 26 by 48 may be formed.
  • the mask used for exposure to the silver salt photosensitive layer 40 has a mesh pattern 20 and a mask pattern corresponding to the pattern in which the moire suppressing portion 26 is formed in the opening 18 of the mesh pattern 20. Also good.
  • the silver salt photosensitive layer 40 may be exposed to a pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed in the opening 18 of the mesh pattern 20 by digital writing exposure on the silver salt photosensitive layer 40. Good.
  • a photoresist film 52 on the copper foil 50 formed on the substrate 12 is exposed and developed to form a resist pattern 54, as shown in FIG. 5B.
  • the mesh pattern 20 and the moire suppressing portion 26 may be formed by etching the copper foil 50 exposed from the resist pattern 54.
  • the mask used in the exposure for the photoresist film 52 may have a mask pattern corresponding to the pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed.
  • a pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed may be exposed on the photoresist film 52 by digital writing exposure on the photoresist film 52.
  • a paste 56 containing metal fine particles is printed on the substrate 12, and a metal plating 58 is applied to the paste 56 as shown in FIG. 6B, whereby the mesh pattern 20 and the mesh pattern 20 are obtained.
  • a pattern in which the moire suppressing portion 26 is formed in the opening 18 may be formed.
  • a mesh pattern 20 and a pattern in which a moire suppressing portion 26 is formed in the opening 18 of the mesh pattern 20 are printed and formed on the base 12 using a screen printing plate or a gravure printing plate. May be.
  • a photosensitive pre-plated layer is formed on the base 12 using a pretreatment material for plating, and then exposed and developed, and then subjected to a plating treatment, whereby a metal is applied to the exposed and unexposed areas, respectively.
  • the mesh pattern 20 and the moire suppressing portion 26 may be formed by forming a portion and a light transmitting portion.
  • a conductive metal may be supported on the metal part by further performing physical development and / or plating treatment on the metal part.
  • a plating layer containing a functional group that interacts with the plating catalyst or its precursor is applied on the substrate 12, and then exposed and developed, and then plated to form a metal part on the material to be plated. Aspect.
  • B After laminating a base layer containing a polymer and a metal oxide and a layer to be plated containing a functional group that interacts with a plating catalyst or a precursor thereof in this order on the substrate 12, and then exposing and developing. A mode in which a metal part is formed on a material to be plated by plating.
  • the mesh pattern 20 and the moire suppressing portion 26 may be formed on the base 12 by inkjet.
  • the manufacturing method of the conductive film 10 according to the present embodiment includes the following three forms depending on the photosensitive material and the form of development processing.
  • (1) A mode in which a photosensitive silver halide black-and-white photosensitive material not containing physical development nuclei is chemically developed or thermally developed to form a metallic silver portion on the photosensitive material.
  • (2) An embodiment in which a photosensitive silver halide black-and-white photosensitive material containing physical development nuclei in a silver halide emulsion layer is dissolved and physically developed to form a metallic silver portion on the photosensitive material.
  • a photosensitive silver halide black-and-white photosensitive material containing no physical development nuclei and an image receiving sheet having a non-photosensitive layer containing physical development nuclei are overlapped and developed by diffusion transfer, and the metallic silver portion is non-photosensitive image-receiving sheet. Form formed on top.
  • the above aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material.
  • the resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
  • the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion.
  • a characteristic film is formed.
  • This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
  • the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, whereby a light transmitting conductive film or the like is formed on the image receiving sheet.
  • a conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
  • either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material).
  • the other side intersecting with one side 28 where the moire suppressing part 26 is arranged and the extending direction (long axis) of the moire suppressing part 26 are substantially parallel.
  • the following embodiments can be preferably employed.
  • the extending direction (long axis) of the moire suppressing portion 26 is inclined with respect to one side 28 where the moire suppressing portion 26 is disposed ( May not be orthogonal).
  • the moire suppressing part 26 having only the first protruding part 26a, and the second protruding part may be arranged at random.
  • FIG. 9 shows an example in which the extending direction (long axis) of the moire suppression unit 26 is orthogonal to one side 28 where the moire suppression unit 26 is arranged, and FIG. On the other hand, an example is shown in which the extending direction (long axis) of the moire suppressing portion 26 is inclined (not orthogonal).
  • substrate 12 examples of the substrate 12 include a plastic film, a plastic plate, and a glass plate.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, EVA / COP / COC Kinds: Vinyl resin;
  • polycarbonate (PC) polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), and the like can be used.
  • PET melting point: 258 ° C.
  • PEN melting point: 269 ° C.
  • PE melting point: 135 ° C.
  • PP melting point: 163 ° C.
  • polystyrene melting point: 230 ° C.
  • polyvinyl chloride melting point: 180 ° C
  • polyvinylidene chloride melting point: 212 ° C
  • TAC melting point: 290 ° C
  • the substrate 12 has high transparency.
  • the silver salt photosensitive layer 40 (see FIG. 4A) that becomes the conductive layer (the mesh pattern 20 and the moire suppressing portion 26) of the conductive film 10 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
  • Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
  • Coated silver amount of the silver salt photosensitive layer 40 is preferably 1 ⁇ 30g / m 2 in terms of silver, and more preferably 1 ⁇ 25g / m 2, 5 ⁇ 20g / m 2 and more preferable. By setting the amount of coated silver in the above range, a desired surface resistance can be obtained when the conductive film 10 is used.
  • binder used in this embodiment examples include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • acid polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
  • the content of the binder contained in the silver salt photosensitive layer 40 of the present embodiment is not particularly limited, and can be appropriately determined within a range in which dispersibility and adhesion can be exhibited.
  • the binder content in the silver salt photosensitive layer 40 is preferably 1 ⁇ 4 or more, and more preferably 1 ⁇ 2 or more in terms of a silver / binder volume ratio.
  • the silver / binder volume ratio is preferably 100/1 or less, and more preferably 50/1 or less.
  • the silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1.
  • the silver / binder volume ratio is converted from the amount of silver halide / binder amount (weight ratio) of the raw material to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain
  • the solvent used for forming the silver salt photosensitive layer 40 is not particularly limited.
  • water an organic solvent (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl, etc.
  • Sulfoxides such as sulfoxide, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
  • the content of the solvent used in the silver salt photosensitive layer 40 of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of the silver salt and binder contained in the silver salt photosensitive layer 40, and 50 The range of ⁇ 80 mass% is preferable.
  • a protective layer (not shown) may be provided on the silver salt photosensitive layer 40.
  • the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer.
  • the thickness is preferably 0.5 ⁇ m or less.
  • the coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected. Further, for example, an undercoat layer can be provided below the silver salt photosensitive layer 40.
  • the conductive portion 14 is applied by a printing method, but the conductive portion 14 is formed by exposure, development, and the like except for the printing method. That is, the photosensitive material having the silver salt photosensitive layer 40 provided on the substrate 12 or a photosensitive material coated with a photopolymer for photolithography is exposed.
  • the exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
  • the development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like.
  • the developer is not particularly limited, but PQ developer, MQ developer, MAA developer and the like can also be used.
  • Commercially available products include, for example, CN-16, CR-56, CP45X, FD prescribed by FUJIFILM Corporation. -3, Papitol, developers such as C-41, E-6, RA-4, D-19, and D-72 prescribed by KODAK, or developers included in the kit can be used.
  • a lith developer can also be used.
  • the development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt in an unexposed portion.
  • a fixing process technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 to 45 ° C.
  • the fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds.
  • the replenishing amount of the fixing solution is preferably 600 ml / m 2 or less with respect to the processing of the photosensitive material, more preferably 500 ml / m 2 or less, 300 ml / m 2 or less is particularly preferred.
  • the light-sensitive material that has been subjected to development and fixing processing is preferably subjected to water washing treatment or stabilization treatment.
  • the washing water amount is usually 20 liters or less per 1 m 2 of the light-sensitive material, and can be replenished in 3 liters or less (including 0, ie, rinsing with water).
  • the mass of the metallic silver contained in the exposed portion after the development treatment is preferably a content of 50% by mass or more, and 80% by mass or more with respect to the mass of silver contained in the exposed portion before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0.
  • the conductivity of the conductive metal portion metal thin wire 16
  • Examples of means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
  • the conductive film 10 is obtained, but the surface resistance of the obtained conductive film 10 is 0.1 to 100 ohm / sq. It is preferable that it exists in the range.
  • the lower limit is 1 ohm / sq. 3 ohm / sq. 5 ohm / sq. 10 ohm / sq. The above is preferable.
  • the upper limit is 70 ohm / sq. Hereinafter, 50 ohm / sq. The following is preferable.
  • position detection can be performed even with a large touch panel having an area of 10 cm ⁇ 10 cm or more.
  • the conductive sheet after the development treatment may be further subjected to a calendar treatment, and can be adjusted to a desired surface resistance by the calendar treatment.
  • the conductive metal particles may be supported on the metallic silver portion 44 by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion 44 by combining physical development and plating treatment. You may let them.
  • the thing which performed the physical development and / or the plating process to the metal silver part 44 is called a "conductive metal part.”
  • “Physical development” in the present embodiment means that metal particles such as silver ions are reduced by a reducing agent on metal or metal compound nuclei to deposit metal particles. This physical development is used for instant B & W film, instant slide film, printing plate production, and the like, and this technique can be used in the present invention.
  • the physical development may be performed simultaneously with the development processing after exposure or separately after the development processing.
  • the plating treatment can be performed using electroless plating (chemical reduction plating or displacement plating), electrolytic plating, or both electroless plating and electrolytic plating.
  • electroless plating chemical reduction plating or displacement plating
  • electrolytic plating electrolytic plating
  • electrolytic plating electrolytic plating
  • electroless plating in the present embodiment a known electroless plating technique can be used, for example, an electroless plating technique used in a printed wiring board or the like can be used. Plating is preferred.
  • Oxidation treatment it is preferable to subject the metallic silver portion 44 after development processing and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment.
  • oxidation treatment for example, when a slight amount of metal is deposited on the light transmissive portion 46, the metal can be removed and the light transmissive portion 46 can be made almost 100% transparent.
  • the line width of the conductive metal portion (metal thin wire 16) of the present embodiment can be selected from 30 ⁇ m or less.
  • the line width of the fine metal wire 16 is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 9 ⁇ m, further preferably 2 ⁇ m to 7 ⁇ m, and more preferably 2 ⁇ m to 5 ⁇ m. Particularly preferred.
  • the lower limit is preferably 0.1 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more
  • the upper limit is 15 ⁇ m or less, 10 ⁇ m or less, 9 ⁇ m or less, 8 ⁇ m.
  • 7 ⁇ m or less is preferable.
  • the line width is less than the above lower limit value
  • the conductivity becomes insufficient, so that when used for a touch panel, the detection sensitivity becomes insufficient.
  • the above upper limit is exceeded, moire caused by the conductive metal portion becomes noticeable, or visibility becomes worse when used for a touch panel.
  • the moire of an electroconductive metal part is improved and visibility becomes especially good.
  • the length of one side of the lattice is preferably 50 ⁇ m or more and 900 ⁇ m or less, more preferably 50 ⁇ m or more and 600 ⁇ m or less, and more preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the conductive metal portion may have a portion whose line width is wider than 200 ⁇ m for the purpose of ground connection or the like.
  • the conductive metal portion in the present embodiment preferably has an aperture ratio of 90% or more from the viewpoint of visible light transmittance.
  • the aperture ratio is a ratio of the light transmissive portion 46 excluding the metal thin wires 16 and the moire suppressing portion 26 to the whole.
  • the “light transmissive part” in the present embodiment means a part having a light transmissive property other than the conductive metal part in the conductive film 10.
  • the transmittance of the light transmissive portion 46 is 90% or more, preferably 90% or more, as indicated by the minimum transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the substrate 12. 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
  • a method through a glass mask or a pattern exposure method by laser drawing is preferable.
  • the thickness of the substrate 12 in the conductive film 10 according to the present embodiment is preferably 75 to 350 ⁇ m. If it is in the range of 75 to 350 ⁇ m, a desired visible light transmittance can be obtained, and handling is easy. In addition, when two conductive films are laminated to form a conductive sheet for a touch panel, the parasitic capacitance between the conductive films 10 can be reduced.
  • the thickness of the metallic silver portion 44 provided on the substrate 12 can be appropriately determined according to the coating thickness of the silver salt photosensitive layer coating applied on the substrate 12.
  • the thickness of the metallic silver portion 44 can be selected from 0.001 mm to 0.2 mm, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 0.01 to 9 ⁇ m. Preferably, the thickness is 0.05 to 5 ⁇ m.
  • the metal silver part 44 is pattern shape.
  • the metallic silver portion 44 may be a single layer or a multilayer structure of two or more layers. When the metallic silver portion 44 has a pattern shape and has a multilayer structure of two or more layers, different color sensitivities can be imparted so that it can be exposed to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, a different pattern can be formed in each layer.
  • the thickness of the conductive metal part is preferably as the thickness of the touch panel is thinner because the viewing angle of the display panel is wider, and a thin film is also required for improving the visibility.
  • the thickness of the layer made of the conductive metal carried on the conductive metal part is preferably less than 9 ⁇ m, more preferably 0.1 ⁇ m or more and less than 5 ⁇ m, and more preferably 0.1 ⁇ m or more. More preferably, it is less than 3 ⁇ m.
  • a metal silver portion 44 having a desired thickness is formed by controlling the coating thickness of the above-described silver salt photosensitive layer 40, and further a layer made of conductive metal particles by physical development and / or plating treatment. Therefore, even the conductive film 10 having a thickness of less than 5 ⁇ m, preferably less than 3 ⁇ m can be easily formed.
  • the method for manufacturing the conductive film 10 according to the present embodiment it is not always necessary to perform a process such as plating. This is because in the method for manufacturing the conductive film 10 according to the present embodiment, a desired surface resistance can be obtained by adjusting the amount of silver applied to the silver salt photosensitive layer 40 and the silver / binder volume ratio. In addition, you may perform a calendar process etc. as needed.
  • the silver salt photosensitive layer 40 is developed and then dipped in a hardener to perform the hardening process.
  • a hardener examples include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and those described in JP-A-2-141279 such as boric acid. it can.
  • the conductive film 10 may be provided with a functional layer such as an antireflection layer or a hard coat layer.
  • this invention can be used in combination with the technique of the publication gazette and international publication pamphlet which are described in the following Table 1 and Table 2. Notations such as “JP,” “Gazette” and “No. Pamphlet” are omitted.
  • K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 ⁇ 7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. .
  • the coating amount of silver is 10 g / m 2. It was coated on a transparent substrate (here, both polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1.
  • the exposure pattern is a pattern in which moire suppressing portions 26 are randomly arranged on each side 28 of the lattice 24 constituting the mesh pattern 20.
  • the exposure pattern is formed on the A4 size (210 mm ⁇ 297 mm) base 12. went.
  • the exposure was performed using parallel light using a high-pressure mercury lamp as a light source through the photomask having the above pattern.
  • the exposed photosensitive material is processed using an automatic developing machine FG-710PTS manufactured by FUJIFILM Corporation. Development conditions: 35 ° C. for 30 seconds, fixing at 34 ° C. for 23 seconds, washing with running water (5 L / min) for 20 seconds Done in the process.
  • the line width Wa of the fine metal wires 16 is 10 ⁇ m
  • the length La of one side of the grid 24 (square shape in this example) is 500 ⁇ m
  • the line width Wb of the moire suppressing unit 26 is A conductive film according to Example 1 having a thickness Lb of 10 ⁇ m and a moire suppressing portion 26 of 125.0 ⁇ m was produced.
  • Example 2 is the same as Example 1 except that the length La of one side of the grating 24 is 400 ⁇ m and the length Lb of the moire suppressing portion 26 is 100.0 ⁇ m. A film was prepared.
  • Example 3 In the third embodiment, the line width Wa of the fine metal wire 16 is 9 ⁇ m, the length La of one side of the grating 24 is 400 ⁇ m, the line width Wb of the moire suppression unit 26 is 9 ⁇ m, and the length Lb of the moire suppression unit 26 is 100.0 ⁇ m.
  • a conductive film according to Example 3 was produced in the same manner as in Example 1 described above except that.
  • Example 4 (Examples 4 to 6)
  • the line width Wa of the fine metal wire 16 is 8 ⁇ m, 7 ⁇ m and 6 ⁇ m
  • the length La of one side of the grating 24 is 300 ⁇ m
  • the line width Wb of the moire suppressing portion 26 is 8 ⁇ m, 7 ⁇ m and 6 ⁇ m
  • the conductive films according to Examples 4, 5 and 6 were produced in the same manner as in Example 1 except that the length Lb of the moire suppressing portion 26 was 75.0 ⁇ m.
  • Example 7 to 9 In Examples 7, 8 and 9, the line width Wa of the thin metal wire 16 is 5 ⁇ m, 4 ⁇ m and 3 ⁇ m, the length La of one side of the grating 24 is 200 ⁇ m, the line width Wb of the moire suppressing part 26 is 5 ⁇ m, 4 ⁇ m and 3 ⁇ m, Conductive films according to Examples 7, 8 and 9 were produced in the same manner as in Example 1 except that the length Lb of the moire suppressing portion 26 was 50.0 ⁇ m.
  • Example 10 In Example 10, the line width Wa of the thin metal wire 16 is 2 ⁇ m, the length La of one side of the grating 24 is 100 ⁇ m, the line width Wb of the moire suppressing unit 26 is 2 ⁇ m, and the length Lb of the moire suppressing unit 26 is 25.0 ⁇ m.
  • a conductive film according to Example 10 was produced in the same manner as in Example 1 except for the above.
  • Example 11 In Example 11, the line width Wa of the fine metal wire 16 is 1 ⁇ m, the length La of one side of the grating 24 is 50 ⁇ m, the line width Wb of the moire suppression unit 26 is 1 ⁇ m, and the length Lb of the moire suppression unit 26 is 12.5 ⁇ m.
  • a conductive film according to Example 11 was produced in the same manner as in Example 1 except for the above.
  • indicates that the border of the line thickening or black spot and the conductive pattern is inconspicuous
  • indicates that any one of the border of the line thickening, black spot or conductive pattern is conspicuous, “line thick”, black
  • indicates that any two of the spots and the boundary of the conductive pattern are conspicuous
  • X a case where all of the borders of the thickened black spots and the conductive pattern are conspicuous
  • when moire was seen at a slight level with no problem, moiré was revealed.
  • the case was marked with x.
  • D the case where there was no angle range for C and ⁇ and the angle range for X was 30 ° or more was defined as D.
  • Examples 1 to 11 all had good visibility, the aperture ratio was 90% or more, and the moire was evaluated as B or more. In particular, in Examples 2 to 11, the visibility was excellent, the aperture ratio was 90% or more, and the moire was A evaluation.
  • the line width Wa of the fine metal wire 16 can be selected from 30 ⁇ m or less, preferably 10 ⁇ m or less, and the length La of one side of the grating 24 can be selected from 50 ⁇ m to 900 ⁇ m, but 50 ⁇ m to 500 ⁇ m. Is preferable.
  • Samples 1 to 3 Samples 1, 2 and 3 were prepared as in Example 9, except that the length Lb of the moire suppression portion 26 was 6 ⁇ m, 9 ⁇ m and 12 ⁇ m. did.
  • Example 4 For Sample 4, a conductive film was produced in the same manner as in Example 9 described above.
  • Samples 5, 6 and 7 were prepared as conductive films according to Samples 5, 6 and 7 in the same manner as in Example 9 except that the length Lb of the moire suppressing portion 26 was set to 67 ⁇ m, 100 ⁇ m and 200 ⁇ m. did.
  • Table 4 shows the evaluation results for samples 1-7.
  • Samples 1 to 7 all had good visibility, an aperture ratio of 94% or higher, and a moire evaluation of B or higher.
  • the moire was B evaluation, but the visibility was ⁇ evaluation.
  • sample 6 the visibility was evaluated as ⁇ , but the moire was evaluated as A.
  • Samples 3 to 5 all had a visibility of ⁇ , an aperture ratio of 97% or higher, and a moire of A evaluation.
  • the lower limit of the length Lb is preferably 2 ⁇ Wa or more, more preferably 3 ⁇ Wa or more, more preferably 4 ⁇ Wa or more, and the upper limit of the length Lb is La or less. It is preferable that it is La / 2 or less, more preferably La / 3 or less, and particularly preferably La / 4 or less.
  • Example 10 For Sample 10, a conductive film was produced in the same manner as in Example 9 described above.
  • Samples 11, 12, 13, 14, and 15 are the examples described above except that the line width Wb of the moire suppressing portion 26 is 4.5 ⁇ m, 6.0 ⁇ m, 7.5 ⁇ m, 9.0 ⁇ m, and 12.0 ⁇ m.
  • the line width Wb of the moire suppressing portion 26 is 4.5 ⁇ m, 6.0 ⁇ m, 7.5 ⁇ m, 9.0 ⁇ m, and 12.0 ⁇ m.
  • conductive films according to Samples 11, 12, 13, 14, and 15 were produced.
  • Table 5 shows the evaluation results of Samples 8-15.
  • sample 8 had a C evaluation for moire
  • sample 15 had a ⁇ evaluation for visibility.
  • the other samples 9 to 14 all had good visibility, an aperture ratio of 95% or more, and moire evaluation of B or more.
  • Samples 9 to 12 all had a visibility of ⁇ , an aperture ratio of 96% or more, and a moire of A evaluation.
  • the ratio (Wb / Wa) between the line width Wa of the fine metal wire and the line width Wb of the moire suppressing portion 26 is preferably 0.9 or more and 3.0 or less, more preferably 0.9 or more and 2.5 or less. More preferably, it is 0.9 or more and 2.0 or less, and particularly preferably 0.9 or more and 1.5 or less.
  • the conductive film according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Position Input By Displaying (AREA)

Abstract

A conductive film (10) is a conductive film that has a conductive portion (14) configured with thin metal wires (16) and apertures (18), wherein the conductive portion (14) has points of intersection (22) by the plurality of the thin metal wires (16), and at portions that are over the thin metal wires (16) and that are other than the points of intersection (22), moiré suppression units (26) (projecting portions) are disposed. It is preferable that the moiré suppression units (26) be randomly disposed.

Description

導電性フイルムConductive film
 本発明は、モアレの発生を抑制することができる導電性フイルムに関する。 The present invention relates to a conductive film capable of suppressing the occurrence of moire.
 近時、表示装置に設置される導電性フイルムとしては、タッチパネルに使用される導電性フイルムが注目されている。タッチパネルは、PDA(携帯情報端末)や携帯電話等の小サイズへの適用が主となっているが、パソコン用ディスプレイ等への適用による大サイズ化が進むと考えられる。 Recently, conductive films used for touch panels have attracted attention as conductive films installed in display devices. The touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a display for a personal computer.
 このような将来の動向において、従来の電極は、ITO(酸化インジウムスズ)を用いていることから、抵抗が大きく、適用サイズが大きくなるにつれて、電極間の電流の伝達速度が遅くなり、応答速度(指先を接触してからその位置を検出するまでの時間)が遅くなるという問題がある。 In such future trends, since conventional electrodes use ITO (Indium Tin Oxide), as the resistance increases and the application size increases, the current transfer speed between the electrodes decreases, and the response speed There is a problem that the time from when the fingertip is touched until the position is detected is delayed.
 そこで、金属製の細線(金属細線)にて構成した格子を多数並べて電極を構成することで表面抵抗を低下させることが考えられる。金属細線を形成する方法としては、例えば特開2004-221564号公報が挙げられる。 Therefore, it is conceivable to reduce the surface resistance by arranging an electrode by arranging a large number of grids made of metal fine wires (metal fine wires). An example of a method for forming a fine metal wire is Japanese Patent Application Laid-Open No. 2004-221564.
 このような金属細線による格子を多数並べた導電性フイルムを表示装置の表示パネル上に配置した場合、表示装置の画素配列パターンとの干渉によるモアレが発生する場合がある。このようなモアレを低減する方法として、従来は、格子の交差部にモアレ抑止部を形成したり(特開2008-282924号公報参照)、格子の開口部のうち、交差部を結ぶ線上にモアレ抑止部を形成する方法が提案されている(特開2008-306177号公報参照)。 When a conductive film in which a large number of such fine metal wires are arranged is arranged on a display panel of a display device, moire may occur due to interference with the pixel arrangement pattern of the display device. As a method of reducing such moire, conventionally, a moire suppressing portion is formed at the intersection of the lattice (see Japanese Patent Application Laid-Open No. 2008-282924), or a moire is formed on a line connecting the intersection in the opening of the lattice. A method of forming a suppression unit has been proposed (see Japanese Patent Application Laid-Open No. 2008-306177).
 例えば上述したように、タッチパネルの電極として、金属細線を用いる場合、金属細線は不透明な材料で作製されることから、透明性や視認性が問題となる。電極として金属細線を用いた導電性フイルムを表示装置の表示パネル上に置いて使用する際に、以下の2つのモードでも良好な視認性が必要とされる。 For example, as described above, when a thin metal wire is used as an electrode of the touch panel, the thin metal wire is made of an opaque material, and thus transparency and visibility become a problem. When a conductive film using a fine metal wire as an electrode is placed on a display panel of a display device and used, good visibility is required even in the following two modes.
 第1モードは、表示装置を点灯・表示させた場合に、金属細線が視認され難く、可視光透過率が高く、また、表示装置の画素周期(例えば液晶ディスプレイのブラックマトリックスパターン)と導電パターンとの光干渉で生じるモアレ等のノイズが発生し難いことである。 In the first mode, when the display device is turned on / displayed, the fine metal lines are difficult to be seen, the visible light transmittance is high, and the pixel period of the display device (for example, the black matrix pattern of the liquid crystal display) and the conductive pattern It is difficult for noise such as moire caused by optical interference to occur.
 第2モードは、表示装置を消灯・黒画面とし、蛍光灯・太陽光・LED光等の外光の元で観察する際に、金属細線が視認され難いことである。 The second mode is that when the display device is turned off and the screen is black, and the observation is performed under external light such as fluorescent light, sunlight, LED light, etc., the thin metal wire is difficult to see.
 特開2008-282924号公報に記載された構成は、交差部に金属層を形成して、交差部の面積を大きくすることから、格子の交差部が目立ち易くなり、視認性の点で不利となる。特開2008-306177号公報に記載された構成は、開口部に金属層を形成することから、開口率が低下し、透明性が低下するおそれがある。 The configuration described in Japanese Patent Application Laid-Open No. 2008-282924 increases the area of the intersection by forming a metal layer at the intersection, which makes the intersection of the lattice more noticeable and disadvantageous in terms of visibility. Become. In the configuration described in Japanese Patent Application Laid-Open No. 2008-306177, a metal layer is formed in the opening, so that the aperture ratio may decrease and transparency may decrease.
 本発明はこのような課題を考慮してなされたものであり、金属細線にて構成した格子を多数並べて例えばタッチパネル等の電極を構成した場合においても、モアレの発生を低減させることができると共に、金属細線が視認され難く、しかも、高い透明性を確保することができる導電性フイルムを提供することを目的とする。 The present invention has been made in consideration of such a problem, and even when an electrode such as a touch panel is configured by arranging a large number of grids configured with fine metal wires, it is possible to reduce the occurrence of moire, An object of the present invention is to provide a conductive film in which a fine metal wire is difficult to be visually recognized and high transparency can be secured.
[1] 本発明に係る導電性フイルムは、金属細線で構成された導電部と開口部とを有する導電性フイルムにおいて、前記導電部は、複数の前記金属細線による交点を有し、前記金属細線上であって、且つ、前記交点以外の部分に張り出し部が配置されていることを特徴とする。 [1] The conductive film according to the present invention is a conductive film having a conductive portion and an opening made of a fine metal wire, and the conductive portion has an intersection of the plurality of fine metal wires, and the fine metal wire An overhanging portion is disposed on a line and at a portion other than the intersection.
 これにより、金属細線には、前記交点を中心とした交差部と、金属細線と張り出し部との交点を中心とした擬似的な交差部とが配置された形態となるため、交差部の配列が不規則になり、特定の空間周波数に収束しないこととなる。その結果、導電性フイルムを例えば表示装置の表示パネル上に設置しても、画素配列パターンとの干渉が生じなくなり、モアレの発生を低減させることができる。 As a result, the metal thin wire has a form in which an intersection portion centered on the intersection and a pseudo intersection portion centered on the intersection of the metal thin wire and the overhanging portion are arranged. It becomes irregular and does not converge to a specific spatial frequency. As a result, even when the conductive film is placed on the display panel of the display device, for example, interference with the pixel arrangement pattern does not occur, and the generation of moire can be reduced.
 すなわち、導電性フイルムを表示パネル上に設置して、金属細線による導電部を例えばタッチパネル等の電極として使用した場合や電磁波シールドフィルタとして使用した場合においても、モアレの発生を低減させることができると共に、金属細線が視認され難く、しかも、高い透明性を確保することができる。 That is, even when a conductive film is installed on a display panel and a conductive portion made of a thin metal wire is used as an electrode such as a touch panel or used as an electromagnetic wave shielding filter, the generation of moire can be reduced. Further, it is difficult for the fine metal wires to be visually recognized, and high transparency can be secured.
[2] 本発明において、前記導電部と前記開口部の組み合わせ形状がメッシュ形状であってもよい。 [2] In the present invention, the combined shape of the conductive portion and the opening may be a mesh shape.
[3] この場合、前記張り出し部は、前記メッシュ形状を構成する複数の辺のうち、少なくとも1つの辺であって、且つ、前記メッシュ形状の交点とは重ならない位置に、前記1つの辺に交差して配置されていることが好ましい。 [3] In this case, the projecting portion is at least one side of the plurality of sides constituting the mesh shape, and at a position that does not overlap the intersection of the mesh shape. It is preferable that they are arranged to cross each other.
[4] さらに、前記張り出し部は、前記1つの辺に交差して延在して配置され、前記張り出し部の形状は、前記延在方向を長軸とする線分形状、楕円形状、ひし形形状、平行四辺形形状又は多角形状であってもよい。 [4] Furthermore, the overhanging portion is arranged so as to extend across the one side, and the shape of the overhanging portion is a line segment shape, an elliptical shape, or a rhombus shape having the extending direction as a major axis. It may be a parallelogram shape or a polygonal shape.
[5] さらに、前記張り出し部は、前記延在方向を長軸とする線分形状であってもよい。 [5] Furthermore, the projecting portion may have a line segment shape having the extending direction as a major axis.
[6] この場合、前記1つの辺と交差する他の辺と、前記張り出し部の前記長軸とがほぼ平行であることが好ましい。 [6] In this case, it is preferable that the other side intersecting with the one side and the major axis of the projecting portion are substantially parallel.
[7] そして、前記1つの辺の幅をWa、前記1つの辺の長さをLa、前記張り出し部の延在方向の長さをLbとしたとき、
   Wa<Lb≦La
であることが好ましい。
[7] And when the width of the one side is Wa, the length of the one side is La, and the length of the extending portion in the extending direction is Lb,
Wa <Lb ≦ La
It is preferable that
[8] この場合、Lb≧2×Wa 且つ Lb≦La/2であることが好ましい。 [8] In this case, it is preferable that Lb ≧ 2 × Wa and Lb ≦ La / 2.
[9] そして、数値規定では、5μm≦Lb≦100μmであることが好ましい。 [9] And, according to the numerical specification, it is preferable that 5 μm ≦ Lb ≦ 100 μm.
[10] また、前記1つの辺の幅をWa、前記張り出し部の線幅をWbとしたとき、
   0.995×Wa≦Wb≦3×Wa
であることが好ましい。
[10] When the width of the one side is Wa and the line width of the overhanging portion is Wb,
0.995 × Wa ≦ Wb ≦ 3 × Wa
It is preferable that
[11] さらに、前記メッシュ形状の交点から前記1つの辺上の前記張り出し部の中心位置までの距離をDa、前記1つの辺の長さをLaとしたとき、
   0.1×La≦Da≦0.9×La
であることが好ましい。
[11] Furthermore, when the distance from the intersection of the mesh shape to the center position of the overhang on the one side is Da, and the length of the one side is La,
0.1 × La ≦ Da ≦ 0.9 × La
It is preferable that
[12] 前記張り出し部の線幅は、30μm以下であることが好ましい。さらに好ましくは10μm以下、より好ましくは7μm以下である。 [12] The line width of the projecting portion is preferably 30 μm or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less.
[13] 前記1つの辺の長さは、50μm以上900μm以下であることが好ましい。さらに好ましくは50μm以上600μm以下であり、より好ましくは50μm以上500μm以下である。 [13] The length of the one side is preferably 50 μm or more and 900 μm or less. More preferably, they are 50 micrometers or more and 600 micrometers or less, More preferably, they are 50 micrometers or more and 500 micrometers or less.
[14] また、前記導電部は、複数の前記メッシュ形状を有するメッシュパターンを有し、複数の前記張り出し部は、前記メッシュパターンに対してランダムに配置されていることが好ましい。 [14] Further, it is preferable that the conductive portion has a mesh pattern having a plurality of mesh shapes, and the plurality of protruding portions are randomly arranged with respect to the mesh pattern.
[15] この場合、前記メッシュパターンを構成する前記複数のメッシュ形状のうち、前記張り出し部が配置されないメッシュ形状がランダムに存在してもよい。 [15] In this case, among the plurality of mesh shapes constituting the mesh pattern, a mesh shape in which the protruding portion is not arranged may be present at random.
[16] 前記メッシュパターンを構成する前記複数のメッシュ形状のうち、前記張り出し部が配置された1以上のメッシュ形状に対する前記張り出し部の配置位置がランダムであってもよい。 [16] Of the plurality of mesh shapes constituting the mesh pattern, the arrangement position of the overhanging portion with respect to one or more mesh shapes in which the overhanging portion is arranged may be random.
[17] 前記張り出し部が配置された前記1以上のメッシュ形状のうち、複数の辺に前記張り出し部が配置されたメッシュ形状は、前記複数の辺への前記張り出し部の配置位置がランダムであってもよい。 [17] Among the one or more mesh shapes in which the overhang portions are arranged, in the mesh shape in which the overhang portions are arranged on a plurality of sides, the arrangement positions of the overhang portions on the plurality of sides are random. May be.
[18] 前記メッシュ形状の1つの交点から放射状に延びる複数の辺にそれぞれ配置された前記張り出し部のうち、少なくとも1つの前記張り出し部は、前記1つの交点から中心位置までの距離が、他と異なっていてもよい。 [18] Among the overhang portions arranged on a plurality of sides extending radially from one intersection of the mesh shape, at least one of the overhang portions has a distance from the one intersection to a center position, May be different.
[19] 隣接する辺のそれぞれ配置された前記張り出し部は、それぞれ対応する交点からの距離が異なっていてもよい。 [19] The overhanging portions arranged on the adjacent sides may have different distances from the corresponding intersections.
[20] また、前記辺の個数をNa、前記張り出し部の個数をNbとし、前記張り出し部の配置率を(Nb/Na)×100%としたとき、前記配置率は、10%以上100%以下であることが好ましい。 [20] Further, when the number of the sides is Na, the number of the overhang portions is Nb, and the arrangement ratio of the overhang portions is (Nb / Na) × 100%, the arrangement ratio is 10% or more and 100%. The following is preferable.
[21] 前記金属細線の線幅は30μm以下であることが好ましい。さらに好ましくは10μm以下、より好ましくは7μm以下である。下限値は0.1μm以上である。 [21] The line width of the fine metal wire is preferably 30 μm or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less. The lower limit is 0.1 μm or more.
[22] 開口率が90%以上であることが好ましい。
 以上説明したように、本発明に係る導電性フイルムによれば、金属細線にて構成した格子を多数並べて例えばタッチパネル等の電極を構成した場合においても、モアレの発生を低減させることができると共に、金属細線が視認され難く、しかも、高い透明性を確保することができる。
[22] The aperture ratio is preferably 90% or more.
As described above, according to the conductive film of the present invention, even when an electrode such as a touch panel is configured by arranging a large number of grids configured with thin metal wires, the occurrence of moire can be reduced, It is difficult to visually recognize the fine metal wire, and high transparency can be ensured.
本実施の形態に係る導電性フイルムの一例を示す平面図である。It is a top view which shows an example of the electroconductive film which concerns on this Embodiment. 導電性フイルムを一部省略して示す断面図である。It is sectional drawing which abbreviate | omits and shows a part of electroconductive film. 導電性フイルムの一例を一部拡大して示す平面図である。It is a top view which partially enlarges and shows an example of an electroconductive film. 図4A~図4Eは本実施の形態に係る導電性フイルムの製造方法の一例を示す工程図である。4A to 4E are process diagrams showing an example of a method for manufacturing a conductive film according to the present embodiment. 図5A及び図5Bは本実施の形態に係る導電性フイルムの製造方法の他の例を示す工程図である。5A and 5B are process diagrams showing another example of a method for manufacturing a conductive film according to the present embodiment. 図6A及び図6Bは本実施の形態に係る導電性フイルムの製造方法のさらに他の例を示す工程図である。6A and 6B are process diagrams showing still another example of the method for manufacturing a conductive film according to the present embodiment. 本実施の形態に係る導電性フイルムの製造方法のさらに他の例を示す工程図である。It is process drawing which shows the further another example of the manufacturing method of the electroconductive film which concerns on this Embodiment. 第1変形例に係る導電フイルムの一例を示す平面図である。It is a top view which shows an example of the electroconductive film which concerns on a 1st modification. 第2変形例に係る導電フイルムの一例を示す平面図である。It is a top view which shows an example of the electroconductive film which concerns on a 2nd modification. 第3変形例に係る導電フイルムの一例を示す平面図である。It is a top view which shows an example of the conductive film which concerns on a 3rd modification.
 以下、本発明に係る導電性フイルムの実施の形態例を図1~図10を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, embodiments of the conductive film according to the present invention will be described with reference to FIGS. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 本実施の形態に係る導電性フイルム10は、図1及び図2に示すように、透明性の基体12(図2参照)と、基体12の一方の主面に形成された導電部14とを有する。導電部14は、金属製の細線(以下、金属細線16と記す)と開口部18によるメッシュパターン20を有する。金属細線16は例えば金(Au)、銀(Ag)又は銅(Cu)で構成されている。 As shown in FIGS. 1 and 2, the conductive film 10 according to the present embodiment includes a transparent base 12 (see FIG. 2) and a conductive portion 14 formed on one main surface of the base 12. Have. The conductive portion 14 has a mesh pattern 20 including a metal fine wire (hereinafter referred to as a metal fine wire 16) and an opening 18. The thin metal wire 16 is made of, for example, gold (Au), silver (Ag), or copper (Cu).
 具体的には、導電部14は、図1に示すように、第1方向(x方向)に延び、且つ、第2方向(図1においてy方向)に配列された複数の第1金属細線16aと、第2方向に延び、且つ、第1方向に配列された複数の第2金属細線16bとがそれぞれ交差して形成されたメッシュパターン20を有する。メッシュパターン20は、複数の第1金属細線16aと複数の第2金属細線16bによる多数の交点22を有する。 Specifically, as shown in FIG. 1, the conductive portion 14 extends in the first direction (x direction) and is arranged in the second direction (y direction in FIG. 1), and a plurality of first metal fine wires 16 a. And a plurality of second metal wires 16b extending in the second direction and arranged in the first direction, each having a mesh pattern 20 formed. The mesh pattern 20 has a large number of intersections 22 formed by a plurality of first metal fine wires 16a and a plurality of second metal fine wires 16b.
 また、メッシュパターン20の1つのメッシュ形状、すなわち、1つの開口部18と、該1つの開口部18を囲む4つの金属細線16の組み合わせ形状(以下、格子24と記す)は、図1に示すように正方形でもよいし、ひし形でもよい。その他、正六角形等の多角形状としてもよい。また、格子24の一辺の形状を直線状のほか、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。 Further, one mesh shape of the mesh pattern 20, that is, a combined shape (hereinafter, referred to as a lattice 24) of one opening 18 and four thin metal wires 16 surrounding the one opening 18 is shown in FIG. A square or a rhombus may be used. In addition, it is good also as polygonal shapes, such as a regular hexagon. Further, the shape of one side of the lattice 24 may be a curved shape or a circular arc shape in addition to a linear shape. In the case of an arc shape, for example, two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes. The shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
 そして、本実施の形態においては、図1に示すように、金属細線16上であって、且つ、交点22以外の部分にモアレ抑止部26(張り出し部)が配置(形成)されている。具体的には、モアレ抑止部26は、格子24を構成する複数の辺28のうち、少なくとも1つの辺28であって、且つ、格子24の交点22とは重ならない位置に、1つの辺28に交差して、延在して配置されている。モアレ抑止部26の形状は、図1では延在方向を長軸とする線分形状を呈している。もちろん、その他、延在方向を長軸とする楕円形状、ひし形形状、平行四辺形形状又は多角形状であってもよい。モアレ抑止部26は、金属細線16と同一の金属材料にて形成してもよいし、他の金属材料にて形成してもよい。 And in this Embodiment, as shown in FIG. 1, the moire suppression part 26 (overhang | projection part) is arrange | positioned in the part other than the intersection 22 on the metal fine wire 16 (formation). Specifically, the moire suppressing unit 26 is a single side 28 at a position that is at least one side 28 of the plurality of sides 28 constituting the grid 24 and does not overlap the intersection 22 of the grid 24. It is arranged so as to extend across. The shape of the moire suppressing portion 26 is a line segment shape with the extending direction as a major axis in FIG. Of course, an elliptical shape, a rhombus shape, a parallelogram shape, or a polygonal shape whose long axis is the extending direction may be used. The moire suppressing part 26 may be formed of the same metal material as that of the thin metal wire 16 or may be formed of another metal material.
 また、複数のモアレ抑止部26は、メッシュパターン20に対してランダムに配置されている。「ランダムに配置されている」の意味は、少なくとも下記(a)~(e)のうち、1つ以上を意味する。 Further, the plurality of moire suppressing units 26 are randomly arranged with respect to the mesh pattern 20. The meaning of “randomly arranged” means at least one of the following (a) to (e).
(a) メッシュパターン20を構成する複数の格子24のうち、モアレ抑止部26が配置されない格子24がランダムに存在している。
(b) メッシュパターン20を構成する複数の格子24のうち、モアレ抑止部26が配置された1以上の格子24に対するモアレ抑止部26の配置位置がランダムである。
(c) モアレ抑止部26が配置された1以上の格子24のうち、複数の辺28にモアレ抑止部26が配置された格子24は、複数の辺28へのモアレ抑止部26の配置位置がランダムである。
(d) 格子24の1つの交点22から放射状に延びる複数の辺28にそれぞれモアレ抑止部26が配置されている場合に、少なくとも1つのモアレ抑止部26は、1つの交点22から中心位置までの距離が、他と異なっている。
(e) 隣接する辺28のそれぞれにモアレ抑止部26が配置されている場合に、それぞれ対応する交点22からの距離が異なっている。
(A) Among the plurality of lattices 24 constituting the mesh pattern 20, there are randomly lattices 24 in which the moire suppressing portion 26 is not arranged.
(B) Among the plurality of lattices 24 constituting the mesh pattern 20, the arrangement position of the moire suppression unit 26 with respect to one or more lattices 24 in which the moire suppression unit 26 is disposed is random.
(C) Among the one or more lattices 24 in which the moire suppression unit 26 is disposed, the lattice 24 in which the moire suppression unit 26 is disposed on the plurality of sides 28 has the arrangement position of the moire suppression unit 26 on the plurality of sides 28. It is random.
(D) In the case where the moiré suppression unit 26 is arranged on each of a plurality of sides 28 extending radially from one intersection 22 of the grid 24, at least one moiré suppression unit 26 is located between one intersection 22 and the center position. The distance is different from the others.
(E) When the moiré suppression unit 26 is arranged on each of the adjacent sides 28, the distances from the corresponding intersections 22 are different.
 このように、金属細線16上であって、且つ、交点22以外の部分に線分形状のモアレ抑止部26を配置することで、メッシュパターン20には、格子24本来の交点22を中心とした十字状の交差部30と、格子24の辺28とモアレ抑止部26との交点32を中心とした擬似的な十字状の交差部34とが配置された形態となり、しかも、モアレ抑止部26がランダムに配置されることから、交差部30及び34の配列が不規則になり、特定の空間周波数に収束しないこととなる。その結果、本実施の形態に係る導電性フイルム10を例えば表示装置の表示パネル上に設置しても、画素配列パターンとの干渉が生じなくなり、モアレの発生を低減させることができる。 As described above, by arranging the line-shaped moire suppressing portion 26 on the metal thin line 16 and in a portion other than the intersection point 22, the mesh pattern 20 has the lattice point 24 with the original intersection point 22 as the center. A cross-shaped crossing portion 30 and a pseudo cross-shaped crossing portion 34 centering on the intersection 32 between the side 28 of the lattice 24 and the moire suppressing portion 26 are arranged. Since the arrangement is random, the arrangement of the intersecting portions 30 and 34 becomes irregular and does not converge to a specific spatial frequency. As a result, even when the conductive film 10 according to the present embodiment is installed on, for example, a display panel of a display device, interference with the pixel arrangement pattern does not occur and generation of moire can be reduced.
 すなわち、導電性フイルム10を表示パネル上に設置して、金属細線16による格子24を多数並べて例えばタッチパネル等の電極として使用した場合や電磁波シールドフィルタとして使用した場合においても、モアレの発生を低減させることができると共に、金属細線16が視認され難く、しかも、高い透明性を確保することができる。 That is, even when the conductive film 10 is installed on a display panel and a large number of grids 24 made of fine metal wires 16 are arranged and used as an electrode of a touch panel or the like, or when used as an electromagnetic shielding filter, the occurrence of moiré is reduced. In addition, it is difficult to visually recognize the fine metal wires 16, and high transparency can be ensured.
 そして、図3に示すように、格子24の1つの辺28の幅をWa、1つの辺28の長さ(2つの交点22間の長さ)をLa、モアレ抑止部26の延在方向の長さをLbとしたとき、
   Wa<Lb≦La
であることが好ましい。数値規定では、5μm≦Lb≦100μmであることが好ましい。
As shown in FIG. 3, the width of one side 28 of the lattice 24 is Wa, the length of one side 28 (the length between two intersections 22) is La, and the moire suppressing portion 26 extends in the extending direction. When the length is Lb,
Wa <Lb ≦ La
It is preferable that In the numerical specification, it is preferable that 5 μm ≦ Lb ≦ 100 μm.
 長さLbの下限は2×Wa以上が好ましく、さらに好ましくは3×Wa以上であり、より好ましくは4×Wa以上である。長さLbの上限は、La以下が好ましく、さらに好ましくはLa/2以下であり、より好ましくはLa/3以下であり、特に好ましくはLa/4以下である。 The lower limit of the length Lb is preferably 2 × Wa or more, more preferably 3 × Wa or more, and more preferably 4 × Wa or more. The upper limit of the length Lb is preferably La or less, more preferably La / 2 or less, more preferably La / 3 or less, and particularly preferably La / 4 or less.
 また、モアレ抑止部26の一方の開口部18aへの第1張り出し部26aの長さ(張り出し長さLb1)と他方の開口部18bへの第2張り出し部26bの長さ(張り出し長さLb2)は同じでもよいし、異なっていてもよい。この場合、各張り出し長さLb1及びLb2の下限は、Wa以上が好ましく、さらに好ましくは1.5×Wa以上であり、より好ましくは2×Wa以上である。各張り出し長さLb1及びLb2の上限は、La/2以下が好ましく、さらに好ましくはLa/4以下であり、より好ましくはLa/6以下であり、特に好ましくはLa/8以下である。 Further, the length of the first overhanging portion 26a to the one opening 18a of the moire suppressing portion 26 (the overhanging length Lb1) and the length of the second overhanging portion 26b to the other opening 18b (the overhanging length Lb2). May be the same or different. In this case, the lower limit of each overhang length Lb1 and Lb2 is preferably Wa or more, more preferably 1.5 × Wa or more, and more preferably 2 × Wa or more. The upper limit of each overhang length Lb1 and Lb2 is preferably La / 2 or less, more preferably La / 4 or less, more preferably La / 6 or less, and particularly preferably La / 8 or less.
 モアレ抑止部26の延在方向の長さLbが短すぎると、擬似的な十字状の交差部34を形成することができず、モアレの発生の低減効果を得ることができない。長さLbが長すぎると、開口率が低下し、高い透明性を確保することができない。これは、各張り出し長さLb1及びLb2についても同様である。 If the length Lb in the extending direction of the moire suppressing portion 26 is too short, the pseudo cross-shaped crossing portion 34 cannot be formed, and the effect of reducing the occurrence of moire cannot be obtained. If the length Lb is too long, the aperture ratio decreases and high transparency cannot be ensured. The same applies to the overhang lengths Lb1 and Lb2.
 モアレ抑止部26の線幅Wbは、30μm以下であることが好ましい。さらに好ましくは10μm以下、より好ましくは7μm以下である。この場合、格子24の1つの辺28の幅Wa、モアレ抑止部26の線幅Wbとの関係は、
   0.995×Wa≦Wb≦3.000×Wa
であることが好ましい。さらに好ましくは、
   0.995×Wa≦Wb≦2.500×Wa
であり、より好ましくは、
   0.995×Wa≦Wb≦1.500×Wa
である。特に好ましくは、
   Wb=Wa
である。
The line width Wb of the moiré suppressing portion 26 is preferably 30 μm or less. More preferably, it is 10 micrometers or less, More preferably, it is 7 micrometers or less. In this case, the relationship between the width Wa of one side 28 of the lattice 24 and the line width Wb of the moire suppressing unit 26 is
0.995 × Wa ≦ Wb ≦ 3.000 × Wa
It is preferable that More preferably,
0.995 × Wa ≦ Wb ≦ 2.500 × Wa
And more preferably
0.995 × Wa ≦ Wb ≦ 1.500 × Wa
It is. Particularly preferably,
Wb = Wa
It is.
 モアレ抑止部26の線幅Wbが小さすぎると、実質的に擬似的な十字状の交差部34とはならず、モアレの発生の低減効果を得ることができない。線幅Wbが大きすぎると、開口率が低下し、高い透明性を確保することができない。 If the line width Wb of the moire suppressing portion 26 is too small, it does not substantially become a pseudo cross-shaped crossing portion 34, and the effect of reducing the occurrence of moire cannot be obtained. If the line width Wb is too large, the aperture ratio decreases and high transparency cannot be ensured.
[規則91に基づく訂正 20.08.2013] 
 また、モアレ抑止部26が配置された1つの辺28と交差する他の辺と、該モアレ抑止部26の延在方向(長軸)とがほぼ平行であることが好ましい。ほぼ平行とは、上述した1つの辺28の延在方向とモアレ抑止部26の延在方向とのなす角をθ1、上述した1つの辺28の延在方向と上述した他の辺とのなす角をθ2としたとき、0°≦|θ1-θ2|≦5°である。格子24の形状が正方形あるいは長方形であれば、上述の1つの辺28とモアレ抑止部26の延在方向とがほぼ直交することが好ましい。これにより、モアレ抑止部26と1つの辺28とで擬似的な十字状の交差部34を構成することができる。
[Correction based on Rule 91 20.08.2013]
In addition, it is preferable that the other side intersecting with one side 28 where the moire suppressing part 26 is arranged and the extending direction (long axis) of the moire suppressing part 26 are substantially parallel. The term “substantially parallel” means that the angle formed by the extending direction of the one side 28 and the extending direction of the moire suppressing portion 26 is θ1, and the extending direction of the one side 28 and the other side described above. When the angle is θ2, 0 ° ≦ | θ1−θ2 | ≦ 5 °. If the shape of the lattice 24 is square or rectangular, it is preferable that the one side 28 described above and the extending direction of the moire suppressing portion 26 are substantially orthogonal. As a result, a pseudo cross-shaped crossing portion 34 can be formed by the moire suppressing portion 26 and one side 28.
 もちろん、上述した辺28の延在方向と第1張り出し部26aの延在方向とのなす角|θa|と、上述した辺28の延在方向と第2張り出し部26bの延在方向とのなす角|θb|とが異なっていてもよい。この場合、0°≦|θa-θ2|≦5°、0°≦|θb-θ2|≦5°であることが好ましい。 Of course, the angle | θa | formed by the extending direction of the side 28 and the extending direction of the first projecting portion 26a, and the extending direction of the side 28 and the extending direction of the second projecting portion 26b. The angle | θb | may be different. In this case, it is preferable that 0 ° ≦ | θa−θ2 | ≦ 5 ° and 0 ° ≦ | θb−θ2 | ≦ 5 °.
 また、格子24の交点22から1つの辺28上のモアレ抑止部26の中心位置までの距離をDa、1つの辺28の長さをLaとしたとき、
   0.1×La≦Da≦0.9×La
であることが好ましい。
Further, when the distance from the intersection 22 of the lattice 24 to the center position of the moire suppressing portion 26 on one side 28 is Da, and the length of one side 28 is La,
0.1 × La ≦ Da ≦ 0.9 × La
It is preferable that
 距離Daが小さすぎる、あるいは1つの辺28の長さLaとほぼ同じになると、格子24の交点22にモアレ抑止部26が近接して配置されることになり、その結果、格子24の交点22を中心とした十字状の交差部30の線幅が太くなったようになり、いわゆる線太りとして視認されやすくなる。反対に、距離Daの範囲を上述の範囲よりも狭くすると、ランダムに配置する自由度が小さくなる。従って、距離Daの範囲を上述の範囲にすることが好ましい。 If the distance Da is too small or substantially the same as the length La of one side 28, the moire suppressing portion 26 is disposed close to the intersection 22 of the lattice 24. As a result, the intersection 22 of the lattice 24 is obtained. The line width of the cross-shaped intersecting portion 30 centering on is increased, and it is easy to visually recognize as so-called line thickening. On the contrary, if the range of the distance Da is narrower than the above range, the degree of freedom of random arrangement is reduced. Therefore, it is preferable to set the range of the distance Da to the above range.
 また、メッシュパターン20の辺28の個数をNa、モアレ抑止部26の個数をNbとし、モアレ抑止部26の配置率を(Nb/Na)×100%としたとき、配置率は、10%以上100%以下であることが好ましい。配置率100%は、各辺28にそれぞれ1つのモアレ抑止部26が配置されていることを示す。 Further, when the number of the sides 28 of the mesh pattern 20 is Na, the number of the moire suppressing units 26 is Nb, and the arrangement rate of the moire suppressing units 26 is (Nb / Na) × 100%, the arrangement rate is 10% or more. It is preferable that it is 100% or less. An arrangement rate of 100% indicates that one moire suppressing unit 26 is arranged on each side 28.
 配置率が小さすぎると、メッシュパターン20のうち、擬似的な十字状の交差部34が形成されない領域が広くなり、該領域において、モアレが目立つようになるという問題が生じる。配置率が大きすぎると、開口率が低下し、高い透明度を確保できない。また、反対に、配置率の範囲を上述の範囲よりも狭くすると、ランダムに配置する自由度が小さくなる。従って、配置率の範囲を上述の範囲にすることが好ましい。 If the arrangement ratio is too small, a region of the mesh pattern 20 where the pseudo cross-shaped intersection 34 is not formed becomes wide, and there is a problem that moire becomes conspicuous in the region. If the arrangement ratio is too large, the aperture ratio decreases, and high transparency cannot be ensured. On the other hand, if the arrangement rate range is narrower than the above range, the degree of freedom of random arrangement is reduced. Therefore, it is preferable to set the range of the arrangement ratio within the above range.
 ここで、格子24の一辺28の長さLaは、50μm以上900μm以下から選択可能である。好ましくは50μm以上600μm以下であり、さらに好ましくは50μm以上500μm以下である。また、金属細線16の線幅Waは30μm以下から選択可能である。好ましくは10μm以下、より好ましくは7μm以下である。下限値は0.1μm以上である。また、導電性フイルム10の開口率は90%以上であることが好ましい。これにより、高い透明度を確保することができる。 Here, the length La of one side 28 of the lattice 24 can be selected from 50 μm to 900 μm. Preferably they are 50 micrometers or more and 600 micrometers or less, More preferably, they are 50 micrometers or more and 500 micrometers or less. Further, the line width Wa of the fine metal wire 16 can be selected from 30 μm or less. Preferably it is 10 micrometers or less, More preferably, it is 7 micrometers or less. The lower limit is 0.1 μm or more. The opening ratio of the conductive film 10 is preferably 90% or more. Thereby, high transparency can be ensured.
 次に、本実施の形態に係る導電性フイルム10の製造方法のいくつかの例について図4A~図7を参照しながら説明する。 Next, some examples of the method for manufacturing the conductive film 10 according to the present embodiment will be described with reference to FIGS. 4A to 7.
 先ず、基体12上に設けられた銀塩感光層を露光し、現像、定着することによって形成された金属銀部あるいは金属銀部及び該金属銀部に担持された導電性金属にてメッシュパターン20及びモアレ抑止部26を形成する方法が挙げられる。 First, the silver salt photosensitive layer provided on the substrate 12 is exposed, developed, and fixed to form a metal silver portion or a metal silver portion and a conductive metal carried on the metal silver portion. And a method of forming the moire suppressing portion 26.
 具体的には、図4Aに示すように、ハロゲン化銀36(例えば臭化銀粒子、塩臭化銀粒子や沃臭化銀粒子)をゼラチン38に混ぜてなる銀塩感光層40を基体12上に塗布する。なお、図4A~図4Cでは、ハロゲン化銀36を「粒々」として表記してあるが、あくまでも本発明の理解を助けるために誇張して示したものであって、大きさや濃度等を示したものではない。 Specifically, as shown in FIG. 4A, a silver salt photosensitive layer 40 obtained by mixing silver halide 36 (for example, silver bromide grains, silver chlorobromide grains or silver iodobromide grains) with gelatin 38 is used as a substrate 12. Apply on top. In FIG. 4A to FIG. 4C, the silver halide 36 is expressed as “grains”, but it is exaggerated to help the understanding of the present invention, and the size, concentration, etc. are shown. It is not a thing.
 その後、図4Bに示すように、銀塩感光層40に対してメッシュパターン20の形成に必要な露光を行う。ハロゲン化銀36は、光エネルギーを受けると感光して「潜像」と称される肉眼では観察できない微小な銀核を生成する。 Thereafter, as shown in FIG. 4B, the silver salt photosensitive layer 40 is subjected to exposure necessary for forming the mesh pattern 20. When silver halide 36 receives light energy, it is exposed to light and generates minute silver nuclei called “latent images” that cannot be observed with the naked eye.
 その後、潜像を肉眼で観察できる可視化された画像に増幅するために、図4Cに示すように、現像処理を行う。具体的には、潜像が形成された銀塩感光層40を現像処理液(アルカリ性溶液と酸性溶液のどちらもあるが通常はアルカリ性溶液が多い)により現像処理する。この現像処理とは、ハロゲン化銀粒子ないし現像液から供給された銀イオンが現像液中の現像主薬と呼ばれる還元剤により潜像銀核を触媒核として金属銀に還元されて、その結果として潜像銀核が増幅されて可視化された銀画像(現像銀42)を形成する。 Then, in order to amplify the latent image into a visualized image that can be observed with the naked eye, development processing is performed as shown in FIG. 4C. Specifically, the silver salt photosensitive layer 40 on which the latent image is formed is developed with a development processing solution (both alkaline solution and acidic solution, but usually alkaline solution is large). In this development process, silver ions supplied from silver halide grains or a developer are reduced to metallic silver by using a latent image silver nucleus as a catalyst nucleus by a reducing agent called a developing agent in the developer, and as a result The image silver nuclei are amplified to form a visualized silver image (developed silver 42).
 現像処理を終えたあとに銀塩感光層40中には光に感光できるハロゲン化銀36が残存するのでこれを除去するために図4Dに示すように定着処理液(酸性溶液とアルカリ性溶液のどちらもあるが通常は酸性溶液が多い)により定着を行う。 After the development processing is completed, silver halide 36 that can be exposed to light remains in the silver salt photosensitive layer 40. In order to remove this, a fixing processing solution (either an acidic solution or an alkaline solution is used as shown in FIG. 4D). However, fixing is usually performed by using an acidic solution.
 この定着処理を行うことによって、露光された部位には金属銀部44が形成され、露光されていない部位にはゼラチン38のみが残存し、光透過性部46となる。すなわち、基体12上に金属銀部44による金属細線16と光透過性部46による開口部18との組み合わせによるメッシュパターン20とモアレ抑止部26が形成される。 By performing this fixing process, the metal silver portion 44 is formed in the exposed portion, and only the gelatin 38 remains in the unexposed portion to become the light transmissive portion 46. That is, the mesh pattern 20 and the moire suppressing portion 26 are formed on the base 12 by a combination of the fine metal wires 16 formed by the metal silver portions 44 and the openings 18 formed by the light transmitting portions 46.
 ハロゲン化銀36として臭化銀を用い、チオ硫酸塩で定着処理した場合の定着処理の反応式は以下の通りである。
   AgBr(固体)+2個のS23イオン → Ag(S232
                       (易水溶性錯体)
 すなわち、2個のチオ硫酸イオンS23とゼラチン38中の銀イオン(AgBrからの銀イオン)が、チオ硫酸銀錯体を生成する。チオ硫酸銀錯体は水溶性が高いのでゼラチン38中から溶出されることになる。その結果、現像銀42が金属銀部44として定着されて残ることになる。
The reaction formula of the fixing process when silver bromide is used as the silver halide 36 and the fixing process is performed with thiosulfate is as follows.
AgBr (solid) + 2 S 2 O 3 ions → Ag (S 2 O 3 ) 2
(Easily water-soluble complex)
That is, two thiosulfate ions S 2 O 3 and silver ions in gelatin 38 (silver ions from AgBr) form a silver thiosulfate complex. Since the silver thiosulfate complex is highly water-soluble, it is eluted from the gelatin 38. As a result, the developed silver 42 is fixed and remains as the metallic silver portion 44.
[規則91に基づく訂正 20.08.2013] 
 従って、現像工程は、潜像に対し還元剤を反応させて現像銀42を析出させる工程であり、定着工程は、現像銀42にならなかったハロゲン化銀36を水に溶出させる工程である。詳細は、T.H.James, The Theory of the Photographic Process, 4th ed., Macmillan Publishing Co.,Inc, NY,Chapter15, pp.438-442. 1977を参照されたい。
[Correction based on Rule 91 20.08.2013]
Therefore, the development step is a step of causing the developing agent to react with the latent image to precipitate the developed silver 42, and the fixing step is a step of eluting the silver halide 36 that has not become the developed silver 42 into water. For details, see T.W. H. James, The Theory of the Photographic Process, 4th ed. , Macmillan Publishing Co. , Inc, NY, Chapter 15, pp. 438-442. See 1977.
 なお、図4Eに示すように、例えばめっき処理(無電解めっきや電気めっきを単独ないし組み合わせる)を行って、金属銀部44のみに導電性金属48を担持させて金属銀部44と導電性金属48によるメッシュパターン20及びモアレ抑止部26を形成してもよい。 As shown in FIG. 4E, for example, a plating process (electroless plating or electroplating alone or in combination) is performed, and the conductive metal 48 is supported only on the metallic silver portion 44, thereby the metallic silver portion 44 and the conductive metal. The mesh pattern 20 and the moire suppression part 26 by 48 may be formed.
 そして、銀塩感光層40に対する露光にて使用されるマスクは、メッシュパターン20と、該メッシュパターン20の開口部18にモアレ抑止部26が形成されたパターンに対応したマスクパターンを有するようにしてもよい。 The mask used for exposure to the silver salt photosensitive layer 40 has a mesh pattern 20 and a mask pattern corresponding to the pattern in which the moire suppressing portion 26 is formed in the opening 18 of the mesh pattern 20. Also good.
 あるいは、銀塩感光層40に対するデジタル書込み露光によって、銀塩感光層40に、メッシュパターン20と、該メッシュパターン20の開口部18にモアレ抑止部26が形成されたパターンを露光するようにしてもよい。 Alternatively, the silver salt photosensitive layer 40 may be exposed to a pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed in the opening 18 of the mesh pattern 20 by digital writing exposure on the silver salt photosensitive layer 40. Good.
 その他の製造方法としては、図5Aに示すように、例えば基体12上に形成された銅箔50上のフォトレジスト膜52を露光、現像処理してレジストパターン54を形成し、図5Bに示すように、レジストパターン54から露出する銅箔50をエッチングすることによって、メッシュパターン20及びモアレ抑止部26を形成するようにしてもよい。この場合、フォトレジスト膜52に対する露光にて使用されるマスクは、メッシュパターン20とモアレ抑止部26とが形成されたパターンに対応したマスクパターンを有するようにしてもよい。 As another manufacturing method, as shown in FIG. 5A, for example, a photoresist film 52 on the copper foil 50 formed on the substrate 12 is exposed and developed to form a resist pattern 54, as shown in FIG. 5B. Further, the mesh pattern 20 and the moire suppressing portion 26 may be formed by etching the copper foil 50 exposed from the resist pattern 54. In this case, the mask used in the exposure for the photoresist film 52 may have a mask pattern corresponding to the pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed.
 あるいは、フォトレジスト膜52に対するデジタル書込み露光によって、フォトレジスト膜52に、メッシュパターン20とモアレ抑止部26が形成されたパターンを露光するようにしてもよい。 Alternatively, a pattern in which the mesh pattern 20 and the moire suppressing portion 26 are formed may be exposed on the photoresist film 52 by digital writing exposure on the photoresist film 52.
 また、図6Aに示すように、基体12上に金属微粒子を含むペースト56を印刷し、図6Bに示すように、ペースト56に金属めっき58を行うことによって、メッシュパターン20と、該メッシュパターン20の開口部18にモアレ抑止部26が形成されたパターンを形成するようにしてもよい。 Also, as shown in FIG. 6A, a paste 56 containing metal fine particles is printed on the substrate 12, and a metal plating 58 is applied to the paste 56 as shown in FIG. 6B, whereby the mesh pattern 20 and the mesh pattern 20 are obtained. A pattern in which the moire suppressing portion 26 is formed in the opening 18 may be formed.
 あるいは、図7に示すように、基体12に、メッシュパターン20と、該メッシュパターン20の開口部18にモアレ抑止部26が形成されたパターンをスクリーン印刷版又はグラビア印刷版によって印刷形成するようにしてもよい。 Alternatively, as shown in FIG. 7, a mesh pattern 20 and a pattern in which a moire suppressing portion 26 is formed in the opening 18 of the mesh pattern 20 are printed and formed on the base 12 using a screen printing plate or a gravure printing plate. May be.
 あるいは、図示しないが、基体12上にめっき前処理材を用いて感光性被めっき層を形成し、その後、露光、現像処理した後にめっき処理を施すことにより、露光部及び未露光部にそれぞれ金属部及び光透過性部を形成してメッシュパターン20及びモアレ抑止部26を形成するようにしてもよい。なお、さらに金属部に物理現像及び/又はめっき処理を施すことによって金属部に導電性金属を担持させるようにしてもよい。 Alternatively, although not shown, a photosensitive pre-plated layer is formed on the base 12 using a pretreatment material for plating, and then exposed and developed, and then subjected to a plating treatment, whereby a metal is applied to the exposed and unexposed areas, respectively. The mesh pattern 20 and the moire suppressing portion 26 may be formed by forming a portion and a light transmitting portion. Further, a conductive metal may be supported on the metal part by further performing physical development and / or plating treatment on the metal part.
 めっき前処理材を用いる方法のさらに好ましい形態としては、次の2通りの形態が挙げられる。なお、下記のより具体的な内容は、特開2003-213437号公報、特開2006-64923号公報、特開2006-58797号公報、特開2006-135271号公報等に開示されている。 The following two forms are mentioned as a more preferable form of the method using the plating pretreatment material. The following more specific contents are disclosed in Japanese Patent Application Laid-Open No. 2003-213437, Japanese Patent Application Laid-Open No. 2006-64923, Japanese Patent Application Laid-Open No. 2006-58797, Japanese Patent Application Laid-Open No. 2006-135271, and the like.
(a) 基体12上に、めっき触媒又はその前駆体と相互作用する官能基を含む被めっき層を塗布し、その後、露光・現像した後にめっき処理して金属部を被めっき材料上に形成させる態様。
(b) 基体12上に、ポリマー及び金属酸化物を含む下地層と、めっき触媒又はその前駆体と相互作用する官能基を含む被めっき層とをこの順に積層し、その後、露光・現像した後にめっき処理して金属部を被めっき材料上に形成させる態様。
(A) A plating layer containing a functional group that interacts with the plating catalyst or its precursor is applied on the substrate 12, and then exposed and developed, and then plated to form a metal part on the material to be plated. Aspect.
(B) After laminating a base layer containing a polymer and a metal oxide and a layer to be plated containing a functional group that interacts with a plating catalyst or a precursor thereof in this order on the substrate 12, and then exposing and developing. A mode in which a metal part is formed on a material to be plated by plating.
 あるいは、基体12上に、メッシュパターン20とモアレ抑止部26をインクジェットにより形成するようにしてもよい。 Alternatively, the mesh pattern 20 and the moire suppressing portion 26 may be formed on the base 12 by inkjet.
 次に、本実施の形態に係る導電性フイルム10において、特に好ましい態様であるハロゲン化銀写真感光材料を用いる方法を中心にして述べる。 Next, in the conductive film 10 according to the present embodiment, a method using a silver halide photographic light-sensitive material that is a particularly preferable embodiment will be mainly described.
 本実施の形態に係る導電性フイルム10の製造方法は、感光材料と現像処理の形態によって、次の3通りの形態が含まれる。
(1) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現像して金属銀部を該感光材料上に形成させる態様。
(2) 物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料を溶解物理現像して金属銀部を該感光材料上に形成させる態様。
(3) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感光性受像シート上に形成させる態様。
The manufacturing method of the conductive film 10 according to the present embodiment includes the following three forms depending on the photosensitive material and the form of development processing.
(1) A mode in which a photosensitive silver halide black-and-white photosensitive material not containing physical development nuclei is chemically developed or thermally developed to form a metallic silver portion on the photosensitive material.
(2) An embodiment in which a photosensitive silver halide black-and-white photosensitive material containing physical development nuclei in a silver halide emulsion layer is dissolved and physically developed to form a metallic silver portion on the photosensitive material.
(3) A photosensitive silver halide black-and-white photosensitive material containing no physical development nuclei and an image receiving sheet having a non-photosensitive layer containing physical development nuclei are overlapped and developed by diffusion transfer, and the metallic silver portion is non-photosensitive image-receiving sheet. Form formed on top.
 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。得られる現像銀は化学現像銀又は熱現像銀であり、高比表面のフィラメントである点で後続するめっき又は物理現像過程で活性が高い。 The above aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material. The resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解されて現像核上に沈積することによって感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面の小さい球形である。 In the above aspect (2), the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion. A characteristic film is formed. This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受像シート上の現像核上に沈積することによって受像シート上に光透過性導電性膜等の透光性導電性膜が形成される。いわゆるセパレートタイプであって、受像シートを感光材料から剥離して用いる態様である。 In the above aspect (3), the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, whereby a light transmitting conductive film or the like is formed on the image receiving sheet. A conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
 いずれの態様もネガ型現像処理及び反転現像処理のいずれの現像を選択することもできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いることによってネガ型現像処理が可能となる)。 In either embodiment, either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material). .
[規則91に基づく訂正 20.08.2013] 
 ここでいう化学現像、熱現像、溶解物理現像、拡散転写現像は、当業界で通常用いられている用語どおりの意味であり、写真化学の一般教科書、例えば菊地真一著「写真化学」(共立出版社、1955年刊行)、C.E.K.Mees編「The Theory of The Photographic Processes, 4th ed.」(Mcmillan社、1977年刊行)に解説されている。本件は液処理に係る発明であるが、その他の現像方式として熱現像方式を適用する技術も参考にすることができる。例えば、特開2004-184693号、同2004-334077号、同2005-010752号の各公報、特願2004-244080号、同2004-085655号の各明細書に記載された技術を適用することができる。
[Correction based on Rule 91 20.08.2013]
The chemical development, thermal development, dissolution physical development, and diffusion transfer development mentioned here have the same meanings as are commonly used in the industry, and are general textbooks of photographic chemistry such as Shinichi Kikuchi, “Photochemistry” (Kyoritsu Publishing) (Published in 1955), C.I. E. K. It is described in "The Theory of The Photographic Processes, 4th ed." Edited by Mees (Mcmillan, 1977). Although this case is an invention related to liquid processing, a technique of applying a thermal development system as another development system can also be referred to. For example, the techniques described in Japanese Patent Application Laid-Open Nos. 2004-184893, 2004-334077, and 2005-010752, and Japanese Patent Application Nos. 2004-244080 and 2004-085655 can be applied. it can.
 上述の例では、図1に示すように、モアレ抑止部26が配置された1つの辺28と交差する他の辺と、該モアレ抑止部26の延在方向(長軸)とがほぼ平行にした例を示したが、その他、以下のような態様を好ましく採用することができる。 In the above-described example, as shown in FIG. 1, the other side intersecting with one side 28 where the moire suppressing part 26 is arranged and the extending direction (long axis) of the moire suppressing part 26 are substantially parallel. However, the following embodiments can be preferably employed.
 すなわち、図8に示す第1変形例に係る導電フイルム10aのように、モアレ抑止部26が配置された1つの辺28に対して、モアレ抑止部26の延在方向(長軸)が傾斜(直交していない)していてもよい。また、図9に示す第2変形例に係る導電フイルム10b及び図10に示す第3変形例に係る導電フイルム10cのように、第1張り出し部26aのみを有するモアレ抑止部26と、第2張り出し部26bのみを有するモアレ抑止部26とがランダムに配置されていてもよい。図9は、モアレ抑止部26が配置された1つの辺28に対して、モアレ抑止部26の延在方向(長軸)が直交している例を示し、図10は、1つの辺28に対して、モアレ抑止部26の延在方向(長軸)が傾斜(直交していない)している例を示す。 That is, as in the conductive film 10a according to the first modification shown in FIG. 8, the extending direction (long axis) of the moire suppressing portion 26 is inclined with respect to one side 28 where the moire suppressing portion 26 is disposed ( May not be orthogonal). Further, like the conductive film 10b according to the second modified example shown in FIG. 9 and the conductive film 10c according to the third modified example shown in FIG. 10, the moire suppressing part 26 having only the first protruding part 26a, and the second protruding part The moire suppressing part 26 having only the part 26b may be arranged at random. FIG. 9 shows an example in which the extending direction (long axis) of the moire suppression unit 26 is orthogonal to one side 28 where the moire suppression unit 26 is arranged, and FIG. On the other hand, an example is shown in which the extending direction (long axis) of the moire suppressing portion 26 is inclined (not orthogonal).
 ここで、本実施の形態に係る導電性フイルム10の各層の構成について、以下に詳細に説明する。 Here, the configuration of each layer of the conductive film 10 according to the present embodiment will be described in detail below.
[基体12]
 基体12としては、プラスチックフイルム、プラスチック板、ガラス板等を挙げることができる。
[Substrate 12]
Examples of the substrate 12 include a plastic film, a plastic plate, and a glass plate.
 上記プラスチックフイルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA/COP/COC等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)等を用いることができる。 Examples of the raw material for the plastic film and the plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, EVA / COP / COC Kinds: Vinyl resin; In addition, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), and the like can be used.
 基体12としては、PET(融点:258℃)、PEN(融点:269℃)、PE(融点:135℃)、PP(融点:163℃)、ポリスチレン(融点:230℃)、ポリ塩化ビニル(融点:180℃)、ポリ塩化ビニリデン(融点:212℃)やTAC(融点:290℃)等の融点が約290℃以下であるプラスチックフイルム、又はプラスチック板が好ましく、特に、光透過性や加工性等の観点から、PETが好ましい。タッチパネルや電磁波シールドフイルム等に使用される導電性フイルム10は透明性が要求されるため、基体12の透明度は高いことが好ましい。 As the substrate 12, PET (melting point: 258 ° C.), PEN (melting point: 269 ° C.), PE (melting point: 135 ° C.), PP (melting point: 163 ° C.), polystyrene (melting point: 230 ° C.), polyvinyl chloride (melting point) : 180 ° C), polyvinylidene chloride (melting point: 212 ° C), TAC (melting point: 290 ° C) or other plastic film or plastic plate having a melting point of about 290 ° C or less is preferable. From the viewpoint of PET, PET is preferable. Since the conductive film 10 used for a touch panel, an electromagnetic shielding film or the like is required to be transparent, it is preferable that the substrate 12 has high transparency.
[銀塩感光層40]
 導電性フイルム10の導電層(メッシュパターン20及びモアレ抑止部26)となる銀塩感光層40(図4A参照)は、銀塩とバインダーの他、溶媒や染料等の添加剤を含有する。
[Silver salt photosensitive layer 40]
The silver salt photosensitive layer 40 (see FIG. 4A) that becomes the conductive layer (the mesh pattern 20 and the moire suppressing portion 26) of the conductive film 10 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
 本実施の形態に用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀等の有機銀塩が挙げられる。本実施の形態においては、光センサーとしての特性に優れるハロゲン化銀を用いることが好ましい。 Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
 銀塩感光層40の塗布銀量(銀塩の塗布量)は、銀に換算して1~30g/m2が好ましく、1~25g/m2がより好ましく、5~20g/m2がさらに好ましい。この塗布銀量を上記範囲とすることで、導電性フイルム10とした場合に所望の表面抵抗を得ることができる。 Coated silver amount of the silver salt photosensitive layer 40 (coating amount of silver salt) is preferably 1 ~ 30g / m 2 in terms of silver, and more preferably 1 ~ 25g / m 2, 5 ~ 20g / m 2 and more preferable. By setting the amount of coated silver in the above range, a desired surface resistance can be obtained when the conductive film 10 is used.
 本実施の形態に用いられるバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。これらは、官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。 Examples of the binder used in this embodiment include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
 本実施の形態の銀塩感光層40中に含有されるバインダーの含有量は、特に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。銀塩感光層40中のバインダーの含有量は、銀/バインダー体積比で1/4以上が好ましく、1/2以上がより好ましい。銀/バインダー体積比は、100/1以下が好ましく、50/1以下がより好ましい。また、銀/バインダー体積比は1/1~4/1であることがさらに好ましい。1/1~3/1であることが最も好ましい。銀塩感光層40中の銀/バインダー体積比をこの範囲にすることで、塗布銀量を調整した場合でも抵抗値のばらつきを抑制し、均一な表面抵抗を有する導電性フイルム10を得ることができる。なお、銀/バインダー体積比は、原料のハロゲン化銀量/バインダー量(重量比)を銀量/バインダー量(重量比)に変換し、さらに、銀量/バインダー量(重量比)を銀量/バインダー量(体積比)に変換することで求めることができる。 The content of the binder contained in the silver salt photosensitive layer 40 of the present embodiment is not particularly limited, and can be appropriately determined within a range in which dispersibility and adhesion can be exhibited. The binder content in the silver salt photosensitive layer 40 is preferably ¼ or more, and more preferably ½ or more in terms of a silver / binder volume ratio. The silver / binder volume ratio is preferably 100/1 or less, and more preferably 50/1 or less. The silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1. By setting the silver / binder volume ratio in the silver salt photosensitive layer 40 within this range, even when the amount of coated silver is adjusted, variation in the resistance value is suppressed, and the conductive film 10 having a uniform surface resistance can be obtained. it can. The silver / binder volume ratio is converted from the amount of silver halide / binder amount (weight ratio) of the raw material to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain | require by converting into binder amount (volume ratio).
<溶媒>
 銀塩感光層40の形成に用いられる溶媒は、特に限定されるものではないが、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を挙げることができる。
<Solvent>
The solvent used for forming the silver salt photosensitive layer 40 is not particularly limited. For example, water, an organic solvent (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl, etc. Sulfoxides such as sulfoxide, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
 本実施の形態の銀塩感光層40に用いられる溶媒の含有量は、銀塩感光層40に含まれる銀塩、バインダー等の合計の質量に対して30~90質量%の範囲であり、50~80質量%の範囲であることが好ましい。 The content of the solvent used in the silver salt photosensitive layer 40 of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of the silver salt and binder contained in the silver salt photosensitive layer 40, and 50 The range of ˜80 mass% is preferable.
<その他の添加剤>
 本実施の形態に用いられる各種添加剤に関しては、特に制限は無く、公知のものを好ましく用いることができる。
<Other additives>
There are no particular restrictions on the various additives used in the present embodiment, and known ones can be preferably used.
[その他の層構成]
 銀塩感光層40の上に図示しない保護層を設けてもよい。本実施の形態において「保護層」とは、ゼラチンや高分子ポリマーといったバインダーからなる層を意味し、擦り傷防止や力学特性を改良する効果を発現するために感光性を有する銀塩感光層40上に形成される。その厚みは0.5μm以下が好ましい。保護層の塗布方法及び形成方法は特に限定されず、公知の塗布方法及び形成方法を適宜選択することができる。また、銀塩感光層40よりも下に、例えば下塗り層を設けることもできる。
[Other layer structure]
A protective layer (not shown) may be provided on the silver salt photosensitive layer 40. In the present embodiment, the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer. On the silver salt photosensitive layer 40 having photosensitivity in order to exhibit the effect of preventing scratches and improving mechanical properties. Formed. The thickness is preferably 0.5 μm or less. The coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected. Further, for example, an undercoat layer can be provided below the silver salt photosensitive layer 40.
 次に、導電性フイルム10の作製方法の各工程について説明する。 Next, each step of the method for producing the conductive film 10 will be described.
[露光]
 本実施の形態では、導電部14を印刷方式によって施す場合を含むが、印刷方式以外は、導電部14を露光と現像等によって形成する。すなわち、基体12上に設けられた銀塩感光層40を有する感光材料又はフォトリソグラフィ用フォトポリマーを塗工した感光材料への露光を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線等の光、X線等の放射線等が挙げられる。さらに露光には波長分布を有する光源を利用してもよく、特定の波長の光源を用いてもよい。
[exposure]
In the present embodiment, the case where the conductive portion 14 is applied by a printing method is included, but the conductive portion 14 is formed by exposure, development, and the like except for the printing method. That is, the photosensitive material having the silver salt photosensitive layer 40 provided on the substrate 12 or a photosensitive material coated with a photopolymer for photolithography is exposed. The exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
[現像処理]
 本実施の形態では、銀塩感光層40を露光した後、さらに現像処理が行われる。現像処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。現像液については特に限定はしないが、PQ現像液、MQ現像液、MAA現像液等を用いることもでき、市販品では、例えば、富士フイルム社処方のCN-16、CR-56、CP45X、FD-3、パピトール、KODAK社処方のC-41、E-6、RA-4、D-19、D-72等の現像液、又はそのキットに含まれる現像液を用いることができる。また、リス現像液を用いることもできる。
[Development processing]
In the present embodiment, after the silver salt photosensitive layer 40 is exposed, further development processing is performed. The development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like. The developer is not particularly limited, but PQ developer, MQ developer, MAA developer and the like can also be used. Commercially available products include, for example, CN-16, CR-56, CP45X, FD prescribed by FUJIFILM Corporation. -3, Papitol, developers such as C-41, E-6, RA-4, D-19, and D-72 prescribed by KODAK, or developers included in the kit can be used. A lith developer can also be used.
 本発明における現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。本発明における定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。 The development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt in an unexposed portion. For the fixing process in the present invention, a fixing process technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
 上記定着工程における定着温度は、約20℃~約50℃が好ましく、さらに好ましくは25~45℃である。また、定着時間は5秒~1分が好ましく、さらに好ましくは7秒~50秒である。定着液の補充量は、感光材料の処理量に対して600ml/m2以下が好ましく、500ml/m2以下がさらに好ましく、300ml/m2以下が特に好ましい。 The fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 to 45 ° C. The fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds. The replenishing amount of the fixing solution is preferably 600 ml / m 2 or less with respect to the processing of the photosensitive material, more preferably 500 ml / m 2 or less, 300 ml / m 2 or less is particularly preferred.
 現像、定着処理を施した感光材料は、水洗処理や安定化処理を施されるのが好ましい。上記水洗処理又は安定化処理においては、水洗水量は通常感光材料1m2当り、20リットル以下で行われ、3リットル以下の補充量(0も含む、すなわちため水水洗)で行うこともできる。 The light-sensitive material that has been subjected to development and fixing processing is preferably subjected to water washing treatment or stabilization treatment. In the water washing treatment or stabilization treatment, the washing water amount is usually 20 liters or less per 1 m 2 of the light-sensitive material, and can be replenished in 3 liters or less (including 0, ie, rinsing with water).
 現像処理後の露光部に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがさらに好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。 The mass of the metallic silver contained in the exposed portion after the development treatment is preferably a content of 50% by mass or more, and 80% by mass or more with respect to the mass of silver contained in the exposed portion before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
 本実施の形態における現像処理後の階調は、特に限定されるものではないが、4.0を超えることが好ましい。現像処理後の階調が4.0を超えると、光透過性部の透光性を高く保ったまま、導電性金属部(金属細線16)の導電性を高めることができる。階調を4.0以上にする手段としては、例えば、前述のロジウムイオン、イリジウムイオンのドープが挙げられる。 The gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0. When the gradation after development processing exceeds 4.0, the conductivity of the conductive metal portion (metal thin wire 16) can be increased while keeping the light transmissive property of the light transmissive portion high. Examples of means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
 以上の工程を経て導電性フイルム10は得られるが、得られた導電性フイルム10の表面抵抗は0.1~100オーム/sq.の範囲にあることが好ましい。下限値は、1オーム/sq.以上、3オーム/sq.以上、5オーム/sq.以上、10オーム/sq.以上であることが好ましい。上限値は、70オーム/sq.以下、50オーム/sq.以下であることが好ましい。このような範囲に表面抵抗を調整することで、面積が10cm×10cm以上の大型のタッチパネルでも位置検出を行うことができる。また、現像処理後の導電シートに対しては、さらにカレンダー処理を行ってもよく、カレンダー処理により所望の表面抵抗に調整することができる。 Through the above steps, the conductive film 10 is obtained, but the surface resistance of the obtained conductive film 10 is 0.1 to 100 ohm / sq. It is preferable that it exists in the range. The lower limit is 1 ohm / sq. 3 ohm / sq. 5 ohm / sq. 10 ohm / sq. The above is preferable. The upper limit is 70 ohm / sq. Hereinafter, 50 ohm / sq. The following is preferable. By adjusting the surface resistance within such a range, position detection can be performed even with a large touch panel having an area of 10 cm × 10 cm or more. Further, the conductive sheet after the development treatment may be further subjected to a calendar treatment, and can be adjusted to a desired surface resistance by the calendar treatment.
[物理現像及びめっき処理]
 本実施の形態では、前記露光及び現像処理により形成された金属銀部44の導電性を向上させる目的で、金属銀部44に導電性金属粒子を担持させるための物理現像及び/又はめっき処理を行ってもよい。本発明では物理現像又はめっき処理のいずれか一方のみで導電性金属粒子を金属銀部44に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を金属銀部44に担持させてもよい。なお、金属銀部44に物理現像及び/又はめっき処理を施したものを含めて「導電性金属部」と称する。
[Physical development and plating]
In the present embodiment, for the purpose of improving the conductivity of the metal silver portion 44 formed by the exposure and development processing, physical development and / or plating treatment for supporting the conductive metal particles on the metal silver portion 44 is performed. You may go. In the present invention, the conductive metal particles may be supported on the metallic silver portion 44 by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion 44 by combining physical development and plating treatment. You may let them. In addition, the thing which performed the physical development and / or the plating process to the metal silver part 44 is called a "conductive metal part."
[規則91に基づく訂正 20.08.2013] 
 本実施の形態における「物理現像」とは、金属や金属化合物の核上に、銀イオン等の金属イオンを還元剤で還元して金属粒子を析出させることをいう。この物理現像は、インスタントB&Wフイルム、インスタントスライドフイルムや、印刷版製造等に利用されており、本発明ではその技術を用いることができる。
[Correction based on Rule 91 20.08.2013]
“Physical development” in the present embodiment means that metal particles such as silver ions are reduced by a reducing agent on metal or metal compound nuclei to deposit metal particles. This physical development is used for instant B & W film, instant slide film, printing plate production, and the like, and this technique can be used in the present invention.
 また、物理現像は、露光後の現像処理と同時に行っても、現像処理後に別途行ってもよい。 The physical development may be performed simultaneously with the development processing after exposure or separately after the development processing.
 本実施の形態において、めっき処理は、無電解めっき(化学還元めっきや置換めっき)、電解めっき、又は無電解めっきと電解めっきの両方を用いることができる。本実施の形態における無電解めっきは、公知の無電解めっき技術を用いることができ、例えば、プリント配線板等で用いられている無電解めっき技術を用いることができ、無電解めっきは無電解銅めっきであることが好ましい。 In the present embodiment, the plating treatment can be performed using electroless plating (chemical reduction plating or displacement plating), electrolytic plating, or both electroless plating and electrolytic plating. For the electroless plating in the present embodiment, a known electroless plating technique can be used, for example, an electroless plating technique used in a printed wiring board or the like can be used. Plating is preferred.
[酸化処理]
 本実施の形態では、現像処理後の金属銀部44、並びに、物理現像及び/又はめっき処理によって形成された導電性金属部には、酸化処理を施すことが好ましい。酸化処理を行うことにより、例えば、光透過性部46に金属が僅かに沈着していた場合に、該金属を除去し、光透過性部46の透過性をほぼ100%にすることができる。
[Oxidation treatment]
In the present embodiment, it is preferable to subject the metallic silver portion 44 after development processing and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment. By performing the oxidation treatment, for example, when a slight amount of metal is deposited on the light transmissive portion 46, the metal can be removed and the light transmissive portion 46 can be made almost 100% transparent.
[導電性金属部]
 本実施の形態の導電性金属部(金属細線16)の線幅は、上述したように、30μm以下から選択可能である。導電性フイルム10を電磁波シールドフイルムとして使用する場合には、金属細線16の線幅は1μm以上20μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましく、2μm以上5μm以下が特に好ましい。導電性フイルム10をタッチパネルの導電シートとして使用する場合には、下限は0.1μm以上、1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は15μm以下、10μm以下、9μm以下、8μm以下、7μm以下が好ましい。線幅が上記下限値未満の場合には、導電性が不十分となるためタッチパネルに使用した場合に、検出感度が不十分となる。他方、上記上限値を超えると導電性金属部に起因するモアレが顕著になったり、タッチパネルに使用した際に視認性が悪くなったりする。なお、上記範囲にあることで、導電性金属部のモアレが改善され、視認性が特によくなる。
[Conductive metal part]
As described above, the line width of the conductive metal portion (metal thin wire 16) of the present embodiment can be selected from 30 μm or less. When the conductive film 10 is used as an electromagnetic wave shielding film, the line width of the fine metal wire 16 is preferably 1 μm to 20 μm, more preferably 1 μm to 9 μm, further preferably 2 μm to 7 μm, and more preferably 2 μm to 5 μm. Particularly preferred. When the conductive film 10 is used as a conductive sheet for a touch panel, the lower limit is preferably 0.1 μm or more, 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more, and the upper limit is 15 μm or less, 10 μm or less, 9 μm or less, 8 μm. Hereinafter, 7 μm or less is preferable. When the line width is less than the above lower limit value, the conductivity becomes insufficient, so that when used for a touch panel, the detection sensitivity becomes insufficient. On the other hand, when the above upper limit is exceeded, moire caused by the conductive metal portion becomes noticeable, or visibility becomes worse when used for a touch panel. In addition, by being in the said range, the moire of an electroconductive metal part is improved and visibility becomes especially good.
 格子の一辺の長さは、50μm以上900μm以下であることが好ましく、さらに好ましくは50μm以上600μm以下、より好ましくは50μm以上500μm以下である。また、導電性金属部は、アース接続等の目的においては、線幅は200μmより広い部分を有していてもよい。 The length of one side of the lattice is preferably 50 μm or more and 900 μm or less, more preferably 50 μm or more and 600 μm or less, and more preferably 50 μm or more and 500 μm or less. The conductive metal portion may have a portion whose line width is wider than 200 μm for the purpose of ground connection or the like.
 本実施の形態における導電性金属部は、可視光透過率の点から開口率は90%以上であることが好ましい。開口率とは、金属細線16及びモアレ抑止部26を除いた光透過性部46が全体に占める割合である。 The conductive metal portion in the present embodiment preferably has an aperture ratio of 90% or more from the viewpoint of visible light transmittance. The aperture ratio is a ratio of the light transmissive portion 46 excluding the metal thin wires 16 and the moire suppressing portion 26 to the whole.
[光透過性部]
 本実施の形態における「光透過性部」とは、導電性フイルム10のうち導電性金属部以外の透光性を有する部分を意味する。光透過性部46における透過率は、前述のとおり、基体12の光吸収及び反射の寄与を除いた380~780nmの波長領域における透過率の最小値で示される透過率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、さらにより好ましくは98%以上であり、最も好ましくは99%以上である。
[Light transmissive part]
The “light transmissive part” in the present embodiment means a part having a light transmissive property other than the conductive metal part in the conductive film 10. As described above, the transmittance of the light transmissive portion 46 is 90% or more, preferably 90% or more, as indicated by the minimum transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the substrate 12. 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
 露光方法に関しては、ガラスマスクを介した方法やレーザー描画によるパターン露光方式が好ましい。 Regarding the exposure method, a method through a glass mask or a pattern exposure method by laser drawing is preferable.
[導電性フイルム10]
 本実施の形態に係る導電性フイルム10における基体12の厚さは、75~350μmであることが好ましい。75~350μmの範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。また、2つの導電性フイルムを積層してタッチパネル用の導電シートとした場合に、導電性フイルム10間の寄生容量も低減させることができる。
[Conductive film 10]
The thickness of the substrate 12 in the conductive film 10 according to the present embodiment is preferably 75 to 350 μm. If it is in the range of 75 to 350 μm, a desired visible light transmittance can be obtained, and handling is easy. In addition, when two conductive films are laminated to form a conductive sheet for a touch panel, the parasitic capacitance between the conductive films 10 can be reduced.
 基体12上に設けられる金属銀部44の厚さは、基体12上に塗布される銀塩感光層用塗料の塗布厚みに応じて適宜決定することができる。金属銀部44の厚さは、0.001mm~0.2mmから選択可能であるが、30μm以下であることが好ましく、20μm以下であることがより好ましく、0.01~9μmであることがさらに好ましく、0.05~5μmであることが最も好ましい。また、金属銀部44はパターン状であることが好ましい。金属銀部44は1層でもよく、2層以上の重層構成であってもよい。金属銀部44がパターン状であり、且つ、2層以上の重層構成である場合、異なる波長に感光できるように、異なる感色性を付与することができる。これにより、露光波長を変えて露光すると、各層において異なるパターンを形成することができる。 The thickness of the metallic silver portion 44 provided on the substrate 12 can be appropriately determined according to the coating thickness of the silver salt photosensitive layer coating applied on the substrate 12. The thickness of the metallic silver portion 44 can be selected from 0.001 mm to 0.2 mm, but is preferably 30 μm or less, more preferably 20 μm or less, and further preferably 0.01 to 9 μm. Preferably, the thickness is 0.05 to 5 μm. Moreover, it is preferable that the metal silver part 44 is pattern shape. The metallic silver portion 44 may be a single layer or a multilayer structure of two or more layers. When the metallic silver portion 44 has a pattern shape and has a multilayer structure of two or more layers, different color sensitivities can be imparted so that it can be exposed to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, a different pattern can be formed in each layer.
 導電性金属部の厚さは、タッチパネルの用途としては、薄いほど表示パネルの視野角が広がるため好ましく、視認性の向上の点でも薄膜化が要求される。このような観点から、導電性金属部に担持された導電性金属からなる層の厚さは、9μm未満であることが好ましく、0.1μm以上5μm未満であることがより好ましく、0.1μm以上3μm未満であることがさらに好ましい。 The thickness of the conductive metal part is preferably as the thickness of the touch panel is thinner because the viewing angle of the display panel is wider, and a thin film is also required for improving the visibility. From such a viewpoint, the thickness of the layer made of the conductive metal carried on the conductive metal part is preferably less than 9 μm, more preferably 0.1 μm or more and less than 5 μm, and more preferably 0.1 μm or more. More preferably, it is less than 3 μm.
 本実施の形態では、上述した銀塩感光層40の塗布厚みをコントロールすることにより所望の厚さの金属銀部44を形成し、さらに物理現像及び/又はめっき処理により導電性金属粒子からなる層の厚みを自在にコントロールできるため、5μm未満、好ましくは3μm未満の厚みを有する導電性フイルム10であっても容易に形成することができる。 In the present embodiment, a metal silver portion 44 having a desired thickness is formed by controlling the coating thickness of the above-described silver salt photosensitive layer 40, and further a layer made of conductive metal particles by physical development and / or plating treatment. Therefore, even the conductive film 10 having a thickness of less than 5 μm, preferably less than 3 μm can be easily formed.
 なお、本実施の形態に係る導電性フイルム10の製造方法では、めっき等の工程は必ずしも行う必要はない。本実施の形態に係る導電性フイルム10の製造方法では銀塩感光層40の塗布銀量、銀/バインダー体積比を調整することで所望の表面抵抗を得ることができるからである。なお、必要に応じてカレンダー処理等を行ってもよい。 In addition, in the method for manufacturing the conductive film 10 according to the present embodiment, it is not always necessary to perform a process such as plating. This is because in the method for manufacturing the conductive film 10 according to the present embodiment, a desired surface resistance can be obtained by adjusting the amount of silver applied to the silver salt photosensitive layer 40 and the silver / binder volume ratio. In addition, you may perform a calendar process etc. as needed.
 銀塩感光層40に対して現像処理を行った後に、硬膜剤に浸漬して硬膜処理を行うことが好ましい。硬膜剤としては、例えば、グルタルアルデヒド、アジポアルデヒド、2,3-ジヒドロキシ-1,4-ジオキサン等のジアルデヒド類及びほう酸等の特開平2-141279号公報に記載のものを挙げることができる。 It is preferable that the silver salt photosensitive layer 40 is developed and then dipped in a hardener to perform the hardening process. Examples of the hardener include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and those described in JP-A-2-141279 such as boric acid. it can.
 導電性フイルム10には、反射防止層やハードコート層等の機能層を付与してもよい。 The conductive film 10 may be provided with a functional layer such as an antireflection layer or a hard coat layer.
 なお、本発明は、下記表1及び表2に記載の公開公報及び国際公開パンフレットの技術と適宜組合わせて使用することができる。「特開」、「号公報」、「号パンフレット」等の表記は省略する。 In addition, this invention can be used in combination with the technique of the publication gazette and international publication pamphlet which are described in the following Table 1 and Table 2. Notations such as “JP,” “Gazette” and “No. Pamphlet” are omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention. In addition, the material, usage-amount, ratio, processing content, processing procedure, etc. which are shown in the following Examples can be changed suitably unless it deviates from the meaning of this invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[第1実施例]
 第1実施例は、実施例1~11について、金属細線の線幅及び格子の一辺の長さを異ならせて、導電性フイルムの視認性、開口率及びモアレを評価した。実施例1~11の内訳及び評価結果を後述する表3に示す。
[First embodiment]
In the first example, the visibility, the aperture ratio, and the moire of the conductive film were evaluated by changing the line width of the fine metal wires and the length of one side of the grid in Examples 1 to 11. The breakdown and evaluation results of Examples 1 to 11 are shown in Table 3 described later.
(実施例1)
(ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
Example 1
(Silver halide photosensitive material)
An emulsion containing 10.0 g of gelatin per 150 g of Ag in an aqueous medium and containing silver iodobromochloride grains having an average equivalent sphere diameter of 0.1 μm (I = 0.2 mol%, Br = 40 mol%) was prepared. .
 また、この乳剤中にはK3Rh2Br9及びK2IrCl6を濃度が10-7(モル/モル銀)になるように添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNa2PdCl4を添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/m2となるように透明基体(ここでは、共にポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。 In this emulsion, K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 −7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. . After adding Na 2 PdCl 4 to this emulsion and further performing gold-sulfur sensitization with chloroauric acid and sodium thiosulfate, together with the gelatin hardener, the coating amount of silver is 10 g / m 2. It was coated on a transparent substrate (here, both polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1.
 幅30cmのPET支持体に25cmの幅で20m分塗布を行ない、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。 Application was carried out on a PET support of 30 cm width with a width of 25 cm for 20 m, and both ends were cut off by 3 cm so as to leave a central part of the application, and a roll-shaped silver halide photosensitive material was obtained.
(露光)
 露光のパターンは、図1に示すように、メッシュパターン20を構成する格子24の各辺28にそれぞれモアレ抑止部26がランダムに配置されたパターンで、A4サイズ(210mm×297mm)の基体12に行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(exposure)
As shown in FIG. 1, the exposure pattern is a pattern in which moire suppressing portions 26 are randomly arranged on each side 28 of the lattice 24 constituting the mesh pattern 20. The exposure pattern is formed on the A4 size (210 mm × 297 mm) base 12. went. The exposure was performed using parallel light using a high-pressure mercury lamp as a light source through the photomask having the above pattern.
(現像処理)
・現像液1L処方
   ハイドロキノン            20 g
   亜硫酸ナトリウム           50 g
   炭酸カリウム             40 g
   エチレンジアミン・四酢酸        2 g
   臭化カリウム              3 g
   ポリエチレングリコール2000     1 g
   水酸化カリウム             4 g
   pH              10.3に調整
(Development processing)
・ Developer 1L formulation Hydroquinone 20 g
Sodium sulfite 50 g
Potassium carbonate 40 g
Ethylenediamine tetraacetic acid 2 g
Potassium bromide 3 g
Polyethylene glycol 2000 1 g
Potassium hydroxide 4 g
Adjust to pH 10.3
・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300 ml
   亜硫酸アンモニウム・1水塩      25 g
   1,3-ジアミノプロパン・四酢酸    8 g
   酢酸                  5 g
   アンモニア水(27%)         1 g
   pH               6.2に調整
-Fixer 1L formulation Ammonium thiosulfate solution (75%) 300 ml
Ammonium sulfite monohydrate 25 g
1,3-diaminopropane tetraacetic acid 8 g
Acetic acid 5 g
Ammonia water (27%) 1 g
Adjust to pH 6.2
 上記処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。 Using the above processing agent, the exposed photosensitive material is processed using an automatic developing machine FG-710PTS manufactured by FUJIFILM Corporation. Development conditions: 35 ° C. for 30 seconds, fixing at 34 ° C. for 23 seconds, washing with running water (5 L / min) for 20 seconds Done in the process.
 上述のようにして露光、現像処理を行って、金属細線16の線幅Waが10μm、格子24(この例では正方形状)の一辺の長さLaが500μm、モアレ抑止部26の線幅Wbが10μm、モアレ抑止部26の長さLbが125.0μmの実施例1に係る導電性フイルムを作製した。 After performing the exposure and development processes as described above, the line width Wa of the fine metal wires 16 is 10 μm, the length La of one side of the grid 24 (square shape in this example) is 500 μm, and the line width Wb of the moire suppressing unit 26 is A conductive film according to Example 1 having a thickness Lb of 10 μm and a moire suppressing portion 26 of 125.0 μm was produced.
(実施例2)
 実施例2は、格子24の一辺の長さLaを400μm、モアレ抑止部26の長さLbを100.0μmにしたこと以外は、上述の実施例1と同様にして実施例2に係る導電性フイルムを作製した。
(Example 2)
Example 2 is the same as Example 1 except that the length La of one side of the grating 24 is 400 μm and the length Lb of the moire suppressing portion 26 is 100.0 μm. A film was prepared.
(実施例3)
 実施例3は、金属細線16の線幅Waを9μm、格子24の一辺の長さLaを400μm、モアレ抑止部26の線幅Wbを9μm、モアレ抑止部26の長さLbを100.0μmにしたこと以外は、上述の実施例1と同様にして実施例3に係る導電性フイルムを作製した。
(Example 3)
In the third embodiment, the line width Wa of the fine metal wire 16 is 9 μm, the length La of one side of the grating 24 is 400 μm, the line width Wb of the moire suppression unit 26 is 9 μm, and the length Lb of the moire suppression unit 26 is 100.0 μm. A conductive film according to Example 3 was produced in the same manner as in Example 1 described above except that.
(実施例4~6)
 実施例4、5及び6は、金属細線16の線幅Waを8μm、7μm及び6μm、格子24の一辺の長さLaをそれぞれ300μm、モアレ抑止部26の線幅Wbを8μm、7μm及び6μm、モアレ抑止部26の長さLbをそれぞれ75.0μmにしたこと以外は、上述の実施例1と同様にして実施例4、5及び6に係る導電性フイルムを作製した。
(Examples 4 to 6)
In Examples 4, 5 and 6, the line width Wa of the fine metal wire 16 is 8 μm, 7 μm and 6 μm, the length La of one side of the grating 24 is 300 μm, the line width Wb of the moire suppressing portion 26 is 8 μm, 7 μm and 6 μm, The conductive films according to Examples 4, 5 and 6 were produced in the same manner as in Example 1 except that the length Lb of the moire suppressing portion 26 was 75.0 μm.
(実施例7~9)
 実施例7、8及び9は、金属細線16の線幅Waを5μm、4μm及び3μm、格子24の一辺の長さLaをそれぞれ200μm、モアレ抑止部26の線幅Wbを5μm、4μm及び3μm、モアレ抑止部26の長さLbをそれぞれ50.0μmにしたこと以外は、上述の実施例1と同様にして実施例7、8及び9に係る導電性フイルムを作製した。
(Examples 7 to 9)
In Examples 7, 8 and 9, the line width Wa of the thin metal wire 16 is 5 μm, 4 μm and 3 μm, the length La of one side of the grating 24 is 200 μm, the line width Wb of the moire suppressing part 26 is 5 μm, 4 μm and 3 μm, Conductive films according to Examples 7, 8 and 9 were produced in the same manner as in Example 1 except that the length Lb of the moire suppressing portion 26 was 50.0 μm.
(実施例10)
 実施例10は、金属細線16の線幅Waを2μm、格子24の一辺の長さLaを100μm、モアレ抑止部26の線幅Wbを2μm、モアレ抑止部26の長さLbを25.0μmにしたこと以外は、上述の実施例1と同様にして実施例10に係る導電性フイルムを作製した。
(Example 10)
In Example 10, the line width Wa of the thin metal wire 16 is 2 μm, the length La of one side of the grating 24 is 100 μm, the line width Wb of the moire suppressing unit 26 is 2 μm, and the length Lb of the moire suppressing unit 26 is 25.0 μm. A conductive film according to Example 10 was produced in the same manner as in Example 1 except for the above.
(実施例11)
 実施例11は、金属細線16の線幅Waを1μm、格子24の一辺の長さLaを50μm、モアレ抑止部26の線幅Wbを1μm、モアレ抑止部26の長さLbを12.5μmにしたこと以外は、上述の実施例1と同様にして実施例11に係る導電性フイルムを作製した。
(Example 11)
In Example 11, the line width Wa of the fine metal wire 16 is 1 μm, the length La of one side of the grating 24 is 50 μm, the line width Wb of the moire suppression unit 26 is 1 μm, and the length Lb of the moire suppression unit 26 is 12.5 μm. A conductive film according to Example 11 was produced in the same manner as in Example 1 except for the above.
(視認性の評価)
<金属細線の視認され難さ>
 実施例1~11について、それぞれ導電性フイルムを表示装置の表示パネルに貼り付けてタッチパネルを構成した。タッチパネルを回転盤に設置し、表示装置を駆動して白色を表示させた際に、線太りや黒い斑点がないかどうか、また、タッチパネルの導電パターン(メッシュパターンやモアレ抑止部)が目立つかどうかを肉眼で確認した。
(Visibility evaluation)
<Difficult to visually recognize fine metal wires>
In Examples 1 to 11, a conductive film was attached to the display panel of the display device to constitute a touch panel. When the touch panel is installed on a turntable and the display device is driven to display white, there are no thick lines or black spots, and whether the touch panel conductive pattern (mesh pattern or moire suppressor) is noticeable Was confirmed with the naked eye.
 そして、線太りや黒い斑点、並びに導電パターンの境界が目立たない場合を「◎」、線太り、黒い斑点及び導電パターンの境界のうち、いずれか1つが目立つ場合を「○」、線太り、黒い斑点及び導電パターンの境界のいずれか2つが目立つ場合を「△」、線太り、黒い斑点及び導電パターンの境界の全てが目立つ場合を「×」とした。 Then, “◎” indicates that the border of the line thickening or black spot and the conductive pattern is inconspicuous, and “○” indicates that any one of the border of the line thickening, black spot or conductive pattern is conspicuous, “line thick”, black A case where any two of the spots and the boundary of the conductive pattern are conspicuous is indicated by “Δ”, and a case where all of the borders of the thickened black spots and the conductive pattern are conspicuous is indicated by “X”.
(モアレの評価)
 実施例1~11について、それぞれ導電性フイルムを表示装置の表示パネル上に貼り付けた後、表示装置を回転盤に設置し、表示装置を駆動して白色を表示させる。その状態で、回転盤をバイアス角-20°~+20°の間で回転し、モアレの目視観察・評価を行った。
(Evaluation of moire)
In each of Examples 1 to 11, after a conductive film is attached to the display panel of the display device, the display device is installed on a rotating disk, and the display device is driven to display white. In this state, the rotating disk was rotated between −20 ° and + 20 ° bias angle, and the moire was visually observed and evaluated.
 モアレの評価は、表示装置の表示画面から観察距離0.5mで行い、モアレが顕在化しなかった場合を○、モアレが問題のないレベルでほんの少し見られた場合を△、モアレが顕在化した場合を×とした。そして、総合評点として、○となる角度範囲が10°以上の場合をA、○となる角度範囲が10°未満の場合はB、○となる角度範囲がなく×となる角度範囲が30°未満の場合はC、○となる角度範囲がなく×となる角度範囲が30°以上ある場合をDとした。 Moire was evaluated at an observation distance of 0.5 m from the display screen of the display device. When moire was not revealed, ◯, when moire was seen at a slight level with no problem, moiré was revealed. The case was marked with x. And, as an overall score, A when the angle range that becomes ◯ is 10 ° or more, B when the angle range that becomes ◯ is less than 10 °, and there is no angle range that becomes ○, and the angle range that becomes × is less than 30 ° In the case of D, the case where there was no angle range for C and ◯ and the angle range for X was 30 ° or more was defined as D.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、実施例1~11は、いずれも視認性が良好で、開口率も90%以上であり、モアレについてもB以上の評価であった。特に、実施例2~11は、いずれも視認性が◎、開口率が90%以上、モアレはA評価であった。 From Table 3, Examples 1 to 11 all had good visibility, the aperture ratio was 90% or more, and the moire was evaluated as B or more. In particular, in Examples 2 to 11, the visibility was excellent, the aperture ratio was 90% or more, and the moire was A evaluation.
 このことから、金属細線16の線幅Waは30μm以下から選択可能であるが、10μm以下が好ましく、格子24の一辺の長さLaは50μm以上900μm以下から選択可能であるが、50μm以上500μm以下が好ましいことがわかる。 From this, the line width Wa of the fine metal wire 16 can be selected from 30 μm or less, preferably 10 μm or less, and the length La of one side of the grating 24 can be selected from 50 μm to 900 μm, but 50 μm to 500 μm. Is preferable.
[第2実施例]
 第2実施例は、代表的に上述した実施例9において、モアレ抑止部の長さLbを変化させたときの視認性、開口率及びモアレを評価した。
[Second Embodiment]
In the second example, the visibility, the aperture ratio, and the moire when the length Lb of the moire suppressing portion was changed in the above-described example 9 were evaluated.
(サンプル1~3)
 サンプル1、2及び3は、モアレ抑止部26の長さLbを6μm、9μm及び12μmにしたこと以外は、上述した実施例9と同様にしてサンプル1、2及び3に係る導電性フイルムを作製した。
(Samples 1 to 3)
Samples 1, 2 and 3 were prepared as in Example 9, except that the length Lb of the moire suppression portion 26 was 6 μm, 9 μm and 12 μm. did.
(サンプル4)
 サンプル4は、上述した実施例9と同様にして導電性フイルムを作製した。
(Sample 4)
For Sample 4, a conductive film was produced in the same manner as in Example 9 described above.
(サンプル5~7)
 サンプル5、6及び7は、モアレ抑止部26の長さLbを67μm、100μm及び200μmにしたこと以外は、上述した実施例9と同様にしてサンプル5、6及び7に係る導電性フイルムを作製した。
(Samples 5-7)
Samples 5, 6 and 7 were prepared as conductive films according to Samples 5, 6 and 7 in the same manner as in Example 9 except that the length Lb of the moire suppressing portion 26 was set to 67 μm, 100 μm and 200 μm. did.
 サンプル1~7の評価結果を表4に示す。 Table 4 shows the evaluation results for samples 1-7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、サンプル1~7は、いずれも視認性が良好で、開口率も94%以上であり、モアレもB以上の評価であった。その中で、サンプル2は、モアレはB評価であったが、視認性は◎評価であった。サンプル6は、視認性は○評価であったが、モアレはA評価であった。特に、サンプル3~5は、いずれも視認性が◎、開口率が97%以上、モアレはA評価であった。 From Table 4, Samples 1 to 7 all had good visibility, an aperture ratio of 94% or higher, and a moire evaluation of B or higher. Among them, in the sample 2, the moire was B evaluation, but the visibility was ◎ evaluation. In sample 6, the visibility was evaluated as ○, but the moire was evaluated as A. In particular, Samples 3 to 5 all had a visibility of ◎, an aperture ratio of 97% or higher, and a moire of A evaluation.
 このことから、長さLbの下限は2×Wa以上が好ましく、さらに好ましくは3×Wa以上であり、より好ましくは4×Wa以上であること、並びに、長さLbの上限は、La以下が好ましく、さらに好ましくはLa/2以下であり、より好ましくはLa/3以下であり、特に好ましくはLa/4以下であることがわかる。 From this, the lower limit of the length Lb is preferably 2 × Wa or more, more preferably 3 × Wa or more, more preferably 4 × Wa or more, and the upper limit of the length Lb is La or less. It is preferable that it is La / 2 or less, more preferably La / 3 or less, and particularly preferably La / 4 or less.
[第3実施例]
 第3実施例は、代表的に上述した実施例9において、モアレ抑止部26の線幅Wbを変化させたときの視認性、開口率及びモアレを評価した。
[Third embodiment]
In the third example, the visibility, the aperture ratio, and the moire when the line width Wb of the moire suppressing unit 26 is changed in the above-described example 9 were evaluated.
(サンプル8、9)
 サンプル8及び9は、モアレ抑止部26の線幅Wbを1.5μm及び2.7μmにしたこと以外は、上述した実施例9と同様にしてサンプル8及び9に係る導電性フイルムを作製した。
(Samples 8 and 9)
For Samples 8 and 9, conductive films according to Samples 8 and 9 were produced in the same manner as in Example 9 described above except that the line width Wb of the moire suppressing portion 26 was 1.5 μm and 2.7 μm.
(サンプル10)
 サンプル10は、上述した実施例9と同様にして導電性フイルムを作製した。
(Sample 10)
For Sample 10, a conductive film was produced in the same manner as in Example 9 described above.
(サンプル11~15)
 サンプル11、12、13、14及び15は、モアレ抑止部26の線幅Wbを4.5μm、6.0μm、7.5μm、9.0μm及び12.0μmにしたこと以外は、上述した実施例9と同様にしてサンプル11、12、13、14及び15に係る導電性フイルムを作製した。
(Samples 11-15)
Samples 11, 12, 13, 14, and 15 are the examples described above except that the line width Wb of the moire suppressing portion 26 is 4.5 μm, 6.0 μm, 7.5 μm, 9.0 μm, and 12.0 μm. In the same manner as in Example 9, conductive films according to Samples 11, 12, 13, 14, and 15 were produced.
 サンプル8~15の評価結果を表5に示す。 Table 5 shows the evaluation results of Samples 8-15.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から、サンプル8~15のうち、サンプル8はモアレがC評価であり、サンプル15は、視認性が△評価であった。それ以外のサンプル9~14は、いずれも視認性が良好で、開口率も95%以上であり、モアレもB以上の評価であった。特に、サンプル9~12は、いずれも視認性が◎、開口率が96%以上、モアレはA評価であった。 From Table 5, among samples 8 to 15, sample 8 had a C evaluation for moire, and sample 15 had a Δ evaluation for visibility. The other samples 9 to 14 all had good visibility, an aperture ratio of 95% or more, and moire evaluation of B or more. In particular, Samples 9 to 12 all had a visibility of ◎, an aperture ratio of 96% or more, and a moire of A evaluation.
 このことから、金属細線の線幅Waとモアレ抑止部26の線幅Wbとの比(Wb/Wa)は0.9以上3.0以下が好ましく、さらに好ましくは0.9以上2.5以下であり、より好ましくは0.9以上2.0以下であり、特に好ましくは0.9以上1.5以下であることがわかる。 For this reason, the ratio (Wb / Wa) between the line width Wa of the fine metal wire and the line width Wb of the moire suppressing portion 26 is preferably 0.9 or more and 3.0 or less, more preferably 0.9 or more and 2.5 or less. More preferably, it is 0.9 or more and 2.0 or less, and particularly preferably 0.9 or more and 1.5 or less.
 なお、本発明に係る導電性フイルムは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 Note that the conductive film according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

Claims (22)

  1.  金属細線(16)で構成された導電部(14)と開口部(18)とを有する導電性フイルム(10)において、
     前記導電部(14)は、複数の前記金属細線(16)による交点(22)を有し、
     前記金属細線(16)上であって、且つ、前記交点(22)以外の部分に張り出し部(26)が配置されていることを特徴とする導電性フイルム。
    In a conductive film (10) having a conductive portion (14) and an opening (18) made of a thin metal wire (16),
    The conductive portion (14) has an intersection (22) by a plurality of the thin metal wires (16),
    A conductive film, characterized in that an overhanging portion (26) is disposed on the metal thin wire (16) and at a portion other than the intersection (22).
  2.  請求項1記載の導電性フイルムにおいて、
     前記導電部(14)と前記開口部(18)の組み合わせ形状がメッシュ形状であることを特徴とする導電性フイルム。
    The conductive film according to claim 1,
    The conductive film is characterized in that a combination shape of the conductive portion (14) and the opening portion (18) is a mesh shape.
  3.  請求項2記載の導電性フイルムにおいて、
     前記張り出し部(26)は、
     前記メッシュ形状を構成する複数の辺(28)のうち、少なくとも1つの辺(28)であって、且つ、前記メッシュ形状の交点(22)とは重ならない位置に、前記1つの辺(28)に交差して配置されていることを特徴とする導電性フイルム。
    The conductive film according to claim 2,
    The overhang (26)
    The one side (28) at a position that is at least one side (28) of the plurality of sides (28) constituting the mesh shape and does not overlap the intersection (22) of the mesh shape. An electrically conductive film characterized by being disposed so as to intersect with each other.
  4.  請求項3記載の導電性フイルムにおいて、
     前記張り出し部(26)は、前記1つの辺(28)に交差して延在して配置され、
     前記張り出し部(26)の形状は、前記延在方向を長軸とする線分形状、楕円形状、ひし形形状、平行四辺形形状又は多角形状であることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    The overhang (26) is arranged to extend across the one side (28),
    The conductive film is characterized in that the shape of the projecting portion (26) is a line segment shape, an elliptical shape, a rhombus shape, a parallelogram shape, or a polygonal shape having the extending direction as a major axis.
  5.  請求項4記載の導電性フイルムにおいて、
     前記張り出し部(26)は、前記延在方向を長軸とする線分形状であることを特徴とする導電性フイルム。
    The conductive film according to claim 4, wherein
    The conductive film is characterized in that the projecting portion (26) has a line segment shape with the extending direction as a major axis.
  6.  請求項5記載の導電性フイルムにおいて、
     前記1つの辺(28)と交差する他の辺と、前記張り出し部(26)の前記長軸とがほぼ平行であることを特徴とする導電性フイルム。
    The conductive film according to claim 5, wherein
    The conductive film is characterized in that another side intersecting with the one side (28) and the major axis of the overhanging portion (26) are substantially parallel.
  7.  請求項5記載の導電性フイルムにおいて、
     前記1つの辺(28)の幅をWa、前記1つの辺(28)の長さをLa、前記張り出し部(26)の延在方向の長さをLbとしたとき、
       Wa<Lb≦La
    であることを特徴とする導電性フイルム。
    The conductive film according to claim 5, wherein
    When the width of the one side (28) is Wa, the length of the one side (28) is La, and the length of the extending portion (26) in the extending direction is Lb,
    Wa <Lb ≦ La
    A conductive film characterized in that
  8.  請求項7記載の導電性フイルムにおいて、
       Lb≧2×Wa 且つ Lb≦La/2
    であることを特徴とする導電性フイルム。
    The conductive film according to claim 7, wherein
    Lb ≧ 2 × Wa and Lb ≦ La / 2
    A conductive film characterized in that
  9.  請求項7記載の導電性フイルムにおいて、
       5μm≦Lb≦100μm
    であることを特徴とする導電性フイルム。
    The conductive film according to claim 7, wherein
    5 μm ≦ Lb ≦ 100 μm
    A conductive film characterized in that
  10.  請求項5記載の導電性フイルムにおいて、
     前記1つの辺(28)の幅をWa、前記張り出し部(26)の線幅をWbとしたとき、
       0.995×Wa≦Wb≦3×Wa
    であることを特徴とする導電性フイルム。
    The conductive film according to claim 5, wherein
    When the width of the one side (28) is Wa and the line width of the protruding portion (26) is Wb,
    0.995 × Wa ≦ Wb ≦ 3 × Wa
    A conductive film characterized in that
  11.  請求項3記載の導電性フイルムにおいて、
     前記メッシュ形状の交点(22)から前記1つの辺(28)上の前記張り出し部(26)の中心位置までの距離をDa、前記1つの辺(28)の長さをLaとしたとき、
       0.1×La≦Da≦0.9×La
    であることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    When the distance from the mesh intersection (22) to the center position of the overhanging portion (26) on the one side (28) is Da, and the length of the one side (28) is La,
    0.1 × La ≦ Da ≦ 0.9 × La
    A conductive film characterized in that
  12.  請求項5記載の導電性フイルムにおいて、
     前記張り出し部(26)の線幅(Wb)は、30μm以下であることを特徴とする導電性フイルム。
    The conductive film according to claim 5, wherein
    The conductive film according to claim 1, wherein a line width (Wb) of the projecting portion (26) is 30 μm or less.
  13.  請求項5記載の導電性フイルムにおいて、
     前記1つの辺(28)の長さ(La)は、50μm以上900μm以下であることを特徴とする導電性フイルム。
    The conductive film according to claim 5, wherein
    The conductive film according to claim 1, wherein the length (La) of the one side (28) is not less than 50 μm and not more than 900 μm.
  14.  請求項3記載の導電性フイルムにおいて、
     前記導電部(14)は、複数の前記メッシュ形状を有するメッシュパターン(20)を有し、
     複数の前記張り出し部(26)は、前記メッシュパターン(20)に対してランダムに配置されていることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    The conductive portion (14) has a plurality of mesh patterns (20) having the mesh shape,
    The conductive film, wherein the plurality of overhang portions (26) are randomly arranged with respect to the mesh pattern (20).
  15.  請求項14記載の導電性フイルムにおいて、
     前記メッシュパターン(20)を構成する前記複数のメッシュ形状のうち、前記張り出し部(26)が配置されないメッシュ形状がランダムに存在することを特徴とする導電性フイルム。
    The conductive film according to claim 14.
    The conductive film characterized in that, among the plurality of mesh shapes constituting the mesh pattern (20), a mesh shape in which the projecting portion (26) is not arranged is present at random.
  16.  請求項14記載の導電性フイルムにおいて、
     前記メッシュパターン(20)を構成する前記複数のメッシュ形状のうち、前記張り出し部(26)が配置された1以上のメッシュ形状に対する前記張り出し部(26)の配置位置がランダムであることを特徴とする導電性フイルム。
    The conductive film according to claim 14.
    Of the plurality of mesh shapes constituting the mesh pattern (20), the arrangement positions of the overhang portions (26) with respect to one or more mesh shapes where the overhang portions (26) are arranged are random. Conductive film.
  17.  請求項14記載の導電性フイルムにおいて、
     前記張り出し部(26)が配置された前記1以上のメッシュ形状のうち、複数の辺(28)に前記張り出し部(26)が配置されたメッシュ形状は、前記複数の辺(28)への前記張り出し部(26)の配置位置がランダムであることを特徴とする導電性フイルム。
    The conductive film according to claim 14.
    Among the one or more mesh shapes in which the overhanging portion (26) is arranged, the mesh shape in which the overhanging portion (26) is arranged on a plurality of sides (28) is the above-described one on the plurality of sides (28). A conductive film characterized in that the position of the overhanging portion (26) is random.
  18.  請求項3記載の導電性フイルムにおいて、
     前記メッシュ形状の1つの交点(22)から放射状に延びる複数の辺(28)にそれぞれ配置された前記張り出し部(26)のうち、少なくとも1つの前記張り出し部(26)は、前記1つの交点(22)から中心位置までの距離が、他と異なっていることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    Of the overhang portions (26) arranged on a plurality of sides (28) extending radially from one intersection point (22) of the mesh shape, at least one of the overhang portions (26) is the one intersection point ( A conductive film characterized in that the distance from 22) to the center position is different from the others.
  19.  請求項3記載の導電性フイルムにおいて、
     隣接する辺(28)のそれぞれ配置された前記張り出し部(26)は、それぞれ対応する交点(22)からの距離が異なっていることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    The conductive film, wherein the overhang portions (26) arranged on the adjacent sides (28) are different in distance from the corresponding intersection (22).
  20.  請求項3記載の導電性フイルムにおいて、
     前記辺(28)の個数をNa、前記張り出し部(26)の個数をNbとし、前記張り出し部(26)の配置率を(Nb/Na)×100%としたとき、
     前記配置率は、10%以上100%以下であることを特徴とする導電性フイルム。
    The conductive film according to claim 3.
    When the number of the sides (28) is Na, the number of the overhang portions (26) is Nb, and the arrangement ratio of the overhang portions (26) is (Nb / Na) × 100%,
    The conductive film is characterized in that the arrangement ratio is 10% or more and 100% or less.
  21.  請求項1記載の導電性フイルムにおいて、
     前記金属細線(16)の線幅は30μm以下であることを特徴とする導電性フイルム。
    The conductive film according to claim 1,
    The conductive film according to claim 1, wherein the thin metal wire (16) has a line width of 30 μm or less.
  22.  請求項1記載の導電性フイルムにおいて、
     開口率が90%以上であることを特徴とする導電性フイルム。
    The conductive film according to claim 1,
    A conductive film having an opening ratio of 90% or more.
PCT/JP2013/062830 2012-05-08 2013-05-07 Conductive film WO2013168698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380024150.XA CN104395864B (en) 2012-05-08 2013-05-07 Touch panel electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-106504 2012-05-08
JP2012106504 2012-05-08
JP2013096902A JP5829647B2 (en) 2012-05-08 2013-05-02 Conductive film
JP2013-096902 2013-05-02

Publications (1)

Publication Number Publication Date
WO2013168698A1 true WO2013168698A1 (en) 2013-11-14

Family

ID=49550733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062830 WO2013168698A1 (en) 2012-05-08 2013-05-07 Conductive film

Country Status (4)

Country Link
JP (1) JP5829647B2 (en)
CN (1) CN104395864B (en)
TW (1) TWI604470B (en)
WO (1) WO2013168698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159460A1 (en) * 2014-04-15 2015-10-22 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
JP2022111005A (en) * 2021-01-18 2022-07-29 朗色林科技股▲フン▼有限公司 Method of making picoscopic scale/nanoscopic scale circuit pattern

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174126A1 (en) * 2014-05-16 2015-11-19 富士フイルム株式会社 Conductive sheet for touchscreen and capacitive touchscreen
CN106662939B (en) * 2014-06-10 2020-07-28 富士胶片株式会社 Conductive laminate for touch panel, and transparent conductive laminate
JP2016194811A (en) * 2015-03-31 2016-11-17 トッパン・フォームズ株式会社 Electrode and touch panel
JP6529329B2 (en) * 2015-05-01 2019-06-12 株式会社ブイ・テクノロジー Touch panel manufacturing method, glass substrate for touch panel, and mask for touch panel manufacturing
JP6388558B2 (en) * 2015-05-29 2018-09-12 富士フイルム株式会社 Conductive film, touch panel sensor, and touch panel
CN109643192B (en) * 2016-09-12 2022-03-11 富士胶片株式会社 Conductive thin film, touch panel sensor, and touch panel
JP6732638B2 (en) * 2016-11-16 2020-07-29 株式会社Vtsタッチセンサー Conductive film, touch panel, and display device
CN108845693A (en) * 2018-06-04 2018-11-20 业成科技(成都)有限公司 Touch control electrode with auxiliary line
CN114327118A (en) * 2020-10-09 2022-04-12 天材创新材料科技(厦门)有限公司 Transparent conductive film, method for manufacturing transparent conductive film, and touch panel
US11620026B2 (en) 2020-11-06 2023-04-04 Au Optronics Corporation Touch apparatus
TWI773207B (en) * 2020-11-06 2022-08-01 友達光電股份有限公司 Touch display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009574A (en) * 2007-06-28 2009-01-15 Sense Pad Tech Co Ltd Capacitive-type touch panel
WO2010099132A2 (en) * 2009-02-26 2010-09-02 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
JP2010231533A (en) * 2009-03-27 2010-10-14 Citizen Electronics Co Ltd Transparent electrode substrate and touch panel provided therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174575B2 (en) * 2008-07-31 2013-04-03 グンゼ株式会社 Touch panel
JP5645581B2 (en) * 2010-10-05 2014-12-24 富士フイルム株式会社 Touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009574A (en) * 2007-06-28 2009-01-15 Sense Pad Tech Co Ltd Capacitive-type touch panel
WO2010099132A2 (en) * 2009-02-26 2010-09-02 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
JP2010231533A (en) * 2009-03-27 2010-10-14 Citizen Electronics Co Ltd Transparent electrode substrate and touch panel provided therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159460A1 (en) * 2014-04-15 2015-10-22 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
JPWO2015159460A1 (en) * 2014-04-15 2017-04-13 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
JP2022111005A (en) * 2021-01-18 2022-07-29 朗色林科技股▲フン▼有限公司 Method of making picoscopic scale/nanoscopic scale circuit pattern

Also Published As

Publication number Publication date
TW201403636A (en) 2014-01-16
CN104395864A (en) 2015-03-04
JP2013254731A (en) 2013-12-19
CN104395864B (en) 2019-02-12
TWI604470B (en) 2017-11-01
JP5829647B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5829647B2 (en) Conductive film
JP5345980B2 (en) Transparent conductive substrate, conductive sheet for touch panel, and touch panel
JP5676225B2 (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
JP5318998B2 (en) Conductive sheet and touch panel
JP5507343B2 (en) Touch panel and conductive sheet
JP6728084B2 (en) Conductive film for touch panel, display device, conductive film, touch panel and sensor body
JP5728412B2 (en) Conductive sheet and touch panel
JP5839541B2 (en) Conductive sheet and touch panel
JP5638027B2 (en) Conductive sheet and capacitive touch panel
JP5670827B2 (en) Conductive sheet and touch panel
JP5809846B2 (en) Conductive sheet and touch panel
JP5638459B2 (en) Touch panel and conductive sheet
JP2011113149A (en) Conductive sheet, use method for the same and capacitance type touch panel
WO2013062041A1 (en) Conductive film and touch panel
JP2012163951A (en) Display device having conductive film and the conductive film
JP2011129501A (en) Conductive sheet, method for using conductive sheet, and capacitive touch panel of conductive sheet
WO2015029779A1 (en) Electroconductive film and method for manufacturing same
JP5613448B2 (en) Touch panel and conductive sheet
JP5476237B2 (en) Touch panel and conductive sheet
JP5663381B2 (en) Transparent conductive sheet, capacitive touch panel using transparent conductive sheet
JP5463315B2 (en) Electrode sheet, electrode sheet manufacturing method, and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788102

Country of ref document: EP

Kind code of ref document: A1