WO2013161472A1 - アルカリ形燃料電池 - Google Patents

アルカリ形燃料電池 Download PDF

Info

Publication number
WO2013161472A1
WO2013161472A1 PCT/JP2013/058480 JP2013058480W WO2013161472A1 WO 2013161472 A1 WO2013161472 A1 WO 2013161472A1 JP 2013058480 W JP2013058480 W JP 2013058480W WO 2013161472 A1 WO2013161472 A1 WO 2013161472A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
fuel cell
membrane
exchange electrolyte
anion
Prior art date
Application number
PCT/JP2013/058480
Other languages
English (en)
French (fr)
Inventor
篤彦 大沼
良幸 高森
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013161472A1 publication Critical patent/WO2013161472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • H01M8/1013Other direct alcohol fuel cells [DAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an alkaline fuel cell using an anion exchange membrane.
  • Fuel cells have high power generation efficiency and excellent environmental performance, and are expected as next-generation power generation devices that can contribute to solving environmental problems and energy problems, which are now major issues.
  • Patent Document 1 Japanese Patent Document 1
  • hydrogen, methanol, ammonia or the like is supplied to the anode as fuel, and oxygen or air is supplied to the cathode as an oxidant.
  • the problem with alkaline fuel cells is that they have a short lifetime.
  • the present inventors investigated the cause of the short life of the alkaline fuel cell.
  • the main chain or side chain of any one of the anion exchange electrolyte membrane, the anion exchange electrolyte used for the anode, or the anion exchange electrolyte used for the cathode is degraded during power generation or during power generation standby, resulting in a decrease in performance and lifetime. was found to be shorter.
  • the electrolyte membrane is three-dimensionally cross-linked as a technique for suppressing decomposition of the electrolyte membrane.
  • an anionic electrolyte membrane there is a problem that ion exchange groups in the electrolyte are detached from the main chain structure at a high temperature of 70 ° C. or higher.
  • the cross-linking material used in the cation exchange electrolyte membrane There was a problem that the elimination of the exchange group occurred and the performance deteriorated.
  • an object of the present invention is to provide a long-life alkaline fuel cell that suppresses a decrease in performance.
  • a fuel cell according to one embodiment of the present invention includes an anion exchange electrolyte membrane, a catalyst provided on one surface of the anion exchange electrolyte membrane, an anode including an anion exchange electrolyte, and the anion exchange electrolyte membrane.
  • a fuel cell comprising a catalyst provided on the other surface of the electrode and a cathode containing an anion exchange electrolyte, either an anion exchange electrolyte membrane, an anion exchange electrolyte used for an anode, or an anion exchange electrolyte used for a cathode, It has been found that the above object is achieved by comprising an electrolyte having a sulfonyl bond and having a crosslinked structure.
  • the cross-sectional schematic diagram of the electric power generation cell of an alkaline fuel cell The schematic diagram of an electrode catalyst layer.
  • the present invention relates to an anion exchange electrolyte membrane, an anode including a catalyst and an anion exchange electrolyte provided on one surface of the anion exchange electrolyte membrane, and a catalyst and an anion provided on the other surface of the anion exchange electrolyte membrane.
  • the anion exchange electrolyte membrane used in the alkaline fuel cell of the present invention is not particularly limited as long as it has a property of conducting anions, and any known one may be used.
  • an anion exchange electrolyte membrane there are generally a membrane made only of an anion exchange electrolyte and a porous membrane as a base material impregnated with an anion exchange resin.
  • an anion exchange electrolyte a polymer material having an anion exchange group such as a primary to tertiary amino group, a quaternary ammonium group, a quaternary phosphonium group, a quaternary pyridinium group, a pyridyl group, or a phosphazene group is preferably used.
  • the anion exchange electrolyte and the anion exchange electrolyte membrane contained in the anode and the cathode may be made of the same material or different materials.
  • any one of the anion exchange electrolyte membrane, the anion exchange electrolyte used for the anode, or the anion exchange electrolyte used for the cathode has a solubility in an N-methyl-2-pyrrolidone solvent (hereinafter referred to as NMP solvent) at 60 ° C. of 20%.
  • NMP solvent N-methyl-2-pyrrolidone solvent
  • the anode catalyst used in the alkaline fuel cell of the present invention is not particularly limited as long as it has catalytic activity to oxidize the fuel, but platinum is used when hydrogen, methanol, and ethanol are used as the fuel. Palladium, ruthenium, iron, cobalt, nickel, and alloys thereof can be used. Further, these catalysts may be supported on a carbon carrier such as carbon black or activated carbon.
  • the cathode is an electrode including a catalyst for reducing oxygen and an anion exchange electrolyte.
  • the catalyst for the cathode is not particularly limited as long as it has a catalytic activity for reducing oxygen, but platinum, gold, palladium, iron, cobalt, nickel and alloys thereof can be used. Similarly, it may be supported on a carbon support.
  • the fuel used in the alkaline fuel cell of the present invention is not particularly limited, but in general, in addition to alcohols such as methanol and ethanol, ammonia, hydrazine, and aqueous solutions thereof, hydrogen can be used.
  • FIG. 1 is a schematic sectional view of a power generation cell of an alkaline fuel cell according to the present invention.
  • the power generation cell is part of the fuel cell system.
  • a pair of conductive plates 11 sandwich a membrane electrode assembly in which an anode 13 is formed on one surface of an anion exchange electrolyte membrane 14 and a cathode 15 is formed on the other surface. Configured.
  • the pair of conductive plates 11 are connected via an external circuit 7.
  • Reactive gas flow paths are formed on the surface of the conductive plate 11 facing the electrodes, and the reactive gas is supplied from the gas flow paths to the anode 13 and the cathode 14 to generate power.
  • a gasket 17 is provided between the anion exchange electrolyte membrane 14 and the conductive plate 11 so that the reaction gas does not leak outside.
  • Gas diffusion layers 12 and 16 are disposed between the conductive plate 11 and the anode 13 and cathode 14 so that the reaction gas is diffused into the surface of the electrode.
  • As the gas diffusion layers 12 and 16 carbon paper, carbon cloth, or the like can be used. The gas diffusion layer can be omitted.
  • FIG. 2 schematically shows a part of the electrode catalyst layer.
  • the electrode catalyst layer has a configuration in which a carrier 21 carrying a plurality of catalytic metals 22 on its surface is bound with an anion conductive electrolyte 23.
  • the catalyst metal a catalyst that oxidizes fuel is selected at the anode 13, and a catalyst that reduces oxygen is selected at the cathode 14.
  • the carrier 21 a carbon carrier such as carbon black having conductivity is used.
  • an electrolyte having a sulfonyl bond and having a crosslinked structure is used in at least one of the anion exchange electrolyte membrane 14 or the anion conductive electrolyte 23 contained in the electrode catalyst layer.
  • a sulfide bond is formed by polymerizing a multi-branched monomer or polymer having a thiol terminal and a halogen monomer or polymer having a terminal terminal.
  • a structure having a sulfonyl bond at the cross-linking site can be prepared by oxidation.
  • This reaction solution was poured into 2000 ml of water to precipitate a copolymer.
  • the block copolymer was filtered, it was transferred to a 3000 ml beaker, 1500 ml of distilled water was added, and the mixture was heated from room temperature to 70 ° C.
  • the copolymer was filtered, transferred to a 3000 ml beaker, 1500 ml of 10% aqueous sulfuric acid was added, and the mixture was heated from room temperature to 70 ° C.
  • the copolymer was further filtered, washed thoroughly with purified water, transferred to a 3000 ml beaker, 1500 ml of distilled water and 500 ml of 5% aqueous sodium carbonate solution were added, and the mixture was heated from room temperature to 70 ° C.
  • the copolymer was filtered, washed thoroughly with purified water, and dried in a hot air dryer at 140 ° C. for 6 hours to obtain the desired copolymer.
  • the obtained copolymer was dissolved in 1,1 ′, 2,2′-tetrachloroethane according to Non-Patent Document 1, reacted with zinc chloride and chloromethyl methyl ether, reprecipitated in methanol, and further distilled water. Chloromethylation was performed by washing thoroughly to obtain chloromethylated polymer A.
  • catalyst-supported carbon particles (TEC 61E54, manufactured by Tanaka Kikinzoku Co., Ltd.) having a platinum support amount of 30% by mass and a ruthenium support amount of 24% by weight were moistened with water, and then chloromethylated polymer A was added to NMP.
  • Catalyst paste B was prepared by mixing and dispersing the solution dissolved in the solvent so as to be uniform.
  • the anode catalyst layer B was formed by applying and drying on the surface of the chloromethylated polymer membrane A opposite to the cathode catalyst layer A to obtain a membrane electrode assembly A.
  • the prepared membrane electrode assembly A is sandwiched between press plates of a flat plate press, and is sandwiched for 3 minutes at 60 ° C. and 5 MPa, whereby the membrane electrode assembly A (the thickness of the catalyst layer A is 150 ⁇ m, the catalyst layer B film thickness 150 ⁇ m) was prepared.
  • the reaction solution was cooled to room temperature to obtain a reaction solution. After cooling the reaction solution to room temperature, the reaction solution was poured into 2000 ml of water to precipitate a copolymer.
  • the copolymer was filtered, transferred to a 3000 ml beaker, 1500 ml of distilled water was added, and the mixture was heated from room temperature to 70 ° C. Further, this copolymer was filtered, transferred to a 3000 ml beaker, thoroughly washed with purified water, added with 1500 ml of distilled water, and heated from room temperature to 70 ° C. The copolymer was filtered, washed thoroughly with purified water, and dried in a hot air dryer at 140 ° C. for 6 hours to obtain the desired copolymer.
  • the obtained copolymer was dissolved in 1,1 ′, 2,2′-tetrachloroethane according to Non-Patent Document 1, reacted with zinc chloride and chloromethyl methyl ether, reprecipitated in methanol, and further distilled water. By thoroughly washing, chloromethylation was carried out to obtain chloromethylated polymer C.
  • catalyst-supported carbon particles (TEC 61E54, manufactured by Tanaka Kikinzoku Co., Ltd.) having a platinum loading amount of 30% by mass and a ruthenium loading amount of 24% by weight were moistened with water, and then chloromethylated polymer C was added to NMP.
  • Catalyst paste D was prepared by mixing and dispersing the solution dissolved in the solvent so as to be uniform.
  • the anode catalyst layer D was formed by applying and drying on the surface of the chloromethylated polymer membrane A opposite to the cathode catalyst layer C to obtain a membrane electrode assembly C.
  • the prepared membrane electrode assembly C is sandwiched between press plates of a flat plate press, and is sandwiched for 3 minutes at 60 ° C. and 5 MPa, whereby the membrane electrode assembly C (the thickness of the catalyst layer C is 150 ⁇ m, the catalyst layer D film thickness of 150 ⁇ m) was prepared.
  • Example 1 The membrane / electrode assembly A prepared in (3) was impregnated with a methanesulfonic acid solution containing 10 wt% diphosphorus pentoxide, and heated at 60 ° C. for 10 hours. Thereafter, the crosslinked electrolyte membrane was taken out from the solution, washed with pure water until the pH became 7, and the water adhering to the membrane was wiped off with a filter paper (5A) to produce a crosslinked membrane electrode assembly A.
  • a methanesulfonic acid solution containing 10 wt% diphosphorus pentoxide
  • the cross-linked membrane electrode assembly A was immersed in 30 wt% trimethylamine for 12 hr, further immersed in 1 mol% NaOH for 1 hr, and then washed with pure water until the pH reached 7, and the water adhering to the membrane was removed from the filter paper (5A). Then, a crosslinked anion exchange membrane / electrode assembly A was prepared by wiping off with.
  • the produced anion exchange membrane electrode assembly A was sandwiched between conductive plates through a carbon cloth serving as a diffusion layer, thereby producing a fuel cell A according to this example.
  • a 10% methanol aqueous solution containing 1 mol / L KOH is supplied from the fuel tank to the anode of the fuel cell, and air having a dew point of 60 ° C. is supplied to the cathode, and the current density is 50 mA / cm 2 at a cell temperature of 60 ° C.
  • the voltage after 100 hours was 95% with respect to the initial voltage.
  • a crosslinked anion electrolyte membrane A was prepared by the following method.
  • the chloromethylated polymer film A prepared in (2) was impregnated with a methanesulfonic acid solution containing 10 wt% diphosphorus pentoxide and heated at 60 ° C. for 10 hours. Thereafter, the crosslinked electrolyte membrane was taken out of the solution, washed with pure water until the pH became 7, and the water adhering to the membrane was wiped off with a filter paper (5A) to crosslink the chloromethylated polymer membrane A.
  • the cross-linked chloromethylated polymer membrane A was immersed in 30 wt% trimethylamine for 12 hours, further immersed in 1 mol% NaOH for 1 hour, and then washed with pure water until the pH reached 7, and the water adhering to the membrane was removed from the filter paper (5A). And a crosslinked anion electrolyte membrane A was prepared.
  • the weight reduction rate after the produced crosslinked anion electrolyte membrane A was immersed in NMP at 60 ° C. for 3 hours was 3%.
  • Example 2 The membrane / electrode assembly C prepared in (5) was impregnated with a methanesulfonic acid solution containing 10 wt% diphosphorus pentoxide, and heated at 60 ° C. for 10 hours. Thereafter, the crosslinked electrolyte membrane was taken out from the solution, washed with pure water until the pH became 7, and the water adhering to the membrane was wiped off with filter paper (5A) to produce a crosslinked membrane electrode assembly C. Next, the cross-linked membrane electrode assembly C was immersed in 30 wt% trimethylamine for 12 hours, further immersed in 1 mol% NaOH for 1 hour and then washed with pure water until the pH reached 7, and the water adhering to the film was removed from the filter paper (5A). Then, a crosslinked anion exchange membrane electrode assembly C was prepared by wiping.
  • the produced anion exchange membrane electrode assembly C was sandwiched between conductive plates via a carbon cloth serving as a diffusion layer to produce a fuel cell C according to this example.
  • a 10% methanol aqueous solution containing 1 mol / L KOH is supplied from the fuel tank to the anode of the fuel cell, and air having a dew point of 60 ° C. is supplied to the cathode, and the current density is 50 mA / cm 2 at a cell temperature of 60 ° C.
  • the voltage after 100 hours was 93% with respect to the initial voltage.
  • a crosslinked anion electrolyte membrane C was prepared by the following method.
  • the chloromethylated polymer film C prepared in (5) was impregnated with a methanesulfonic acid solution containing 10 wt% diphosphorus pentoxide and heated at 60 ° C. for 10 hours. Thereafter, the electrolyte membrane treated in the same manner as the crosslinked anion electrolyte membrane A of Example (1) is taken out of the solution, washed with pure water until the pH becomes 7, and the water adhering to the membrane is wiped off with filter paper (5A). The methylated polymer film C was subjected to crosslinking treatment.
  • the chloromethylated polymer film C was immersed in 30 wt% trimethylamine for 12 hours, further immersed in 1 mol% NaOH for 1 hour, and then washed with pure water until the pH reached 7, and the water adhering to the film was removed with a filter paper (5A). A wiped crosslinked anionic electrolyte membrane C was produced.
  • the weight reduction rate after the produced crosslinked anion electrolyte membrane C was immersed in NMP at 60 ° C. for 3 hours was 100%.
  • the electrolyte membrane of this example is the same material as the electrolyte membrane of Example 1, and the weight reduction rate is the same as that of Example 1.
  • the produced anion exchange membrane electrode assembly B was sandwiched between current collectors through a carbon cloth serving as a diffusion layer to produce a fuel cell B according to this comparative example.
  • a 10% methanol aqueous solution containing 1 mol / L KOH is supplied from the fuel tank to the anode of the fuel cell, and air having a dew point of 60 ° C. is supplied to the cathode, and the current density is 50 mA / cm 2 at a cell temperature of 60 ° C.
  • the voltage after 100 hours was 80% with respect to the initial voltage.
  • the chloromethylated polymer A prepared in (1) was added with hydroxyl groups.
  • a catalyst paste C was prepared by adding 1% of a cross-linking material having 1 and mixing and dispersing the solution dissolved in NMP uniformly. Next, this catalyst paste C was applied onto one surface of the chloromethylated polymer film B using a spray coater and dried to form a cathode catalyst layer C.
  • Catalyst paste D was prepared by adding 1% of a cross-linking material having a hydroxyl group to methylated polymer A and mixing and dispersing the solution dissolved in NMP to be uniform.
  • the catalyst paste D is applied onto the other surface of the chloromethylated polymer film B by using a spray coater and dried to form an anode catalyst layer C.
  • the catalyst layer C and A membrane electrode assembly C on which the catalyst layer D was formed was obtained.
  • the prepared membrane electrode assembly C is sandwiched between press plates of a flat plate press, and the crosslinked material having a hydroxyl group is crosslinked by sandwiching the membrane electrode assembly C for 3 minutes at 120 ° C. and 5 MPa, thereby crosslinking the membrane electrode assembly C.
  • Catalyst layer C film thickness 150 ⁇ m, catalyst layer D film thickness 150 ⁇ m was prepared.
  • the cross-linked membrane electrode assembly C was immersed in 30 wt% trimethylamine for 12 hr, further immersed in 1 mol% NaOH for 1 hr, washed with pure water until the pH became 7, and the water adhering to the membrane was wiped off with filter paper (5A). An anion exchange membrane electrode assembly C was produced.
  • a 10% methanol aqueous solution containing 1 mol / L KOH is supplied from the fuel tank to the anode of the fuel cell, and air having a dew point of 60 ° C. is supplied to the cathode, and the current density is 50 mA / cm 2 at a cell temperature of 60 ° C.
  • the voltage after 100 hours was 50% with respect to the initial voltage.
  • chloromethylated polymer film B was treated in the same manner as the chloromethylated polymer film A to produce a crosslinked anion electrolyte film B.
  • a fuel cell comprising a cathode containing an electrolyte
  • any one of an anion exchange electrolyte membrane, an anion exchange electrolyte used for an anode, or an anion exchange electrolyte used for a cathode has a sulfonyl bond and has an crosslinked structure. The superiority of the fuel cell is shown.

Abstract

 性能の低下を抑制し、長寿命なアルカリ形燃料電池を提供する。 アニオン交換電解質膜と、アニオン交換電解質膜の一方の面上に設けられた触媒とアニオン交換電解質を含むアノードと、アニオン交換電解質膜の他方の面上に設けられた触媒とアニオン交換電解質を含むカソードと、を備えるアルカリ形燃料電池において、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、スルホニル結合を有し、かつ架橋構造を有する電解質から成ること特徴とする。

Description

アルカリ形燃料電池
 本発明は、アニオン交換膜を用いたアルカリ形燃料電池に関する。
 燃料電池は、発電効率が高く、環境性に優れており、現在、大きな課題となっている環境問題、エネルギ問題の解決に貢献可能な次世代の発電装置として期待されている。
 燃料電池の中で電解質としてアニオン交換膜を用いたアルカリ形燃料電池がある(特許文献1等)。アルカリ形燃料電池では、燃料としてアノードに水素や、メタノール、アンモニア等が供給され、カソードに酸素や空気が酸化剤として供給される。
特開2009-295481号公報
Macromolecules 2010, 43, 2657
 アルカリ形燃料電池の課題として寿命が短いという問題があった。本発明者らは、上記事情に鑑み、アルカリ形燃料電池の寿命が短い原因を調査した。その結果、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかの主鎖もしくは側鎖が発電中もしくは発電待機中に分解することにより性能が低下し、寿命が短くなっていることが分かった。
 一方、カチオン交換型電解質膜を用いた酸形燃料電池では電解質膜の分解を抑制するための手法として、電解質膜を3次元架橋させることが知られている。しかしながら、アニオン型電解質膜においては、70℃以上の高温では、電解質中のイオン交換基が主鎖構造から脱離するという問題があり、カチオン交換型電解質膜で用いられている架橋材では、イオン交換基の脱離が生じ、性能が低下するという問題があった。
 そこで本発明は、性能の低下を抑制し、長寿命なアルカリ形燃料電池を提供することを目的とする。
 本発明に係る実施態様の1つである燃料電池は、アニオン交換電解質膜と、前記アニオン交換電解質膜の一方の面上に設けられた触媒とアニオン交換電解質を含むアノードと、前記アニオン交換電解質膜の他方の面上に設けられた触媒とアニオン交換電解質を含むカソードと、を備える燃料電池において、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、スルホニル結合を有し、かつ架橋構造を有する電解質から成ることにより上記目的が達成されることが見いだされた。
 本発明によれば、性能の低下を抑制し、長寿命なアルカリ形燃料電池を提供することができる。
アルカリ形燃料電池の発電セルの断面模式図。 電極触媒層の模式図。
 以下、本発明に係るアルカリ形燃料電池の実施形態について詳述する。 
 本発明はアニオン交換電解質膜と、前記アニオン交換電解質膜の一方の面上に設けられた触媒とアニオン交換電解質を含むアノードと、前記アニオン交換電解質膜の他方の面上に設けられた触媒とアニオン交換電解質を含むカソードと、を備える燃料電池において、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、スルホニル結合を有し、かつ架橋構造を有する電解質から成る。
 本発明のアルカリ形燃料電池で用いられるアニオン交換電解質膜は、アニオンを伝導する特性を有していれば特に限定されず、公知の如何なるものでもよい。このようなアニオン交換電解質膜としては、一般にアニオン交換電解質のみからなる膜と基材となる多孔質膜にアニオン交換樹脂を含浸させたものがある。このようなアニオン交換電解質としては1~3級アミノ基、4級アンモニウム基、4級ホスホニウム基、4級ピリジニウム基、ピリジル基、ホスファゼン基などのアニオン交換基を有する高分子材料を用いることが好ましい。また、アノードとカソードに含まれるアニオン交換電解質と、アニオン交換電解質膜は、同一の材料を用いても良いし、異なる材料であっても良い。また、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、60℃のN-メチル-2-ピロリドン溶媒(以下、NMP溶媒という)に対する溶解度が20%以下、より好ましくは10%以下であることが望ましい。
 本発明のアルカリ形燃料電池で用いられるアノードの触媒は、燃料を酸化する触媒活性を有していれば特に限定されるものではないが、水素、メタノール、およびエタノールを燃料として用いる場合には白金、パラジウム、ルテニウム、鉄、コバルト、ニッケルやこれらの合金などを用いることができる。また、これらの触媒はカーボンブラック、活性炭等のカーボン担体に担持されていても良い。また、カソードは酸素を還元する触媒とアニオン交換電解質を含む電極である。カソードの触媒は、酸素を還元する触媒活性を有していれば特に限定されるものではないが、白金、金、パラジウム、鉄、コバルト、ニッケルやこれらの合金などを用いることができ、アノードと同様にカーボン担体に担持されていても良い。
 本発明のアルカリ形燃料電池で用いられる燃料としては、特に制限はないが、一般にはメタノール、エタノール等のアルコール、アンモニア、ヒドラジンやこれらの水溶液のほかに、水素が挙げられる。
 図1に本発明に係るアルカリ形燃料電池の発電セルの断面模式図を示す。発電セルは燃料電池システムの一部である。アルカリ形燃料電池の発電セルは、アニオン交換電解質膜14の一方の面上にアノード13が形成され、他方の面上にカソード15が形成された膜電極接合体を一対の導電性プレート11で挟持して構成される。一対の導電性プレート11は外部回路7を介して接続されている。導電性プレート11の電極と対向する面には、それぞれ反応ガス流路が形成されており、このガス流路から反応ガスがアノード13とカソード14に供給され、発電が行われる。この際、反応ガスが外部に漏れないように、アニオン交換電解質膜14と導電性プレート11の間にガスケット17が設けられている。また、電極の面内へ反応ガスが拡散されるように、導電性プレート11と、アノード13及びカソード14の間にはガス拡散層12、16が配置されている。ガス拡散層12、16としてはカーボンペーパー、カーボンクロスなどを用いることができる。なお、ガス拡散層は省略することもできる。
 アノード13及びカソード14の電極触媒層の模式図を図2に示す。図2は電極触媒層の一部を模式的に示したものである。図2に示したように、電極触媒層は、表面に複数の触媒金属22が担持した担体21がアニオン導電性電解質23で結着された構成を備える。ここで、触媒金属はアノード13では燃料を酸化する触媒が選択され、カソード14では酸素を還元する触媒が選択される。担体21には、導電性を有するカーボンブラックなどのカーボン担体が用いられる。
 本発明のアルカリ形燃料電池では、アニオン交換電解質膜14または電極触媒層に含まれるアニオン導電性電解質23の少なくとも一方にスルホニル結合を有し、かつ架橋構造を有する電解質を用いたことを特徴とする。
 一般にアニオン交換電解質において、スルホニル結合を有する架橋構造を有する構造にするには、末端がチオールの多分岐モノマまたはポリマと末端がハロゲンのモノマまたはポリマを重合することでスルフィド結合を作製し、それを酸化させることで架橋部位にスルホニル結合を有する構造を作製できる。
〔実施例〕
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
(1)クロロメチル化ポリマAの作製
 ディーンスタークトラップ、コンデンサー、攪拌機および窒素供給管を備えた500mlの4つ口セパラブルフラスコに、3,3′-ジスルホ-4,4′-ジクロロジフェニルスルホンジナトリウム塩(SDCDPS、分子量491.3、0.0033モル、0.03当量)、4,4′-ジクロロジフェニルスルホン(DCDPS、分子量287.16、0.1634モル、1.22当量)、4,4′-ジヒドロキシビフェニル(Biphenol、分子量186.21、0.18モル、1.25当量)、炭酸カリウム(K2CO3、分子量138.21、0.180モル)、N-メチルピロリドン320ml、トルエン100mlを入れ、160℃で1時間、180℃で1時間加熱攪拌してトルエンを留去したのち、200℃で38時間加熱した後、室温まで冷却して反応液を得た。この反応液を2000mlの水中に注ぎ、共重合体を析出させた。ブロック共重合体を濾過した後、3000mlのビーカーに移し、蒸留水1500mlを加えて、室温から70℃に加熱した。共重合体を濾過した後、3000mlのビーカーに移し、10%硫酸水溶液1500mlを加えて、室温から70℃に加熱した。さらに共重合体を濾過した後、精製水で十分に洗浄し、3000mlのビーカーに移し、蒸留水1500mlと5%炭酸ナトリウム水溶液500mlを加えて、室温から70℃に加熱した。この共重合体を濾過した後、精製水で十分に洗浄し140℃の熱風乾燥機で6時間乾燥することで目的物である共重合体を得た。
 得られた共重合体を非特許文献1にしたがって1,1′,2,2′-テトラクロロエタンに溶解させ、塩化亜鉛とクロロメチルメチルエーテルと反応させ、メタノールに再沈し、さらに蒸留水で十分に洗浄することでクロロメチル化させクロロメチル化ポリマAを得た。
 クロロメチル化ポリマのクロロメチル化率をNMRで測定したところ、クロロメチル基をイオン交換基とした場合のイオン交換容量が、1.5meq/gであった。
(2)クロロメチル化ポリマ膜Aの作製
 (1)で作製したクロロメチル化ポリマAをNMP溶媒に溶解させ、それをガラス基板上にアプリケーターで塗布したのち、乾燥させることで、40μmのクロロメチル化ポリマ膜Aを作製した。
(3)膜電極接合体Aの作製
 白金担持量が50質量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC10V50E)1.0gを水に湿らせた後に、クロロメチル化ポリマAをNMP溶媒に溶解させた溶液を均一になるように混合分散することによって、触媒ペーストAを調製した。次いで、スプレーコーターを用いて、このカソード触媒ペーストAをクロロメチル化ポリマ膜Aの一方の面上に塗布、乾燥することによりカソード触媒層Aを形成した。
 また、白金担持量が30質量%、ルテニウム担持量が24重量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC61E54)1.0gを水に湿らせた後に、クロロメチル化ポリマAをNMP溶媒に溶解させた溶液を均一になるように混合分散することによって、触媒ペーストBを調製した。スプレーコーターを用いて、クロロメチル化ポリマ膜Aのカソード触媒層Aとは反対側の面上に塗布、乾燥することにより、アノード触媒層Bを形成し膜電極接合体Aを得た。
 続けて、平板プレスのプレス板の間に、調製した膜電極接合体Aを挟持し、60℃、5MPaの条件で3分間挟持することで膜電極接合体A(触媒層Aの膜厚150μm、触媒層Bの膜厚150μm)を調製した。
(4)クロロメチル化ポリマCの作製
 ディーンスタークトラップ、コンデンサー、攪拌機および窒素供給管を備えた500mlの4つ口セパラブルフラスコに、4,4′-ジクロロジフェニルスルホン(DCDPS,分子量287.16,0.18モル,1.25当量)、4,4′-ジヒドロキシビフェニル(Biphenol,分子量186.21,0.18モル,1.25当量)、炭酸カリウム(K2CO3,分子量138.21,0.180モル)、N-メチルピロリドン320ml、トルエン100mlを入れ、160℃で1時間、180℃で1時間加熱攪拌してトルエンを留去したのち、200℃で38時間加熱した。反応液を室温に冷却して反応液を得た。反応液を室温に冷却後、反応液を2000mlの水中に注ぎ、共重合体を析出させた。この共重合体を濾過した後、3000mlのビーカーに移し、蒸留水1500mlを加えて、室温から70℃に加熱した。さらに、この共重合体を濾過した後、3000mlのビーカーに移し、精製水で十分に洗浄し、蒸留水1500mlを加えて、室温から70℃に加熱した。この共重合体を濾過した後、精製水で十分に洗浄し140℃の熱風乾燥機で6時間乾燥することで目的物である共重合体を得た。
 得られた共重合体を非特許文献1にしたがって1,1′,2,2′-テトラクロロエタンに溶解させ、塩化亜鉛とクロロメチルメチルエーテルと反応させ、メタノールに再沈し、さらに蒸留水で十分に洗浄することでクロロメチル化させクロロメチル化ポリマCを得た。
 クロロメチル化ポリマのクロロメチル化率をNMRで測定したところ、クロロメチル基をイオン交換基とした場合のイオン交換容量が、1.5meq/gであった。
(5)膜電極接合体Cの作製
 白金担持量が50質量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC10V50E)1.0gを水に湿らせた後に、クロロメチル化ポリマCをNMP溶媒に溶解させた溶液を均一になるように混合分散することによって、触媒ペーストCを調製した。次いで、スプレーコーターを用いて、このカソード触媒ペーストCをクロロメチル化ポリマ膜Aの一方の面上に塗布、乾燥することによりカソード触媒層Cを形成した。
 また、白金担持量が30質量%、ルテニウム担持量が24重量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC61E54)1.0gを水に湿らせた後に、クロロメチル化ポリマCをNMP溶媒に溶解させた溶液を均一になるように混合分散することによって、触媒ペーストDを調製した。スプレーコーターを用いて、クロロメチル化ポリマ膜Aのカソード触媒層Cとは反対側の面上に塗布、乾燥することにより、アノード触媒層Dを形成し膜電極接合体Cを得た。
 続けて、平板プレスのプレス板の間に、調製した膜電極接合体Cを挟持し、60℃、5MPaの条件で3分間挟持することで膜電極接合体C(触媒層Cの膜厚150μm、触媒層Dの膜厚150μm)を調製した。
〔実施例1〕
 (3)で作製した膜電極接合体Aを10wt%の五酸化二リンを含有するメタンスルホン酸溶液に含浸し、60℃、10時間加熱した。その後、架橋した電解質膜を溶液から取り出し、純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋膜電極接合体Aを作製した。次に、架橋膜電極接合体Aを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋アニオン交換膜電極接合体Aを作製した。
 作製したアニオン交換膜電極接合体Aを拡散層であるカーボンクロスを介して、導電性プレートで挟み込み、本実施例に係る燃料電池セルAを作製した。
 次に、燃料電池のアノードに、燃料タンクから1mol/LのKOH含有10%メタノール水溶液を供給し、カソードに露点60℃の空気を供給して、電池温度60℃にて電流密度50mA/cm2で100hr発電を行った。その結果、100hr後の電圧は、初期電圧に対して95%であった。
 次に、本実施例の架橋アニオン電解質の重量減少率を測定するために以下の手法で架橋アニオン電解質膜Aを作製した。
 まず、(2)で作製したクロロメチル化ポリマ膜Aを10wt%の五酸化二リンを含有するメタンスルホン酸溶液に含浸し、60℃、10時間加熱した。その後、架橋した電解質膜を溶液から取り出し、純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取りクロロメチル化ポリマ膜Aを架橋させた。その後、架橋クロロメチル化ポリマ膜Aを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋アニオン電解質膜Aを作製した。
 作製した架橋アニオン電解質膜Aを60℃のNMPに3hr浸漬させた後の重量減少率は3%であった。
〔実施例2〕
 (5)で作製した膜電極接合体Cを10wt%の五酸化二リンを含有するメタンスルホン酸溶液に含浸し、60℃、10時間加熱した。その後、架橋した電解質膜を溶液から取り出し、純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋膜電極接合体Cを作製した。次に、架橋膜電極接合体Cを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋アニオン交換膜電極接合体Cを作製した。
 作製したアニオン交換膜電極接合体Cを拡散層であるカーボンクロスを介して、導電性プレートで挟み込み、本実施例に係る燃料電池セルCを作製した。
 次に、燃料電池のアノードに、燃料タンクから1mol/LのKOH含有10%メタノール水溶液を供給し、カソードに露点60℃の空気を供給して、電池温度60℃にて電流密度50mA/cm2で100hr発電を行った。その結果、100hr後の電圧は、初期電圧に対して93%であった。
 次に、本実施例のアノード及びカソードに用いた架橋アニオン電解質の重量減少率を測定するために以下の手法で架橋アニオン電解質膜Cを作製した。
 まず、(5)で作製したクロロメチル化ポリマ膜Cを10wt%の五酸化二リンを含有するメタンスルホン酸溶液に含浸し、60℃、10時間加熱した。その後、実施例(1)の架橋アニオン電解質膜Aと同様に処理した電解質膜を溶液から取り出し、純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取りクロロメチル化ポリマ膜Cに架橋処理をした。その後、クロロメチル化ポリマ膜Cを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋アニオン電解質膜Cを作製した。
 作製した架橋アニオン電解質膜Cを60℃のNMPに3hr浸漬させた後の重量減少率は100%であった。なお、本実施例の電解質膜は実施例1の電解質膜と同じ材料であり、重量減少率は実施例1と同じである。
〔比較例1〕
 (3)で作製した膜電極接合体Aを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取りアニオン交換膜電極接合体Bを作製した。
 作製したアニオン交換膜電極接合体Bを拡散層であるカーボンクロスを介して、集電体で挟み込み、本比較例に係る燃料電池セルBを作製した。
 次に、燃料電池のアノードに、燃料タンクから1mol/LのKOH含有10%メタノール水溶液を供給し、カソードに露点60℃の空気を供給して、電池温度60℃にて電流密度50mA/cm2で100hr発電を行った。その結果、100hr後の電圧は、初期電圧に対して80%であった。
〔比較例2〕
 (1)で作製したクロロメチル化ポリマAにヒドロキシル基を有する架橋材を1%添加して、NMPに溶解させた溶液を用いて(2)と同様の方法でそれをガラス基板上にアプリケーターで塗布したのち、乾燥させることで、40μmのヒドロキシル基を有する架橋材を含むクロロメチル化ポリマ膜Bを作製した。
 次に、白金担持量が50質量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC10V50E)1.0gを水に湿らせた後に、(1)で作製したクロロメチル化ポリマAにヒドロキシル基を有する架橋材を1%添加して、NMPに溶解させた溶液を均一になるように混合分散することによって、触媒ペーストCを調製した。次いで、スプレーコーターを用いて、この触媒ペーストCをクロロメチル化ポリマ膜Bの一方の面上に塗布、乾燥することによりカソード触媒層Cを形成した。また、白金担持量が30質量%、ルテニウム担持量が24重量%である触媒担持カーボン粒子(田中貴金属株式会社製、TEC61E54)1.0gを水に湿らせた後に、(1)で作製したクロロメチル化ポリマAにヒドロキシル基を有する架橋材を1%添加して、NMPに溶解させた溶液を均一になるように混合分散することによって、触媒ペーストDを調製した。スプレーコーターを用いて、この触媒ペーストDをクロロメチル化ポリマ膜Bの他方の面上に塗布、乾燥することにより、アノード触媒層Cを形成し、クロロメチル化ポリマ膜B上に触媒層C及び触媒層Dが形成された膜電極接合体Cを得た。続けて、平板プレスのプレス板の間に、調製した膜電極接合体Cを挟持し、120℃、5MPaの条件で3分間挟持することでヒドロキシル基を有する架橋材を架橋させて架橋膜電極接合体C(触媒層C膜厚150μm、触媒層D膜厚150μm)を調製した。架橋膜電極接合体Cを30wt%トリメチルアミンに12hr浸漬し、さらに1mol%NaOHに1hr浸漬させた後に純水でpHが7になるまで洗浄し、膜に付着した水分を濾紙(5A)で拭き取り架橋アニオン交換膜電極接合体Cを作製した。
 次に、燃料電池のアノードに、燃料タンクから1mol/LのKOH含有10%メタノール水溶液を供給し、カソードに露点60℃の空気を供給して、電池温度60℃にて電流密度50mA/cm2で100hr発電を行った。その結果、100hr後の電圧は、初期電圧に対して50%であった。
 また、クロロメチル化ポリマ膜Bについてもクロロメチル化ポリマ膜Aと同様の処理を行い架橋アニオン電解質膜Bを作製した。作製した架橋アニオン電解質膜Bを60℃のNMPに3hr浸漬させた後の重量減少率は30%である。
 以上の結果から、架橋構造を有さない比較例1、従来のヒドロキシル基を有する架橋材で架橋させた比較例2と比較して、スルホニル結合を有し、かつ架橋構造を有する電解質を用いた実施例1、2の方が、長期発電後の電位低下が少なく、性能低下を抑制できることが分かる。このように、アニオン交換電解質膜と、アニオン交換電解質膜の一方の面上に設けられた触媒とアニオン交換電解質を含むアノードと、アニオン交換電解質膜の他方の面上に設けられた触媒とアニオン交換電解質を含むカソードと、を備える燃料電池において、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、スルホニル結合を有し、かつ架橋構造を有する電解質から成る燃料電池の優位性が示された。

Claims (4)

  1.  アニオン交換電解質膜と、前記アニオン交換電解質膜の一方の面上に設けられた触媒とアニオン交換電解質を含むアノードと、前記アニオン交換電解質膜の他方の面上に設けられた触媒とアニオン交換電解質を含むカソードと、を備えるアルカリ形燃料電池において、
     アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、スルホニル結合を有し、かつ架橋構造を有する電解質から成ること特徴とするアルカリ形燃料電池。
  2.  請求項1に記載のアルカリ形燃料電池において、アニオン交換電解質膜、アノードに用いられるアニオン交換電解質またはカソードに用いられるアニオン交換電解質のいずれかが、60℃のNMP溶媒に対する溶解度が20%以下であることを特徴とするアルカリ形燃料電池。
  3.  請求項1に記載のアルカリ形燃料電池において、燃料として、メタノールまたはエタノールのアルコール水溶液を用いたことを特徴とするアルカリ形燃料電池。
  4.  請求項1または2に記載のアルカリ形燃料電池において、燃料として、水素を用いたことを特徴とするアルカリ形燃料電池。
PCT/JP2013/058480 2012-04-27 2013-03-25 アルカリ形燃料電池 WO2013161472A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-102007 2012-04-27
JP2012102007A JP2013229269A (ja) 2012-04-27 2012-04-27 アルカリ形燃料電池

Publications (1)

Publication Number Publication Date
WO2013161472A1 true WO2013161472A1 (ja) 2013-10-31

Family

ID=49482806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058480 WO2013161472A1 (ja) 2012-04-27 2013-03-25 アルカリ形燃料電池

Country Status (2)

Country Link
JP (1) JP2013229269A (ja)
WO (1) WO2013161472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864970A (zh) * 2022-06-01 2022-08-05 合肥工业大学 一种碱性阴离子交换膜燃料电池用低界面传输阻抗膜电极的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273695A (ja) * 1998-03-19 1999-10-08 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2003096219A (ja) * 2001-05-24 2003-04-03 Asahi Glass Co Ltd 陰イオン交換膜
WO2007072842A1 (ja) * 2005-12-20 2007-06-28 Tokuyama Corporation 固体高分子型燃料電池用電解質膜-電極膜接合体及びその製造方法、並びにそれを具備した燃料電池
JP2008504660A (ja) * 2004-07-02 2008-02-14 ソルヴェイ(ソシエテ アノニム) イオン交換膜を含む固体アルカリ型燃料電池
JP2009158128A (ja) * 2007-12-25 2009-07-16 Tokuyama Corp 膜電極接合体およびその製造方法
WO2010021158A1 (ja) * 2008-08-22 2010-02-25 国立大学法人東京工業大学 Oh-伝導体およびその製造方法
JP2012033367A (ja) * 2010-07-30 2012-02-16 Toyota Central R&D Labs Inc 電解質

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273695A (ja) * 1998-03-19 1999-10-08 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2003096219A (ja) * 2001-05-24 2003-04-03 Asahi Glass Co Ltd 陰イオン交換膜
JP2008504660A (ja) * 2004-07-02 2008-02-14 ソルヴェイ(ソシエテ アノニム) イオン交換膜を含む固体アルカリ型燃料電池
WO2007072842A1 (ja) * 2005-12-20 2007-06-28 Tokuyama Corporation 固体高分子型燃料電池用電解質膜-電極膜接合体及びその製造方法、並びにそれを具備した燃料電池
JP2009158128A (ja) * 2007-12-25 2009-07-16 Tokuyama Corp 膜電極接合体およびその製造方法
WO2010021158A1 (ja) * 2008-08-22 2010-02-25 国立大学法人東京工業大学 Oh-伝導体およびその製造方法
JP2012033367A (ja) * 2010-07-30 2012-02-16 Toyota Central R&D Labs Inc 電解質

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864970A (zh) * 2022-06-01 2022-08-05 合肥工业大学 一种碱性阴离子交换膜燃料电池用低界面传输阻抗膜电极的制备方法

Also Published As

Publication number Publication date
JP2013229269A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
JP4327732B2 (ja) 固体高分子型燃料電池、およびその製造方法
JP4791822B2 (ja) 電解質膜、その製造方法、膜電極複合体及びそれを用いた燃料電池
AU2007301545B2 (en) Aromatic polyether copolymers and polymer blends and fuel cells comprising the same
US7754843B2 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups for use in proton exchange membrane fuel cells
JP4508954B2 (ja) 固体高分子型燃料電池用膜−電極構造体
EP3054517B1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
JP2008112712A (ja) プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池
CN101730954A (zh) 固体高分子电解质膜的制造方法、固体高分子电解质膜
KR101085358B1 (ko) 실란계 화합물을 포함하는 탄화수소계 고분자막, 이의 제조방법, 이를 포함하는 막-전극 어셈블리 및 연료전지
Lee et al. Alkaline naphthoquinone‐based redox flow batteries with a crosslinked sulfonated polyphenylsulfone membrane
JP5470211B2 (ja) 膜電極接合体および燃料電池
JP5233208B2 (ja) 架橋高分子電解質膜
JP5669201B2 (ja) 触媒層形成用組成物、及び、触媒層の製造方法
WO2013161472A1 (ja) アルカリ形燃料電池
JP2007287675A (ja) 膜電極接合体および燃料電池
JP2008115340A (ja) スルホン酸基含有ポリマー、その組成物及びその用途
JP2010040530A (ja) プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池
KR20080103794A (ko) 연료전지에 사용하는 이오노머 슬러리를 포함하는 막-전극접합체 제조방법 및 그 막-전극접합체, 막-전극체를 포함하는 연료전지
JP5303838B2 (ja) プロトン伝導性材料、それを用いて成る膜電極接合体(mea)およびその製造方法
JP5565233B2 (ja) 架橋高分子電解質膜、それを用いた膜電極接合体、燃料電池
JP4022833B2 (ja) スルホン酸基含有ポリマー及びその用途
CN108011109B (zh) 一种膜电极的制备方法和燃料电池
JP2018502053A (ja) 芳香族環を含む化合物およびこれを用いた高分子電解質膜
JP4697385B2 (ja) イオン交換膜、膜/電極接合体、燃料電池
KR20200068325A (ko) 이온전달 고분자, 이의 제조방법 및 이를 포함하는 전해질막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781881

Country of ref document: EP

Kind code of ref document: A1