WO2013161946A1 - 作業機管理装置 - Google Patents

作業機管理装置 Download PDF

Info

Publication number
WO2013161946A1
WO2013161946A1 PCT/JP2013/062227 JP2013062227W WO2013161946A1 WO 2013161946 A1 WO2013161946 A1 WO 2013161946A1 JP 2013062227 W JP2013062227 W JP 2013062227W WO 2013161946 A1 WO2013161946 A1 WO 2013161946A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
level
work machine
hydraulic excavator
unit
Prior art date
Application number
PCT/JP2013/062227
Other languages
English (en)
French (fr)
Inventor
一輝 久保田
足立 宏之
象平 神谷
渡辺 豊
洋 佐々波
雅史 庄司
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP13782116.1A priority Critical patent/EP2843140B1/en
Priority to US14/396,836 priority patent/US9366011B2/en
Priority to JP2014512687A priority patent/JP5993448B2/ja
Priority to KR1020147029470A priority patent/KR102039371B1/ko
Priority to CN201380022029.3A priority patent/CN104271846B/zh
Publication of WO2013161946A1 publication Critical patent/WO2013161946A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a work machine management apparatus.
  • Patent Literature 1 describes a failure countermeasure output method that calculates a countermeasure for a failure indicated by the state of each part of the work machine and transmits the countermeasure.
  • the work machine management device includes, from the work machine, sensor data representing the state of each part of the work machine, alarm data representing that the work machine has determined that an abnormality has occurred in the work machine, And an operation level classification unit that classifies the operation state of the work implement into any of a plurality of predetermined operation levels based on the sensor data received by the reception unit.
  • an operation level classification unit that classifies the operation state of the work implement into any of a plurality of predetermined operation levels based on the sensor data received by the reception unit.
  • in the work machine management device in order to set the operation state of the work machine to the normal state based on the operation level of the work machine classified by the operation level classification unit. It is preferable to further include a notification unit that notifies the operator of a necessary coping method.
  • a coping preparation signal for causing the work machine to perform a preparatory operation corresponding to the coping method notified by the notification unit is transmitted to the work machine. You may further provide the transmission part to perform.
  • the event receiving unit that receives event data transmitted from the work machine in response to execution of the coping method is further provided.
  • the operation level classification unit preferably reclassifies the operation state of the work implement into one of a plurality of operation levels based on the event data received by the event reception unit.
  • the notification unit has a plurality of measures for each operation level of the work machine classified by the operation level classification unit. It is preferable to select at least one of the methods and notify the operator.
  • the position receiving unit that receives the current position of the work machine, the map is displayed on the display screen, and the display A display unit that superimposes and displays a symbol representing the operation level of the work implement classified by the operation level classification unit on the map at a position corresponding to the current position of the work implement received by the position reception unit in the entire screen. It is preferable to further comprise.
  • FIG. 1 is a diagram for explaining the outline of a management system for a hydraulic excavator according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of each hydraulic excavator.
  • FIG. 3 is a schematic diagram showing an outline of a hydraulic circuit of the excavator.
  • FIG. 4 is a block diagram of a control system for detecting the state of each part of the excavator and transmitting the state data.
  • FIG. 5 is a diagram illustrating sensors included in the sensor group.
  • FIG. 6 is a block diagram showing the configuration of the base station.
  • FIG. 7 is a block diagram showing the configuration of the management terminal.
  • FIG. 8 is a diagram illustrating an example of data stored in the database.
  • FIG. 1 is a diagram for explaining the outline of a management system for a hydraulic excavator according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of each hydraulic excavator.
  • FIG. 3 is
  • FIG. 9 is a diagram illustrating an example of a display screen displayed on the display device of the management terminal.
  • FIG. 10 is a flowchart of the operation level classification process of the excavator by the base station.
  • FIG. 11 is a flowchart of the classification process based on the differential pressure sensor called in step S20 of FIG.
  • FIG. 12 is a flowchart of the classification process based on the temperature sensor called in step S40 of FIG.
  • FIG. 1 is a diagram for explaining an outline of a hydraulic excavator management system according to the first embodiment of the present invention.
  • the management system 1 according to this embodiment is a system that manages a plurality of hydraulic excavators respectively operating in a plurality of work areas A, B, and C.
  • the hydraulic excavators a1 to an operate
  • the hydraulic excavators b1 to bn operate
  • the hydraulic excavators c1 to cn operate.
  • Areas A, B, and C are not the same work site but are geographically separated.
  • Each hydraulic excavator is equipped with a GPS receiver, and can receive a signal from the GPS satellite GS and calculate the current location.
  • Management system 1 includes base station BC.
  • the base station BC is configured to be able to exchange data with each hydraulic excavator by wireless communication via the communication satellite CS.
  • the base station BC is connected to a plurality of management terminals TM1 to TMn via a general public line network PC.
  • the base station BC can display the operating state of the hydraulic excavator on the display screens of the management terminals TM1 to TMn by transmitting predetermined display data to the plurality of management terminals TM1 to TMn. it can. Further, when a predetermined operation (for example, pressing a button) is performed by the operator at each management terminal TM1 to TMn, operation data corresponding to the operation is transmitted from each management terminal TM1 to TMn to the base station BC. .
  • a predetermined operation for example, pressing a button
  • each excavator detects the state of each part of itself and transmits state data representing the detected state to the base station BC.
  • the state data includes three types of data.
  • the first type of data is data indicating that the hydraulic excavator has detected some abnormality that hinders its operation.
  • the second type of data is data indicating that some operation has been performed by the user of the excavator and that the execution of the process corresponding to the operation has been completed.
  • the third type of data is data representing the operating status of the hydraulic excavator, such as a sensor amount detected by a sensor provided in the hydraulic excavator, a current position of the hydraulic excavator calculated by a GPS receiver, and the like.
  • These three types of data are transmitted from the hydraulic excavator at appropriate timing. For example, if it is the first type of data, it is transmitted at the timing when the abnormality represented by the data is detected. The second type of data is transmitted at the timing when the operation or process represented by the data is completed. The third type data is transmitted along with the data when the first and second types of data are transmitted, and is transmitted every predetermined period (for example, several minutes to several hours). Alternatively, it is transmitted in response to a change in operating status (for example, sensor amount) corresponding to the data.
  • the first type of data is called alarm data
  • the second type of data is called event data
  • the third type of information is called sensor data.
  • FIG. 2 is a schematic diagram showing the configuration of each hydraulic excavator.
  • the hydraulic excavator includes a traveling body 81 and a revolving body 82 that is pivotably connected to the upper portion of the traveling body 81.
  • the swivel body 82 is provided with a driver's cab 83, a work device 84, an engine 85, and a swivel motor 86.
  • the work device 84 includes a boom BM that is rotatably attached to the main body of the swing body 82, an arm AM that is rotatably connected to the boom BM, and an attachment that is rotatably connected to the arm AM, such as a bucket. It consists of BK.
  • the boom BM is raised and lowered by the boom cylinder C1
  • the arm AM is clouded and dumped by the arm cylinder C2
  • the bucket BK is clouded and dumped by the bucket cylinder C3.
  • the traveling body 81 is provided with left and right traveling hydraulic motors 87 and 88.
  • FIG. 3 is a schematic diagram showing an outline of a hydraulic circuit of a hydraulic excavator.
  • the engine 85 drives the hydraulic pump 2.
  • the direction and amount of the hydraulic oil discharged from the hydraulic pump 2 are controlled by a plurality of control valves 3s, 3tr, 3tl, 3b, 3a, and 3bk, and the above-described swing hydraulic motor 86, left and right traveling hydraulic motors are controlled. 87, 88 and hydraulic cylinders C1, C2, C3 are driven.
  • the plurality of control valves 3s, 3tr, 3tl, 3b, 3a and 3bk are switched by pilot pressures respectively supplied from the corresponding pilot valves 4s, 4tr, 4tl, 4b, 4a and 4bk.
  • the pilot valves 4s, 4tr, 4tl, 4b, 4a, and 4bk are supplied with pilot oil pressure of a predetermined pressure from the pilot hydraulic pump 5, and the pilot pressure according to the operation amount of the operation levers 4Ls, 4Ltr, 4Ltl, 4Lb, 4La, 4Lbk. Is output.
  • the plurality of control valves 3s, 3tr, 3tl, 3b, 3a and 3bk are integrated into one valve block.
  • a plurality of pilot valves 4s, 4tr, 4tl, 4b, 4a and 4bk are also integrated into one valve block.
  • FIG. 4 is a block diagram of a control system for detecting the state of each part of the excavator and transmitting the state data.
  • the hydraulic excavator is equipped with a sensor group 10 composed of a plurality of sensors for detecting the state of each part described above.
  • the state detection signal output from the sensor group 10 is read into the controller 20 at a predetermined timing.
  • the controller 20 has a timer function 20a for integrating the traveling operation time, the turning operation time, and the front (excavation) operation time.
  • the controller 20 calculates the traveling operation time, the turning operation time, and the front operation time based on the read state detection signal. These calculated operation times are stored in the storage device 21.
  • the hydraulic excavator also has a key switch 22 for starting the engine 85 and an hour meter 23 for measuring the operating time of the engine 85.
  • the GPS excavator 24 is equipped with a GPS receiver 24.
  • the GPS receiver 24 receives a GPS signal from the GPS satellite GS, calculates the position of the excavator based on the GPS signal, and outputs the position to the controller 20.
  • a monitor 25 for displaying various types of information is provided in the driver's seat of the hydraulic excavator.
  • the controller 20 has a clock function 20b and can recognize the ON time, OFF time, engine start time, and engine stop time of the key switch 22. These times are also stored in the storage device 21.
  • the measured value of the hour meter 23 is also read into the controller 20 at a predetermined timing and stored in the storage device 21.
  • the running time, turning time, front operation time, key switch-on time, and the like stored in the storage device 21 are transmitted via the transmitter 30 at a predetermined timing.
  • the radio wave transmitted from the transmitter 30 is received by the base station BC via the satellite CS.
  • a receiver 40 is also connected to the controller 20. The receiver 40 receives a signal such as a countermeasure preparation signal sent from the base station BC via the communication satellite CS and sends it to the controller 20.
  • FIG. 5 is a diagram showing the sensors included in the sensor group 10.
  • the sensor group 10 includes a pressure sensor 11 that detects the pressure state of the main hydraulic circuit system. That is, a pressure sensor 11p that measures the discharge pressure of the hydraulic pump 2, pressure sensors 11tr and 11tl that measure the driving pressure of the traveling hydraulic motors 87 and 88, and a pressure sensor 11s that measures the driving pressure of the swing hydraulic motor 86; A pressure sensor 11b that measures the drive pressure of the boom hydraulic cylinder C1, a pressure sensor 11a that measures the drive pressure of the arm hydraulic cylinder C2, and a pressure sensor 11bk that measures the drive pressure of the bucket hydraulic cylinder C3 are provided.
  • the sensor group 10 also includes a pressure sensor 13 for detecting the pressure state of the pilot hydraulic circuit system. That is, pressure sensors 13tr and 13tl for measuring pilot pressures Ptr and Ptl output from the traveling hydraulic pilot valves 4tr and 4tl, a pressure sensor 13s for measuring the pilot pressure Ps output from the turning hydraulic pilot valve 4s, and boom hydraulic pressure A pressure sensor 13b for measuring the pilot pressure Pb output from the pilot valve 4b, a pressure sensor 13a for measuring the pilot pressure Pa output from the arm hydraulic pilot valve 4a, and a pilot pressure Pbk output from the bucket hydraulic pilot valve 4bk And a pressure sensor 13bk for measuring.
  • pressure sensors 13tr and 13tl for measuring pilot pressures Ptr and Ptl output from the traveling hydraulic pilot valves 4tr and 4tl
  • a pressure sensor 13s for measuring the pilot pressure Ps output from the turning hydraulic pilot valve 4s
  • boom hydraulic pressure A pressure sensor 13b for measuring the pilot pressure Pb output from the pilot valve 4b
  • the traveling operation time is a time obtained by integrating the time when the pressure Ptr or Ptl detected by the traveling pilot pressure sensors 13tr and 13tl is equal to or greater than a predetermined value.
  • the turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13s is equal to or greater than a predetermined value.
  • the front operation time is a time obtained by integrating the times when the pressures Pb, Pa, and Pbk detected by any of the pilot pressure sensors 13b, 13a, and 13bk for the boom, arm, and bucket are equal to or greater than a predetermined value.
  • the sensor group 10 also includes a pressure sensor 14f that detects clogging of a filter disposed in the main hydraulic line, and a temperature sensor 14t that detects the temperature of hydraulic oil that drives a hydraulic motor or a hydraulic cylinder. Further, the sensor group 10 includes various sensors 15 that detect the state of the engine system.
  • the DPF differential pressure sensor 15d that detects the upstream and downstream differential pressures of the diesel particulate filter (DPF) that collects particulate matter (PM) contained in the exhaust gas, and the cooling water temperature of the engine 85
  • Coolant temperature sensor 15w for detecting engine oil pressure sensor 15op for detecting engine oil pressure
  • engine oil temperature sensor 15ot for detecting engine oil temperature
  • engine oil level sensor 15ol for detecting engine oil level
  • a battery voltage sensor 15v for detecting the charging voltage of the battery
  • a rotational speed for detecting the engine speed.
  • a sensor 15r that detects the upstream and downstream differential pressures of the diesel particulate filter (DPF) that collects particulate matter (PM) contained in the exhaust gas
  • Coolant temperature sensor 15w for detecting engine oil pressure sensor 15op for detecting engine oil pressure
  • engine oil temperature sensor 15ot for
  • FIG. 6 is a block diagram showing the configuration of the base station BC.
  • the base station BC receives a radio signal transmitted from the communication satellite CS, and temporarily stores the state data restored by the receiver 31 and the receiver 31 that restores the state data transmitted by the hydraulic excavator.
  • the base station BC further includes a database 35 for collecting and storing state data transmitted by the hydraulic excavator.
  • the control device 34 shapes the state data temporarily stored in the storage device 32 into a predetermined format and stores it in the database 35. Details of the database 35 will be described later.
  • FIG. 7 is a block diagram showing the configuration of the management terminal TM.
  • the management terminal TM includes a modem 41 that receives signals sent from the base station BC via the general public network PC, a storage device 42 that stores the signals received by the modem 41, and various arithmetic processes.
  • a processing device 43 to be executed, a display device 44 connected to the processing device 43, and a keyboard 46 are provided.
  • the processing device 43 Based on the display data transmitted from the base station BC, the processing device 43 displays the state and current position of each hydraulic excavator on the display screen of the display device 44.
  • operation data is transmitted to the base station BC in accordance with an operation performed by an input device such as the keyboard 46.
  • FIG. 8 is a diagram illustrating an example of data stored in the database 35.
  • the status data transmitted from each hydraulic excavator includes a serial number (No.) for identifying the status data, a work machine ID for identifying the hydraulic excavator, and the reception date and time of the status data. (Or transmission date and time) are added, and they are aggregated in chronological order.
  • the control device 34 of the base station BC When receiving the status data from the hydraulic excavator, the control device 34 of the base station BC adds the above information to the status data and stores (adds) the information to the database 35. Then, in the operation level classification process described later, the operation level is classified by referring to the database 35, or display data is created based on the state data stored in the database 35 and transmitted to the management terminal TM. .
  • the base station BC of the present embodiment sets the operation level of the hydraulic excavator to four levels based on the state data and the past state data stored in the database 35. Classify into levels. Hereinafter, these four operation levels will be described.
  • the first level is a level indicating that there is no element that hinders the operation of the hydraulic excavator.
  • the operator of the management terminal TM and the user of the excavator do not need to perform a special operation on the excavator classified as the first level.
  • the second level is a level indicating that there is a sign of failure in the hydraulic excavator.
  • the third level is a level indicating that a problem that may lead to a serious failure has occurred in the hydraulic excavator.
  • the operator of the management terminal TM instructs the hydraulic excavator classified at the third level to perform a specific operation to the user of the hydraulic excavator, or sends a countermeasure preparation signal described later to the hydraulic excavator. It is necessary to apply.
  • the fourth level is a level indicating that communication between the excavator and the base station BC is interrupted due to some reason such as an environment around the excavator or a failure of the transmitter 30.
  • This operation level is exceptionally classified by the base station BC at a timing other than when the status data is transmitted from the excavator.
  • the base station BC classifies a hydraulic excavator that has not been transmitted with state data for a certain period of time into a fourth level.
  • FIG. 9 is a diagram illustrating an example of a display screen displayed on the display device 44 of the management terminal TM.
  • the display device 44 displays a map 101 and a work machine list 102.
  • the operator of the management terminal TM can change the scale of the map 101 or scroll it by operating the keyboard 46 or the like.
  • the processing device 43 Based on the display data received from the base station BC, the processing device 43 superimposes on the map 101 and displays symbols 103 to 106 representing the hydraulic excavators at positions corresponding to the current positions of the hydraulic excavators. That is, the operator can intuitively understand how many hydraulic excavators are operating in which area by looking at the map 101.
  • the excavator symbols 103 to 106 are displayed differently depending on the operation level of each excavator.
  • the symbols 103 to 106 are displayed in colors according to the operation level of each hydraulic excavator. For example, the first level excavator symbol 106 is green, the second level excavator symbol 105 is yellow, the third level excavator symbol 104 is red, and the fourth level excavator symbol.
  • the operation level of each hydraulic excavator is represented by symbols of different colors such as 103 is black.
  • a work machine list 102 that is a list of hydraulic excavators included in the map 101 is displayed.
  • hydraulic excavator attributes such as an operation level 102a, a model number 102b, and a serial number 102c are listed.
  • the operator of the management terminal TM can select one of the excavators by using the keyboard 46 or the like. For example, when a selection operation such as clicking on a symbol representing an operation level is performed with the mouse, the processing device 43 switches the display content of the display device 44 to a screen that displays information on the hydraulic excavator that is the target of the selection operation. .
  • the reason why the hydraulic excavator is classified into the current operation level is displayed. Further, when the operation level is the second level or the third level, a procedure of a procedure to be performed on the hydraulic excavator is further displayed.
  • the above display contents are all based on display data transmitted from the base station BC. That is, the processing device 43 of the management terminal TM displays predetermined contents on the display device 44 based on the display data transmitted from the base station BC.
  • base station BC classifies operation levels using (1) an example of a DPF regeneration mechanism and (2) an example of an engine cooling mechanism.
  • the base station BC classifies the operation level of the hydraulic excavator using outputs from other sensors.
  • the engine 85 included in the excavator of the present embodiment includes a DPF in the exhaust gas discharge path.
  • the DPF differential pressure sensor 15d detects a pressure difference before and after the DPF. This pressure difference represents the amount of PM deposited on the DPF (the degree of clogging of the DPF).
  • the detected amount of accumulated PM is transmitted as sensor data to the base station BC every time a change of a predetermined value or more occurs.
  • the controller 20 of the hydraulic excavator executes DPF regeneration control in order to prevent the DPF from being clogged.
  • the regeneration control is control for burning the PM by increasing the temperature of the exhaust gas passing through the DPF, for example, by executing post injection or increasing the rotational speed of the engine.
  • the controller 20 can execute two types of regeneration control: time regeneration control that is automatically executed every predetermined time and manual regeneration control that is performed in response to a manual operation by an operator of the hydraulic excavator.
  • the regeneration control has an influence on the operation of the hydraulic excavator, for example, the fuel efficiency is deteriorated or the output of the engine 85 is lowered.
  • the controller 20 performs control so that such an influence is reduced although the regeneration effect of the DPF is small.
  • manual regeneration control control with greater regeneration effect is performed. At this time, for example, work using the hydraulic excavator cannot be performed, or the work content is limited, and time regeneration control is performed for the operation of the hydraulic excavator. Greater impact.
  • the controller 20 transmits the sensor data of the PM accumulation amount detected by the DPF differential pressure sensor 15d after the regeneration is completed, together with event data indicating that the regeneration control is completed.
  • the base station BC when the accumulated amount of PM when the time regeneration control is completed is equal to or greater than a predetermined threshold value, that is, when the accumulated amount of PM is not sufficiently lowered even though the time regeneration control is executed. In this case, the operation level of the hydraulic excavator is classified into the third level. Then, display data including a predetermined procedure for eliminating the clogging of the DPF is transmitted to the management terminal TM in association with the ID for identifying the hydraulic excavator. As a result, the red symbol 104 representing the third level is displayed at the position of the excavator on the display device 44 of the management terminal TM.
  • the operator of the management terminal TM recognizes that it is necessary to take some measures on the excavator by visually recognizing the red symbol 104. Then, the selection operation of the hydraulic excavator is executed. At this time, the display device 44 displays a predetermined procedure for eliminating the clogging of the DPF based on the display data transmitted from the base station BC. For example, a message such as “Please request the hydraulic excavator operator to perform manual regeneration” is displayed. In response to this display, the operator of the management terminal TM requests the excavator operator to perform manual regeneration. The operator of the excavator causes the excavator controller 20 to execute manual regeneration control by an operation such as pressing a manual regeneration button.
  • the hydraulic excavator controller 20 transmits to the base station BC the event data indicating the completion of the manual regeneration control and the sensor data of the PM accumulation amount after the completion of the manual regeneration control.
  • the base station BC reclassifies the operation level of the hydraulic excavator from the sensor data. For example, if the amount of accumulated PM has fallen sufficiently, it is reclassified to the first level, and the symbol on the management terminal TM is changed to the green symbol 106.
  • the hydraulic excavator is again classified into the third level.
  • the red symbol 104 representing the third level is continuously displayed on the display device 44 of the management terminal TM.
  • a procedure different from the previous one is displayed. For example, it is instructed to go to the site and perform a failure diagnosis, or to instruct whether or not the DPF differential pressure sensor 15d itself has failed.
  • the display device 44 displays the operation level of each hydraulic excavator and the date and time indicating the time when the hydraulic excavator is classified into the operation level. Therefore, the operator of the management terminal TM recognizes that the situation has changed since the last time the base station BC was classified into the third level, even if the excavator was classified into the third level again. Can do. Further, the arrangement order of the work machines displayed in the work machine list 102 may be the order of the operation level classification date (descending order). In this way, work machines whose operation status has recently changed are arranged at the top of the work machine list 102.
  • the base station BC classifies the operation level of the hydraulic excavator by determining the signs of abnormality that cannot be determined by the hydraulic excavator based on the state data transmitted from the hydraulic excavator. Then, by notifying the operator of the operation level and the procedure of the treatment to be performed, problems that hinder the operation of the hydraulic excavator can be prevented in advance. In other words, it is possible to present a coping procedure that can be solved by the operator of the hydraulic excavator before the alarm data is transmitted and the repair / inspection by the service person becomes necessary. The procedure for repair / inspection is shown only when the problem cannot be solved even in accordance with the coping procedure. At this time, since the operator of the management terminal TM can obtain information on what kind of problem the hydraulic excavator has, it is possible to smoothly prepare for repair and inspection by a service person. Become.
  • the hydraulic excavator of the present embodiment detects the temperature of the engine coolant using the engine coolant temperature sensor 15w. Further, the temperature of the hydraulic oil that drives the hydraulic motor and the hydraulic cylinder is detected by the hydraulic oil temperature sensor 14t. Furthermore, the outside air temperature of the place where the hydraulic excavator is operating is detected by an outside air temperature sensor (not shown). The operation level classification using the data output from each of these sensors will be described below.
  • These sensor data detected in the hydraulic excavator are periodically transmitted to the base station BC by the controller 20 of the hydraulic excavator.
  • the base station BC calculates the average temperature of the engine coolant temperature from the temperature of the engine coolant transmitted from each hydraulic excavator within the last hour.
  • the average temperature is calculated for the hydraulic oil temperature and the outside air temperature.
  • the base station BC transmits the latest temperature (engine cooling water temperature, hydraulic oil temperature, outside air temperature) transmitted from the hydraulic excavator, each of the above average temperatures, and the hydraulic excavator from the hydraulic excavator in the past.
  • the operation level of the excavator is classified based on the temperature etc.
  • the procedure of the treatment which should be performed with respect to the hydraulic excavator is displayed on the display device 44 by transmitting the display data to the management terminal TM.
  • examples of operation level classification will be given.
  • Each of the coolant temperature and hydraulic oil temperature detected in a certain hydraulic excavator is based on the average value of the temperature detected in each hydraulic excavator. If it is also very high (if there is a difference that exceeds a second threshold that is greater than the first threshold), then the excavator radiator is considered to be quite clogged. If this situation is left unattended, a serious failure may occur, so the base station BC classifies the excavator to the third level. At this time, the display device 44 is urged to check the radiator.
  • the hydraulic excavator is configured to transmit alarm data indicating an overheat warning when the coolant temperature becomes a certain value or higher.
  • the base station BC receives alarm data indicating an overheat warning from the hydraulic excavator even though the coolant temperature and hydraulic oil temperature detected by the hydraulic excavator are not significantly different from the average temperature, It is determined that an abnormality is occurring in the electric system of the hydraulic excavator. Then, the hydraulic excavator is classified into the third level. At this time, the display device 44 is urged to check the electrical system of the hydraulic excavator.
  • the base station BC determines signs of abnormality that cannot be determined by the hydraulic excavator based on not only the status data transmitted from the hydraulic excavator but also the status data transmitted from other hydraulic excavators.
  • the operation level of the hydraulic excavator is classified by comparing the temperature detected in the hydraulic excavator with the temperature detected in another hydraulic excavator). Then, by notifying the operator of the operation level and the procedure of the treatment to be performed, problems that impede the operation of the hydraulic excavator can be prevented.
  • different work procedures are displayed on the management terminal TM even at the same third level. This is because, even if classified into the same third level, what kind of problem can be considered and the classification to the third level is different, so the actions necessary to solve the problem are also different It is.
  • FIG. 10 is a flowchart of the operation level classification process of the excavator by the base station BC. This processing is executed by the control device 34 of the base station BC reading a control program stored in advance in a storage medium (not shown) (for example, ROM). The control device 34 classifies the operation level of each hydraulic excavator by repeatedly executing the processing shown in FIG.
  • step S10 the control device 34 determines whether sensor data of the DPF differential pressure sensor 15d has been received from the hydraulic excavator.
  • the process proceeds to step S20, and a classification process based on the differential pressure sensor described later is executed.
  • the process proceeds to step S30.
  • step S30 the controller 34 determines whether sensor data from a temperature sensor such as the engine coolant temperature sensor 15w has been received from the hydraulic excavator.
  • a temperature sensor such as the engine coolant temperature sensor 15w
  • the process proceeds to step S40, and a classification process based on the temperature sensor described later is executed.
  • FIG. 11 is a flowchart of the classification process based on the differential pressure sensor called in step S20 of FIG.
  • This process is a process included in the control program executed by the control device 34.
  • the control device 34 determines whether or not event data indicating completion of execution of time reproduction control has been received. If this event data has been received, the process proceeds to step S110 to determine whether or not the sensor value (PM accumulation amount) at the time of completion of the time regeneration control exceeds a predetermined threshold value. If the sensor value exceeds the predetermined threshold value, the process proceeds to step S120, and the hydraulic excavator is classified into the third level.
  • step S130 the procedure for executing the manual regeneration control is presented to the operator as a countermeasure.
  • display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM.
  • the management terminal TM displays a symbol 104 representing the third level on the map 101 and displays the above procedure according to the selection operation by the operator.
  • step S110 if the sensor value is equal to or smaller than the predetermined threshold value in step S110, the process proceeds to step S180, and the control device 34 classifies the hydraulic excavator into the first level. Then, display data indicating that the hydraulic excavator is classified into the first level is transmitted to the management terminal TM.
  • step S140 the control device 34 determines whether or not event data indicating completion of execution of the manual regeneration control has been received. If this event data has not been received, the process proceeds to step S180, and the control device 34 classifies the hydraulic excavator to the first level. Then, display data indicating that the hydraulic excavator is classified into the first level is transmitted to the management terminal TM. On the other hand, if the execution of the manual regeneration control has been completed, the process proceeds to step S150.
  • step S150 the control device 34 determines whether or not the sensor value (PM accumulation amount) at the time of completion of the manual regeneration control exceeds a predetermined threshold value. If the sensor value exceeds the predetermined threshold value, the process proceeds to step S160, and the hydraulic excavator is classified into the third level. Then, in the subsequent step S170, a procedure different from the execution of the manual regeneration control such as an inspection by a service person as a countermeasure is presented to the operator. That is, display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM. In response to the reception of the display data, the management terminal TM displays a symbol 104 representing the third level on the map 101 and displays the above procedure according to the selection operation by the operator.
  • the sensor value PM accumulation amount
  • step S150 if the sensor value is equal to or smaller than the predetermined threshold value in step S150, the process proceeds to step S180, and the control device 34 classifies the hydraulic excavator to the first level. Then, display data indicating that the hydraulic excavator is classified into the first level is transmitted to the management terminal TM.
  • FIG. 12 is a flowchart of the classification process based on the temperature sensor, which is called in step S40 of FIG.
  • This process is a process included in the control program executed by the control device 34.
  • the control device 34 determines whether alarm data representing an overheat warning is received from the hydraulic excavator. If this alarm data has been received, the process proceeds to step S320, and it is determined whether the engine coolant temperature and the hydraulic oil temperature are each higher than the average temperature by a predetermined amount or more. When these temperatures are higher than the average temperature by a predetermined amount or more, the process proceeds to step S330, and the hydraulic excavator is classified into the third level.
  • a procedure such as inspection of the work machine by the service person is presented to the operator as a countermeasure. That is, display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM. In response to the reception of the display data, the management terminal TM displays a symbol 104 representing the third level on the map 101 and displays the above procedure according to the selection operation by the operator.
  • step S350 the control device 34 classifies the hydraulic excavator into the third level (2-5 described above).
  • step S360 a procedure such as an electrical system check is presented to the operator as a countermeasure. That is, display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM.
  • the management terminal TM displays a symbol 104 representing the third level on the map 101 and displays the above procedure according to the selection operation by the operator.
  • step S210 the control device 34 compares the hydraulic oil temperature and the engine coolant temperature with respective average temperatures. And the difference with each average value of these two temperatures is calculated. If these two differences are each greater than or equal to the second threshold, the process proceeds from step S210 to step S220.
  • step S220 the control device 34 classifies the hydraulic excavator into the third level (2-3 described above). Then, in the subsequent step S230, a procedure such as inspection of the work machine by a service person is presented to the operator as a countermeasure. That is, display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM.
  • step S240 the controller 34 determines whether the difference from the average hydraulic oil temperature is less than the first threshold and whether the difference from the average engine coolant temperature is equal to or greater than the second threshold. Determine whether or not. If this condition is satisfied, the process proceeds to step S250.
  • step S250 the control device 34 classifies the hydraulic excavator into the third level (2-4 described above). Then, in the subsequent step S260, a procedure such as an inspection of the engine cooling system is presented to the operator as a countermeasure. That is, display data representing that the excavator is classified into the third level and the above procedure is transmitted to the management terminal TM.
  • step S240 the control device 34 determines whether or not the difference between the above two average temperatures is equal to or greater than the first threshold value. If this condition is satisfied, the process proceeds to step S280.
  • step S280 the control device 34 classifies the hydraulic excavator into the second level (2-2 described above). Then, in the subsequent step S290, the operator is informed that attention should be paid to future transition as a coping method. That is, display data representing that the excavator is classified into the second level and the above procedure is transmitted to the management terminal TM.
  • step S270 If a negative determination is made in step S270, the process proceeds to step S300.
  • step S300 the control device 34 classifies the hydraulic excavator into the first level (2-1 described above).
  • the hydraulic excavator management system provides the following operational effects.
  • the receiver 31 receives from the hydraulic excavator sensor data that indicates the state of each part of the hydraulic excavator and alarm data that indicates that the hydraulic excavator has determined that an abnormality has occurred in the hydraulic excavator. Based on the sensor data received by the receiver 31, the control device 34 classifies the operating state of the hydraulic excavator into one of four operating levels. Since it did in this way, failure of a working machine can be prevented beforehand.
  • the control device 34 Based on the classified operation level of the hydraulic excavator, the control device 34 transmits display data including a coping method necessary for bringing the hydraulic excavator to a normal state via the modem 33 to the management terminal TM. Then, the management terminal TM operator is notified of the coping method. Since it did in this way, the operator can select the exact coping method, without depending on own ability and experience.
  • the receiver 31 receives event data transmitted from the hydraulic excavator in response to execution of the reported countermeasure method. Based on the received event data, the control device 34 again classifies the operating state of the excavator into one of the four operating levels. Since it did in this way, it becomes possible to show the 2nd, 3rd coping method to the operator of management terminal TM, when a problem is not solved only by the reported coping method.
  • the control device 34 selects at least one of a plurality of countermeasures for each classified operation level of the excavator and notifies the operator of the management terminal TM. In other words, even if the operation level is the same, different management methods are notified to the operator of the management terminal TM according to the reason why the operation level is classified. Since it did in this way, even if it is the same operation level, it becomes possible to show an optimal coping method to an operator, respectively, and it can cope with a problem of a hydraulic shovel more appropriately.
  • the receiver 31 receives the current position of the excavator.
  • the control device 34 displays the map 101 on the display screen of the display device 44 by transmitting display data to the management terminal TM via the modem 33, and corresponds to the current position of the hydraulic excavator received by the receiver 31.
  • Symbols 103 to 106 representing the operation levels of the classified hydraulic excavators are superimposed on the map 101 and displayed at the positions. Since it did in this way, the operator of management terminal TM can grasp
  • the base station BC may classify the operation level based on the type of the engine or the like constituting the hydraulic excavator. This is because work machines equipped with different types of engines transmit different types of status data. In addition, for example, the value of “100” represents a different amount of sensor value, and even in the same state data, the meaning may be different. It is desirable to change the classification method every time.
  • the base station BC may classify the operation level based on past state data. For example, for a hydraulic excavator, if the cooling water temperature has gradually increased over the past week and the latest cooling water temperature is also present on the rising line, the temperature change will change over time (e.g. filter This may be due to clogging. On the other hand, when the cooling water temperature has suddenly increased from the temperature up to the previous day, there is a high possibility that an abnormality has occurred in the engine cooling water temperature sensor 15w, for example. Therefore, the base station BC presents different procedures for the former and the latter to the operator. As described above, by using the state data accumulated in the past for the classification of the operation level, it becomes possible to present a more accurate treatment procedure to the operator.
  • the base station BC may transmit some control signal to the hydraulic excavator via a transmitter such as a modem in accordance with an operation from the operator. For example, a restriction is imposed so that an operator of a hydraulic excavator does not execute manual regeneration control unnecessarily. That is, normally, manual regeneration control is not performed even if an operation such as pressing a manual regeneration button is performed.
  • a restriction is imposed so that an operator of a hydraulic excavator does not execute manual regeneration control unnecessarily. That is, normally, manual regeneration control is not performed even if an operation such as pressing a manual regeneration button is performed.
  • a countermeasure preparation signal is transmitted.
  • the hydraulic excavator prepares for manual regeneration control in response to receiving the countermeasure preparation signal. Specifically, the manual regeneration control execution restriction is released, and the manual regeneration control can be executed. Thereafter, the operator of the hydraulic excavator presses the manual regeneration button to cause the controller 20 of the hydraulic excavator to execute manual regeneration control.
  • a plurality of countermeasures may be displayed on the management terminal TM at the same time.
  • any one of the plurality of handling methods may be selected and displayed based on a predetermined priority order. If abnormalities occur at multiple locations, the operating levels are classified individually based on the status of each location, and the highest (bad) operating level is adopted as the operating level of the hydraulic excavator. To do. For example, when the DPF regeneration mechanism is classified as the third level and the engine cooling system is classified as the second level, the management terminal TM displays a display as if the operation level of the hydraulic excavator is the third level. Made.
  • Modification 6 In the embodiment described above, the management terminal TM and the base station BC are different devices, but these may be integrated devices.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)
  • Alarm Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 作業機管理装置は、作業機から、作業機の各部の状態を表すセンサデータと、作業機に異常が発生したと作業機が判断したことを表すアラームデータと、を受信する受信部と、受信部により受信されたセンサデータに基づいて、作業機の稼動状態を複数の所定の稼動レベルのいずれかに分類する稼動レベル分類部と、を備える。

Description

作業機管理装置
 本発明は、作業機管理装置に関する。
 油圧ショベルやクレーンなどの建設機械(作業機)は複数の部品から構成されており、各々の部品は故障することがある。故障内容は様々であり、簡単な故障であれば建設機械のオペレータが修理できるが、故障の内容によってはオペレータでは対応できず、メーカのサービスマンに連絡する必要がある。例えば特許文献1には、作業機の各部の状態が示す故障の対処法を演算し、その対処法を送信する故障対処法出力方法が記載されている。
国際公開番号WO01/073224号公報
 従来技術では、作業機から送信された警報信号や故障信号に基づいて故障の対処法を演算していたため、故障を未然に防止することができないという問題があった。
 本発明の第1の態様による作業機管理装置は、作業機から、作業機の各部の状態を表すセンサデータと、作業機に異常が発生したと作業機が判断したことを表すアラームデータと、を受信する受信部と、受信部により受信されたセンサデータに基づいて、作業機の稼動状態を複数の所定の稼動レベルのいずれかに分類する稼動レベル分類部と、を備える。
 本発明の第2の態様によると、第1の態様の作業機管理装置において、稼動レベル分類部により分類された作業機の稼動レベルに基づいて、作業機の稼動状態を正常状態にするために必要な対処方法をオペレータに報知する報知部を更に備えることが好ましい。
 本発明の第3の態様によると、第2の態様の作業機管理装置において、報知部により報知された対処方法に対応する準備動作を作業機に行わせるための対処準備信号を作業機に送信する送信部を更に備えてもよい。
 本発明の第4の態様によると、第2または第3の態様の作業機管理装置において、対処方法が実施されたことに応じて作業機から送信されるイベントデータを受信するイベント受信部を更に備え、稼動レベル分類部は、イベント受信部により受信されたイベントデータに基づいて、作業機の稼動状態を複数の稼動レベルのいずれかに再度分類するのが好ましい。
 本発明の第5の態様によると、第2~4のいずれか一の態様の作業機管理装置において、報知部は、稼動レベル分類部により分類された作業機の稼動レベルごとに、複数の対処方法から少なくとも1つを選択してオペレータに報知するのが好ましい。
 本発明の第6の態様によると、第1~5のいずれか一の態様の作業機管理装置において、作業機の現在位置を受信する位置受信部と、表示画面に地図を表示させると共に、表示画面の全体のうち、位置受信部により受信された作業機の現在位置に対応する位置に、稼動レベル分類部により分類された作業機の稼動レベルを表すシンボルを地図に重畳して表示させる表示部とを更に備えるのが好ましい。
 本発明によれば、作業機の故障を未然に防止することができる。
図1は、本発明の第1の実施の形態に係る油圧ショベルの管理システムの概略を説明する図である。 図2は、各油圧ショベルの構成を示す模式図である。 図3は、油圧ショベルの油圧回路の概略を示す模式図である。 図4は、油圧ショベルの各部の状態を検出して状態データを送信するための制御系のブロック図である。 図5は、センサ群に含まれるセンサを示す図である。 図6は、基地局の構成を示すブロック図である。 図7は、管理端末の構成を示すブロック図である。 図8は、データベースに格納されるデータの一例を示す図である。 図9は、管理端末の表示装置に表示される表示画面の一例を示す図である。 図10は、基地局による油圧ショベルの稼動レベル分類処理のフローチャートである。 図11は、図10のステップS20で呼び出される、差圧センサに基づく分類処理のフローチャートである。 図12は、図10のステップS40で呼び出される、温度センサに基づく分類処理のフローチャートである。
(第1の実施の形態)
 以下、図面を用いて、本発明を油圧ショベルの管理システムに適用した実施の形態について説明する。
 図1は、本発明の第1の実施の形態に係る油圧ショベルの管理システムの概略を説明する図である。本実施形態の管理システム1は、複数の作業地区A、B、Cでそれぞれ稼動する複数の油圧ショベルを管理するシステムである。地区Aでは油圧ショベルa1~anが、地区Bでは油圧ショベルb1~bnが、地区Cでは油圧ショベルc1~cnがそれぞれ稼働している。地区A、B、Cは同一の作業現場ではなく、地理的に離れている。各油圧ショベルはGPS受信機を搭載し、GPS衛星GSからの信号を受信して現在地を算出することができる。
 管理システム1には基地局BCが含まれる。基地局BCは、通信衛星CSを介した無線通信により、各油圧ショベルとのデータの授受が可能に構成されている。基地局BCは、一般公衆回線網PCを介して、複数の管理端末TM1~TMnに接続されている。詳細は後述するが、基地局BCはこれら複数の管理端末TM1~TMnに所定の表示データを送信することにより、各管理端末TM1~TMnの表示画面に油圧ショベルの稼動状態等を表示させることができる。また、各管理端末TM1~TMnにおいてオペレータにより所定の操作(例えばボタンの押下等)が為されると、各管理端末TM1~TMnから基地局BCに、当該操作に応じた操作データが送信される。
 この実施の形態では、各油圧ショベルが自身の各部の状態を検出し、検出した状態を表す状態データを基地局BCに送信する。本実施形態では、状態データには3種類のデータが含まれる。第1の種類のデータは、油圧ショベルが稼動に支障を来す何らかの異常を検知したことを表すデータである。第2の種類のデータは、油圧ショベルのユーザにより何らかの操作がなされたこと、および、その操作に応じた処理の実施が完了したことを表すデータである。第3の種類のデータは、例えば油圧ショベルに設けられたセンサにより検知されたセンサ量や、GPS受信機により算出された油圧ショベルの現在位置など、油圧ショベルの稼働状況を表すデータである。
 これら3種類のデータは、それぞれ適切なタイミングにおいて油圧ショベルから送信される。例えば第1の種類のデータであれば、当該データにより表される異常が検知されたタイミングにおいて送信される。また第2の種類のデータは、当該データにより表される操作や処理が完了したタイミングにおいて送信される。第3の種類のデータは、第1および第2の種類のデータを送信する際にそれらのデータに付随して送信される他、所定の周期(例えば数分~数時間)毎に送信されたり、あるいは当該データに対応する稼働状況(例えばセンサ量)が変化したことに応じて送信されたりする。以下の説明では、第1の種類のデータをアラームデータ、第2の種類のデータをイベントデータ、第3の種類の情報をセンサデータと呼ぶ。
(油圧ショベルの構成の説明)
 図2は、各油圧ショベルの構成を示す模式図である。油圧ショベルは、走行体81と、走行体81の上部に旋回可能に連結された旋回体82とを有する。旋回体82には、運転室83と、作業装置84と、エンジン85と、旋回モータ86とが設けられている。作業装置84は、旋回体82の本体に回動可能に取り付けられたブームBMと、ブームBMに回動可能に連結されたアームAMと、アームAMに回動可能に連結されたアタッチメント、たとえばバケットBKとからなる。ブームBMはブームシリンダC1により昇降され、アームAMはアームシリンダC2によりクラウドとダンプ操作が行われ、バケットBKはバケットシリンダC3によりクラウドとダンプ操作が行われる。走行体81には左右の走行用油圧モータ87、88が設けられている。
 図3は、油圧ショベルの油圧回路の概略を示す模式図である。エンジン85は油圧ポンプ2を駆動する。この油圧ポンプ2から吐出される圧油は、複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkでその方向と油量が制御され、上述した旋回油圧モータ86、左右の走行用油圧モータ87、88、油圧シリンダC1、C2、C3を駆動する。複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkはそれぞれ対応する複数のパイロットバルブ4s、4tr、4tl、4b、4aおよび4bkからそれぞれ供給されるパイロット圧力によって切換操作される。パイロットバルブ4s、4tr、4tl、4b、4aおよび4bkは、パイロット油圧ポンプ5から所定圧力のパイロット油圧が供給され、操作レバー4Ls、4Ltr、4Ltl、4Lb、4La、4Lbkの操作量に応じたパイロット圧力を出力する。複数のコントロールバルブ3s、3tr、3tl、3b、3aおよび3bkは1つのバルブブロックに集約される。また、複数のパイロットバルブ4s、4tr、4tl、4b、4aおよび4bkも1つのバルブブロックに集約される。
 図4は、油圧ショベルの各部の状態を検出して状態データを送信するための制御系のブロック図である。油圧ショベルには、上述した各部の状態を検出する複数のセンサから成るセンサ群10が搭載されている。センサ群10から出力される状態検出信号は、所定のタイミングでコントローラ20に読み込まれる。コントローラ20は走行操作時間、旋回操作時間、およびフロント(掘削)操作時間を積算するためのタイマ機能20aを有している。コントローラ20は読み込んだ状態検出信号に基づいて、走行操作時間、旋回操作時間、フロント操作時間を算出する。これら算出された操作時間は記憶装置21に格納される。油圧ショベルは、エンジン85を起動するキースイッチ22と、エンジン85の稼働時間を計測するアワメータ23も有している。
 油圧ショベルにはGPS受信機24が搭載されている。GPS受信機24は、GPS衛星GSからのGPS信号を受信し、GPS信号に基づいて油圧ショベルの位置を算出してコントローラ20へ出力する。油圧ショベルの運転席には各種情報を表示するためのモニタ25が設けられている。
 コントローラ20は時計機能20bを有しており、キースイッチ22のオン時刻、オフ時刻、エンジン始動時刻、エンジン停止時刻を認識することができる。これらの時刻も記憶装置21に格納される。アワメータ23の計測値も所定のタイミングでコントローラ20に読み込まれ、記憶装置21に格納される。記憶装置21に記憶された走行、旋回およびフロントの操作時間とキースイッチオン時刻などは所定のタイミングで送信機30を介して送信される。送信機30から送信された電波は衛星CSを経由して基地局BCで受信される。コントローラ20には受信機40も接続されている。受信機40は、通信衛星CSを介して基地局BCから送られてくる対処準備信号などの信号を受信してコントローラ20へ送出する。
 図5は、センサ群10に含まれるセンサを示す図である。センサ群10は、メイン油圧回路系の圧力状態を検出する圧力センサ11を備えている。すなわち、油圧ポンプ2の吐出圧力を計測する圧力センサ11pと、走行油圧モータ87、88の駆動圧力を計測する圧力センサ11tr、11tlと、旋回油圧モータ86の駆動圧力を計測する圧力センサ11sと、ブーム油圧シリンダC1の駆動圧力を計測する圧力センサ11bと、アーム油圧シリンダC2の駆動圧力を計測する圧力センサ11aと、バケット油圧シリンダC3の駆動圧力を計測する圧力センサ11bkとを備えている。
 センサ群10は、パイロット油圧回路系の圧力状態を検出する圧力センサ13も備えている。すなわち、走行油圧パイロットバルブ4tr、4tlから出力されるパイロット圧力Ptr、Ptlを計測する圧力センサ13tr、13tlと、旋回油圧パイロットバルブ4sから出力されるパイロット圧力Psを計測する圧力センサ13sと、ブーム油圧パイロットバルブ4bから出力されるパイロット圧力Pbを計測する圧力センサ13bと、アーム油圧パイロットバルブ4aから出力されるパイロット圧力Paを計測する圧力センサ13aと、バケット油圧パイロットバルブ4bkから出力されるパイロット圧力Pbkを計測する圧力センサ13bkとを有している。
 走行操作時間は、走行パイロット圧力センサ13tr、13tlで検出した圧力PtrまたはPtlが所定値以上である時間を積算した時間である。旋回操作時間は、旋回パイロット圧力センサ13sで検出した圧力Psが所定値以上である時間を積算した時間である。フロント操作時間は、ブーム、アームおよびバケット用パイロット圧力センサ13b、13aおよび13bkのいずれかで検出した圧力Pb、Pa、Pbkが所定値以上である時間を積算した時間である。
 センサ群10はまた、メイン油圧ラインに配設されたフィルタの目詰まりを検出する圧力センサ14f、油圧モータや油圧シリンダを駆動する作動油の温度を検出する温度センサ14tも備えている。さらにセンサ群10は、エンジン系統の状態を検出する各種のセンサ15を有している。すなわち、排気ガスに含まれる粒子状物質(PM)を捕集するディーゼル微粒子捕集フィルター(DPF)の上流側と下流側の前後差圧を検出するDPF差圧センサ15dと、エンジン85の冷却水温を検出する冷却水温度センサ15wと、エンジンオイルの圧力を検出するエンジンオイル圧力センサ15opと、エンジンオイルの温度を検出するエンジンオイル温度センサ15otと、エンジンオイルのレベルを検出するエンジンオイルレベルセンサ15olと、エアフィルタの目詰まりを検出する目詰まりセンサ15atと、燃料残量を計測する燃料残量センサ15fと、バッテリの充電電圧を検出するバッテリ電圧センサ15vと、エンジン回転数を検出する回転数センサ15rとを有している。
(基地局BCの構成の説明)
 図6は、基地局BCの構成を示すブロック図である。基地局BCには、通信衛星CSから送信されてくる無線信号を受信し、油圧ショベルにより送信された状態データを復元する受信機31と、受信機31により復元された状態データを一時的に格納する記憶装置32と、管理端末へ送信すべきデータを一般公衆回線網PCを介して送信するための送信部としてのモデム33と、これらの各種機器を制御する制御装置34とを備えている。
 基地局BCは更に、油圧ショベルにより送信された状態データを集約して記憶するデータベース35を備える。制御装置34は、記憶装置32に一時的に格納された状態データを、所定の様式に整形してデータベース35へ格納する。データベース35の詳細については後に詳述する。
(管理端末TMの構成の説明)
 図7は、管理端末TMの構成を示すブロック図である。管理端末TMには、基地局BCから一般公衆回線網PCを経由して送られてくる信号を受信するモデム41と、モデム41で受信した信号を格納する記憶装置42と、種々の演算処理を実行する処理装置43と、処理装置43に接続された表示装置44と、キーボード46とを備えている。処理装置43は、基地局BCから送信された表示データに基づいて、表示装置44の表示画面に各油圧ショベルの状態や現在位置等を表示する。また、キーボード46等の入力装置によってなされた操作に応じて、基地局BCへ操作データを送信する。
(データベース35の構成の説明)
 図8は、データベース35に格納されるデータの一例を示す図である。データベース35には、各油圧ショベルから送信された状態データが、当該状態データを識別するための通し番号(No.)と、当該油圧ショベルを識別するための作業機IDと、当該状態データの受信日時(または送信日時)とを付加されて、時系列順に集約される。
 基地局BCの制御装置34は、油圧ショベルから状態データを受信すると、その状態データに上記の各情報を付加してデータベース35へ格納(追記)する。そして、後述する稼動レベルの分類処理においてデータベース35を参照することにより稼動レベルを分類したり、データベース35に格納されている状態データに基づいて表示データを作成し、管理端末TMに送信したりする。
(基地局BCによる油圧ショベルの稼動レベル分類の説明)
 本実施形態の基地局BCは、油圧ショベルから状態データが送信される度に、当該状態データやデータベース35に格納されている過去の状態データ等に基づいて、当該油圧ショベルの稼動レベルを4つのレベルに分類する。以下、これら4つの稼動レベルについて説明する。
 第1レベルは、油圧ショベルの稼動に障害となる要素が見当たらないことを表すレベルである。管理端末TMのオペレータや油圧ショベルのユーザは、第1レベルに分類されている油圧ショベルに対して、特別な操作を行う必要はない。
 第2レベルは、油圧ショベルにおいて、障害の兆候が見受けられることを表すレベルである。管理端末TMのオペレータや油圧ショベルのユーザは、第2レベルに分類されている油圧ショベルについて、すぐに何らかの特別な操作を行う必要はないものの、今後の状態の推移を注視する必要がある。
 第3レベルは、油圧ショベルにおいて、重大な障害に繋がる何らかの問題が発生していることを表すレベルである。管理端末TMのオペレータは、第3レベルに分類された油圧ショベルについて、例えば油圧ショベルのユーザに特定の操作を指示したり、あるいは後述する対処準備信号を油圧ショベルに送信する等、何らかの特別な処置を施す必要がある。
 第4レベルは、油圧ショベル周囲の環境や送信機30の故障など何らかの理由によって、油圧ショベルと基地局BCとの通信が途絶していることを表すレベルである。この稼動レベルは例外的に、基地局BCによる分類が、油圧ショベルから状態データが送信された際以外のタイミングで為される。基地局BCは例えば、一定時間以上状態データが送信されていない油圧ショベルについて、その油圧ショベルを第4レベルに分類する。
(管理端末TMの表示画面の説明)
 図9は、管理端末TMの表示装置44に表示される表示画面の一例を示す図である。表示装置44には、地図101と、作業機リスト102が表示される。管理端末TMのオペレータは、キーボード46等を操作することにより、地図101の縮尺を変更したり、スクロールさせたりすることができる。処理装置43は、基地局BCから受信した表示データに基づいて、地図101に重畳して、各油圧ショベルの現在位置に応じた位置へ、その油圧ショベルを表すシンボル103~106を表示する。つまり、オペレータは地図101を見て、油圧ショベルがどの地域で何台稼動しているかを直感的に把握することができる。
 油圧ショベルのシンボル103~106は、各油圧ショベルの稼動レベルに応じて、それぞれ異なる態様で表示される。本実施形態では、シンボル103~106は、それぞれ各油圧ショベルの稼動レベルに応じた色で表示されている。例えば、第1レベルの油圧ショベルを表すシンボル106は緑、第2レベルの油圧ショベルを表すシンボル105は黄、第3レベルの油圧ショベルを表すシンボル104は赤、第4レベルの油圧ショベルを表すシンボル103は黒、というように、それぞれ異なる色のシンボルによって、各油圧ショベルの稼動レベルが表されている。
 地図101の下には、当該地図101に含まれる油圧ショベルのリストである作業機リスト102が表示されている。作業機リスト102には、各油圧ショベルについて、その稼動レベル102a、モデルナンバー102b、シリアルナンバー102cなど、油圧ショベルの属性が一覧表示されている。管理端末TMのオペレータはキーボード46等によって、いずれかの油圧ショベルの選択操作を行うことが可能である。例えばマウスにより稼動レベルを表すシンボルをクリックする等の選択操作が為されると、処理装置43は表示装置44の表示内容を、選択操作の対象となった油圧ショベルに関する情報を表示する画面に切り替える。切り替わった後の画面には、当該油圧ショベルの状態に加えて、その油圧ショベルが現在の稼動レベルに分類された理由が表示される。また、稼動レベルが第2レベルや第3レベルの場合には、更に、油圧ショベルに対して行うべき処置の手順が表示される。
 以上の表示内容は、全て基地局BCから送信された表示データに基づくものである。つまり、管理端末TMの処理装置43は、基地局BCから送信された表示データに基づいて、表示装置44に所定の内容を表示する。
(基地局BCによる稼動レベルの分類の具体例)
 次に、基地局BCがどのように稼動レベルの分類を行うのか、(1)DPFの再生機構の例と、(2)エンジンの冷却機構の例を用いて説明する。なお実際には、基地局BCはこれら以外の各センサからの出力も用いて油圧ショベルの稼動レベルを分類する。
(1)DPFの再生機構
 本実施形態の油圧ショベルが備えるエンジン85は、排気ガスの排出経路にDPFを備えている。DPF差圧センサ15dはDPFの前後の圧力の差を検知する。この圧力の差は、DPFへのPMの堆積量(DPFの目詰まりの度合い)を表している。検出されたPMの堆積量は、センサデータとして、所定値以上の変化が発生する度に基地局BCに送信される。
 油圧ショベルのコントローラ20は、DPFが目詰まりしてしまうことを防止するため、DPFの再生制御を実行する。再生制御は、例えばポスト噴射を実行したり、エンジンの回転数を上げたりすることによって、DPFを通過する排気の温度を上昇させ、PMを燃焼させる制御である。コントローラ20は、所定時間毎に自動的に実行する時間再生制御と、油圧ショベルのオペレータによる手動操作に応じて実行する手動再生制御と、の2種類の再生制御を実行可能である。再生制御には、例えば燃費が悪くなったり、エンジン85の出力が落ちたりといった、油圧ショベルの稼動に対する影響がある。コントローラ20は時間再生制御において、DPFの再生効果が小さいもののこのような影響が少なくなるような制御を行う。また、手動再生制御においてより再生効果が大きい制御を行うが、このときは、例えば油圧ショベルを用いた作業が行えなかったり、あるいはその作業内容に制限が出る等、油圧ショベルの稼動に時間再生制御より大きな影響が出る。
 コントローラ20は、再生制御の実行が完了すると、再生制御の実行が完了したことを表すイベントデータと共に、再生完了後にDPF差圧センサ15dにより検出されたPMの堆積量のセンサデータを送信する。基地局BCは、時間再生制御完了時のPMの堆積量が所定のしきい値以上である場合、すなわち、時間再生制御を実行したにも関わらず、PMの堆積量が十分に下がらなかった場合には、その油圧ショベルの稼動レベルを第3レベルに分類する。そして、その油圧ショベルを特定するID等に関連付けて、DPFの目詰まりを解消させるための所定の手順が含まれた表示データを、管理端末TMに送信する。これにより、管理端末TMの表示装置44には、その油圧ショベルの位置に第3レベルを表す赤いシンボル104が表示されることになる。
 管理端末TMのオペレータは、この赤いシンボル104を視認することで、当該油圧ショベルに何らかの処置を施す必要があることを認識する。そして、その油圧ショベルの選択操作を実行する。このとき表示装置44には、基地局BCから送信された表示データに基づいて、DPFの目詰まりを解消させるための所定の手順が表示される。例えば、「油圧ショベルのオペレータに対し、手動再生の実施を依頼して下さい」のような表示が為される。管理端末TMのオペレータはこの表示に応じて、油圧ショベルのオペレータに対して手動再生の実施を依頼する。油圧ショベルのオペレータは手動再生ボタンを押下する等の操作により、油圧ショベルのコントローラ20に手動再生制御を実行させる。
 手動再生制御では、上述した時間再生制御よりも高い温度の排気がDPFに送り込まれ、時間再生制御では燃焼しきれなかったPMが燃焼されることにより、時間再生制御では解消できなかったDPFの目詰まりが解消される可能性がある。手動再生制御が完了すると、油圧ショベルのコントローラ20は基地局BCに、手動再生制御が完了したことを表すイベントデータと共に、手動再生制御完了後のPMの堆積量のセンサデータを送信する。基地局BCはこのセンサデータから、当該油圧ショベルの稼動レベルを再分類する。例えば、PMの堆積量が十分に下がっていた場合には第1レベルに再分類し、管理端末TM上のシンボルを緑色のシンボル106に変化させる。他方、手動再生制御を実行してもPMの堆積量が所定のしきい値未満まで下がらなかった場合には、その油圧ショベルを再度第3レベルに分類する。このとき管理端末TMの表示装置44には引き続き第3レベルを表す赤いシンボル104が表示されるが、当該油圧ショベルの選択操作がなされたときには、前回とは異なる手順が表示される。例えば、現場に移動して故障診断を行うよう指示したり、DPF差圧センサ15d自体が故障していないかを調べるよう指示したりする。
 なお、表示装置44には、各油圧ショベルの稼動レベルと共に、その油圧ショベルがその稼動レベルに分類された時点を表す日時が表示される。従って、管理端末TMのオペレータは、基地局BCが油圧ショベルを再度第3レベルに分類した場合であっても、前回第3レベルに分類されたときから状況に変化があったことを認識することができる。また、作業機リスト102に表示される作業機の並び順を、稼動レベルの分類日時順(降順)にしてもよい。このようにすることで、作業機リスト102の上位には、最近稼働状況に変化があった作業機が並ぶことになる。
 このように、基地局BCは、油圧ショベルでは判断しきれない異常の兆候を油圧ショベルから送信された状態データに基づいて判断することにより、当該油圧ショベルの稼動レベルを分類する。そして、オペレータにその稼動レベルおよび実施すべき処置の手順を報知することで、油圧ショベルの稼動に支障を来すような問題を未然に防止する。換言すれば、アラームデータが送信されるような状態になり、サービスマンによる修理・点検等が必要となってしまう前に、油圧ショベルのオペレータ自身で解決できる対処手順を提示することができる。そして、その対処手順に従っても問題が解決できなかった場合に初めて、修理・点検等の手順が示される。このとき、管理端末TMのオペレータは、油圧ショベルのどの箇所にどのような問題があるか、という情報を得ることができるので、サービスマンによる修理・点検の事前準備をスムーズに行うことが可能になる。
(2)エンジンの冷却機構
 本実施形態の油圧ショベルは、エンジン冷却水温度センサ15wによってエンジン冷却水の温度を検出する。また、作動油温度センサ14tによって、油圧モータや油圧シリンダを駆動する作動油の温度を検出する。更に、図示しない外気温センサにより、油圧ショベルが稼動している場所の外気温度を検出する。以下、これらの各センサが出力するデータを用いた稼動レベルの分類について説明する。
 油圧ショベルにおいて検出されたこれらのセンサデータは、油圧ショベルのコントローラ20によって、基地局BCに定期的に送信される。基地局BCは、例えば直近1時間以内に各油圧ショベルから送信されてきたエンジン冷却水の温度から、エンジン冷却水温度の平均温度を算出する。作動油温度、外気温度についても同様に、平均温度を算出する。
 基地局BCは、ある油圧ショベルについて、その油圧ショベルから送信されてきた最新の温度(エンジン冷却水の温度、作動油温度、外気温度)、上記の各平均温度、過去にその油圧ショベルから送信されてきた温度などに基づいて、その油圧ショベルの稼動レベルを分類する。そして、管理端末TMに表示データを送信することにより、その油圧ショベルに対して実行すべき処置の手順を表示装置44に表示させる。以下、稼動レベルの分類例を挙げる。
(2-1)平常時
 ある油圧ショベルにおいて検出された冷却水温度と作動油温度のそれぞれについて、各油圧ショベルにおいて検出された温度の平均値との差が一定範囲内であれば、エンジンの冷却系に特に問題はないと考えられるので、基地局BCはその油圧ショベルを第1レベルに分類する。
(2-2)第1しきい値を超える場合
 ある油圧ショベルにおいて検出された冷却水温度と作動油温度のそれぞれが、各油圧ショベルにおいて検出された温度の平均値よりもある程度高ければ(第1のしきい値よりも大きな差があれば)、その油圧ショベルのラジエータがある程度目詰まりしていると考えられる。そこで基地局BCは、その油圧ショベルを第2レベルに分類する。このとき表示装置44には、今後の推移に注視するよう促す表示がなされる。
(2-3)第1しきい値より大きい第2しきい値を超える場合
 ある油圧ショベルにおいて検出された冷却水温度と作動油温度のそれぞれが、各油圧ショベルにおいて検出された温度の平均値よりも非常に高ければ(第1のしきい値より大きい第2のしきい値を超える差があれば)、その油圧ショベルのラジエータがかなり目詰まりしていると考えられる。この状況を放置してしまうといずれ深刻な故障が発生することも考えられるため、基地局BCはその油圧ショベルを第3レベルに分類する。このとき表示装置44には、ラジエータを点検するよう促す表示がなされる。
(2-4)冷却水温度のみが高い場合
 ある油圧ショベルにおいて検出された作動油温度は平均温度と大差ないにも関わらず、同じ油圧ショベルにおいて検出された冷却水温度は平均温度よりも十分に高い(第2のしきい値よりも大きな差がある)場合、その油圧ショベルのエンジンの冷却系に異常が発生しつつあると考えられる。そこで基地局BCは、その油圧ショベルを第3レベルに分類する。このとき表示装置44には、エンジンの冷却系を点検するよう促す表示がなされる。
(2-5)アラームデータが送信された場合
 本実施形態の油圧ショベルは、冷却水温度が一定値以上になると、オーバーヒート警告を表すアラームデータを送信するように構成されている。基地局BCは、ある油圧ショベルにおいて検出された冷却水温度と作動油温度のそれぞれが、平均温度と大差ないにも関わらず、その油圧ショベルからオーバーヒート警告を表すアラームデータが送信されてきた場合、その油圧ショベルの電気系に異常が発生しつつあると判断する。そして、その油圧ショベルを第3レベルに分類する。このとき表示装置44には、当該油圧ショベルの電気系を点検するよう促す表示がなされる。
 以上のように、基地局BCは、油圧ショベルでは判断しきれない異常の兆候を、その油圧ショベルから送信された状態データのみならず、他の油圧ショベルから送信された状態データに基づいて判断する(例えば、その油圧ショベルにおいて検出された温度と他の油圧ショベルにおいて検出された温度とを比較する)ことにより、当該油圧ショベルの稼動レベルを分類する。そして、オペレータにその稼動レベルおよび実施すべき処置の手順を報知することで、油圧ショベルの稼動に支障をきたすような問題を未然に防止する。またこのとき、管理端末TMには、同じ第3レベルであってもそれぞれ異なる作業手順が表示される。これは、同じ第3レベルに分類された場合であっても、どのような問題が考えられるために第3レベルに分類したかが異なるため、その問題を解消するために必要な処置も異なるためである。
 図10は、基地局BCによる油圧ショベルの稼動レベル分類処理のフローチャートである。この処理は、基地局BCの制御装置34が、不図示の記憶媒体(例えばROM)に予め格納されている制御プログラムを読み込むことにより実行する。制御装置34は、図10に示す処理を繰り返し実行することにより、各油圧ショベルの稼動レベルを分類する。
 ステップS10において、制御装置34は、油圧ショベルからDPF差圧センサ15dのセンサデータを受信したか否かを判定する。DPF差圧センサ15dのセンサデータを受信した場合にはステップS20に進み、後述する差圧センサに基づく分類処理を実行する。他方、DPF差圧センサ15dのセンサデータを受信していない場合にはステップS30に進む。
 ステップS30では、制御装置34が、油圧ショベルからエンジン冷却水温度センサ15w等の温度センサからのセンサデータを受信したか否かを判定する。温度センサからのセンサデータを受信した場合にはステップS40に進み、後述する温度センサに基づく分類処理を実行する。他方、温度センサのセンサデータを受信していない場合には図10に示す処理を終了する。
 図11は、図10のステップS20で呼び出される、差圧センサに基づく分類処理のフローチャートである。この処理は、制御装置34が実行する制御プログラムに含まれる処理である。まずステップS100において、制御装置34は、時間再生制御の実行完了を表すイベントデータを受信したか否かを判定する。このイベントデータを受信していた場合にはステップS110に進み、時間再生制御完了時のセンサ値(PMの堆積量)が所定のしきい値を上回っているか否かを判定する。センサ値が所定のしきい値を上回っていた場合にはステップS120に進み、当該油圧ショベルを第3レベルに分類する。そして、続くステップS130において、対処方法として手動再生制御の実行の手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。管理端末TMではこの表示データの受信に応じて、地図101上に第3レベルを表すシンボル104を表示し、オペレータによる選択操作に応じて上記手順を表示する。
 他方、ステップS110においてセンサ値が所定のしきい値以下であった場合にはステップS180に進み、制御装置34は当該油圧ショベルを第1レベルに分類する。そして、当該油圧ショベルが第1レベルに分類されたことを表す表示データを管理端末TMに送信する。
 ステップS100において時間再生制御の実行完了を表すイベントデータが受信されていない場合にはステップS140に進む。そしてステップS140では、制御装置34が、手動再生制御の実行完了を表すイベントデータを受信したか否かを判定する。このイベントデータが受信されていない場合にはステップS180に進み、制御装置34は当該油圧ショベルを第1レベルに分類する。そして、当該油圧ショベルが第1レベルに分類されたことを表す表示データを管理端末TMに送信する。他方、手動再生制御の実行が完了していた場合にはステップS150に進む。
 ステップS150において制御装置34は、手動再生制御完了時のセンサ値(PMの堆積量)が所定のしきい値を上回っているか否かを判定する。センサ値が所定のしきい値を上回っていた場合にはステップS160に進み、当該油圧ショベルを第3レベルに分類する。そして、続くステップS170において、対処方法としてサービスマンによる点検など、手動再生制御の実行とは異なる手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。管理端末TMではこの表示データの受信に応じて、地図101上に第3レベルを表すシンボル104を表示し、オペレータによる選択操作に応じて上記手順を表示する。他方、ステップS150においてセンサ値が所定のしきい値以下であった場合にはステップS180に進み、制御装置34は当該油圧ショベルを第1レベルに分類する。そして、当該油圧ショベルが第1レベルに分類されたことを表す表示データを管理端末TMに送信する。
 図12は、図10のステップS40で呼び出される、温度センサに基づく分類処理のフローチャートである。この処理は、制御装置34が実行する制御プログラムに含まれる処理である。まずステップS200において、制御装置34は、油圧ショベルからオーバーヒート警告を表すアラームデータを受信したか否かを判定する。このアラームデータを受信していた場合にはステップS320に進み、エンジン冷却水の温度と作動油温度がそれぞれ平均温度より所定量以上高いか否かを判定する。これらの温度が平均温度より所定量以上高い場合にはステップS330に進み、当該油圧ショベルを第3レベルに分類する。そして、続くステップS340において、対処方法としてサービスマンによる作業機の点検等の手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。管理端末TMではこの表示データの受信に応じて、地図101上に第3レベルを表すシンボル104を表示し、オペレータによる選択操作に応じて上記手順を表示する。
 他方、ステップS320においてエンジン冷却水の温度と作動油温度がそれぞれ平均温度より所定量以上高くなかった場合にはステップS350に進む。ステップS350で制御装置34は、当該油圧ショベルを第3レベルに分類する(上述の2-5)。そして、続くステップS360において、対処方法として電気系の点検等の手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。管理端末TMではこの表示データの受信に応じて、地図101上に第3レベルを表すシンボル104を表示し、オペレータによる選択操作に応じて上記手順を表示する。
 ステップS200においてアラームデータが受信されていなかった場合、処理はステップS210に進む。ステップS210において制御装置34は、作動油温度とエンジン冷却水温度をそれぞれの平均温度と比較する。そして、それら2つの温度の、それぞれの平均値との差を算出する。これら2つの差がそれぞれ第2のしきい値以上である場合、処理はステップS210からステップS220に進む。ステップS220では制御装置34が、当該油圧ショベルを第3レベルに分類する(上述の2-3)。そして、続くステップS230において、対処方法としてサービスマンによる作業機の点検等の手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。
 ステップS210において否定判定がなされた場合、処理はステップS240に進む。ステップS240では制御装置34が、作動油温度の平均値との差が第1のしきい値未満であり、且つエンジン冷却水温度の平均値との差が第2のしきい値以上であるか否かを判定する。この条件が満たされていた場合にはステップS250に進む。ステップS250では制御装置34が、当該油圧ショベルを第3レベルに分類する(上述の2-4)。そして、続くステップS260において、対処方法としてエンジンの冷却系の点検等の手順をオペレータに提示する。すなわち、当該油圧ショベルが第3レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。
 ステップS240において否定判定がなされた場合、処理はステップS270に進む。ステップS240では制御装置34が、上述した2つの温度の平均値との差が、それぞれ第1のしきい値以上であるか否かを判定する。この条件が満たされていた場合にはステップS280に進む。ステップS280では制御装置34が、当該油圧ショベルを第2レベルに分類する(上述の2-2)。そして、続くステップS290において、対処方法として今後の推移に注意する旨をオペレータに提示する。すなわち、当該油圧ショベルが第2レベルに分類されたことと、上記手順とを表す表示データを管理端末TMに送信する。
 ステップS270において否定判定がなされた場合、処理はステップS300に進む。ステップS300では制御装置34が、当該油圧ショベルを第1レベルに分類する(上述の2-1)。
 上述した第1の実施の形態による油圧ショベルの管理システムによれば、次の作用効果が得られる。
(1)受信機31は、油圧ショベルから、油圧ショベルの各部の状態を表すセンサデータと、油圧ショベルに異常が発生したと油圧ショベルが判断したことを表すアラームデータとを受信する。制御装置34は、受信機31により受信されたセンサデータに基づいて、油圧ショベルの稼動状態を4つの稼動レベルのいずれかに分類する。このようにしたので、作業機の故障を未然に防止することができる。
(2)制御装置34は、分類した油圧ショベルの稼動レベルに基づいて、油圧ショベルの稼動状態を正常状態にするために必要な対処方法を含む表示データをモデム33を介して管理端末TMに送信し、管理端末TMのオペレータにその対処方法を報知する。このようにしたので、オペレータは自身の能力や経験に依存せずに、的確な対処方法を選択することができる。
(3)受信機31は、報知した対処方法が実施されたことに応じて油圧ショベルから送信されるイベントデータを受信する。制御装置34は、受信されたイベントデータに基づいて、油圧ショベルの稼動状態を4つの稼動レベルのいずれかに再度分類する。このようにしたので、報知した対処方法だけでは問題が解消しなかった場合に、管理端末TMのオペレータに第2、第3の対処方法を提示することが可能になる。
(4)制御装置34は、分類した油圧ショベルの稼動レベルごとに、複数の対処方法から少なくとも1つを選択して管理端末TMのオペレータに報知する。換言すれば、同じ稼動レベルであっても、その稼動レベルに分類した理由に応じて、それぞれ異なる対処方法を管理端末TMのオペレータに報知する。このようにしたので、同じ稼動レベルであっても、それぞれ最適な対処方法をオペレータに提示することが可能となり、油圧ショベルの問題により的確に対処することができる。
(5)受信機31は、油圧ショベルの現在位置を受信する。制御装置34は、モデム33を介して管理端末TMに表示データを送信することにより、表示装置44の表示画面に地図101を表示させると共に、受信機31により受信された油圧ショベルの現在位置に対応する位置に、分類した油圧ショベルの稼動レベルを表すシンボル103~106を地図101に重畳して表示させる。このようにしたので、管理端末TMのオペレータは、油圧ショベルの稼動位置を容易に把握することができる。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上述した実施形態において、基地局BCが、油圧ショベルを構成するエンジン等の種類に基づいて稼動レベルの分類を行うようにしてもよい。これは、異なる種類のエンジンが搭載されている作業機は、それぞれ異なる種類の状態データを送信するためである。また、例えば、「100」という値がそれぞれ異なる量のセンサ値を表すなど、同一の状態データであってもその意味するところが異なる可能性もあるので、そのような要素も考慮し、エンジンの種類毎に分類方法を変えることが望ましい。
(変形例2)
 基地局BCが、過去の状態データに基づいて稼動レベルの分類を行うようにしても良い。例えばある油圧ショベルについて、過去一週間の間、冷却水温度が徐々に上昇しており、最新の冷却水温度もその上昇ライン上に存在する場合には、その温度変化は経年変化(例えばフィルタの目詰まり等)によるものと考えられる。他方、前日までの温度から急に冷却水温度が上昇している場合には、例えばエンジン冷却水温度センサ15wに異常が発生した可能性が高い。そこで基地局BCは、前者と後者とで、異なる処置の手順をオペレータに提示する。このように、過去に蓄積した状態データを稼動レベルの分類に用いることで、より正確な処置手順をオペレータに提示することが可能になる。
(変形例3)
 管理端末TMのオペレータに処置手順を提示後、そのオペレータからの操作に応じて、基地局BCがモデム等の送信部を介して油圧ショベルに何らかの制御信号を送信するようにしてもよい。例えば油圧ショベルのオペレータが手動再生制御をみだりに実行してしまわないよう制限をかけておく。つまり、通常は手動再生ボタンを押下する等の操作を行っても手動再生制御が行われないようにしておく。そして、油圧ショベルが第3レベルに分類され、管理端末TMのオペレータに手動再生制御を実行する対処手順を提示した場合には、管理端末TMにおけるオペレータの操作に応じて基地局BCから当該油圧ショベルに、対処準備信号が送信される。油圧ショベルはこの対処準備信号の受信に応じて、手動再生制御の準備を行う。具体的には、手動再生制御の実行制限を解除し、手動再生制御を実行可能な状態となる。その後、油圧ショベルのオペレータは手動再生ボタンを押下することにより、油圧ショベルのコントローラ20に手動再生制御を実行させる。
(変形例4)
 油圧ショベルの多数の箇所に同時に異常が発生した場合に、管理端末TMに同時に複数の対処方法が表示されるようにしてもよい。あるいは、所定の優先順位に基づいて、それら複数の対処方法からいずれか1つが選択され表示されるようにしてもよい。なお、複数の箇所に異常が発生していた場合には、それぞれの箇所の状態に基づいてそれぞれ個別に稼動レベルの分類を行い、最も高い(悪い)稼動レベルをその油圧ショベルの稼動レベルとして採用する。例えば、DPFの再生機構について第3レベル、エンジンの冷却系について第2レベルと分類された場合には、管理端末TMにはその油圧ショベルの稼動レベルが第3レベルであるかのような表示がなされる。
(変形例5)
 上述した実施の形態では、DPFの再生とエンジンの冷却系について、油圧ショベルの稼動レベルを分類する例を説明したが、本発明はこのような実施の形態に限定されない。その他種々の状態を検知する場合においても本発明を適用することが可能である。また、本発明は油圧ショベルの管理装置のみならず、他の作業機を管理する管理装置に適用することもできる。
(変形例6)
 上述した実施形態では、管理端末TMと基地局BCをそれぞれ異なる装置としていたが、これらを一体の装置としてもよい。
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2012年第102849号(2012年4月27日出願)

Claims (6)

  1.  作業機から、前記作業機の各部の状態を表すセンサデータと、前記作業機に異常が発生したと前記作業機が判断したことを表すアラームデータと、を受信する受信部と、
     前記受信部により受信された前記センサデータに基づいて、前記作業機の稼動状態を複数の所定の稼動レベルのいずれかに分類する稼動レベル分類部と、
    を備える作業機管理装置。
  2.  請求項1に記載の作業機管理装置において、
     前記稼動レベル分類部により分類された前記作業機の稼動レベルに基づいて、前記作業機の稼動状態を正常状態にするために必要な対処方法をオペレータに報知する報知部を更に備える作業機管理装置。
  3.  請求項2に記載の作業機管理装置において、
     前記報知部により報知された前記対処方法に対応する準備動作を前記作業機に行わせるための対処準備信号を前記作業機に送信する送信部を更に備える作業機管理装置。
  4.  請求項2または請求項3に記載の作業機管理装置において、
     前記対処方法が実施されたことに応じて前記作業機から送信されるイベントデータを受信するイベント受信部を更に備え、
     前記稼動レベル分類部は、前記イベント受信部により受信された前記イベントデータに基づいて、前記作業機の稼動状態を前記複数の稼動レベルのいずれかに再度分類する作業機管理装置。
  5.  請求項2~4のいずれか一項に記載の作業機管理装置において、
     前記報知部は、前記稼動レベル分類部により分類された前記作業機の稼動レベルごとに、複数の前記対処方法から少なくとも1つを選択してオペレータに報知する作業機管理装置。
  6.  請求項1~5のいずれか一項に記載の作業機管理装置において、
     前記作業機の現在位置を受信する位置受信部と、
     表示画面に地図を表示させると共に、前記表示画面の全体のうち、前記位置受信部により受信された前記作業機の現在位置に対応する位置に、前記稼動レベル分類部により分類された前記作業機の稼動レベルを表すシンボルを前記地図に重畳して表示させる表示部とを更に備える作業機管理装置。
PCT/JP2013/062227 2012-04-27 2013-04-25 作業機管理装置 WO2013161946A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13782116.1A EP2843140B1 (en) 2012-04-27 2013-04-25 Operating machine management device
US14/396,836 US9366011B2 (en) 2012-04-27 2013-04-25 Work machine management device
JP2014512687A JP5993448B2 (ja) 2012-04-27 2013-04-25 作業機管理装置
KR1020147029470A KR102039371B1 (ko) 2012-04-27 2013-04-25 작업기 관리 장치
CN201380022029.3A CN104271846B (zh) 2012-04-27 2013-04-25 作业机管理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012102849 2012-04-27
JP2012-102849 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161946A1 true WO2013161946A1 (ja) 2013-10-31

Family

ID=49483250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062227 WO2013161946A1 (ja) 2012-04-27 2013-04-25 作業機管理装置

Country Status (6)

Country Link
US (1) US9366011B2 (ja)
EP (1) EP2843140B1 (ja)
JP (1) JP5993448B2 (ja)
KR (1) KR102039371B1 (ja)
CN (1) CN104271846B (ja)
WO (1) WO2013161946A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014045A (ja) * 2016-07-22 2018-01-25 株式会社クボタ 作業車
JP2020113304A (ja) * 2016-07-22 2020-07-27 株式会社クボタ 作業車
WO2020217493A1 (ja) * 2019-04-26 2020-10-29 京セラ株式会社 情報処理装置、情報処理方法、及び情報処理プログラム
WO2022018992A1 (ja) * 2020-07-20 2022-01-27 株式会社小松製作所 作業機械を制御するためのシステム及び方法
JP7470539B2 (ja) 2020-03-18 2024-04-18 日立建機株式会社 施工履歴情報管理システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955533B1 (ko) * 2012-10-16 2019-03-07 주식회사 두산 Dpf의 다단 재생장치 및 재생방법
JP5603520B1 (ja) * 2012-10-19 2014-10-08 株式会社小松製作所 油圧ショベルの掘削制御システム
US10203704B2 (en) * 2016-06-16 2019-02-12 Moog Inc. Fluid metering valve
KR102543333B1 (ko) * 2018-04-23 2023-06-16 에이치디현대인프라코어 주식회사 건설기계의 동작 경보 관리 장치 및 건설기계 동작 경보 관리 시스템
US11656595B2 (en) * 2020-08-27 2023-05-23 Caterpillar Inc. System and method for machine monitoring
CN115324147A (zh) * 2022-08-03 2022-11-11 中联重科土方机械有限公司 挖掘机及协同作业方法、处理器、车载终端、控制终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328610A (ja) * 1999-05-20 2000-11-28 Kubota Corp 作業機
WO2001073224A1 (fr) 2000-03-31 2001-10-04 Hitachi Construction Machinery Co., Ltd. Procede de production de mesure d'ecart, systeme et dispositif de sortie
JP2005171527A (ja) * 2003-12-08 2005-06-30 Hitachi Constr Mach Co Ltd 作業機械の表示装置
JP2008203941A (ja) * 2007-02-16 2008-09-04 Shin Caterpillar Mitsubishi Ltd 機体稼働状態検知方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193634A (en) * 1981-05-25 1982-11-29 Meidensha Electric Mfg Co Ltd Civil engineering and construction machine
US6496766B1 (en) * 1999-03-01 2002-12-17 North Carolina State University Crane monitoring and data retrieval systems and method
US7050893B2 (en) * 2000-03-31 2006-05-23 Hitachi Construction Machinery Co., Ltd. Method of detection of actual operating time of machinery deployed at construction sites, data collection and management system, and base station
JP2002332666A (ja) * 2001-05-08 2002-11-22 Komatsu Ltd 作業機械の表示装置
JP4769382B2 (ja) * 2001-07-26 2011-09-07 株式会社小松製作所 移動体の管理装置
JP2003085315A (ja) * 2001-09-11 2003-03-20 Komatsu Ltd 修理用車両の管理システム、管理方法、およびこの方法をコンピュータに実行させるためのプログラム、ならびに機械の修理管理システム、管理方法、およびこの方法をコンピュータに実行させるためのプログラム
CN101120373A (zh) * 2005-02-14 2008-02-06 株式会社小松制作所 作业机械的不良状况信息集中管理系统
JP4717579B2 (ja) * 2005-09-30 2011-07-06 株式会社小松製作所 作業機械のメンテナンス作業管理システム
EP2256707A4 (en) * 2008-03-17 2016-03-02 Hochiki Co ALARM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328610A (ja) * 1999-05-20 2000-11-28 Kubota Corp 作業機
WO2001073224A1 (fr) 2000-03-31 2001-10-04 Hitachi Construction Machinery Co., Ltd. Procede de production de mesure d'ecart, systeme et dispositif de sortie
JP2005171527A (ja) * 2003-12-08 2005-06-30 Hitachi Constr Mach Co Ltd 作業機械の表示装置
JP2008203941A (ja) * 2007-02-16 2008-09-04 Shin Caterpillar Mitsubishi Ltd 機体稼働状態検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843140A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014045A (ja) * 2016-07-22 2018-01-25 株式会社クボタ 作業車
JP2020113304A (ja) * 2016-07-22 2020-07-27 株式会社クボタ 作業車
WO2020217493A1 (ja) * 2019-04-26 2020-10-29 京セラ株式会社 情報処理装置、情報処理方法、及び情報処理プログラム
JP7470539B2 (ja) 2020-03-18 2024-04-18 日立建機株式会社 施工履歴情報管理システム
WO2022018992A1 (ja) * 2020-07-20 2022-01-27 株式会社小松製作所 作業機械を制御するためのシステム及び方法
JP7404184B2 (ja) 2020-07-20 2023-12-25 株式会社小松製作所 作業機械を制御するためのシステム及び方法

Also Published As

Publication number Publication date
JPWO2013161946A1 (ja) 2015-12-24
EP2843140A1 (en) 2015-03-04
JP5993448B2 (ja) 2016-09-14
US9366011B2 (en) 2016-06-14
KR102039371B1 (ko) 2019-11-01
KR20150013131A (ko) 2015-02-04
EP2843140B1 (en) 2022-10-19
US20150149047A1 (en) 2015-05-28
EP2843140A4 (en) 2016-05-18
CN104271846B (zh) 2016-11-02
CN104271846A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5993448B2 (ja) 作業機管理装置
AU2004271006B2 (en) Construction machine diagnosis information presenting device, diagnosis information display system, and diagnosis information presenting method
US7684917B2 (en) Diagnostic information providing apparatus for construction machine and diagnostic information display system for construction machine
US10391940B2 (en) Construction machine
CN105026214B (zh) 工程机械的异常信息控制装置
US11260793B2 (en) Construction machine and method of controlling construction machine
JP6236432B2 (ja) 作業機械の管理サーバ及び作業機械の管理方法
US20160265196A1 (en) Display device of working vehicle, display method of the same, and working vehicle
US9500114B2 (en) Work vehicle display device and work vehicle
JP2013235485A (ja) 産業車両の管理システム
JP2012160085A (ja) 建設機械のメンテナンス方法およびメンテナンスシステム
EP1818529A1 (en) Device and method for protecting engine of construction machine
US20160224227A1 (en) Indication Display System
JP2017045215A (ja) 診断装置
JP6466080B2 (ja) 建設機械
JP2011241631A (ja) 建設機械の表示装置
JP4315346B2 (ja) 建設機械のエンジン診断装置
JP2005226493A (ja) 建設機械のエンジン管理装置
JP4178101B2 (ja) 建設機械の作動油冷却系統故障診断装置
JP2022032227A (ja) 表示装置、及びそれを備える作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512687

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147029470

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14396836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013782116

Country of ref document: EP