WO2013161852A1 - 複合半透膜の製造方法 - Google Patents

複合半透膜の製造方法 Download PDF

Info

Publication number
WO2013161852A1
WO2013161852A1 PCT/JP2013/062005 JP2013062005W WO2013161852A1 WO 2013161852 A1 WO2013161852 A1 WO 2013161852A1 JP 2013062005 W JP2013062005 W JP 2013062005W WO 2013161852 A1 WO2013161852 A1 WO 2013161852A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous support
composite semipermeable
semipermeable membrane
foreign matter
skin layer
Prior art date
Application number
PCT/JP2013/062005
Other languages
English (en)
French (fr)
Inventor
美詠子 西
真哉 西山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013161852A1 publication Critical patent/WO2013161852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to a method for producing a composite semipermeable membrane comprising a skin layer having high separation performance and a porous support for supporting the skin layer.
  • a composite semipermeable membrane can be used in various ways mainly depending on the performance and application of the skin layer such as RO membrane, NF membrane, MF membrane, UF membrane, and FO membrane.
  • composite semipermeable membranes are suitable for the production of ultrapure water, brine or seawater desalination, and are also included in contamination due to pollution such as dye wastewater and electrodeposition paint wastewater. It can be used for wastewater treatment, such as removing and collecting contaminated sources or effective substances. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications.
  • Patent Documents 1 and 2 propose a manufacturing method for obtaining a high-performance polyamide composite semipermeable membrane.
  • An object of the present invention is to provide a method for stably producing a composite semipermeable membrane having few defects in the skin layer and having a high rejection rate.
  • the present invention relates to a method for producing a composite semipermeable membrane in which a skin layer is formed on the surface of a porous support, and before the skin layer is formed on the surface of the porous support, the skin layer is attached to the surface of the porous support.
  • the present invention relates to a method for producing a composite semipermeable membrane, comprising a foreign matter removing step for removing foreign matter that is present.
  • the foreign matter removing step includes a liquid spraying process on the porous support surface, a wiper, squeegee or brush contact moving process on the porous support surface, a gas spraying process on the porous support surface, or two types thereof. It is preferable to carry out by the above combination.
  • the foreign matter removing step is preferably a step of performing a contact transfer process or a gas spraying process after performing a liquid spraying process, or a process of performing a contact transfer process after performing a gas spraying process.
  • the foreign matter removing step is preferably a step of removing foreign matter adhering to both surfaces of the porous support.
  • the skin layer includes a polyamide-based resin obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halide component, and before bringing the aqueous amine solution containing the polyfunctional amine component into contact with the surface of the porous support.
  • the foreign matter removing step is preferably performed.
  • the foreign matter removing step is preferably performed within 60 seconds before bringing the aqueous amine solution into contact with the surface of the porous support.
  • the polyfunctional amine component is preferably an alicyclic polyfunctional amine.
  • 2 is a photomicrograph showing the dyed state of the membrane surface at a position where the composite semipermeable membrane produced in Example 1 is at a deposition length of 0 m.
  • 4 is a photomicrograph showing the dyed state of the membrane surface at a position where the composite semipermeable membrane produced in Example 1 is at a film forming length of 1000 m.
  • 4 is a photomicrograph showing the dyeing state of the membrane surface at a position where the composite semipermeable membrane produced in Comparative Example 1 has a film formation length of 0 m.
  • 4 is a photomicrograph showing the dyeing state of the membrane surface at a position where the composite semipermeable membrane produced in Comparative Example 1 is at a deposition length of 1000 m.
  • the present invention relates to a method for producing a composite semipermeable membrane in which a skin layer is formed on the surface of a porous support, and before the skin layer is formed on the surface of the porous support, the skin layer is attached to the surface of the porous support. And a foreign matter removing step for removing the foreign matter.
  • the material for forming the skin layer is not particularly limited, and examples thereof include cellulose acetate, ethyl cellulose, polyether, polyester, and polyamide.
  • a skin layer containing a polyamide resin obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halogen component is preferable.
  • the present invention will be described in the case where the skin layer forming material is a polyamide-based resin.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like.
  • polyfunctional amines may be used alone or in combination of two or more.
  • the effect of the production method of the present invention is particularly remarkable when a polyamide skin layer containing an alicyclic polyfunctional amine is used. Since the cycloaliphatic polyfunctional amine has a lower reactivity during polymerization than the aromatic polyfunctional amine, it is presumed that there is a high possibility that defects will occur due to the presence of foreign substances. In order to obtain a skin layer having a high salt-inhibiting performance, it is preferable to use an aromatic polyfunctional amine.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • polyfunctional acid halide examples include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halide examples include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid, a polyhydric alcohol such as sorbitol or glycerin may be copolymerized.
  • the porous support for supporting the skin layer is not particularly limited as long as it can support the skin layer, and usually an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 mm is preferably used.
  • the material for forming the porous support include polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyvinylidene fluoride, and the like. Polysulfone and polyarylethersulfone are preferably used from the viewpoint of stability.
  • the thickness of such a porous support is usually about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m, but is not necessarily limited thereto.
  • the porous support may be reinforced with a backing by a woven fabric, a nonwoven fabric or the like.
  • the “foreign matter” means an organic or inorganic substance having a maximum width of 50 nm or more, or a substance that adversely affects the formation of a skin layer such as excess moisture or water droplets.
  • the means for removing the foreign matter in the foreign matter removing step is not particularly limited as long as the foreign matter attached to the surface of the porous support can be removed, and a known method can be used.
  • Non-contact means such as a liquid spraying process and a gas spraying process, a contact moving process such as a wiper, squeegee or brush on the surface of the porous support and an adhesive process using an adhesive roller.
  • Two or more kinds of these foreign matter removing means may be combined.
  • a method of performing a contact movement process or a gas spraying process after performing a liquid spraying process, or a method of performing a contact movement process after performing a gas spraying process is preferably used.
  • the method of performing the contact movement process or the gas spraying process after the liquid spraying process is particularly preferable because the fixing substance and the water-soluble substance which are foreign matters on the surface of the porous support can be removed.
  • the liquid spraying process is not particularly limited as long as the liquid can be deposited on the surface of the porous support and allowed to flow or be removed together with foreign matter.
  • the processing method is not particularly limited, but a shower or spraying method on the surface is preferably used. It is done.
  • the liquid to be used include liquids that do not cause chemical damage to the surface of the porous support, such as water and alcohol, and it is particularly preferable to use pure water or ultrapure water.
  • the injection force is high enough not to destroy the porous support.
  • the spraying amount is usually about 0.1 to 30 L / (min ⁇ m), preferably 1 to 15 L / (min ⁇ m), more preferably 5 to 15 L / (min ⁇ m). If the spraying amount is too small, the removal of foreign matters is insufficient, and if it is too large, the porous support is easily damaged.
  • the liquid spraying needs to be performed on the entire surface of the porous support, and after spraying, it is preferable to remove the liquid to the extent that it does not adversely affect the formation of the skin layer.
  • the gas blowing process is not particularly limited as long as it is a process of blowing off foreign matter using gas, and examples thereof include an air knife that jets gas from a slit or a nozzle.
  • an air knife that jets gas from a slit or a nozzle.
  • air and an inert gas such as nitrogen gas which do not easily damage the surface of the porous support are preferably used.
  • the jetting speed is preferably 10 to 500 m / sec in the vicinity of the surface, and if the jetting speed is too high, the surface is likely to be damaged, and more preferably 35 to 100 m / sec.
  • the tool to be used is not particularly limited as long as it can remove foreign substances and hardly damage the surface of the porous support, and examples thereof include a wiper, a squeegee, and a brush.
  • the wiper include a rubber blade wiper and a plastic plate wiper.
  • the squeegee include a urethane rubber squeegee.
  • brushes include natural fiber brushes and artificial fiber brushes.
  • the material of the rubber blade wiper and squeegee include nitrile rubber, butyl rubber, fluorine rubber, silicon rubber, and urethane rubber. Nitrile rubber or fluorine rubber is preferably used from the viewpoint of wear resistance and chemical resistance. It is done.
  • the wiper or the like In order to completely remove the foreign matter adhering to the surface of the porous support, the wiper or the like can be moved in contact with the portion where the porous support is supported by the roll, or the wiper or the like can be contacted. It is necessary to move the wiper or the like in a state where it is stretched to a certain extent.
  • the contact strength of the wiper or the like to the surface of the porous support may be appropriately adjusted from the viewpoint of the foreign matter removal efficiency depending on the conveyance resistance and the contact amount on the surface of the porous support.
  • the foreign matter removing step involves contacting the aqueous amine solution containing the polyfunctional amine component with the surface of the porous support.
  • it is preferably performed within 60 seconds before the aqueous amine solution is brought into contact with the surface of the porous support in order to prevent reattachment of foreign matters from the outside after the foreign matter removing step. More preferably, it is within 30 seconds, and particularly preferably within 15 seconds.
  • the foreign matter removing step needs to be performed on the surface of the porous support in contact with the aqueous amine solution, but it is preferably performed on both surfaces of the porous support. Thereby, when winding in roll shape, or when contacting with a conveyance roll, it can suppress that a foreign material adheres to the surface.
  • an aqueous solution coating layer comprising an aqueous amine solution containing a polyfunctional amine component is formed on the surface of the porous support, and then an organic solution containing the polyfunctional acid halide component and the aqueous solution coating layer are formed. It is preferable to form a skin layer by bringing the polymer into contact with each other for interfacial polymerization. Details of the conditions of such interfacial polymerization method are described in JP-A-58-24303, JP-A-1-180208, etc., and those known techniques can be appropriately employed.
  • the concentration of the polyfunctional amine component in the aqueous amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.5 to 2% by weight.
  • concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and the salt blocking performance tends to decrease.
  • concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component is likely to penetrate into the porous support, or the film thickness becomes too thick to increase the permeation resistance and increase the permeation flow. The bundle tends to decrease.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, the unreacted polyfunctional amine component tends to remain, or defects such as pinholes are likely to occur in the skin layer, resulting in a decrease in salt blocking performance. Tend to. On the other hand, when the concentration of the polyfunctional acid halide component exceeds 5% by weight, the unreacted polyfunctional acid halide component tends to remain, or the film thickness becomes too thick to increase the permeation resistance, thereby increasing the permeation flux. It tends to decrease.
  • the organic solvent used in the organic solution is not particularly limited as long as it has low solubility in water, does not deteriorate the porous support, and dissolves the polyfunctional acid halide component.
  • cyclohexane, heptane, octane And saturated hydrocarbons such as nonane, and halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane is preferred.
  • a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably a boiling point of 200 ° C. or lower.
  • additives can be added to the amine aqueous solution and the organic solution for the purpose of facilitating film formation and improving the performance of the resulting composite semipermeable membrane.
  • the additive include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate, sodium hydroxide that removes hydrogen halide generated by polymerization, trisodium phosphate, and triethylamine.
  • surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate
  • sodium hydroxide that removes hydrogen halide generated by polymerization
  • trisodium phosphate triethylamine.
  • the time from the application of the aqueous amine solution to the application of the organic solution on the porous support depends on the composition of the aqueous amine solution, the viscosity, and the pore size of the surface layer of the porous support, but is 15 seconds or less. It is preferable that there is, more preferably 5 seconds or less.
  • the application interval of the solution exceeds 15 seconds, the aqueous amine solution may penetrate and diffuse deep inside the porous support, and a large amount of unreacted polyfunctional amine component may remain in the porous support. .
  • the heating temperature is more preferably 70 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating time is preferably about 30 seconds to 10 minutes, more preferably about 40 seconds to 7 minutes.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the shape of the composite semipermeable membrane of the present invention is not limited at all. That is, any conceivable membrane shape such as a flat membrane shape or a spiral element shape is possible. Moreover, in order to improve the salt-blocking property, water permeability, oxidation resistance, etc. of the composite semipermeable membrane, various conventionally known treatments may be performed.
  • the produced sample was set in a cell for flat membrane evaluation.
  • An aqueous solution containing 1% by weight of basic violet dye is brought into contact with the membrane by applying a differential pressure of 1.5 MPa on the supply side and permeation side of the membrane at 25 ° C., and the aqueous solution is allowed to permeate for 10 minutes, and the dye adheres to the membrane surface. I let you.
  • Example 1 While continuously feeding a porous support body (UF membrane having a polysulfone porous layer formed on a nonwoven fabric) wound in a roll shape, 10 L / (min ⁇ m) of pure water was applied to both surfaces of the porous support for 1 second. Immediately after spraying, a fluororubber blade wiper (type A hardness: 50) was brought into contact with the skin layer forming surface of the porous support to remove foreign matters (foreign matter removing step). Here, an appropriate amount of a sample (10 mm ⁇ 10 mm) was cut from the porous support in the width direction, and the number of fine particles having a size of 50 nm or more was counted visually using a microscope, and the average value was obtained. The results are shown in Table 1.
  • an aqueous amine solution containing 1.2% by weight of piperazine was applied to the surface of the remaining porous support, and then an excess aqueous amine solution was removed to form an aqueous solution coating layer.
  • an isooctane solution containing 0.9% by weight of trimesic acid chloride was applied to the surface of the aqueous solution coating layer.
  • the excess solution was removed, and further kept in a hot air dryer at 120 ° C. for 3 minutes to form a skin layer containing a polyamide-based resin on the porous support to obtain a composite semipermeable membrane.
  • Example 2 In the foreign matter removing step of Example 1, 10 L / (min ⁇ m) of pure water was sprayed on both sides of the porous support for 1 second, and then air at a wind speed of 40 m / s was sprayed on both sides of the porous support for 1 second.
  • a composite semipermeable membrane was prepared in the same manner as in Example 1 except that the foreign matters were removed, and the MgSO 4 blocking rate was measured. The average value of the results is shown in Table 1.
  • Example 3 In the foreign matter removing step of Example 1, after the air of 40 m / s was blown on both surfaces of the porous support for 1 second, the foreign matter was removed by treatment with a rubber blade wiper as in Example 1. A composite semipermeable membrane was prepared in the same manner as in Example 1, and the MgSO 4 rejection was measured. The average value of the results is shown in Table 1.
  • Example 4 In the foreign matter removing step of Example 1, the same method as in Example 1 was applied except that the foreign matter was removed by continuously applying air blowing at a wind speed of 40 m / s for 1 second on both surfaces of the porous support. A composite semipermeable membrane was prepared and the MgSO 4 rejection was measured. The average value of the results is shown in Table 1.
  • Example 5 In the foreign matter removing step of Example 1, after removing the foreign matter by spraying 10 L / (min ⁇ m) of pure water on both surfaces of the porous support for 1 second, the porous support was tilted to remove excess water. Except for this, a composite semipermeable membrane was prepared in the same manner as in Example 1, and the MgSO 4 rejection was measured. The average value of the results is shown in Table 1.
  • Example 6 In the foreign matter removing step of Example 1, after removing the foreign matter by spraying 1 L / (min ⁇ m) of pure water for 1 second on both surfaces of the porous support, the porous support was tilted to remove excess water. Except for this, a composite semipermeable membrane was prepared in the same manner as in Example 1, and the MgSO 4 rejection was measured. The average value of the results is shown in Table 1.
  • Example 7 In the foreign matter removing step of Example 1, 0.5 L / (min ⁇ m) pure water was sprayed on both surfaces of the porous support for 1 second to remove the foreign matter, and then the porous support was tilted to remove excess water. A composite semipermeable membrane was prepared in the same manner as in Example 1 except that it was removed, and the MgSO 4 blocking rate was measured. The average value of the results is shown in Table 1.
  • Comparative Example 1 A composite semipermeable membrane was prepared in the same manner as in Example 1 except that the foreign matter removing step in Example 1 was not performed, and the MgSO 4 blocking rate was measured. The average value of the results is shown in Table 1.
  • the composite semipermeable membranes of Examples 1 to 7 have 10 or less fine particles, and have a stable MgSO 4 rejection of 99% or more even when 1000 m is continuously produced. It can be seen that there are almost no defects on the surface of the layer. Furthermore, it can be seen that by reducing the number of fine particles to 5 or less, a decrease in the MgSO 4 blocking rate can be remarkably suppressed even at 1000 m production. On the other hand, the composite semipermeable membrane of Comparative Example 1 has a greatly reduced MgSO 4 blocking rate when 1000 m is continuously produced, and there is a concern that the yield may be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明の目的は、スキン層の欠陥が少なく、高阻止率の複合半透膜を安定的に製造する方法を提供することにある。本発明は、スキン層を多孔性支持体の表面に形成してなる複合半透膜の製造方法において、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物を除去する異物除去工程を含むことを特徴とする。

Description

複合半透膜の製造方法
 本発明は、高度な分離性能を有するスキン層とこれを支持する多孔性支持体とからなる複合半透膜の製造方法に関する。かかる複合半透膜は、RO膜、NF膜、MF膜、UF膜、及びFO膜など、主にそれらのスキン層の性能及び用途の応じて種々の利用が可能である。例えば、複合半透膜は、超純水の製造、かん水または海水の脱塩などに好適に用いられ、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収するなど、排水処理に用いることができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。
 複合半透膜の製造方法としては、多孔性支持体上で多官能アミンと多官能酸ハロゲン化物とを界面重合させることによりポリアミドからなるスキン層を形成する方法が多く提案されている。
 例えば、特許文献1及び2では、高性能なポリアミド系複合半透膜を得るための製造方法が提案されている。
 しかしながら、近年では、排水、かん水及び海水等を処理するポリアミド系複合半透膜の需要増加に伴い、より高品質かつ大量の複合半透膜が求められている。そのためには、スキン層に欠陥(キズ、破れなど)のない複合半透膜を安定的かつ連続的に製造することが必要である。
特開平9-192461号公報 特開2006-130497号公報
 本発明の目的は、スキン層の欠陥が少なく、高阻止率の複合半透膜を安定的に製造する方法を提供することにある。
 本発明は、スキン層を多孔性支持体の表面に形成してなる複合半透膜の製造方法において、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物を除去する異物除去工程を含むことを特徴とする複合半透膜の製造方法、に関する。
 多孔性支持体表面に異物が存在すると該異物上にスキン層が形成されるため、該異物によってスキン層に欠陥(キズ、破れなど)が生じる場合がある。また、従来の製造方法のように、スキン層形成溶液を多孔性支持体上に塗布した後に余剰溶液をワイパー等により除去する場合には、多孔性支持体表面に異物が存在すると、スキン層に引っかきキズが生じたり、スキン層が破れたり、又は余剰溶液を均一に除去できないためスキン層の表面均一性が悪くなるなどの不具合が生じる場合がある。これらの理由により、従来の製造方法では、高い分離性能を有する複合半透膜を安定的に連続生産することが困難であった。
 本発明の複合半透膜の製造方法のように、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物(例えば、ポリマー粒子など)を除去する工程を設けておくことにより、スキン層の欠陥の発生を効果的に抑制することができるため、歩留りよく高阻止率の複合半透膜を安定的に連続生産することができる。
 前記異物除去工程は、多孔性支持体表面への液体吹き付け処理、多孔性支持体表面でのワイパー、スキージ又はブラシの接触移動処理、多孔性支持体表面への気体吹き付け処理、又はこれらの2種以上の組み合わせにより行うことが好ましい。
 特に、前記異物除去工程は、液体吹き付け処理をした後、接触移動処理又は気体吹き付け処理を行う工程、あるいは気体吹き付け処理をした後、接触移動処理を行う工程であることが好ましい。
 また、前記異物除去工程は、多孔性支持体の両側表面に付着している異物を除去する工程であることが好ましい。
 前記スキン層は、多官能アミン成分と多官能酸ハライド成分とを重合してなるポリアミド系樹脂を含むものであり、多官能アミン成分を含むアミン水溶液を多孔性支持体の表面に接触させる前に、前記異物除去工程を行うことが好ましい。
 また、前記異物除去工程は、アミン水溶液を多孔性支持体の表面に接触させる前、60秒以内に行うことが好ましい。
 また、前記多官能アミン成分が、脂環式多官能アミンであることが好ましい。
実施例1で作製した複合半透膜の製膜長0m位置における膜面の染色状態を示した顕微鏡写真である。 実施例1で作製した複合半透膜の製膜長1000m位置における膜面の染色状態を示した顕微鏡写真である。 比較例1で作製した複合半透膜の製膜長0m位置における膜面の染色状態を示した顕微鏡写真である。 比較例1で作製した複合半透膜の製膜長1000m位置における膜面の染色状態を示した顕微鏡写真である。
 以下、本発明の実施の形態について説明する。本発明は、スキン層を多孔性支持体の表面に形成してなる複合半透膜の製造方法において、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物を除去する異物除去工程を含むことを特徴とする。
 スキン層の形成材料は特に制限されず、例えば、酢酸セルロール、エチルセルロース、ポリエーテル、ポリエステル、及びポリアミドなどが挙げられる。
 本発明においては、多官能アミン成分と多官能酸ハロゲン成分とを重合してなるポリアミド系樹脂を含むスキン層であることが好ましい。以下、スキン層の形成材料がポリアミド系樹脂である場合について本発明を説明する。
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族、及び脂環式の多官能アミンが挙げられる。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。
 これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。本発明の製造方法の効果は、脂環式多官能アミンを含むポリアミド系スキン層を用いた場合に特に顕著である。脂環式多官能アミンは、芳香族多官能アミンと比べて重合時の反応性が低いため、異物の存在により欠陥が生じる可能性が高いと推測される。また、高塩阻止性能のスキン層を得るためには、芳香族多官能アミンを用いることが好ましい。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。
 多官能酸ハライドとしては、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールなどを共重合させてもよい。
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されず、通常平均孔径10~500Å程度の微孔を有する限外濾過膜が好ましく用いられる。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ボリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンが好ましく用いられる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は織布、不織布等による裏打ちにて補強されていてもよい。
 本発明においては、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物を除去しておくこと(異物除去工程)が必要である。なお、本発明において、「異物」とは、最大幅が50nm以上の有機物又は無機物、あるいは余剰水分又は水滴などのスキン層形成に悪影響を与える物質を意味する。
 前記異物除去工程における異物を除去する手段は、多孔性支持体の表面に付着している異物を除去できれば特に制限されることなく公知の方法を用いることができるが、例えば、多孔性支持体表面への液体吹き付け処理及び気体吹き付け処理などの非接触手段や、多孔性支持体表面でのワイパー、スキージ又はブラシなどの接触移動処理及び粘着ローラーによる粘着処理などの接触手段が挙げられる。これら異物除去手段は2種以上を組み合わせてもよく、例えば、液体吹き付け処理をした後に接触移動処理又は気体吹き付け処理を行う方法、又は気体吹き付け処理をした後に接触移動処理を行う方法を好ましく用いることができる。特に、液体吹き付け処理をした後に接触移動処理又は気体吹き付け処理を行う方法は、多孔性支持体表面の異物である固着物質及び水溶性物質の除去が可能であるため、特に好ましい。
 液体吹き付け処理は、液体を多孔性支持体の表面上に付着させて流動させるか、異物と共に除去することができればよく、その処理方法は特に限定されないが、表面へのシャワー又は噴霧法が好ましく用いられる。使用する液体としては、水及びアルコールなど、多孔性支持体の表面に化学的なダメージを与えない液体が挙げられ、特に純水又は超純水を用いることが好ましい。多孔性支持体の表面に付着している異物を完全に除去するために、噴射力は多孔性支持体を破壊しない程度に高い方が好ましい。吹き付け量は、通常0.1~30L/(min・m)程度であり、好ましくは1~15L/(min・m)、より好ましくは5~15L/(min・m)である。吹き付け量が少なすぎると異物の除去が不十分になり、多すぎると多孔性支持体にダメージが生じやすくなる。液体吹き付けは、多孔性支持体の表面全体に行う必要があり、吹き付け後はスキン層の形成に悪影響を与えない程度に液体を除去しておくことが好ましい。
 気体吹き付け処理は、異物を気体を用いて吹き飛ばす処理であれば特に限定されないが、例えば、スリット又はノズルから気体を噴射するエアナイフが挙げられる。使用する気体としては、多孔性支持体の表面にダメージを与えにくい空気及び窒素ガスなどの不活性ガスが好ましく用いられる。多孔性支持体の表面に付着している異物を完全に除去するためには、多孔性支持体表面にエアナイフを1~5mmの距離まで接近させて気体を吹き付けることが好ましい。噴射速度は、表面近傍において10~500m/秒であることが好ましく、噴射速度が速すぎると表面にダメージを与えやすくなるため、35~100m/秒であることがより好ましい。
 接触移動処理の場合、使用する道具は、異物を除去でき、多孔性支持体の表面にダメージを与えにくいものであれば特に限定されないが、例えば、ワイパー、スキージ、及びブラシなどが挙げられる。ワイパーとしては、ゴムブレードワイパー、プラスチックプレートワイパーが挙げられる。スキージとしては、ウレタンゴム製スキージが挙げられる。ブラシとしては、天然繊維ブラシ、人口繊維ブラシが挙げられる。ゴムブレードワイパー及びスキージの材質としては、例えば、ニトリルゴム、ブチルゴム、フッ素ゴム、シリコンゴム、及びウレタンゴムなどが挙げられ、耐摩耗性と耐薬品性の観点からニトリルゴム又はフッ素ゴムが好適に用いられる。多孔性支持体の表面に付着している異物を完全に除去するために、多孔性支持体がロールで支持された部分にワイパー等を接触移動させるか、又はワイパー等を接触させてもたわまない程度に張られた状態でワイパー等を接触移動させる必要がある。多孔性支持体表面へのワイパー等の接触強さは、多孔性支持体表面の搬送抵抗と接触量による異物除去効率の観点から適宜調整すればよい。
 スキン層が、多官能アミン成分と多官能酸ハライド成分とを重合してなるポリアミド系樹脂を含むものである場合、異物除去工程は、多官能アミン成分を含むアミン水溶液を多孔性支持体の表面に接触させる前であればいつ行ってもよいが、異物除去工程後に外部からの異物の再付着を防止するために、アミン水溶液を多孔性支持体の表面に接触させる前60秒以内に行うことが好ましく、より好ましくは30秒以内であり、特に好ましくは15秒以内である。
 異物除去工程は、アミン水溶液を接触させる多孔性支持体表面で行う必要があるが、多孔性支持体の両側表面で行うことが好ましい。それにより、ロール状に巻き取る場合、又は搬送ロールとの接触時に異物が表面に付着することを抑制できる。
 本発明においては、前記異物除去工程後、多官能アミン成分を含むアミン水溶液からなる水溶液被覆層を多孔性支持体表面に形成し、次いで多官能酸ハライド成分を含有する有機溶液と水溶液被覆層とを接触させて界面重合させることによりスキン層を形成することが好ましい。かかる界面重合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 前記界面重合法において、アミン水溶液中の多官能アミン成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、さらに好ましくは0.5~2重量%である。多官能アミン成分の濃度が0.1重量%未満の場合にはスキン層にピンホール等の欠陥が生じやすくなり、また塩阻止性能が低下する傾向にある。一方、多官能アミン成分の濃度が5重量%を超える場合には、多官能アミン成分が多孔性支持体中に浸透しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなって透過流束が低下する傾向にある。
 前記有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%であることが好ましく、さらに好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が0.01重量%未満の場合には、未反応多官能アミン成分が残留しやすくなったり、スキン層にピンホール等の欠陥が生じやすくなって塩阻止性能が低下する傾向にある。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなり、透過流束が低下する傾向にある。
 前記有機溶液に用いられる有機溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素である。
 前記アミン水溶液や有機溶液には、製膜を容易にしたり、得られる複合半透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm1/2の化合物などが挙げられる。
 多孔性支持体上に前記アミン水溶液を塗布してから前記有機溶液を塗布するまでの時間は、アミン水溶液の組成、粘度及び多孔性支持体の表面層の孔径にもよるが、15秒以下であることが好ましく、より好ましくは5秒以下である。前記溶液の塗布間隔が15秒を超える場合には、アミン水溶液が多孔性支持体の内部深くまで浸透・拡散し、未反応多官能アミン成分が多孔性支持体中に大量に残存する恐れがある。なお、前記多孔性支持体上に前記アミン水溶液を被覆した後、余分なアミン水溶液を除去してもよい。
 本発明においては、アミン水溶液からなる水溶液被覆層と有機溶液との接触後、多孔性支持体上の過剰な有機溶液を除去し、多孔性支持体上の形成膜を70℃以上で加熱乾燥してスキン層を形成することが好ましい。形成膜を加熱処理することによりその機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは100~150℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.05~2μm程度であり、好ましくは、0.1~1μmである。
 本発明の複合半透膜はその形状になんら制限を受けるものではない。すなわち平膜状、あるいはスパイラルエレメント状など、考えられるあらゆる膜形状が可能である。また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔測定及び評価方法〕
 (MgSO阻止率の測定)
 作製したサンプルを平膜評価用のセルにセットした。0.2重量%のMgSOを含みかつNaOHを用いてpH6.5に調整した水溶液を25℃で膜の供給側と透過側に0.9MPaの差圧を与えて膜に接触させ、該水溶液を30分間透過させた。この操作によって得られた透過水の電導度を測定し、MgSO阻止率(%)を算出した。MgSO阻止率は、MgSO濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。 
 MgSO阻止率(%)={1-(透過液中のMgSO濃度[mg/L])/(供給液中のMgSO濃度[mg/L])}×100
 (膜染色の評価)
 作製したサンプルを平膜評価用のセルにセットした。1重量%のベーシックバイオレット染料を含む水溶液を25℃で膜の供給側と透過側に1.5MPaの差圧を与えて膜に接触させ、該水溶液を10分間透過させ、染料を膜面に付着させた。
 実施例1
 ロール状に巻かれた多孔性支持体(不織布上にポリスルホン多孔層を形成したUF膜)を連続的に送り出しながら、多孔性支持体の両面に10L/(min・m)の純水を1秒間吹き付け、その直後にフッ素ゴムブレードワイパー(タイプA硬度:50)を多孔性支持体のスキン層形成面に接触させて異物を除去した(異物除去工程)。ここで、多孔性支持体からサンプル(10mm×10mm)を幅方向に適正量切り取り、顕微鏡を用いて目視にて50nm以上の微粒子の数を数え、その平均値を求めた。その結果を表1に示す。 
 その後、残った多孔性支持体に対して、ピペラジン1.2重量%を含有するアミン水溶液をその表面に塗布し、その後余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.9重量%を含有するイソオクタン溶液を塗布した。その後、余分な溶液を除去し、さらに120℃の熱風乾燥機中で3分間保持して、多孔性支持体上にポリアミド系樹脂を含むスキン層を形成して複合半透膜を得た。このときの初期(製膜0~1m)及び製膜位置1000mの複合半透膜からφ75mmの大きさのサンプルをそれぞれ3枚ずつ切り取り、該サンプルを用いてMgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例2
 実施例1の異物除去工程において、多孔性支持体の両面に10L/(min・m)の純水を1秒間吹き付けた後に、多孔性支持体の両面に風速40m/sの空気を1秒間吹き付けて異物を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例3
 実施例1の異物除去工程において、多孔性支持体の両面に風速40m/sの空気を1秒間吹き付けた後に、実施例1と同様にゴムブレードワイパーで処理して異物を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例4
 実施例1の異物除去工程において、多孔性支持体の両面に風速40m/sの空気を1秒間吹き付ける処理を連続的に2回施して異物を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例5
 実施例1の異物除去工程において、多孔性支持体の両面に10L/(min・m)の純水を1秒間吹き付けて異物を除去した後、多孔性支持体を傾斜させて余剰水分を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例6
 実施例1の異物除去工程において、多孔性支持体の両面に1L/(min・m)の純水を1秒間吹き付けて異物を除去した後、多孔性支持体を傾斜させて余剰水分を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 実施例7
 実施例1の異物除去工程において、多孔性支持体の両面に0.5L/(min・m)の純水を1秒間吹き付けて異物を除去した後、多孔性支持体を傾斜させて余剰水分を除去したこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
 比較例1
 実施例1の異物除去工程を行わなかったこと以外は実施例1と同様の方法で複合半透膜を作製し、MgSO阻止率の測定を行った。その結果の平均値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~7の複合半透膜は、微粒子数が10個以下であり、1000m連続生産した場合でもMgSO阻止率が99%以上で安定しており、スキン層表面に欠陥がほとんど生じていないことがわかる。さらに、微粒子数を5個以下にすることにより、1000m生産時でもMgSO阻止率の低下を著しく抑えられることがわかる。一方、比較例1の複合半透膜は、1000m連続生産した場合にはMgSO阻止率が大きく低下しており、歩留りの低下が懸念される。

Claims (8)

  1. スキン層を多孔性支持体の表面に形成してなる複合半透膜の製造方法において、スキン層を多孔性支持体の表面に形成する前に、多孔性支持体の表面に付着している異物を除去する異物除去工程を含むことを特徴とする複合半透膜の製造方法。
  2. 前記異物除去工程は、多孔性支持体表面への液体吹き付け処理、多孔性支持体表面でのワイパー、スキージ又はブラシの接触移動処理、多孔性支持体表面への気体吹き付け処理、又はこれらの2種以上の組み合わせにより行う請求項1記載の複合半透膜の製造方法。
  3. 前記異物除去工程は、液体吹き付け処理をした後、接触移動処理又は気体吹き付け処理を行う工程である請求項2記載の複合半透膜の製造方法。
  4. 前記異物除去工程は、気体吹き付け処理をした後、接触移動処理を行う工程である請求項2記載の複合半透膜の製造方法。
  5. 前記異物除去工程は、多孔性支持体の両側表面に付着している異物を除去する工程である請求項1~4のいずれかに記載の複合半透膜の製造方法。
  6. 前記スキン層は、多官能アミン成分と多官能酸ハライド成分とを重合してなるポリアミド系樹脂を含むものであり、多官能アミン成分を含むアミン水溶液を多孔性支持体の表面に接触させる前に、前記異物除去工程を行う請求項1~5のいずれかに記載の複合半透膜の製造方法。
  7. 前記異物除去工程は、アミン水溶液を多孔性支持体の表面に接触させる前、60秒以内に行う請求項6記載の複合半透膜の製造方法。
  8. 前記多官能アミン成分が、脂環式多官能アミンである請求項6又は7記載の複合半透膜の製造方法。
PCT/JP2013/062005 2012-04-25 2013-04-24 複合半透膜の製造方法 WO2013161852A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-100153 2012-04-25
JP2012100153 2012-04-25
JP2013-090126 2013-04-23
JP2013090126A JP6400885B2 (ja) 2012-04-25 2013-04-23 複合半透膜の製造方法

Publications (1)

Publication Number Publication Date
WO2013161852A1 true WO2013161852A1 (ja) 2013-10-31

Family

ID=49483160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062005 WO2013161852A1 (ja) 2012-04-25 2013-04-24 複合半透膜の製造方法

Country Status (2)

Country Link
JP (1) JP6400885B2 (ja)
WO (1) WO2013161852A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068019A (ja) * 2014-09-30 2016-05-09 日東電工株式会社 複合半透膜及びその製造方法、スパイラル型分離膜エレメント

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317667A (ja) * 1992-05-20 1993-12-03 Toray Ind Inc 逆浸透法用複合膜の製造方法
WO2010062794A1 (en) * 2008-11-26 2010-06-03 Corning Incorporated Coated particulate filter and method
JP2011056433A (ja) * 2009-09-11 2011-03-24 Hitachi Zosen Corp ゼオライト膜洗浄装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010656A (ja) * 2001-07-02 2003-01-14 Japan Organo Co Ltd 分離膜とその改質方法並びに膜分離装置及び方法
US9409377B2 (en) * 2009-04-30 2016-08-09 Asahi Kasei Fibers Corporation Composite membrane support and composite membrane using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317667A (ja) * 1992-05-20 1993-12-03 Toray Ind Inc 逆浸透法用複合膜の製造方法
WO2010062794A1 (en) * 2008-11-26 2010-06-03 Corning Incorporated Coated particulate filter and method
JP2011056433A (ja) * 2009-09-11 2011-03-24 Hitachi Zosen Corp ゼオライト膜洗浄装置

Also Published As

Publication number Publication date
JP2013240781A (ja) 2013-12-05
JP6400885B2 (ja) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6573249B2 (ja) Tfcメンブレンを介した水フラックスを改善させるための方法
JP4656502B2 (ja) 複合半透膜及びその製造方法
JP4656503B2 (ja) 複合半透膜及びその製造方法
EP2883600B1 (en) Manufacturing of polyamide-based water-treatment separation membrane
US20180333684A1 (en) The one-step preparation process for thin film composite membrane using a dual (double layer)-slot coating technique
JP2008093543A (ja) 乾燥複合半透膜の製造方法
JP2008093544A (ja) 複合半透膜及びその製造方法
JP2012250192A (ja) 複合半透膜及びその製造方法
JP6419828B2 (ja) 高性能ポリアミド系乾式水処理分離膜及びその製造方法
JP2008246419A (ja) 複合半透膜の製造方法
JP2014500144A (ja) 逆浸透分離膜の製造方法及びこれにより製造された逆浸透分離膜
WO2015118894A1 (ja) 複合半透膜の製造方法
Lee et al. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization
JP2006102594A (ja) 複合半透膜の製造方法
WO2016052427A1 (ja) 複合半透膜及びその製造方法、スパイラル型分離膜エレメント
JP6747926B2 (ja) スパイラル型分離膜エレメントの製造方法
KR102072877B1 (ko) 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
Cho et al. Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier
JP6400885B2 (ja) 複合半透膜の製造方法
JP2008253906A (ja) 乾燥複合半透膜
JP2007253109A (ja) 乾燥複合半透膜の製造方法
KR102041657B1 (ko) 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
WO2015118913A1 (ja) スパイラル型分離膜エレメント
JP4793978B2 (ja) 乾燥複合半透膜の製造方法
JP2008259983A (ja) 乾燥複合半透膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780776

Country of ref document: EP

Kind code of ref document: A1