WO2013168644A1 - 腎細胞癌の予後予測方法 - Google Patents
腎細胞癌の予後予測方法 Download PDFInfo
- Publication number
- WO2013168644A1 WO2013168644A1 PCT/JP2013/062650 JP2013062650W WO2013168644A1 WO 2013168644 A1 WO2013168644 A1 WO 2013168644A1 JP 2013062650 W JP2013062650 W JP 2013062650W WO 2013168644 A1 WO2013168644 A1 WO 2013168644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- cell carcinoma
- renal cell
- dna methylation
- cpg site
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/164—Methylation detection other then bisulfite or methylation sensitive restriction endonucleases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
Definitions
- the present invention relates to a method for detecting a risk of poor prognosis of renal cell carcinoma, comprising detecting a DNA methylation level.
- the present invention also relates to an oligonucleotide used in the method.
- Renal cell carcinoma often occurs in the middle age of the working population, and there are a large number of cases that can be cured by nephrectomy, but there are also cases where rapid metastasis has occurred. There are significant differences in the clinical course. Furthermore, there are known cases in which immunotherapy and molecular targeted therapeutic drugs are successful even after metastasis. Patients with a high probability of recurrence may closely follow up to diagnose recurrence early and add post-treatment to improve prognosis. However, there are cases of rapid metastasis while belonging to clear cell RCC, which is the most common histopathologically low histological type, and the prognosis prediction by existing clinicopathological factors is Have difficulty.
- Clear cell RCC is well known to be characterized by inactivation of the VHL tumor suppressor gene.
- systematic resequencing and exon analysis of RCC has been carried out in the Cancer Genome Atlas Project, the Cancer Genome Project and other international initiatives.
- the development of renal cell carcinoma is caused by histone H3 lysine 36 methyltransferase SETD2, histone H3 lysine 4 demethylase JARID1C (KDM5C), histone H3 lysine 27 demethylase UTX (KDM6A), SWI.
- Inactivation of histone modifying genes such as PBRM1, which is a SNF chromatin remodeling factor, has been revealed (Non-Patent Documents 1 to 3).
- Non-patent Document 1 non-synonymous mutations in the NF2 gene and deletion mutations in the MLL2 gene have also been reported.
- Non-patent Document 1 non-synonymous mutations in the NF2 gene and deletion mutations in the MLL2 gene have also been reported.
- Non-patent Document 1 non-synonymous mutations in the NF2 gene and deletion mutations in the MLL2 gene have also been reported.
- Non-patent Document 1 non-synonymous mutations in the NF2 gene and deletion mutations in the MLL2 gene have also been reported.
- DNA methylation changes are also considered to be one of the major epigenetic changes in human cancer.
- CMSP methylation-specific PCR
- COBRA analysis using bisulfite and restriction enzymes
- BAMCA method analysis by methylated CpG island amplification method
- BAC bacterial artificial chromosome array
- the technique for evaluating the DNA methylation status by the BAMCA method is complicated, and furthermore, in the prognosis prediction of RCC cases by the BAMCA method, the chromosomal region that can be covered by the BAC clone at the time of invention was extremely limited. No methylated CpG site with high diagnostic ability was identified.
- Non-Patent Documents 8 to 11 Regard DNA methylation in cancer, the presence of a cancer trait (CIMP) in which increased DNA methylation of CpG islands correlates with the clinicopathological factors of cases in colon cancer, gastric cancer, etc. has been clarified.
- Non-patent Document 12 based on the finding that the number of methylated CpG in individual tumors shows a distribution different from the expected Poisson distribution, it was estimated that some renal cell carcinomas may show CIMP, but in the kidney The presence of CIMP-positive renal cell carcinoma has not been determined, and no distinct CpG site that is characteristic has been identified (Non-patent Document 13).
- CIMP a trait that strongly correlates with clinicopathological factors of RCC and accumulates DNA methylation in CpG islands, and identifies a CpG site that serves as a marker for CIMP.
- An object is to provide a method for determining the risk of poor prognosis of renal cell carcinoma, which is simple and extremely sensitive and specific.
- the present inventors obtained 29 normal renal cortical tissue (C) samples and patients with clear cell RCC using a 1 CpG resolution Infinium array.
- Methylome analysis was performed on 107 non-cancer renal cortical tissue (N) samples and 109 cancer tissue (T) samples.
- N non-cancer renal cortical tissue
- T cancer tissue
- the DNA methylation level of the N sample had already changed at the 4830 CpG site compared to the C sample.
- changes in DNA methylation occur in the N sample, and the site where these changes are inherited and enhanced by the T sample, the 801CpG site, is identified, and the unsupervised hierarchy is determined based on the DNA methylation level at the 801CpG site. Clustering analysis was performed.
- cluster B tumors having high clinicopathologically malignancy are accumulated, and the cancer-free survival rate (relapse-free survival rate) and overall survival rate of patients belonging to this cluster B (total The survival rate was also found to be significantly lower than those of patients belonging to cluster A. That is, renal cell carcinoma belonging to cluster B was characterized by the accumulation of DNA hypermethylation in CpG islands, and was revealed to be a CpG island methylation trait (CIMP) positive cancer.
- CIMP CpG island methylation trait
- the renal cell carcinoma-related regions (70 BAC clones) identified as effective in prognosis prediction of renal cell carcinoma by examining the presence or absence of DNA methylation shown in Patent Literature 1 and Non-Patent Literature 6 include None of the 17 CpG sites identified this time were included.
- the hypermethylation state at the CpG site of these 17 genes could be detected by methods other than analysis using an infinium array (pyro sequencing method and DNA methylation analysis method using a mass spectrometer).
- the present invention has been completed. More specifically, the present invention is as follows.
- a method for detecting a risk of poor prognosis of renal cell carcinoma comprising the following steps (a) to (c): (a) a step of preparing genomic DNA derived from kidney tissue of a subject; (B) For the genomic DNA prepared in step (a), FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, WNT3A, TRH, FAM78A, ZNF671, XLC13A5 and N Detecting a DNA methylation level of at least one CpG site of a gene selected from the gene group consisting of: (C) determining whether or not the subject is classified into a poor prognosis group from the DNA methylation level detected in step (b); Including methods.
- step (b) is a step of bisulfite treatment of the genomic DNA prepared in step (a) to detect the DNA methylation level of the CpG site.
- step (b) is a step of bisulfite treatment of the genomic DNA prepared in step (a) to detect the DNA methylation level of the CpG site.
- the oligonucleotide according to any one of (a) to (b) below having a chain length of at least 12 bases for use in the method according to ⁇ 1> or ⁇ 2> (a) the gene: A pair of primers designed to sandwich at least one CpG site of a gene selected from the group (b) hybridizes to a nucleotide comprising at least one CpG site of a gene selected from the gene group Oligonucleotides that are primers or probes.
- the risk of poor prognosis of renal cell carcinoma can be determined easily, with extremely high sensitivity and specificity.
- N non-cancer renal cortex tissue
- T neoplastic tissue
- N mainly consists of proximal tubules.
- T has a vesicular structure, and the cytoplasm of tumor cells is filled with lipids and glycogen, and is surrounded by a distinct cell membrane.
- the nuclei of tumor cells tend to take a circular shape and are micrographs showing that they are accompanied by finely divided, uniformly dispersed chromatin.
- N sample non-cancerous tissue
- T sample clear-type renal cell carcinoma patient's cancer tissue
- 6 is a graph showing the ratio of probes in which a difference (absolute value of ⁇ TN ) is 0.1 or more.
- “all cases” show the results of all the patients with clear cell renal cell carcinoma analyzed
- “A” shows the clear cell kidneys belonging to cluster A among the analyzed clear cell renal cell carcinoma patients.
- “B” indicates a clear cell renal cell carcinoma patient belonging to cluster B among the analyzed clear cell renal cell carcinoma patients. Bars indicate SD (standard deviation), “NS” indicates no significant difference (same in FIGS. 9-12).
- Proportion of probes with a difference in DNA methylation level (absolute value of ⁇ TN ) of 0.2 or more between N and T samples compared to all 26454 probes to be detected by Infinium Assay It is a graph which shows.
- Proportion of probes with a difference in DNA methylation level (absolute value of ⁇ TN ) of 0.3 or more between N and T samples compared to all 26454 probes to be detected by Infinium Assay It is a graph which shows.
- Table 14 shows the correspondence between the DNA methylation levels of 16 probes (16CpG sites) characteristic of CpG island methylation trait (CIMP) and clear cell renal cell carcinoma patients belonging to cluster A or cluster B.
- FIG. In the figure, the blacked out portion indicates that ⁇ TN exceeds 0.4.
- Graph showing the results of random forest analysis using 869 probe (FDR [q 0.01]) in which DNA methylation level ( ⁇ TN ) was significantly different between cluster A and cluster B It is.
- the broken line indicates, from the top, spam (3), out-of-bag (OOB), and non-spam (1).
- the horizontal axis indicates the number of trees, and the vertical axis indicates the estimation error (Error).
- the horizontal axis indicates the average value of the Gini coefficient (MeanDecreaseGini)
- the vertical axis indicates the probe (CpG site) used in the infinium assay. It is a graph which shows the result of having analyzed the DNA methylation level in the CpG island of SLC13A5 gene in the clear cell renal cell carcinoma patient which belongs to the cluster A or the cluster B by MassARRAY.
- SLC13A5_10 “CpG_40” is a CpG site (probe ID: cg22040627, position on NCBI database Genome Build 37: chromosome 176617030) at which a high DNA methylation level was detected in cluster B also by the Infinium assay. is there. It is a graph which shows the result of having analyzed the DNA methylation level in the CpG island of RIMS4 gene in the clear cell renal cell carcinoma patient which belongs to the cluster A or the cluster B by MassARRAY.
- the CpG sites used as an index in this classification are 23 CpG sites (32 CpG sites) having an AUC described in Tables 19 to 27 greater than 0.95.
- the present invention provides a method for detecting a risk of poor prognosis of renal cell carcinoma, comprising the following steps (a) to (c).
- the term “renal cell carcinoma” refers to cancerous renal tubular epithelial cells, and, from its pathological characteristics, clear cell type, granule cell type, chromophore type, spindle type, cyst It is a cancer classified into a concomitant type, a cyst-derived type, a cystic type, and a papillary type.
- the “subject” according to the present invention include a patient who has been treated for renal cell carcinoma by nephrectomy or the like.
- Examples of the “prognosis risk of renal cell carcinoma” according to the present invention include low survival rate of the prognosis (eg, nephrectomy) of the subject, and more specifically, shown in FIG. 6 described later.
- the recurrence-free survival rate (cancer-free survival rate) after 500 days after surgery is 50% or less
- the overall survival rate after 1500 days after surgery is 70% or less.
- CpG site means a site where cytosine (C) and guanine (G) are phosphodiester-bonded (p)
- DNA methylation refers to the CpG site.
- the “DNA methylation level” means the ratio of methylation at a specific CpG site to be detected. For example, the total number of cytosines at the specific CpG site to be detected (methylated cytosine and It can be expressed as the ratio of the number of methylated cytosines to (unmethylated cytosines).
- Preparation of kidney tissue-derived genomic DNA is not particularly limited, and can be performed by appropriately selecting and using a known method such as a phenol chloroform treatment method.
- kidney tissue from which genomic DNA is prepared by such a method examples include the intact kidney tissue collected in nephrectomy, the kidney tissue collected in nephrectomy and then frozen, and the formalin collected in nephrectomy. Examples include kidney tissue fixed and paraffin-embedded. In these kidney tissues, until it is subjected to the detection method of the present invention, the degradation of genomic DNA in the kidney tissues is suppressed, and in the step of detecting the DNA methylation level described later, bisulfite treatment, PCR is performed more efficiently. It is desirable to use frozen kidney tissue from the viewpoint of being able to perform the above.
- the present inventors performed 17 genes (FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, WNT3A, TRH, by Infinium assay.
- FAM78A, ZNF671, SLC13A5 and NKX6-2 DNA methylation analysis method using a mass spectrometer reveals that the hypermethylation state continues in the renal cell carcinoma with a poor prognosis also throughout the CpG island including the CpG site.
- the “CpG site” means a CpG site that is present at a position closer to at least one gene of the 17 gene group than other genes, and preferably the gene than other genes. At least one CpG site in a CpG island located at a position close to, more preferably at least one CpG site located in the promoter region of the 17 gene group, and particularly preferably a reference human genome sequence.
- the position on the NCBI database Genome Build 37 is at least one CpG site having the chromosome number and the position on the chromosome described in Tables 1 to 4.
- FAM150A is a gene encoding a protein specified by RefSeq ID: NP_997296
- GRM6 is a gene encoding a protein specified by RefSeq ID: NP_000834
- ZNF540 is a RefSeq ID.
- a gene encoding a protein specified by NP_061721, KHDRBS2 is a gene encoding a protein specified by RefSeq ID: NP_689901, and ASCL2 is a gene encoding a protein specified by RefSeq ID: NP_005161
- KCNQ1 is a gene encoding a protein specified by RefSeq ID: NP_000209
- PRAC is a gene encoding a protein specified by RefSeq ID: NP_115767
- WNT3A encodes a protein specified by RefSeq ID: NP_149122
- TRH is a gene encoding a protein specified by RefSeq ID: NP_009048
- ZNF671 is a gene encoding a protein specified by RefSeq ID: NP_079109
- the “method for detecting the DNA methylation level” may be any method capable of quantifying the DNA methylation level at a specific CpG site, and can be performed by appropriately selecting a known method. Examples of such known methods include the following first to seventh methods.
- the first method is based on the following principle.
- the probe hybridizes to genomic DNA converted by bisulfite treatment, wherein the 3 ′ terminal base of the probe is a base complementary to cytosine at the CpG site.
- the base at the 3 ′ end of the probe is guanine, and when the CpG site is not methylated, the base at the 3 ′ end of the probe is adenine.
- a probe that hybridizes to a genomic DNA converted by bisulfite treatment A probe whose base at the 3 ′ end of the probe is a base complementary to guanine at the CpG site may be used. Then, the probe and the fragmented genomic DNA are hybridized, and a one-base extension reaction is performed in the presence of guanine labeled with a fluorescent substance and / or adenine labeled with a fluorescent dye different from the fluorescent substance. . As a result, when the CpG site is methylated, fluorescently labeled guanine is incorporated into the probe.
- the probe when the CpG site is not methylated, the probe is fluorescently labeled. Since the adenine is taken in, the DNA methylation level can be calculated from the intensity of the fluorescence emitted from each fluorescent substance incorporated in the probe.
- Examples of the first method include a bead array method (for example, Infinium (registered trademark) assay).
- the CpG site to be detected for the DNA methylation level preferably has a position on the NCBI database Genome Build 37, which is a reference human genome sequence, at chromosomes 53, 478, and 454. Chromosome 5, 178,422,244, 19th chromosome 38,042,472, 4th chromosome 188,916,867, 19th chromosome 58,220,662, 20th chromosome 43,438,865 Chromosome 5, 140,306,458, chromosome 6,62,995,963, chromosome 11,292,004, chromosome 11,466,409, chromosome 17, 46,799,640 , Chromosomes 58, 220, 494, chromosome 1, 228, 194, 448, chromosome 3.
- the second method is based on the following principle.
- the genomic DNA is subjected to bisulfite treatment.
- DNA containing at least one CpG site is amplified with a primer to which a T7 promoter is added.
- it is transcribed into RNA and a base-specific cleavage reaction is performed with RNase.
- the cleavage reaction product is applied to a mass spectrometer to perform mass measurement.
- the mass derived from the methylated cytosine residue obtained by mass measurement (the mass of cytosine) and the mass derived from the unmethylated cytosine residue (the mass of uracil) were compared, and the DNA methylation level at the CpG site was compared. Is calculated.
- the second method includes, for example, a DNA methylation analysis method using a mass spectrometer (see, for example, MassARRAY (registered trademark), Jurinke C et al., Mutat Res, 2005, 573, pages 83 to 95). It is done.
- a DNA methylation analysis method using a mass spectrometer see, for example, MassARRAY (registered trademark), Jurinke C et al., Mutat Res, 2005, 573, pages 83 to 95. It is done.
- the CpG site to be detected for the DNA methylation level is preferably at least one CpG site contained in the base sequences described in SEQ ID NOs: 1 to 16, and has a poor prognosis.
- the CpG sites described in Tables 5 to 8 below wherein the area under the ROC curve (AUC) described later is greater than 0.90
- “Chromosome number” and “Position on chromosome” shown in Tables 5 to 8 indicate positions on NCBI database Genome Build 37, which is a reference human genome sequence.
- “Target gene name_Primer set name_CpG site” is a PCR product amplified using the primer sets described in Tables 17 and 18 in DNA methylation analysis (Example 5) using a mass spectrometer described later. The order of the CpG sites inside is shown. For “AUC value”, “cutoff value”, “specificity”, “sensitivity” and “1-specificity”, see Example 5 described later.
- the third method is based on the following principle.
- the genomic DNA is subjected to bisulfite treatment.
- This bisulfite treatment converts unmethylated cytosine residues into uracil, but uracil is shown as thymine in the following extension reaction (sequence reaction).
- extension reaction sequence reaction
- DNA containing at least one CpG site is amplified.
- the amplified DNA is dissociated into single strands.
- only one strand is separated from the dissociated single-stranded DNA.
- DNA methylation level (%) luminescence intensity of cytosine ⁇ 100 / (luminescence intensity of cytosine + luminescence intensity of thymine).
- Examples of the third method include a pyrosequencing method (registered trademark, Pyrosequencing) (see Anal. Biochem. (2000) 10: 103-110).
- the fourth method is based on the following principle.
- the genomic DNA is subjected to bisulfite treatment.
- nucleotides containing at least one CpG site are amplified using the bisulfite-treated genomic DNA as a template.
- the temperature of the reaction system is changed, and a change in the intensity of the fluorescence emitted by the intercalator is detected.
- the melting curve of the nucleotide containing at least one CpG site is compared with the melting curve of an amplification product using a methylated / unmethylated control sample as a template, and the DNA methylation level at the CpG site is calculated.
- the fifth method is based on the following principle. First, the genomic DNA is subjected to bisulfite treatment. Next, a primer set that can be amplified when the CpG site is methylated and a primer set that can be amplified when the CpG site is not methylated are prepared. Then, the bisulfite-treated genomic DNA is used as a template, and nucleotides containing at least one CpG site are amplified using these primer sets. Then, by comparing the amount of the obtained amplification product, that is, the amount of the amplification product specific to the methylated CpG site and the amount of the amplification product specific to the unmethylated CpG site, the DNA methylation level at the CpG site Is calculated.
- an oligonucleotide probe having nucleotides that can hybridize when the CpG site is methylated and labeled with a reporter fluorescent dye and a quencher fluorescent dye is prepared.
- an oligonucleotide probe having a nucleotide capable of hybridizing when the CpG site is not methylated, labeled with a reporter fluorescent color different from the reporter fluorescent dye, and a quencher fluorescent dye is prepared.
- the oligonucleotide probe is hybridized to the bisulfite-treated genomic DNA, and the nucleotide containing the CpG site is amplified using the genomic DNA hybridized with the oligonucleotide probe as a template. Then, the fluorescence emitted from the reporter fluorescent dye is detected by the degradation of the oligonucleotide probe accompanying the amplification. By comparing the intensity of the fluorescence emitted by the methylated cytosine CpG site-specific reporter fluorescent dye thus detected with the intensity of the fluorescence emitted by the non-methylated cytosine CpG site-specific reporter fluorescent dye, The DNA methylation level at the CpG site is calculated.
- the fifth method includes, for example, methylation-specific quantitative PCR reaction (MS-PCR) using real-time quantitative PCR, such as the MethyLight method using TaqMan probe (registered trademark). It is done.
- MS-PCR methylation-specific quantitative PCR reaction
- real-time quantitative PCR such as the MethyLight method using TaqMan probe (registered trademark). It is done.
- the sixth method is based on the following principle. First, the genomic DNA is subjected to bisulfite treatment. Next, a direct sequencing reaction is performed using the nucleotide containing the CpG site converted to bisulfite as a template. Then, the fluorescence intensity based on the determined base sequence, that is, the fluorescence intensity derived from methylated cytosine residues (cytosine fluorescence intensity) and the fluorescence intensity derived from unmethylated cytosine residues (thymine fluorescence intensity) are compared. Thus, the DNA methylation level at the CpG site is calculated.
- the genomic DNA is subjected to bisulfite treatment.
- the nucleotide containing the bisulfite converted CpG site is cloned by PCR reaction or the like.
- the base sequences of the obtained plurality of cloning products are respectively determined, the number of cloning products having a base sequence specific to a methylated cytosine CpG site, and a cloning having a base sequence specific to an unmethylated cytosine CpG site
- the DNA methylation level at the CpG site is calculated by comparing the number of products.
- Examples of the sixth method include bisulfite direct sequencing (bisulfite direct sequencing) and bisulfite cloning sequencing (Kristensen LS et al., Clin Chem, 2009, Vol. 83, 1471). Page).
- the seventh method is based on the following principle. First, the genomic DNA is subjected to bisulfite treatment. Next, the region containing the CpG site is amplified by PCR using the nucleotide containing the CpG site that has been bisulfite converted as a template. Next, the amplified DNA fragment is treated with a restriction enzyme that recognizes a portion where the sequence differs depending on whether the CpG site is methylated or not. Then, by quantitatively analyzing the density of the bands of restriction enzyme fragments derived from methylated CpG sites and restriction enzyme fragments derived from unmethylated CpG sites, which were fractionated by electrophoresis, The DNA methylation level at the CpG site can be calculated.
- the seventh method includes, for example, COBRA (analysis using a combination of bisulfite and a restriction enzyme).
- the method which can be used suitably as "the method of detecting a DNA methylation level" of this invention is not limited to this.
- the genomic DNA prepared from the subject is further subjected to bisulfite treatment. Therefore, as a method for detecting the risk of poor prognosis of renal cell carcinoma according to the present invention, the step (b) comprises bisulfite treatment of the genomic DNA prepared in the step (a), and the DNA methylation level of the CpG site is determined.
- a method that is a detecting step can also be used.
- an index for determining whether or not the subject is classified into a poor prognosis group is appropriately determined by those skilled in the art. It can be set according to the detection method. For example, as shown in the examples described later, for each CpG site, a receiver operating characteristic (ROC) analysis is performed to determine sensitivity (positive rate) and specificity, and further DNA that maximizes the sum of sensitivity and specificity.
- the methylation level can be set as the index (cut-off value, diagnostic threshold), and if the detected DNA methylation level is higher than the cut-off value, the subject can be classified into a poor prognosis group.
- the present invention from the viewpoint that sensitivity or specificity can be further improved in detecting a risk of poor prognosis of renal cell carcinoma, not only the DNA methylation level but also a CpG site showing a value higher than the cut-off value. May be used as an index for determining whether or not the subject is classified into a poor prognosis group. For example, as shown in Examples described later, in 23 CpG sites according to the present invention, when the number of locations satisfying the cutoff value is 15 or more, the subject can be classified into a poor prognosis group (described later). (See Fig. 24).
- Nephrectomy is the first choice for the treatment of renal cell carcinoma, but if metastasis / recurrence can be detected at an early stage, immunotherapy or molecular targeted therapeutic agents can be expected to respond to them.
- the present invention provides a method for treating renal cell cancer, comprising the step of administering a molecular target therapeutic agent and / or applying immunotherapy to a subject classified into a poor prognosis group by the method of the present invention. You can also
- the present invention provides an oligonucleotide according to any one of the following (a) to (b) having a chain length of at least 12 bases for use in a method for detecting a risk of poor prognosis of renal cell carcinoma ( a) an oligonucleotide which is a pair of primers designed to sandwich at least one site selected from the CpG site group; and (b) hybridizes to a nucleotide containing at least one site selected from the CpG site group. Oligonucleotides that are primers or probes.
- the (a) pair of primers designed to sandwich at least one site selected from the CpG site group includes, for example, at least one site selected from the bisulfite-converted CpG site group
- Examples include primers that can amplify DNA (polymerase chain reaction (PCR) primers (forward primers and reverse primers)).
- the primer is a primer that hybridizes to each bisulfite converted nucleotide on both sides of at least one site selected from the group of CpG sites.
- (b) as a primer that hybridizes to a nucleotide containing at least one site selected from the CpG site group for example, an extension reaction is performed one base at a time from the vicinity of the bisulfite converted base of the CpG site.
- the primer which can do is mentioned.
- (b) as a probe that hybridizes to a nucleotide containing at least one site selected from the group of CpG sites for example, a probe that hybridizes to a nucleotide containing the bisulfite converted CpG site (so-called TaqMan probe) Is mentioned.
- the chain length of the oligonucleotide of the present invention is at least 12 bases, preferably at least 15 bases, more preferably at least 20 bases.
- An oligonucleotide that hybridizes to a specific nucleotide has a base sequence complementary to the specific nucleotide, but may not be completely complementary as long as it hybridizes.
- the sequence of these oligonucleotides is based on the base sequence containing the CpG site that has been bisulfite-converted or not, and those skilled in the art can use, for example, the MassARRAY method as shown in the examples described later.
- Primer design software EpiDesigner http://www.episigner.com, manufactured by SEQUENOM
- pyrosequencing assay design software ver. 1.0 manufactured by QIAGEN or the like can be used for appropriate design.
- including CpG site includes not only the entire CpG site, ie, both cytosine and guanine, but also a part thereof (cytosine, guanine, or unmethylated cytosine has been bisulfite converted. Uracil or thymine later) may be included.
- a primer selected from the group consisting of the base sequences set forth in SEQ ID NOs: 17 to 48 in the DNA methylation analysis method using a mass spectrometer, as shown in the examples described later Is preferable (see Table 17 and Table 18).
- the oligonucleotide of the present invention is preferably a primer selected from the group consisting of the base sequences set forth in SEQ ID NOs: 49 to 57 (see Table 9). .
- the present invention can also provide a kit for use in a method for detecting a risk of poor prognosis of renal cell carcinoma, comprising the oligonucleotide.
- the oligonucleotide may be immobilized as necessary.
- a probe fixed to a bead can be used.
- the oligonucleotide may be labeled as necessary.
- a biotin-labeled primer can be used, and when detecting by the TaqMan probe method, a probe labeled with a reporter fluorescent dye and a quencher fluorescent dye can be used.
- the kit of the present invention may contain a preparation other than the oligonucleotide preparation.
- preparations include reagents necessary for bisulfite conversion (for example, sodium bisulfite solution), reagents necessary for PCR reaction (for example, deoxyribonucleotide and heat-resistant DNA polymerase), and necessary for Infinium assay.
- Reagents eg, nucleotides labeled with a fluorescent substance
- reagents required for MassARRAY eg, RNase for performing base-specific cleavage reaction
- reagents required for pyrosequencing eg, detection of pyrophosphate) ATP sulfurylase, adenosine-5′-phosphosulfate, luciferase, and luciferin
- streptavidin for separating single-stranded DNA
- reagents necessary for MS-HRM method for example, between DNA duplexes) Intercalator that emits fluorescence when inserted
- reagents necessary for detection of the label for example, a buffer used for dilution or washing of a substrate, an enzyme, a positive control or a negative control, or a sample (genomic DNA derived from a kidney tissue of a subject)
- a buffer used for dilution or washing of a substrate for example, an enzyme, a positive control or a negative control, or a sample (genomic DNA derived from a kidney tissue of a subject)
- the kit can also include instructions for use.
- HCC hepatocellular carcinoma
- Type 3 (multi-nodule type) HCC is less histologically differentiated than type 1 (single-nodule type) and type 2 (peri-nodule growth type) HCC, and the incidence of intrahepatic metastasis is High (see Kanai, T. et al., Cancer, 1987, 60, 810-819).
- the presence or absence of vascular invasion was examined by observing a slide stained with hematoxylin-eosin and elastica one-Geeson with a microscope.
- Renal cell carcinoma is usually surrounded by a fibrous capsule and the boundary is clear. Moreover, the fibrous stroma is hardly contained between the cancer cells of renal cell carcinoma. Therefore, cancer cells could be obtained from a surgical sample without mixing non-cancer epithelial cells and stromal cells.
- 29 samples of normal renal cortex tissue were obtained from samples excised by surgery from 29 patients who did not suffer from primary renal tumor.
- the sampled patient without primary renal tumor consists of 18 males and 11 females with an average age of 61.4 ⁇ 10.8 years (mean ⁇ standard deviation, 31-81 years) ).
- 22 were patients who underwent nephrectomy for urothelial cancer in the renal pelvis
- 6 were patients who underwent nephrectomy with resection of retroperitoneal sarcoma around the kidney.
- the remaining one was a patient who had undergone peraortic lymphadenectomy due to a metastatic germ cell tumor, and it was difficult to maintain the renal artery, and at the same time, nephrectomy was performed.
- the DNA methylation state at the 27578 CpG site was analyzed at a resolution of 1 CpG site using an Infinium human methylation 27 bead array (manufactured by Illumina).
- This array contains CpG sites located within the proximal promoter region at the transcription start site of the 14475 gene (consensus coding sequence) registered in the NCBI database.
- two sites are selected per gene, and more than 200 cancer-related genes and imprinting genes are selected from 3 to 20 CpG sites per gene, which are mounted on this array.
- Each array is equipped with 40 control probes. This control probe includes staining, hybridization, extension and bisulfite conversion controls and a negative control.
- the specifically hybridized DNA was fluorescently labeled by a one-base extension reaction.
- the DNA was detected using a bead scan reader (manufactured by Illumina). The obtained data was analyzed using Genome Studio Methylation Software (Illumina).
- the ratio of the fluorescence signal was measured using the relative ratio of the methylated probe to the sum of the methylated probe and the unmethylated probe. That is, the so-called ⁇ value (range: 0.00 to 1.00) reflects the methylation level at each CpG site.
- a logistic model identified Infinium probes showing significant differences in DNA methylation levels between 29 C samples and 107 N samples.
- the cumulative logit model identified 29 C samples, 107 N samples, and 109 T samples, and C samples, N samples, and T samples, and probes in which the DNA methylation level changed in stages (ordered difference).
- the survival curve of patients belonging to each cluster was calculated by the Kaplan-Meier method. And the difference was compared by the log rank test.
- Example 1 ⁇ Changes in DNA methylation during renal cell carcinoma> First, it confirmed by performing the pyrosequencing method on the conditions shown in Table 9 about the typical CpG site discovered by the said Infinium assay. As a result, as shown in FIGS. 2 to 4, with respect to the DNA methylation level of each CpG site, an analysis result by a highly quantitative pyrosequencing method (vertical axis in FIGS. 2 to 4) and an analysis result by an infinium assay ( There was a strong correlation with the horizontal axis in FIGS.
- Example 2 ⁇ Epigenetic clustering of renal cell carcinoma>
- ⁇ TN DNA methylation level
- DNA methylation in the 801 probe changes at the precancerous stage, and is considered to contribute to the canceration of renal cells.
- the diameter of clear cell renal cell carcinoma As is clear from the results shown in Table 11, the diameter of clear cell renal cell carcinoma, the frequency of appearance of peri-nodule proliferative type (type 2) or multinodular union type (type 3) according to the above-mentioned gross classification, The frequency of vascular invasion, the frequency of tumor thrombus formation in the renal veins, the frequency of invasive growth, the frequency of tumor necrosis and invasion into the renal pelvis, the histological grade and the stage according to the TNM classification. It was larger (or higher) than cluster A. As shown in Table 11, it is clear that epigenetic clustering of renal cell carcinoma does not depend on the sex and age of the patient.
- the relapse-free survival rate (cancer-free survival rate) and overall survival rate (overall survival rate) of patients belonging to cluster B are those belonging to cluster A.
- P-value for cancer-free survival was 4.16 ⁇ 10 ⁇ 6 and P value for overall survival was 1.32 ⁇ 10 ⁇ 2 ).
- the probe showing remarkable DNA hypomethylation ( ⁇ TN ⁇ 0.5) is slightly accumulated in cluster B rather than cluster A. It was. However, there was no statistically significant difference in the frequency of DNA hypomethylation between cluster A and cluster B ( ⁇ TN ⁇ 0.1, ⁇ 0.2, ⁇ 0.3 or ⁇ 0.4). On the other hand, the probe that showed DNA hypermethylation was significantly accumulated in cluster B rather than cluster A regardless of the degree of difference in DNA hypermethylation ( ⁇ TN > 0.1, 0 .2, 0.3, 0.4 or 0.5).
- renal cell carcinoma belonging to cluster B is characterized by accumulation of DNA hypermethylation.
- Tables 12 and 13 the top 61 probes that have a significant difference in DNA methylation level between them are shown in Tables 12 and 13.
- “Target ID” in Tables 12 and 13 indicates numbers assigned to all probes of the Infinium human methylation 27 bead array by Illumina, and “chromosome number” and “position on chromosome” The position on the NCBI database Genome Build 37, which is a human genome sequence, is indicated (the same applies to the following regarding the table relating to probes).
- “Y” of “CpG island” indicates that the probe is located on the CpG island, and “N” indicates that the probe is not located on the CpG island (the same applies to Tables 14 and 15).
- “gene region” indicates that the probe is located in the exon, intron or upstream of the transcription start site (TSS).
- “P value” indicates a value calculated by Wilcoxon rank sum test.
- Such characteristics of renal cell carcinoma belonging to cluster B are similar to those of CpG island methylation trait (CIMP) positive cancers in other well-studied organs (eg, large intestine and stomach) (non-patent literature). 8-11). That is, CIMP-positive renal cell carcinoma was first identified as cluster B by this 1CpG resolution methylome analysis.
- CIMP CpG island methylation trait
- Example 4 ⁇ Identification of CpG site characterizing CIMP-positive renal cell carcinoma> Regarding representative renal cell carcinoma patients belonging to clusters A and B, the correspondence between DNA methylation level ( ⁇ value) in renal cell carcinoma tissue (T sample) and those in non-cancerous kidney tissue (N sample) went. The obtained results are shown in FIGS. 13 and 14 as scatter diagrams. Cases 1 to 4 shown in FIG. 13 are examples of typical renal cell carcinoma patients belonging to cluster A, and Cases 5 to 8 shown in FIG. 14 are typical renal cell carcinoma patients belonging to cluster B. It is an example.
- 16 probes (15 genes: FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, WNT3A, TRH, FAM78A, and ZNF671) belong to cluster B.
- 6 or more (42.8% or more) renal cell carcinomas showed ⁇ TN exceeding 0.4.
- 8 or less (42.2% or less) of renal cell carcinomas in which the 16 probes showed ⁇ TN exceeding 0.4 (Table 14). reference).
- Cp in these 17 genes (Cp sites in FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, WNT3A, TRH, FAM78A, ZNF671, SLC13A5 and NKX6-2) It can be regarded as a characteristic of cell carcinoma, for example, renal cell carcinoma belonging to cluster B. That is, it was revealed that the risk of poor prognosis of renal cell carcinoma patients can be detected by detecting the DNA methylation level at the CpG site of the 17 genes.
- Example 5 ⁇ Detection of DNA methylation level in renal cell carcinoma by mass spectrometer> The effectiveness of DNA methylation level detection for the CpG sites of the 17 genes was confirmed by a methylated DNA detection method and a mass array method (MassARRAY method) different from the Infinium assay.
- MassARRAY method mass array method
- the bisulfite-treated DNA is amplified, transcribed into RNA, further base-specific cleaved with RNAase, and then the difference in molecular weight between the methylated DNA fragment and the unmethylated DNA fragment is determined by mass spectrometry. It is a method of detecting.
- MassARRAY primer design was performed using EpiDesigner (manufactured by SEQUENOM, MassARRAY primer design software) on the CpG island including the CpG site that is the probe site of the Infinium array.
- genomic DNA was extracted from each sample, bisulfite converted, and then amplified by PCR, as in the above-described Infinium assay, and an in vitro transcription reaction was performed.
- the obtained RNA was specifically cleaved at the uracil site with RNase A, and fragments having different lengths according to the presence or absence of methylation of the genomic DNA of each sample were generated.
- the obtained RNA fragment was subjected to MALDI-TOF MAS (manufactured by SEQUENOM, MassARRAY Analyzer 4) capable of detecting a difference in mass of a single base, and mass spectrometry was performed.
- the obtained mass spectrometry result was aligned with the reference sequence, and the mass ratio of the RNA fragment derived from methylated DNA to the RNA fragment derived from unmethylated DNA From this, the methylation level was calculated.
- Example 4 the 1CpG site of the region where strong silencing occurred due to the hypermethylation state of the entire promoter region was identified in Example 4, that is, not only the 18CpG site but also the 17CpG site. It was revealed that the risk of poor prognosis of renal cell carcinoma can be detected by detecting the DNA methylation level of at least one CpG site located in the CpG island of the gene.
- the DNA methylation level at the 312 CpG site of 14 genes was quantified in 14 cases already classified into the CIMP positive group and 88 cases of CIMP negative cases by the above-described Infinium assay.
- receiver operation characteristic (ROC) analysis is performed, and “sensitivity (positive rate)”, “specificity”, and “1-” when distinguishing the CIMP positive group from the CIMP negative group at each CpG site alone. “Specificity (false positive rate)” was determined.
- an ROC curve was prepared from these obtained values, and AUC (area under the curve, area under the ROC curve) was calculated.
- Tables 19 to 27 show the results obtained for CpG sites that could be quantitatively analyzed in the MassARRAY analysis.
- a plurality of CpG sites that are close to each other and whose DNA methylation levels are measured collectively by the characteristics of the MassARRAY method are collectively described as one place.
- target gene name_primer set name_CpG site in these tables indicates the order of CpG sites in PCR products amplified using the primer sets described in Tables 17 and 18.
- SLC13A5_10_CpG_44 and SLC13A5_13_CpG_1 indicate the 44th CpG site and the 1st CpG site in the regions amplified by different primer sets, respectively, but the positions on the genome (NCBI database Genome Build 37 (Upper position) is the same CpG site as 6617077 of chromosome 17.
- one measurement value is given at a CpG site continuous with CGCGCG, such as “FAM150A_14_CpG — 13.14.15”, so that the 141 site where AUC> 0.9 is AUC It corresponds to 90 measurement values as the basis for calculation. Similarly, 32 sites with AUC> 0.95 correspond to 23 measurement values as the measurement values that are the basis for AUC calculation.
- the CIMP positive group and the CIMP negative group are clearly distinguished by using 23 CpG sites (23 measured values) with AUC greater than 0.95 as an index. I was able to.
- the 17 genes (FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, WNT3A, TRH, FAM78A, ZNF671, SLC13A5-N
- the difference in the DNA methylation level between the poor prognosis group and the good group is large, even in the PCR method or the like (for example, methylation-specific quantitative PCR method, COBRA method) already widely used in hospital laboratories, etc. It can be easily detected.
- abundant genomic DNA for prognosis can be extracted from a renal cell carcinoma surgical specimen without adding extra invasion to the patient. Therefore, the method for detecting a risk of poor prognosis of renal cell carcinoma of the present invention is useful in the clinical field as a method aiming at improvement of therapeutic results.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
<1> 下記(a)~(c)の工程を含む、腎細胞癌の予後不良リスクを検出する方法
(a)被験体の腎臓組織由来のゲノムDNAを調製する工程、
(b)工程(a)で調製したゲノムDNAについて、FAM150A、GRM6、ZNF540、ZFP42、ZNF154、RIMS4、PCDHAC1、KHDRBS2、ASCL2、KCNQ1、PRAC、WNT3A、TRH、FAM78A、ZNF671、SLC13A5及びNKX6-2からなる遺伝子群から選択される遺伝子の少なくとも一のCpGサイトのDNAメチル化レベルを検出する工程、
(c)工程(b)で検出したDNAメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、
を含む方法。
<2> 工程(b)が、工程(a)で調製したゲノムDNAをバイサルファイト処理し、前記CpGサイトのDNAメチル化レベルを検出する工程である、<1>に記載の方法。
<3> <1>又は<2>に記載の方法に用いるための、少なくとも12塩基の鎖長を有する、下記(a)~(b)に記載のいずれかであるオリゴヌクレオチド
(a)前記遺伝子群から選択される遺伝子の少なくとも一のCpGサイトを挟み込むように設計された一対のプライマーであるオリゴヌクレオチド
(b)前記遺伝子群から選択される遺伝子の少なくとも一のCpGサイトを含むヌクレオチドにハイブリダイズするプライマー又はプローブであるオリゴヌクレオチド。
(a)被験体の腎臓組織由来のゲノムDNAを調製する工程、
(b)工程(a)で調製したゲノムDNAについて、FAM150A、GRM6、ZNF540、ZFP42、ZNF154、RIMS4、PCDHAC1、KHDRBS2、ASCL2、KCNQ1、PRAC、WNT3A、TRH、FAM78A、ZNF671、SLC13A5及びNKX6-2からなる遺伝子群から選択される遺伝子の少なくとも一のCpGサイトのDNAメチル化レベルを検出する工程、
(c)工程(b)で検出したDNAメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、
を含む方法。
DNAメチル化レベル(%)=シトシンの発光強度×100/(シトシンの発光強度+チミンの発光強度)。
(a)前記CpGサイト群から選択される少なくとも1つのサイトを挟み込むように設計された一対のプライマーであるオリゴヌクレオチド
(b)前記CpGサイト群から選択される少なくとも1つのサイトを含むヌクレオチドにハイブリダイズするプライマー又はプローブであるオリゴヌクレオチド。
109の癌組織(T)サンプル及び対応する107の非癌腎皮質組織(N)サンプルは、原発性の淡明細胞型腎明細癌を罹患している110人の患者から手術によって摘出された試料から得たものであり、Nサンプルには顕著な組織学的変化は認められていない。
前記患者から得た新鮮凍結組織サンプルを、フェノール-クロロホルムにて処理し、次いで透析を施すことによって、高分子量DNAを抽出した(Sambrook,J.ら、モレキュラークローニング:実験マニュアル 第3版、コールドスプリングハーバー出版、NY、6.14~6.15ページ 参照)。
前記インフィニウムアッセイにおいて、解析した組織サンプル全てに対し、コール率(call proportion、バックグランド以上のシグナルの検出におけるP値<0.01)が90%以下であったプローブは32個あった。このような低いコール率はプロープのCpGサイトにおける多型に起因しているかもしれないため、本アッセイにおいてはこれら32プローブを除外した。さらに、性特異的なメチル化のバイアスを回避するために、X染色体及びY染色体における全てのCpGサイトは除外した。その結果、常染色体上のCpGサイト26454が最終的な解析対象として残った。
<腎細胞癌発生におけるDNAメチル化の変化>
先ず、前記インフィニウムアッセイによって見出された代表的なCpGサイトについて、表9に示す条件にてパイロシークエンシング法を行うことにより確認した。その結果、図2~4に示す通り、各CpGサイトのDNAメチル化レベルに関し、定量性の高いパイロシークエンシング法による解析結果(図2~4の縦軸)と、インフィニウムアッセイによる解析結果(図2~4の横軸)との間には強い相関があった。
<腎細胞癌のエピジェネティッククラスタリング>
前記801プローブにおけるDNAメチル化レベル(ΔβT-N)を用い、教師なし階層的クラスタリングをした結果、淡明細胞型腎細胞癌の患者104人を、クラスターA(n=90)及びクラスターB(n=14)にサブクラスター化できることが明らかになった(図5 参照)。なお、前述の通り、前記801プローブにおけるDNAメチル化は、前癌段階にて変化が生じており、引き続き腎細胞の癌化に寄与していることが考えられる。
<腎細胞癌のDNAメチル化プロファイル>
次に、26454個の全てのプローブに対し、対応するNサンプルよりもTサンプルにおいてDNA高メチル化が認められたプローブの割合を、そのDNA高メチル化の差の程度(ΔβT-N>0.1、0.2、0.3、0.4又は0.5)毎に分析した。また、26454個の全てのプローブに対し、対応するTサンプルよりもNサンプルにおいてDNA低メチル化が認められたプローブの割合を、そのDNA低メチル化の差の程度(ΔβT-N<-0.1、-0.2、-0.3、-0.4又は-0.5)毎に分析した。得られた結果を図8~12に示す。
<CIMP陽性腎細胞癌を特徴付けるCpGサイトの同定>
クラスターA及びBに各々属する代表的な腎細胞癌患者に関し、腎細胞癌組織(Tサンプル)におけるDNAメチル化レベル(β値)と、非癌腎組織(Nサンプル)のそれらとの対応付けを行った。得られた結果を散布図として図13及び14に示す。なお、図13に示すCase:1~4はクラスターAに属する代表的な腎細胞癌患者の例であり、図14に示すCase:5~8はクラスターBに属する代表的な腎細胞癌患者の例である。
<質量分析計による、腎細胞癌におけるDNAメチル化レベルの検出>
前記インフィニウムアッセイとは異なるメチル化DNA検出方法、マスアレイ法(MassARRAY法)にて、前記17遺伝子のCpGサイトについてのDNAメチル化レベル検出の有効性を確認した。
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_10フォワードプライマー)
配列番号:18
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_10リバースプライマー)
配列番号:19
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_13フォワードプライマー)
配列番号:20
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_13リバースプライマー)
配列番号:21
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_15フォワードプライマー)
配列番号:22
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたSLC13A5_MA_15リバースプライマー)
配列番号:23
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたFAM150A_MA_14フォワードプライマー)
配列番号:24
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたFAM150A_MA_14リバースプライマー)
配列番号:25
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたGRM6_MA_8フォワードプライマー)
配列番号:26
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたGRM6_MA_8リバースプライマー)
配列番号:27
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZFP42_MA_2フォワードプライマー)
配列番号:28
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZFP42_MA_2リバースプライマー)
配列番号:29
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZFP42_MA_5フォワードプライマー)
配列番号:30
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZFP42_MA_5リバースプライマー)
配列番号:31
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたRIMS4_MA_9フォワードプライマー)
配列番号:32
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたRIMS4_MA_9リバースプライマー)
配列番号:33
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたTRH_MA_8フォワードプライマー)
配列番号:34
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたTRH_MA_8リバースプライマー)
配列番号:35
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZNF540_MA_17フォワードプライマー)
配列番号:36
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZNF540_MA_17リバースプライマー)
配列番号:37
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたPCDHAC1_MA_5フォワードプライマー)
配列番号:38
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたPCDHAC1_MA_5リバースプライマー)
配列番号:39
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたPRAC_MA_2フォワードプライマー)
配列番号:40
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたPRAC_MA_2リバースプライマー)
配列番号:41
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZNF671_MA_8フォワードプライマー)
配列番号:42
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたZNF671_MA_8リバースプライマー)
配列番号:43
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたWNT3A_MA_9フォワードプライマー)
配列番号:44
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたWNT3A_MA_9リバースプライマー)
配列番号:45
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたKHDRBS2_MA_19(rev)フォワードプライマー)
配列番号:46
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたKHDRBS2_MA_19(rev)リバースプライマー)
配列番号:47
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたASCL2_MA_8フォワードプライマー)
配列番号:48
<223> 人工的に合成されたプライマーの配列(MassARRAYアッセイに用いたASCL2_MA_8リバースプライマー)
配列番号:49
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用ZFP42フォワードプライマー)
配列番号:50
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP42リバースプライマー)
配列番号:51
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP42シークエンシングプライマー)
配列番号:52
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用ZFP154フォワードプライマー)
配列番号:53
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP154リバースプライマー)
配列番号:54
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP154シークエンシングプライマー)
配列番号:55
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用ZFP540フォワードプライマー)
配列番号:56
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP540リバースプライマー)
配列番号:57
<223> 人工的に合成されたプライマーの配列(パイロシークエンシング用いたZFP540シークエンシングプライマー)
Claims (3)
- 下記(a)~(c)の工程を含む、腎細胞癌の予後不良リスクを検出する方法
(a)被験体の腎臓組織由来のゲノムDNAを調製する工程、
(b)工程(a)で調製したゲノムDNAについて、FAM150A、GRM6、ZNF540、ZFP42、ZNF154、RIMS4、PCDHAC1、KHDRBS2、ASCL2、KCNQ1、PRAC、WNT3A、TRH、FAM78A、ZNF671、SLC13A5及びNKX6-2からなる遺伝子群から選択される遺伝子の少なくとも一のCpGサイトのDNAメチル化レベルを検出する工程、
(c)工程(b)で検出したDNAメチル化レベルから、前記被験体が予後不良群に分類されるか否かを決定する工程、
を含む方法。 - 工程(b)が、工程(a)で調製したゲノムDNAをバイサルファイト処理し、前記CpGサイトのDNAメチル化レベルを検出する工程である、請求項1に記載の方法。
- 請求項1又は2に記載の方法に用いるための、少なくとも12塩基の鎖長を有する、下記(a)~(b)に記載のいずれかであるオリゴヌクレオチド
(a)前記遺伝子群から選択される遺伝子の少なくとも一のCpGサイトを挟み込むように設計された一対のプライマーであるオリゴヌクレオチド
(b)前記遺伝子群から選択される遺伝子の少なくとも一のCpGサイトを含むヌクレオチドにハイブリダイズするプライマー又はプローブであるオリゴヌクレオチド。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/399,591 US20150118681A1 (en) | 2012-05-11 | 2013-04-30 | Method for predicting prognosis of renal cell carcinoma |
EP13787593.6A EP2848697B1 (en) | 2012-05-11 | 2013-04-30 | Method for predicting prognosis of renal cell carcinoma |
KR1020197028995A KR102082098B1 (ko) | 2012-05-11 | 2013-04-30 | 신장 세포암의 예후 예측방법 |
KR1020147032254A KR102067849B1 (ko) | 2012-05-11 | 2013-04-30 | 신장 세포암의 예후 예측방법 |
JP2014514703A JP6335118B2 (ja) | 2012-05-11 | 2013-04-30 | 腎細胞癌の予後予測方法 |
KR1020197028990A KR102082096B1 (ko) | 2012-05-11 | 2013-04-30 | 신장 세포암의 예후 예측방법 |
CN201380036415.8A CN105408494B (zh) | 2012-05-11 | 2013-04-30 | 预测肾细胞癌的预后的方法 |
KR1020197028992A KR102082097B1 (ko) | 2012-05-11 | 2013-04-30 | 신장 세포암의 예후 예측방법 |
KR1020197029006A KR102082099B1 (ko) | 2012-05-11 | 2013-04-30 | 신장 세포암의 예후 예측방법 |
US16/708,879 US20200199684A1 (en) | 2012-05-11 | 2019-12-10 | Method for prognosis of renal cell carcinoma |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261646044P | 2012-05-11 | 2012-05-11 | |
US61/646044 | 2012-05-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/399,591 A-371-Of-International US20150118681A1 (en) | 2012-05-11 | 2013-04-30 | Method for predicting prognosis of renal cell carcinoma |
US16/708,879 Continuation US20200199684A1 (en) | 2012-05-11 | 2019-12-10 | Method for prognosis of renal cell carcinoma |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013168644A1 true WO2013168644A1 (ja) | 2013-11-14 |
Family
ID=49550686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062650 WO2013168644A1 (ja) | 2012-05-11 | 2013-04-30 | 腎細胞癌の予後予測方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20150118681A1 (ja) |
EP (1) | EP2848697B1 (ja) |
JP (5) | JP6335118B2 (ja) |
KR (5) | KR102082099B1 (ja) |
CN (1) | CN105408494B (ja) |
WO (1) | WO2013168644A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129916A1 (ja) * | 2014-02-28 | 2015-09-03 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
WO2017038983A1 (ja) * | 2015-09-02 | 2017-03-09 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
WO2017048932A1 (en) * | 2015-09-17 | 2017-03-23 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cancer detection methods |
JPWO2016060278A1 (ja) * | 2014-10-17 | 2017-08-31 | 国立大学法人東北大学 | 大腸癌に対する薬物療法の感受性を予測する方法 |
WO2019181941A1 (ja) | 2018-03-19 | 2019-09-26 | 学校法人慶應義塾 | 尿路上皮癌のリスクの判定方法 |
WO2020116573A1 (ja) | 2018-12-05 | 2020-06-11 | 学校法人慶應義塾 | 子宮体癌の予後の判定方法 |
WO2020225331A1 (en) * | 2019-05-06 | 2020-11-12 | Fundacion Para La Investigacion E Innovacion Biosanitaria Principado De Asturias | Method for predicting and/or diagnosing cancer metastasis |
WO2021107081A1 (ja) | 2019-11-27 | 2021-06-03 | 学校法人慶應義塾 | 上部尿路上皮癌の判定方法 |
WO2021117772A1 (ja) | 2019-12-09 | 2021-06-17 | 学校法人慶應義塾 | 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法 |
CN115786516A (zh) * | 2022-11-25 | 2023-03-14 | 广州希灵生物科技有限公司 | 一种检测肾细胞癌甲基化生物标志物的引物的应用 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11142801B2 (en) | 2015-10-07 | 2021-10-12 | Japanese Foundation For Cancer Research | Tumor determination method |
CN106250705A (zh) * | 2016-08-10 | 2016-12-21 | 深圳市衣信互联网科技有限公司 | 一种基于云服务的大数据收集分析系统及方法 |
CN106636444B (zh) * | 2017-02-28 | 2020-03-31 | 青岛泱深生物医药有限公司 | Fam78a基因的用途 |
JP7116165B2 (ja) * | 2017-09-29 | 2022-08-09 | オンクグノスティクス ゲーエムベーハー | 新生物および癌のリスク決定 |
CN108957004B (zh) * | 2018-07-09 | 2021-10-19 | 东南大学 | 检测H3K9me2和H3K36me3表达量的试剂在制备胃癌预后评估试剂盒中的应用 |
CN110055326B (zh) * | 2019-03-08 | 2022-10-11 | 宁波大学 | 预测肾透明细胞癌复发转移的分子标记物及其应用 |
CN110060736B (zh) * | 2019-04-11 | 2022-11-22 | 电子科技大学 | Dna甲基化扩展方法 |
CN112301125A (zh) * | 2019-07-30 | 2021-02-02 | 立森印迹诊断技术(无锡)有限公司 | 一种肿瘤标志物及其应用 |
EP4291902A2 (en) * | 2021-02-10 | 2023-12-20 | Foundation Medicine, Inc. | Biomarkers for cancer treatment |
CN114507719A (zh) * | 2022-02-23 | 2022-05-17 | 厦门飞朔生物技术有限公司 | 一种针对dna甲基化监测的定量分析方法 |
WO2023192635A2 (en) * | 2022-04-01 | 2023-10-05 | Twist Bioscience Corporation | Libraries for methylation analysis |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008535853A (ja) * | 2005-04-07 | 2008-09-04 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド | 癌関連遺伝子 |
JP2009519039A (ja) * | 2005-12-13 | 2009-05-14 | ニンブルゲン システムズ インコーポレイテッド | 後成的修飾の同定及びモニタリング方法 |
JP2010063413A (ja) | 2008-09-11 | 2010-03-25 | Japan Health Science Foundation | Bacクローンを用いる腎細胞癌の予後予測方法 |
WO2011032721A1 (de) * | 2009-09-18 | 2011-03-24 | Universitätsklinikum Jena Körperschaft des öffentlichen Rechts und Teilkörperschaft der Friedrich-Schiller-Universität Jena | Verfahren zur frühen diagnose von karzinomen des anogenitaltraktes |
JP2011525114A (ja) * | 2008-06-20 | 2011-09-15 | プロキシ ライフ サイエンス ホールディングス インコーポレイテッド | 微小胞組織に基づく組成物および方法 |
WO2011148983A1 (ja) * | 2010-05-25 | 2011-12-01 | 独立行政法人国立がん研究センター | 生体外で自己複製可能な誘導前がん幹細胞又は誘導悪性幹細胞、これらの製造方法、及び、これらの細胞の応用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100063413A (ko) | 2008-12-03 | 2010-06-11 | 전령일 | 중계기에 설치되는 노트북 받침판 |
WO2012031329A1 (en) * | 2010-09-10 | 2012-03-15 | Murdoch Childrens Research Institute | Assay for detection and monitoring of cancer |
-
2013
- 2013-04-30 KR KR1020197029006A patent/KR102082099B1/ko active IP Right Grant
- 2013-04-30 KR KR1020147032254A patent/KR102067849B1/ko active IP Right Grant
- 2013-04-30 US US14/399,591 patent/US20150118681A1/en not_active Abandoned
- 2013-04-30 KR KR1020197028992A patent/KR102082097B1/ko active IP Right Grant
- 2013-04-30 CN CN201380036415.8A patent/CN105408494B/zh not_active Expired - Fee Related
- 2013-04-30 WO PCT/JP2013/062650 patent/WO2013168644A1/ja active Application Filing
- 2013-04-30 JP JP2014514703A patent/JP6335118B2/ja active Active
- 2013-04-30 KR KR1020197028995A patent/KR102082098B1/ko active IP Right Grant
- 2013-04-30 EP EP13787593.6A patent/EP2848697B1/en active Active
- 2013-04-30 KR KR1020197028990A patent/KR102082096B1/ko active IP Right Grant
-
2018
- 2018-04-27 JP JP2018087115A patent/JP6532070B2/ja active Active
- 2018-04-27 JP JP2018087106A patent/JP6532069B2/ja active Active
- 2018-04-27 JP JP2018087119A patent/JP6532071B2/ja active Active
- 2018-04-27 JP JP2018087122A patent/JP6532072B2/ja active Active
-
2019
- 2019-12-10 US US16/708,879 patent/US20200199684A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008535853A (ja) * | 2005-04-07 | 2008-09-04 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド | 癌関連遺伝子 |
JP2009519039A (ja) * | 2005-12-13 | 2009-05-14 | ニンブルゲン システムズ インコーポレイテッド | 後成的修飾の同定及びモニタリング方法 |
JP2011525114A (ja) * | 2008-06-20 | 2011-09-15 | プロキシ ライフ サイエンス ホールディングス インコーポレイテッド | 微小胞組織に基づく組成物および方法 |
JP2010063413A (ja) | 2008-09-11 | 2010-03-25 | Japan Health Science Foundation | Bacクローンを用いる腎細胞癌の予後予測方法 |
WO2011032721A1 (de) * | 2009-09-18 | 2011-03-24 | Universitätsklinikum Jena Körperschaft des öffentlichen Rechts und Teilkörperschaft der Friedrich-Schiller-Universität Jena | Verfahren zur frühen diagnose von karzinomen des anogenitaltraktes |
WO2011148983A1 (ja) * | 2010-05-25 | 2011-12-01 | 独立行政法人国立がん研究センター | 生体外で自己複製可能な誘導前がん幹細胞又は誘導悪性幹細胞、これらの製造方法、及び、これらの細胞の応用 |
Non-Patent Citations (30)
Title |
---|
ANAL. BIOCHEM., vol. 10, 2000, pages 103 - 110 |
ARAI, E. ET AL., CARCINOGENESIS, vol. 3 0, 2009, pages 214 - 221 |
ARAI, E. ET AL., CLIN. CANCER RES., vol. 14, 2008, pages 5531 - 5539 |
ARAI, E. ET AL., INT. J. CANCER, vol. 119, 2006, pages 288 - 296 |
ARAI, E. ET AL., PATHOBIOLOGY, vol. 78, 2011, pages 1 - 9 |
ARAI, E. ET AL.: "Genetic and epigenetic alterations during renal carcinogenesis.", INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, vol. 4, no. 1, 13 December 2010 (2010-12-13), pages 58 - 73, XP055177047 * |
ARAI, E. ET AL.: "Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.", CARCINOGENESIS, vol. 33, no. 8, August 2012 (2012-08-01), pages 1487 - 1493, XP055177040 * |
BIBIKOVA, M. ET AL., EPIGENOMICS, vol. 1, 2009, pages 177 - 200 |
BREIMAN, L., MACH. LEARN., vol. 45, 2001, pages 5 - 32 |
CLARK SJ ET AL., NUCLEIC ACIDS RES, vol. 22, 1994, pages 2990 - 7 |
DALGLIESH, G. L. ET AL., NATURE, vol. 463, 2010, pages 360 - 363 |
EBLE, J. N. ET AL.: "Renal cell carcinoma. WHO classification of tumours. Pathology and genetics. Tumours of the urinary system and male genital organs", 2004, IARC PRESS, pages: 10 - 43 |
FUHRMAN, S. A. ET AL., AM. J. SURG. PATHOL., vol. 6, 1982, pages 655 - 663 |
ISSA, J. P, NAT. REV. CANCER, vol. 4, 2004, pages 988 - 993 |
JURINKE C ET AL., MUTAT RES, vol. 573, 2005, pages 83 - 95 |
KANAI, T. ET AL., CANCER, vol. 60, 1987, pages 810 - 819 |
KAWAI, Y. ET AL.: "Methylation level of the RASSF1A promoter is an independent prognostic factor for clear-cell renal cell carcinoma.", ANNALS OF ONCOLOGY, vol. 21, no. 8, August 2010 (2010-08-01), pages 1612 - 1617, XP055177042 * |
KRISTENSEN LS ET AL., CLIN CHEM, vol. 55, 2009, pages 1471 - 83 |
MCRONALD, F. E. ET AL., MOL. CANCER, 2009, pages 8 |
MORRIS, M. R. ET AL., GENOME MED., vol. 2, no. 9, 2010, pages 59 |
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual", COLDSPRING HARBORLABORATORYPRESS, pages: 614 - 615 |
See also references of EP2848697A4 |
SHEN, L. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 104, 2007, pages 18654 - 18659 |
SOBIN, L. H. ET AL.: "International Union Against Cancer (UICC), TNM Classification Of Malignant Tumors", 2002, WILEY-LISS, pages: 193 - 195 |
TOYOTA, M. ET AL., CANCER RES., vol. 5, no. 9, 1999, pages 5438 - 5442 |
TOYOTA, M. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 8681 - 8686 |
VAN HAAFTEN, G. ET AL., NAT. GENET., vol. 41, 2009, pages 521 - 523 |
VAN VLODROP, I.J.H. ET AL.: "Prognostic significance of Gremlinl (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma.", THE AMERICAN JOURNAL OF PATHOLOGY, vol. 176, no. 2, February 2010 (2010-02-01), pages 575 - 584, XP055177044 * |
VARELA, I. ET AL., NATURE, vol. 469, 2011, pages 539 - 542 |
WOJDACZ TK ET AL., NAT PROTOC., vol. 3, 2008, pages 1903 - 8 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111057752A (zh) * | 2014-02-28 | 2020-04-24 | 国立研究开发法人国立癌研究中心 | 离子交换色谱的应用和pcr引物的应用 |
JP5897228B2 (ja) * | 2014-02-28 | 2016-03-30 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
CN106062215A (zh) * | 2014-02-28 | 2016-10-26 | 国立研究开发法人国立癌研究中心 | 肾细胞癌的预后判定方法 |
WO2015129916A1 (ja) * | 2014-02-28 | 2015-09-03 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
JPWO2015129916A1 (ja) * | 2014-02-28 | 2017-03-30 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
US10190172B2 (en) | 2014-02-28 | 2019-01-29 | National Cancer Center | Method for determining prognosis of renal cell carcinoma |
CN106062215B (zh) * | 2014-02-28 | 2020-09-22 | 国立研究开发法人国立癌研究中心 | 肾细胞癌的预后判定方法 |
JPWO2016060278A1 (ja) * | 2014-10-17 | 2017-08-31 | 国立大学法人東北大学 | 大腸癌に対する薬物療法の感受性を予測する方法 |
WO2017038983A1 (ja) * | 2015-09-02 | 2017-03-09 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
CN108026586A (zh) * | 2015-09-02 | 2018-05-11 | 国立研究开发法人国立癌研究中心 | 肾细胞癌的预后判定方法 |
JPWO2017038983A1 (ja) * | 2015-09-02 | 2018-06-21 | 国立研究開発法人国立がん研究センター | 腎細胞癌の予後判定方法 |
US10961590B2 (en) | 2015-09-17 | 2021-03-30 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cancer detection methods |
WO2017048932A1 (en) * | 2015-09-17 | 2017-03-23 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cancer detection methods |
WO2019181941A1 (ja) | 2018-03-19 | 2019-09-26 | 学校法人慶應義塾 | 尿路上皮癌のリスクの判定方法 |
US11840738B2 (en) | 2018-03-19 | 2023-12-12 | Keio University | Method for determining risk of urothelial carcinoma |
WO2020116573A1 (ja) | 2018-12-05 | 2020-06-11 | 学校法人慶應義塾 | 子宮体癌の予後の判定方法 |
WO2020225331A1 (en) * | 2019-05-06 | 2020-11-12 | Fundacion Para La Investigacion E Innovacion Biosanitaria Principado De Asturias | Method for predicting and/or diagnosing cancer metastasis |
WO2021107081A1 (ja) | 2019-11-27 | 2021-06-03 | 学校法人慶應義塾 | 上部尿路上皮癌の判定方法 |
WO2021117772A1 (ja) | 2019-12-09 | 2021-06-17 | 学校法人慶應義塾 | 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法 |
CN115786516A (zh) * | 2022-11-25 | 2023-03-14 | 广州希灵生物科技有限公司 | 一种检测肾细胞癌甲基化生物标志物的引物的应用 |
Also Published As
Publication number | Publication date |
---|---|
JP6532072B2 (ja) | 2019-06-19 |
KR20150031231A (ko) | 2015-03-23 |
EP2848697A1 (en) | 2015-03-18 |
JP2018139599A (ja) | 2018-09-13 |
CN105408494B (zh) | 2018-10-16 |
US20150118681A1 (en) | 2015-04-30 |
JP2018139601A (ja) | 2018-09-13 |
JP2018148900A (ja) | 2018-09-27 |
KR102067849B1 (ko) | 2020-01-20 |
JP6532070B2 (ja) | 2019-06-19 |
EP2848697B1 (en) | 2018-01-03 |
JP6532069B2 (ja) | 2019-06-19 |
KR20190116550A (ko) | 2019-10-14 |
JPWO2013168644A1 (ja) | 2016-01-07 |
US20200199684A1 (en) | 2020-06-25 |
KR20190116551A (ko) | 2019-10-14 |
KR102082098B1 (ko) | 2020-02-26 |
KR102082097B1 (ko) | 2020-02-26 |
KR20190115118A (ko) | 2019-10-10 |
JP6532071B2 (ja) | 2019-06-19 |
KR102082099B1 (ko) | 2020-02-26 |
EP2848697A4 (en) | 2016-05-04 |
JP6335118B2 (ja) | 2018-05-30 |
KR102082096B1 (ko) | 2020-02-26 |
JP2018139600A (ja) | 2018-09-13 |
CN105408494A (zh) | 2016-03-16 |
KR20190116549A (ko) | 2019-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6532069B2 (ja) | 腎細胞癌の予後予測方法 | |
CN110872631B (zh) | Dna甲基化生物标志物组合、检测方法和试剂盒 | |
JP2022525890A (ja) | Dna試料のメチル化変化を検出するための方法およびシステム | |
US11840738B2 (en) | Method for determining risk of urothelial carcinoma | |
JP6054750B2 (ja) | 肝細胞癌のリスク評価方法 | |
WO2020116573A1 (ja) | 子宮体癌の予後の判定方法 | |
KR20230005927A (ko) | 종양 검출 시약 및 키트 | |
JP5602355B2 (ja) | 癌患者の外科的手術後の治療選択方法及び予後診断 | |
WO2017119510A1 (ja) | 乳がんの診断のための検査方法、遺伝子マーカー、および検査薬 | |
JP2017046667A (ja) | 子宮平滑筋における腫瘍の診断マーカー | |
WO2021107081A1 (ja) | 上部尿路上皮癌の判定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380036415.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13787593 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014514703 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147032254 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013787593 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14399591 Country of ref document: US |