WO2013161452A1 - 多孔性配位高分子-イオン液体複合体 - Google Patents

多孔性配位高分子-イオン液体複合体 Download PDF

Info

Publication number
WO2013161452A1
WO2013161452A1 PCT/JP2013/057756 JP2013057756W WO2013161452A1 WO 2013161452 A1 WO2013161452 A1 WO 2013161452A1 JP 2013057756 W JP2013057756 W JP 2013057756W WO 2013161452 A1 WO2013161452 A1 WO 2013161452A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
coordination polymer
porous coordination
pores
porous
Prior art date
Application number
PCT/JP2013/057756
Other languages
English (en)
French (fr)
Inventor
北川 宏
鉄兵 山田
和之 藤江
Original Assignee
国立大学法人京都大学
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 京セラ株式会社 filed Critical 国立大学法人京都大学
Priority to EP13780742.6A priority Critical patent/EP2843749B1/en
Priority to JP2014512422A priority patent/JP5924627B2/ja
Priority to US14/381,816 priority patent/US10535474B2/en
Publication of WO2013161452A1 publication Critical patent/WO2013161452A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a composite of a porous coordination polymer having pores and an ionic liquid, for example, a composite that functions as an electrolyte for an electrochemical device that can operate safely and in a wide temperature range.
  • ionic liquids are used in electrochemical devices as electrolytes for batteries, electric double layer capacitors and the like because of their high ion conductivity. Since the ionic liquid has extremely high flame retardancy, when it is used as an electrolyte of an electrochemical device, an flammable organic solvent is not required, and an electrochemical device having high safety can be obtained.
  • An ionic liquid generally refers to a salt having a melting point of 100 ° C. or lower. An ionic liquid has a higher melting point than an organic solvent, and it often solidifies at room temperature and does not function as an electrolyte for an electrochemical device.
  • Patent Document 1 a method of reducing or lowering the melting point of the ionic liquid by filling or injecting the ionic liquid into nanopores of porous glass.
  • Patent Document 1 a correlation between the size of the nanopore and the melting point of the filled ionic liquid has also been reported.
  • Non-Patent Document 1 the example which filled the ionic liquid in the carbon nanotube as a material which has a micropore smaller than a nanopore has been reported (nonpatent literature 2).
  • the porous glass described in Patent Document 1 it is difficult for the porous glass described in Patent Document 1 to make the pore diameter even smaller than the mesopores of about 75 mm. Therefore, when the pores of such porous glass are filled with an ionic liquid, the decrease in the melting point of the ionic liquid is about 30 ° C.
  • the mesopore means a pore having a diameter of 20 to 500 mm.
  • Non-Patent Document 2 an ionic liquid is filled into a carbon nanotube having a micropore having a smaller pore diameter, that is, a pore having a diameter of 2 nm or less.
  • carbon nanotubes have electrical conductivity, they cannot be used as an electrolyte for electrochemical devices.
  • Non-Patent Document 2 the melting point of the ionic liquid is increased by filling the carbon nanotube with the ionic liquid.
  • none of the documents describes an example of filling a substance having no conductivity with an ionic liquid to raise the melting point.
  • An object of the present invention is to provide a composite containing an ionic liquid that functions as an electrolyte of an electrochemical device that can operate safely and in a wide temperature range.
  • a porous coordination polymer-ionic liquid composite comprising an insulating structure composed of a porous coordination polymer and an ionic liquid held in the pores of the porous coordination polymer .
  • the porous coordination polymer includes a metal ion that is a Lewis acid and an organic ligand that is a Lewis base, and the Lewis acid and the Lewis base are a combination of a hard acid and a hard base in the HSAB rule.
  • the porous coordination polymer-ionic liquid composite according to (1) which is any one of a combination of a soft acid and a soft base, and a combination of an intermediate hardness acid and an intermediate hardness base .
  • the molded body has a plurality of voids provided between the particles, and has an ion conductive substance in at least some of the plurality of voids.
  • Porous coordination polymer-ionic liquid composite. (10) The porous coordination polymer-ionic liquid composite according to (9), wherein the ion conductive substance is an ionic liquid.
  • (11) The porous coordination polymer-ionic liquid composite according to (9) or (10), wherein the ion conductive substance is the same ionic liquid as the ionic liquid retained in the pores. .
  • the melting point of the ionic liquid can be greatly lowered or raised, or the melting point can be controlled according to the application. it can.
  • an electrolyte containing such a porous coordination polymer-ionic liquid composite an electrochemical device such as a battery or an electric double layer capacitor that can operate safely and in a wide temperature range can be realized.
  • FIG. 1 is a schematic view showing one embodiment of a porous coordination polymer-ionic liquid composite according to the present invention, wherein (A) shows a porous coordination polymer-ionic liquid composite, and (B) shows a composite. The previous porous coordination polymer (insulating structure) and ionic liquid are shown.
  • 2 is a chart showing the results of X-ray diffraction (XRD) measurement, A is a chart showing the results of MIL-53 (Al) single powder, and B is a composite powder of MIL-53 (Al) and EMI-TFSI. It is a chart which shows the result about.
  • FIG. 6 is a cross-sectional view showing another embodiment of the porous coordination polymer-ionic liquid composite according to the present invention, in which (A) is a molded body (structure) composed of a plurality of particles made of a porous coordination polymer.
  • (B) shows a porous coordination polymer-ionic liquid composite in which an ionic liquid is injected and held in the structure of (A).
  • FIG. It is a schematic diagram which shows shape
  • FIG. 2 is a chart showing the results of differential scanning calorimetry (DSC)
  • A is a chart showing the results for EMI-Cl alone
  • B is a sample No. in Example.
  • 8 is a chart showing the results for the composite of No. 8, wherein C is the sample No. in Example. 7 is a chart showing the results for the composite of No. 7.
  • 19 is a 19 F NMR spectrum of an ionic liquid EMI-TFSI at ⁇ 120 ° C., ⁇ 30 ° C., and 0 ° C.
  • FIG. A porous coordination polymer-ionic liquid composite produced by mixing porous coordination polymer ZIF-8 and ionic liquid EMI-TFSI at a mass ratio of 1: 0.24 and heating at 200 ° C. for 15 hours.
  • FIG. 5 is a graph showing the temperature dependence of the half width of 19 F NMR spectrum at ⁇ 150 to 30 ° C.
  • A showing ionic liquid EMI-TFSI
  • B showing porous coordination polymer ZIF-8 and ionic liquid EMI-TFSI.
  • A shows ionic liquid EMI-TFSI
  • B is mass ratio of porous coordination polymer ZIF-8 and ionic liquid EMI-TFSI.
  • a porous coordination polymer-ionic liquid composite prepared by mixing at 1: 0.37 and heating at 200 ° C. for 15 hours is shown.
  • FIG. 1 is a schematic view showing one embodiment of a porous coordination polymer-ionic liquid composite according to the present invention.
  • the composite 3 is composed of an insulating structure 1 having pores 1a and an ionic liquid 2, and the ionic liquid 2 is held in the pores 1a.
  • the porous coordination polymer is uniform because it has a large number of pores 1a in the micropore region and the diameter of the pores 1a is determined from the crystal structure. Therefore, the physical properties such as the melting point of the ionic liquid 2 held in the pores 1a become uniform. Furthermore, the pore 1a of the porous coordination polymer is derived from the crystal lattice as described above. Therefore, the structure 1 having the pores 1a having a uniform pore diameter in the micropore region can be manufactured with good reproducibility.
  • porous coordination polymers include: Zn (MeIM) 2 (hereinafter referred to as ZIF-8) Al (OH) [BDC] (hereinafter referred to as MIL-53 (Al)) Cr (OH) [BDC] (hereinafter referred to as MIL-53 (Cr)) Fe (OH) [BDC] (hereinafter referred to as MIL-53 (Fe)) Zn 2 (DOBDC) (hereinafter referred to as MOF-74 (Zn)) Mg 2 (DOBDC) (hereinafter referred to as MOF-74 (Mg)) Al (OH) (1,4-NDC) Cr 3 F (H 2 O) 2 O (BDC) 3 (hereinafter referred to as MIL-101 (Cr)) Al 8 (OH) 12 ⁇ (OH) 3 (H 2 O) 3 ⁇ [BTC] 3 (hereinafter referred to as MIL-110 (Al)) Cu 3 (BTC) 2 (hereinafter referred to as ZIF
  • HMeIM 2-methylimidazole
  • BDC 1,4-benzenedicarboxylic acid
  • DOBDC 2,5-dihydroxyterephthalic acid
  • H 2 NDC 1,4-naphthalenedicarboxylic acid
  • BTC 1,3,5-benzene
  • BPDC 4,4′-biphenyldicarboxylic acid
  • H 2 TPDC 4,4 ′′ -p-terphenyldicarboxylic acid.
  • the structure 1 is required to have durability against an ionic liquid.
  • a porous coordination polymer in which the main chain is formed by coordination bonding of an organic ligand to a metal ion is equivalent to the case where the metal ion is a Lewis acid and the organic ligand is a Lewis base.
  • the crystalline structure of the porous coordination polymer can be maintained even when it comes into contact with the ionic liquid 2.
  • a hard acid and a hard base have a strong bond
  • a soft acid and a soft base have a strong bond.
  • the metal ion is a Lewis acid and the organic ligand is a Lewis base, and the strength of these bonds dominates the resistance of the porous coordination polymer to the ionic liquid.
  • hard acids examples include Thomas, G. Medicinal Chemistry: An Introduction, 2nd edition; Wiley: New York, 2007.
  • 1,4-benzenedicarboxylic acid, 2,5-dihydroxyterephthalic acid, 1,4-naphthalenedicarboxylic acid, 1,3,5-benzenetricarboxylic acid and the like are hard bases having a structure of RCOO ⁇ in the molecule. is there.
  • a porous coordination polymer obtained from these compounds and a metal ion which is a hard acid is an ionic liquid.
  • a metal ion which is a hard acid for example, Al 3+ , Cr 3+ , Mg 2+ , Fe 3+ , Zr 4+
  • MIL-101 (Cr) metal ions of Mg 2+ MOF-74 (Mg)
  • metal ions of Fe 3+ MIL-53 (Fe) metal ions of Zr 4+ UiO -66, UiO-67, UiO-68 and the like.
  • a porous coordination obtained from the above compound that is a hard base and a metal ion that is an acid having an intermediate hardness (for example, Fe 2+ , Co 2+ , Zn 2+ , Cu 2+, etc.)
  • the polymer is slightly less resistant to ionic liquids than a porous coordination polymer obtained from a hard base and a hard acid.
  • Such porous coordination polymer specifically, MOF-74 metal ions Zn 2+ (Zn), metal ions, and the like HKUST-1 of Cu 2+.
  • imidazole is a base with intermediate hardness.
  • a porous coordination polymer obtained from an imidazole-based ligand and a metal ion that is an acid having intermediate hardness has excellent resistance to an ionic liquid.
  • ZIF Zero Immediate Frameworks
  • the metal ion does not have a coordination unsaturated site. If the metal ion has a coordination unsaturated site, it becomes easy for the anion of the ionic liquid to approach the metal ion of the porous coordination polymer. As a result, the bond between the metal ion and the organic ligand is weakened, and the porous coordination polymer may be destroyed. That is, MIL-53 (Al), Al (OH) (1,4-NDC), MIL-53 (Cr), MIL-53 (Fe), and ZIF system (ZIF-) having no coordination unsaturated site 8) has excellent resistance to ionic liquids.
  • MIL-101 Cr
  • MOF-74 Mg
  • MOF-74 Zn
  • HKUST-1 UiO-66
  • UiO-67 UiO-68 having coordination unsaturated sites
  • each metal ion is coordinated to six oxygen atoms. Five of the six are oxygen atoms of the organic ligand, and the remaining one is an oxygen atom of a solvent (for example, DMF) molecule.
  • a solvent for example, DMF
  • solvent molecules coordinated to metal ions can be removed.
  • one of the six coordination sites of metal ions is vacant and a coordination unsaturated site is formed.
  • each Zr 4+ is coordinated to eight oxygen atoms.
  • oxygen atoms of the organic ligand Four of the eight are oxygen atoms of the organic ligand, two are oxygen atoms derived from O 2 ⁇ , and the remaining two are oxygen atoms derived from OH ⁇ .
  • the oxygen atoms coordinated to each Zr 4+ are changed to the four oxygen atoms of the organic ligand and O 2 ⁇ . It changes to 3 oxygen atoms. As a result, one coordination unsaturated site is formed.
  • the coordination sites of metal ions are all occupied by oxygen atoms and nitrogen atoms of the organic ligand, so there are no coordination unsaturated sites.
  • the anion of the ionic liquid easily coordinates to the coordination unsaturated site of the metal ion, and the coordination unsaturated site disappears. It is thought that there is.
  • the coordination unsaturated site can be formed by removing the ionic liquid in the pores in the porous coordination polymer and further performing heating or the like while evacuating, It is defined as “a porous coordination polymer has coordination unsaturated sites”. By removing the ionic liquid in the pores and performing heating or the like while evacuating, it can be confirmed by infrared spectroscopy, elemental analysis, or the like whether or not a coordination unsaturated site has been formed.
  • the metal ion is preferably a typical metal element.
  • the typical metal element refers to a metal element that does not belong to the transition metal series, for example, a metal element belonging to Group 1, Group 2, Group 12 to Group 18 of the periodic table. In other words, electrons are sequentially arranged in the s or p orbit of the outermost shell, and have a characteristic property as a metal thereon. Since the valence of typical metal elements is difficult to change, the porous coordination polymer containing these in the main chain can maintain the crystal structure of the porous coordination polymer even when it comes into contact with the ionic liquid 2.
  • porous coordination polymers include MIL-53 (Al), Al (OH) (1,4-NDC), ZIF-8, and ZIF, wherein the metal ion is Zn 2+ Is mentioned.
  • the porous coordination polymer is synthesized by using a metal compound and an organic compound as raw materials and reacting them in a reaction solvent.
  • the metal compound is a source of metal ions, and examples thereof include metal nitrate.
  • An organic compound is a supply source of an organic ligand, and examples thereof include 1,4-benzenedicarboxylic acid (common name: terephthalic acid), 1,4-naphthalenedicarboxylic acid, 2-methylimidazole, and the like.
  • the reaction solvent is not particularly limited as long as it can dissolve a metal compound and an organic compound, and examples thereof include water, N, N-dimethylformamide (DMF), and methanol. Moreover, you may use an ionic liquid as a reaction solvent.
  • a metal compound and an organic compound are mixed in the reaction solvent and stirred at room temperature or held at 100 to 200 ° C. for 5 to 100 hours in a pressure vessel. Thereby, a metal ion and an organic ligand react, and a coordination bond is formed, and a porous coordination polymer is formed. After the reaction, the porous coordination polymer particles precipitated in the reaction solvent are collected by a technique such as filtration or centrifugation.
  • a film-like porous coordination polymer may be produced by applying a solution containing a metal compound and an organic compound to a substrate and reacting the solution at room temperature or high temperature.
  • the reaction may be performed in an inert gas atmosphere in order to prevent deterioration of the raw material.
  • the reaction solvent is removed by washing and drying to obtain a porous coordination polymer powder or membrane. Whether or not the porous coordination polymer is formed can be confirmed by performing powder X-ray diffraction (XRD) measurement of the obtained porous coordination polymer and analyzing the obtained diffraction pattern.
  • XRD powder X-ray diffraction
  • the structure 1 made of such a porous coordination polymer is used as an insulating material having no insulating property, that is, no electron conductivity, and the ionic liquid 2 is held inside the pore 1a.
  • the composite 3 has an ionic conductivity but no electronic conductivity, and can be used as an electrolyte of a battery or an electric double layer capacitor.
  • the melting point of the ionic liquid 2 when the mesopore such as porous glass is filled with the ionic liquid 2 (see, for example, Patent Document 1), and further equivalent to the micropore
  • the melting point of the ionic liquid 2 can be significantly reduced as compared with the melting point of the ionic liquid 2 expected when the ionic liquid 2 is filled in the pores having the diameters of 1 and 2. This is because when the size of the pores 1a holding the ionic liquid 2 is in the micropore region, the number of ion pairs that can exist in the pores 1a is less than or equal to the order of 10 pairs in the diameter direction of the pores 1a.
  • the ionic liquid 2 Due to the decrease to When the ionic liquid 2 is solidified, it is necessary that the cations and anions constituting the ionic liquid 2 are regularly arranged by hydrogen bonds.
  • the size of the pore 1a is in the micropore region, the number of ions present in the pore 1a is extremely reduced. Therefore, it is difficult to find other ions having different polarities, and it becomes difficult to form ion pairs and further solidify the ionic liquid. As a result, it is considered that the melting point of the ionic liquid 2 is significantly reduced.
  • porous coordination polymers have the property that the size of the pores expands or contracts depending on the molecules present in the pores.
  • the pores 1a have an optimal size so that the cations and the anions are regularly arranged. Deform. Therefore, it is considered that the ionic liquid 2 becomes stable in the solid state and the melting point increases.
  • the porous coordination polymer having the property that the pore size expands or contracts include MIL-53 (Al).
  • micropores are defined as pores with a diameter of 2 nm or less. Similarly, pores with a diameter of 2 to 50 nm are mesopores and pores with a diameter of 50 nm or more are macropores. Is defined.
  • the ionic liquid generally means a salt having a melting point of 100 ° C. or lower. However, in the present specification, the term “ionic liquid” includes a salt that has a melting point of 100 ° C. or lower when held in the pores.
  • the diameter of the pore 1a is preferably 1.5 nm or less, whereby the melting point of the ionic liquid 2 can be further greatly reduced. Moreover, it is preferable that the diameter of the pore 1a is 0.3 nm or more. This is because it becomes difficult for ions constituting the ionic liquid to be present in the pores 1a smaller than 0.3 nm.
  • the diameter of the pore 1a can be measured by, for example, a gas adsorption method or can be obtained from a crystal structure obtained by X-ray structure analysis. When measuring by the gas adsorption method, the measurement may be performed after removing the ionic liquid or adsorbate in the pores 1a by washing the complex 3 with water or the like.
  • the diameter of the pore 1a is the average value of the measured pore diameter distribution, or when the structure 1 has pores 1a derived from a crystal structure as shown in FIG.
  • the pore 1a is regarded as a micropore region.
  • the shape of the pore 1a may be one-dimensional, two-dimensional, or three-dimensional, but is preferably three-dimensional. If the shape of the pores 1a is three-dimensional, the ion conduction path is most reliably constructed. In other words, the ion conduction path is formed isotropically, the interconnection is facilitated, and the ionic conductivity is increased.
  • the shape of the structure 1 is not particularly limited, and may be any shape such as a particle shape, a wire shape, a rod shape, a sheet shape, a film shape, and a bulk shape. May be.
  • the distance from the outer periphery of the structure 1 to the center is preferably 10 ⁇ m or less. Therefore, the shape of the structure 1 is more preferably a particle shape having a diameter of 20 ⁇ m or less, a linear shape, a rod shape, or a film shape having a thickness of 20 ⁇ m or less.
  • Examples of the ionic liquid 2 include imidazolium salts, pyrrolidinium salts, pyridinium salts, quaternary ammonium salts, quaternary phosphonium salts, and sulfonium salts.
  • Alkali metal salts such as lithium salts and sodium salts may be used.
  • imidazolium salts having a relatively small cation size and a low melting point are particularly preferably used.
  • Examples of anions include halogens such as Cl ⁇ and Br ⁇ , BF 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , FSO 2 NSO 2 F ⁇ (FSI), and CF 3 SO 2 NSO 2 CF 3 ⁇ (TFSI).
  • the porous coordination polymer having a slightly low resistance to the ionic liquid as described above has a high degree of dissociation and the ionic liquid 2 in which the cation and the anion easily move separately, for example, 1-ethyl-3-methylimidazolium, for example.
  • EMI-TFSI bis (trifluoromethanesulfonyl) imide
  • an ionic liquid 2 having a low dissociation degree for example, pyrrolidinium ion, piperidinium ion, pyridinium ion, aliphatic quaternary ammonium ion as a cation , Aliphatic quaternary phosphonium ions, those containing aliphatic tertiary sulfonium ions, or halogens such as Cl ⁇ and Br ⁇ as anions, BF 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , ClO 4 ⁇ , SO 3 C 6 H 4 CH 3 - ( p- toluenesulfonate), SCN - and may be used such as those comprising a.
  • the ionic liquid 2 Before injecting the ionic liquid 2 into the pores 1a of the structure 1, it is preferable to remove molecules and ions adsorbed inside the pores 1a. If molecules or ions adsorbed in the pores 1a remain, the pores 1a are narrowed or completely blocked by the molecules or ions, and the ionic liquid 2 is injected into the pores 1a. It becomes difficult. In addition, there is a concern that the physical properties of the ionic liquid 2 change due to the mixing of impurities, making it difficult to control the melting point.
  • a method for removing molecules and ions adsorbed inside the pores 1a for example, a method of washing the structure 1 with a cleaning liquid and washing away the molecules and ions adsorbed inside the pores 1a, or a heat treatment at a high temperature.
  • the cleaning liquid water, methanol, ethanol, dimethylformamide and the like are preferably used. After the cleaning, it is preferable to remove the cleaning liquid by subjecting the structure 1 to heat treatment, vacuum processing, vacuum heat processing or the like so that the cleaning liquid does not remain inside the pores 1a.
  • the ionic liquid 2 As a method of injecting the ionic liquid 2 into the pores 1a, when the structure 1 having the pores 1a is in the form of particles, for example, a method in which a mixture of the particles of the structure 1 and the ionic liquid 2 is allowed to stand. Is mentioned.
  • the mixture In order to promote the diffusion of the ionic liquid 2 into the structure 1, the mixture may be left in a temperature environment of about 100 to 200 ° C., for example. Basically, the higher the temperature, the easier the ionic liquid 2 diffuses in the pores 1a. However, if the temperature is too high, there is a concern that the structure 1 and the ionic liquid 2 are likely to react. And the ionic liquid 2 are combined to adjust the standing temperature as appropriate.
  • the ionic liquid 2 is preferably injected into the structure 1 in a dry atmosphere having a dew point of ⁇ 20 ° C. or lower, for example. Further, in order to prevent a chemical reaction such as redox of the structure 1 or the ionic liquid 2, it is more preferable to perform an implantation process in a vacuum or in an inert atmosphere such as nitrogen or argon.
  • an ionic liquid is applied to the surface of the film-like structure 1 formed on the base material, or the film-like structure 1 is immersed in the ionic liquid together with the base material.
  • An ion conductive film including the composite 3 is obtained by injecting the ionic liquid 2 into the structure 1 of FIG.
  • the excess ionic liquid may be removed by washing with a solvent such as water or methanol, and absorbing by pressing a filter paper.
  • the ion conductive film including the composite 3 can be produced by forming a slurry in which the particles of the composite 1 are dispersed in the ionic liquid 2 into a film or a sheet by a known coating method or tape forming method. Excess ionic liquid may be removed by washing with a solvent such as water or methanol, absorbing by pressing a filter paper, as in the case of the membrane-like structure 1.
  • the mixing ratio of the structure 1 having the pores 1a and the ionic liquid 2 is preferably mixed so that the total volume of the pores 1a included in the structure 1 and the volume of the ionic liquid 2 are equal.
  • the liquid 2 may be mixed at a ratio such that the liquid 2 is too small or excessive.
  • the volume of the ionic liquid 2 with respect to the total volume of the pores 1a is preferably 20% or more. If it is less than 20%, the path of the ionic liquid is interrupted, and ion conduction may be interrupted.
  • the volume of the ionic liquid 2 with respect to the whole volume of the pore 1a is less than 200% (2 times).
  • the fact that the ionic liquid 2 is retained inside the pores 1a of the structure 1 means that, for example, the differential scanning calorimetry (DSC) of the ionic liquid 2 alone and the complex 3 is performed, and the temperature at which a peak indicating exotherm or endotherm appears. However, it may be confirmed whether or not the ionic liquid 2 alone and the complex 3 are different. Or when the ionic liquid 2 exists excessively with respect to the volume of the pore 1a of the structure 1, the same melting
  • DSC differential scanning calorimetry
  • the composite 3 is evaluated while changing the measurement temperature by a method such as solid nuclear magnetic resonance (NMR) analysis or AC impedance method, and a phase at a temperature lower than the melting point of the ionic liquid 2 alone is measured.
  • NMR solid nuclear magnetic resonance
  • AC impedance method AC impedance method
  • the ionic liquid 2 is retained in the pore 1a from the analysis of the X-ray diffraction (XRD) pattern of the composite 3
  • XRD X-ray diffraction
  • the type of the substance occluded in the pore 1a can be determined from the analysis of the X-ray diffraction (XRD) pattern.
  • the kind and composition of the porous coordination polymer or ionic liquid used may be specified by elemental analysis, X-ray diffraction (XRD) measurement, nuclear magnetic resonance (NMR) analysis, or the like.
  • FIG. 3A shows a cross-sectional view of the structure 11 used in this embodiment
  • FIG. 3B shows a composite 131 obtained by injecting the ionic liquid 12 into the pores of the structure 11.
  • the structure 11 is a molded body obtained by compression molding a plurality of particles 111 made of a porous coordination polymer.
  • the composite 131 obtained by using such a structure 11 is used as an electrolyte of a battery or an electric double layer capacitor, the structure 11 has a dense structure, and thus an ion conduction path between particles is easily connected. Become. Therefore, such a composite 131 becomes a good ionic conductor.
  • the ion conductive material 5 is preferably present in at least some of the plurality of voids.
  • the presence of the ion conductive material 5 in the gap forms an ion conduction path.
  • the ion conductive substance 5 include water, an organic electrolyte, an ionic liquid, and an ion conductive polymer. Among these, it is preferable to use an ionic liquid from the viewpoint of high ion conductivity and low vapor pressure.
  • ionic liquids with low vapor pressure are not lost by evaporation.
  • ion conduction inside and outside the particles of the composite 132 becomes smoother, which is preferable.
  • a solid ion conductive substance may be used as the ion conductive substance 5.
  • the solid ion conductive material include particles of an ion conductive polymer, particles of an inorganic ion conductive material, and the like.
  • solid ionic conductive materials have low ionic conductivity, but the composite 132 is responsible for the main ionic conduction path, and the ionic conductive material 5 is an auxiliary position. small.
  • solid ion conductive materials it is particularly preferable to fill the gap with an ion conductive polymer from the viewpoint that the shape of the structure 11 can be easily maintained.
  • the structure 11 is obtained by pressure-forming a plurality of particles 111 made of a porous coordination polymer by a known method such as uniaxial pressing, isostatic pressing, roller rolling, and extrusion molding.
  • the structure 11 is obtained by forming a slurry in which a plurality of particles 111 made of a porous coordination polymer are dispersed in a solvent by a known sheet forming method such as tape casting, slip casting, spin coating, and drying. Can also be obtained.
  • the ionic liquid 12 is injected into the pores of the structure 11 obtained in this way.
  • the injection method is as described above.
  • the ion conductive substance 5 When the ion conductive substance 5 is used, the ion conductive substance 5 is usually injected into the space between the particles 111 after the injection of the ionic liquid 12.
  • the ion conductive material 5 may be prepared by mixing the porous coordination polymer particles 111 and the solid (powder) ion conductive material 5 or using the liquid ion conductive material 5 as a solvent. , And may be present in the voids between the particles 111.
  • the injected particles may be formed into a desired shape.
  • the ion conductive material 5 may exist in the gap between the particles 111.
  • 3 to 5 exemplify a structure 11 in which a plurality of particles 111 made of a porous coordination polymer are irregularly arranged, but may be regularly arranged.
  • the shape of the structure 11 is not specifically limited, For example, spherical shape, columnar shape (columnar shape and prismatic shape), weight shape (conical shape and pyramid shape), wire (line) shape, rod
  • a desired shape such as a (bar) shape, a sheet (plate) shape, or a film shape is employed.
  • composites 131 and 132 may contain an additive such as a binder as long as the effects of the present invention are not impaired.
  • ZIF-8 as an insulating structure having pores (hereinafter sometimes simply referred to as “structure”), and Al (OH) (1,4-NDC) synthesized by the following method And MOF-74 (Zn) powder. All of these have pores in a micropore region having a diameter of 2 nm or less as shown in Table 1.
  • Al (OH) (1,4-NDC) particles are separated by suction filtration, washed with ion-exchanged water, subjected to suction filtration, and dried at room temperature for 1 hour, whereby Al (OH) (1,4 -NDC) powder was obtained.
  • MOF-74 (Zn) particles were separated by suction filtration, washed sequentially with DMF and ethanol, suction filtered, and dried at room temperature for 1 hour to obtain MOF-74 (Zn) powder.
  • the crystal structure of the porous coordination polymer was confirmed by X-ray diffraction (XRD) measurement, and it was confirmed that the porous coordination polymer was formed.
  • the ZIF-8 powder was also washed with a suitable solvent and dried to remove molecules adsorbed inside the pores.
  • the powders of these structures were subjected to a vacuum drying process (150 ° C., 15 hours) to remove moisture in the pores.
  • the particle diameters of the powders of these structures were confirmed by observation with a transmission electron microscope (TEM), and those having an average particle diameter of 0.1 ⁇ m by image analysis were used.
  • TEM transmission electron microscope
  • ionic liquid examples include 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (hereinafter sometimes referred to as EMI-TFSI), and 1-ethyl-3-methylimidazolium chloride (hereinafter referred to as EMI). -Cl may be described). These ionic liquids were also subjected to a vacuum drying treatment (150 ° C., 15 hours) to remove moisture.
  • EMI-TFSI 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • EMI 1-ethyl-3-methylimidazolium chloride
  • the obtained composite was subjected to differential scanning calorimetry (DSC) in the temperature range of ⁇ 150 to 100 ° C.
  • the temperature was increased / decreased at a rate of 5 ° C./min in the temperature range of ⁇ 150 to ⁇ 100 ° C. and 1 ° C./min in the temperature range of ⁇ 100 to 100 ° C.
  • Table 1 shows melting points observed in the temperature raising process. However, when neither an endothermic peak nor an exothermic peak was observed in the measurement temperature range, the melting point was described as being lower than ⁇ 150 ° C.
  • FIG. 4 shows EMI-Cl alone and sample no.
  • the measurement results of the temperature rising process at 0 to 100 ° C. in the differential scanning calorimetry (DSC) of 7 and 8 are shown.
  • 4A is a composite of EMI-Cl alone
  • an endothermic peak appears around 84 ° C.
  • the melting point of EMI-Cl alone is about 84 ° C.
  • Non-Patent Document 1 when an ionic liquid is injected into ZIF-8 having pores with a diameter of 1.2 nm, the melting point is expected to decrease by about 140 to 187 ° C. In this example, This indicates a melting point lower by 50 ° C. or more.
  • Sample No. 4 5, and 12, Sample No. Similar to 8, no peak corresponding to melting or solidification appears in the range of ⁇ 150 to 100 ° C., and all the ionic liquid is present in the pores of the structure, and the melting point is lower than ⁇ 150 ° C. It is thought. Sample No. The melting points observed for 3 and 11 are as follows: 7 is an excess of ionic liquid that could not penetrate into the pores of the structure. Sample No. The melting point of the ionic liquid (EMI-TFSI) used in 1 to 5 and 9 to 13 is ⁇ 17 ° C.
  • EMI-TFSI EMI-TFSI
  • sample no. DSC measurements were performed on 18 and 19.
  • Sample No. 19 the reason why the two melting points of 20 ° C. and 41 ° C. are described is that peaks appear at two locations near 20 ° C. and 41 ° C. in the DSC pattern.
  • Sample No. Nos. 14 and 15 use MIL-101 (Cr) and HKUST-1 having a coordination unsaturated site as a porous coordination polymer. They also contain transition metals in the main chain.
  • EMI-TFSI used as an ionic liquid is an ionic liquid having a high degree of dissociation and in which a cation and an anion easily move separately. As described above, when a porous coordination polymer having coordination unsaturated sites and having slightly low resistance to ionic liquid is mixed with EMI-TFSI having a high degree of dissociation, a large number of coordination unsaturated sites are formed around the coordination unsaturated sites.
  • the anion approaches and weakens the bond between the metal ion of the porous coordination polymer and the organic ligand. Furthermore, the transition metal contained in the main chain of these porous coordination polymers easily changes in valence due to contact with the ionic liquid, and the crystal structure easily changes. It is thought that the porous coordination polymer was destroyed by these factors.
  • FIG. 7 shows the 19 F NMR spectrum of the ionic liquid EMI-TFSI. It is TFSI ⁇ that contains a fluorine atom, and the 19 F NMR spectrum can be considered as observing the motion state of TFSI ⁇ .
  • a broad peak was observed at -120 ° C. This is probably because the EMI-TFSI is solidified and the peak is broadened. When this was heated, a sharp peak appeared at ⁇ 30 ° C. This is probably because EMI-TFSI was partially melted, and a part of TFSI ⁇ was able to move freely, resulting in the occurrence of the motional narrowing in which the peak sharpened. Further heating to 0 ° C. completely sharpened the peak. This indicates that all TFSI ⁇ can move freely, and that all EMI-TFSI has melted.
  • FIG. 8 shows a 19 F NMR spectrum of a complex of ZIF-8 and EMI-TFSI.
  • EMI-TFSI remains outside the pores of ZIF-8, a sharpened peak as shown in FIG. 7 should appear. However, since such a sharpened peak is not seen, it can be seen that all of the EMI-TFSI was taken into the pores of ZIF-8.
  • FIG. 9 shows the temperature dependence of the half width of the 19 F NMR spectrum of the ionic liquid EMI-TFSI and the complex of ZIF-8 and EMI-TFSI.
  • the EMI-TFSI of A showed a sharp decrease in the half-width at around ⁇ 30 ° C. This is because the peak is sharpened by melting as described above.
  • the complex of ZIF-8 and EMI-TFSI in B in FIG. 9 did not undergo a sudden change in half-value width, and the half-value width continuously decreased with temperature. This indicates that by confining EMI-TFSI in the pores of ZIF-8, no solidification and melting of EMI-TFSI occurred.
  • the reason why the full width at half maximum near room temperature is larger than that in the case of EMI-TFSI alone is that ions of EMI-TFSI are confined in the pores of ZIF-8, and the mobility of ions is slightly lowered.
  • FIG. 10 shows the temperature dependence of ionic conductivity.
  • the value of ionic conductivity is normalized by the value of ionic conductivity at room temperature.
  • the sample was sandwiched between electrodes made of SUS, and the ionic conductivity was evaluated by an AC impedance method in a dry argon atmosphere.
  • the measurement frequency is 1 Hz to 1 MHz.
  • A is the ionic conductivity of EMI-TFSI.
  • EMI-TFSI the ionic conductivity of EMI-TFSI.
  • three filter papers having a diameter of 3 mm and a thickness of 0.15 mm were stacked, and EMI-TFSI was impregnated therewith.
  • the melting point of EMI-TFSI is ⁇ 17 ° C., but abrupt changes in ionic conductivity occur in the vicinity. That is, it can be seen that the ionic conductivity is extremely low because it is solidified at a low temperature, and the conductivity is rapidly increased by melting at a high temperature.
  • B in FIG. 10 represents the ionic conductivity of the complex of ZIF-8 and EMI-TFSI.
  • the obtained mixture was heated at 200 ° C. for 15 hours, and this powder was press-molded to a diameter of 3 mm and a thickness of 0.5 mm to prepare a sample. Similar to the half width of the 19 F NMR spectrum, the ionic conductivity of this sample shows a continuous change with temperature, and the decrease in ionic conductivity at low temperatures is smaller than that of EMI-TFSI alone. That is, the complex of ZIF-8 and EMI-TFSI is a promising ionic conductor that operates even at low temperatures.
  • the composite of the present invention can greatly reduce the melting point of the ionic liquid by holding the ionic liquid in the pores of the porous coordination molecule having the pores in the micropore region.
  • it was found that it can be used as an electrolyte for an electric double layer capacitor in a wide temperature range equal to or higher than that when an organic solvent is used as the electrolyte.
  • the porous coordination polymer-ionic liquid composite according to the present invention is used for, for example, electrochemical devices.
  • Such an electrochemical device is obtained by disposing an electrolyte layer containing the composite of the present invention between a pair of electrodes and enclosing it in an outer package.
  • an electrode an electrode containing an active material, for example, a sintered body of an active material such as a metal oxide or a composite oxide, a material in which an active material is hardened with a conductive agent, a metal, a carbon-based material, or the like is used. That's fine.
  • the electrode and the composite may be in contact with each other via an electrolytic solution, but if they are in direct contact, direct exchange of ions between the electrode and the ionic liquid (or ion conductive material) inside the composite is possible. Is preferable.
  • the exterior body a generally used form and material may be used, but it may be simply covered with an insulating resin or the like.
  • the melting point of the ionic liquid in the porous coordination polymer-ionic liquid composite according to the present invention is higher than the melting point of the ionic liquid alone, it is used as an ionic liquid absorbent for preventing leakage.
  • the absorbed ionic liquid may leak again.
  • a specific porous coordination polymer is used as an adsorbent and the composite of the present invention is formed, the absorbed ionic liquid is immediately solidified, which can more reliably prevent leakage of the ionic liquid. it can.
  • the melting point of the ionic liquid in the composite according to the present invention is higher than the melting point of the ionic liquid alone, it is possible to concentrate lithium ions and the like in the ionic liquid.
  • the above sample No. The melting point of the ionic liquid in the composite obtained in 18 is 56 ° C., and the melting point of the used ionic liquid (EMI-TFSI) alone is ⁇ 17 ° C.
  • EMI-TFSI used ionic liquid
  • MIL-53 (Al) powder is put into an ionic liquid in which lithium salt is dissolved and maintained at about 65 ° C., only when lithium ions enter the pores of MIL-53 (Al), The ionic liquid solidifies (because the melting point of the ionic liquid increases when a large amount of lithium salt is dissolved). Therefore, it is possible to fill the MIL-53 (Al) pores with an ionic liquid with an increased lithium ion concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明に係る多孔性配位高分子-イオン液体複合体は、多孔性配位高分子からなる絶縁性の構造体と、前記多孔性配位高分子の細孔内に保持されたイオン液体とを有する。好ましくは、多孔性配位高分子が、主鎖に典型金属元素を含む。

Description

多孔性配位高分子-イオン液体複合体
 本発明は、細孔を有する多孔性配位高分子とイオン液体との複合体に関し、例えば、安全かつ広い温度域で動作可能な電気化学デバイスの電解質などとして機能する複合体に関する。
 イオン液体は、イオン伝導性の高さから、電池や電気二重層キャパシタなどの電解質として、電気化学デバイスに用いることが提案されている。イオン液体は極めて高い難燃性を有するため、電気化学デバイスの電解質として用いる際、可燃性の有機溶媒を必要とせず、高い安全性を有する電気化学デバイスを得ることができる。
 イオン液体とは、一般に100℃以下の融点を有する塩のことをいう。イオン液体は有機溶媒と比較すると融点が高く、室温では固体化して、電気化学デバイスの電解質として機能しないものも多い。このようなイオン液体を、室温以下でも電解質として機能させるため、多孔質ガラスのナノ細孔内にイオン液体を充填あるいは注入して、イオン液体の融点を低下させる方法(特許文献1)が提案されている。さらに、ナノ細孔のサイズと充填されたイオン液体の融点との相関についても報告されている(非特許文献1)。また、ナノ細孔よりもサイズの小さいマイクロ孔を有する材料として、カーボンナノチューブ中にイオン液体を充填した事例が報告されている(非特許文献2)。
 しかし、特許文献1に記載された多孔質ガラスは、細孔径を75Å程度のメソ孔よりもさらに小さくすることは困難である。したがって、このような多孔質ガラスの細孔にイオン液体を充填した場合、イオン液体の融点の低下は30℃程度である。なお、メソ孔とは、20~500Åの直径を有する細孔のことをいう。
 非特許文献2では、さらに細孔径の小さいマイクロ孔、すなわち直径が2nm以下の細孔を有するカーボンナノチューブにイオン液体を充填している。しかし、カーボンナノチューブは導電性を有するため、電気化学デバイスの電解質として用いることは不可能である。
 さらに、用途によっては、イオン液体の融点を上昇させたい場合もある。非特許文献2では、カーボンナノチューブにイオン液体を充填することによって、イオン液体の融点を上昇させている。しかし、導電性を有さない物質にイオン液体を充填し、融点を上昇させた事例については、いずれの文献にも記載されていない。
特開2006-281105号公報
M.Kanakubo et.al., Chemical Communications, 2006, issue 17, 1828-1830 S.Chen et.al., Journal of the American Chemical Society, 2007, vol.129, issue 9, 2416‐2417
 本発明の課題は、安全かつ広い温度域で動作可能な電気化学デバイスの電解質などとして機能する、イオン液体を含む複合体を提供することである。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
 (1)多孔性配位高分子からなる絶縁性の構造体と、前記多孔性配位高分子の細孔内に保持されたイオン液体とを有する、多孔性配位高分子-イオン液体複合体。
 (2)前記多孔性配位高分子が、ルイス酸である金属イオンとルイス塩基である有機配位子とを含み、前記ルイス酸および前記ルイス塩基が、HSAB則における硬い酸および硬い塩基の組合せ、柔らかい酸および柔らかい塩基の組合せ、ならびに中間的な硬さの酸と中間的な硬さの塩基の組合せのいずれかである、(1)に記載の多孔性配位高分子-イオン液体複合体。
 (3)前記多孔性配位高分子が、配位不飽和サイトを有していない、(1)または(2)に記載の多孔性配位高分子-イオン液体複合体。
 (4)前記多孔性配位高分子が、主鎖に典型金属元素を含む、(1)~(3)のいずれかに記載の多孔性配位高分子-イオン液体複合体。
 (5)前記典型金属元素が、ZnまたはAlである、(4)に記載の多孔性配位高分子-イオン液体複合体。
 (6)前記構造体が、膜状である、(1)~(5)のいずれかに記載の多孔性配位高分子-イオン液体複合体。
 (7)前記構造体が、粒子状である、(1)~(5)のいずれかに記載の多孔性配位高分子-イオン液体複合体。
 (8)前記構造体が、前記多孔性配位高分子からなる複数の粒子によって構成された成形体である、(1)~(5)のいずれかに記載の多孔性配位高分子-イオン液体複合体。
 (9)前記成形体が、前記粒子間に設けられた複数の空隙を有し、該複数の空隙のうち少なくとも一部の空隙に、イオン伝導性物質を有している、(8)に記載の多孔性配位高分子-イオン液体複合体。
 (10)前記イオン伝導性物質が、イオン液体である、(9)に記載の多孔性配位高分子-イオン液体複合体。
 (11)前記イオン伝導性物質が、前記細孔内に保持されているイオン液体と同一のイオン液体である、(9)または(10)に記載の多孔性配位高分子-イオン液体複合体。
 本発明によれば、多孔性配位高分子の細孔内に、イオン液体を保持させることによって、イオン液体の融点を大幅に低下させたり上昇させたり、用途に応じて融点を制御することができる。このような多孔性配位高分子-イオン液体複合体を含む電解質を用いることにより、安全かつ広い温度域で動作可能な、電池や電気二重層キャパシタなどの電気化学デバイスなどを実現できる。
本発明に係る多孔性配位高分子-イオン液体複合体の一実施態様を示す模式図であり、(A)は多孔性配位高分子-イオン液体複合体を示し、(B)は複合化前の多孔性配位高分子(絶縁性の構造体)とイオン液体とを示す。 X線回折(XRD)測定結果を示すチャートであり、AはMIL-53(Al)単独粉末についての結果を示すチャートであり、BはMIL-53(Al)とEMI-TFSIとの複合体粉末についての結果を示すチャートである。 本発明に係る多孔性配位高分子-イオン液体複合体の他の実施態様を示す断面図であり、(A)は多孔性配位高分子からなる複数の粒子によって構成された成形体(構造体)を示し、(B)は(A)の構造体にイオン液体を注入して保持させた多孔性配位高分子-イオン液体複合体を示す。 図3(A)に示す構造体にイオン液体を注入し、かつ構造体を構成する粒子間に形成される空隙に、イオン伝導性物質を存在させた多孔性配位高分子-イオン液体複合体を示す断面図である。 多孔性配位高分子の粒子にイオン液体を注入し、注入後の粒子を成形することを示す模式図である。 示差走査熱量分析(DSC)結果を示すチャートであり、AはEMI-Cl単独についての結果を示すチャートであり、Bは実施例における試料No.8の複合体についての結果を示すチャートであり、Cは実施例における試料No.7の複合体についての結果を示すチャートである。 イオン液体EMI-TFSIの-120℃、-30℃および0℃における19F NMRスペクトルである。 多孔性配位高分子ZIF-8とイオン液体EMI-TFSIとを質量比1:0.24で混合し、200℃で15時間加熱して作製した多孔性配位高分子-イオン液体複合体の-120℃、-30℃および0℃における19F NMRスペクトルである。 -150~30℃における19F NMRスペクトルの半値幅の温度依存性を示す図であり、Aはイオン液体EMI-TFSIを示し、Bは多孔性配位高分子ZIF-8とイオン液体EMI-TFSIとを質量比1:0.24で混合し、200℃で15時間加熱して作製した多孔性配位高分子-イオン液体複合体を示す。 室温における値で規格化したイオン伝導度の温度依存性を示す図であり、Aはイオン液体EMI-TFSIを示し、Bは多孔性配位高分子ZIF-8とイオン液体EMI-TFSIを質量比1:0.37で混合し、200℃で15時間加熱して作製した多孔性配位高分子-イオン液体複合体を示す。
 本発明に係る多孔性配位高分子-イオン液体複合体(以下、単に「複合体」と記載する場合がある)を、図1に基づいて説明する。図1は、本発明に係る多孔性配位高分子-イオン液体複合体の一実施態様を示す模式図である。
 図1(A)に示すように、複合体3は、細孔1aを有する絶縁性の構造体1と、イオン液体2とから構成され、イオン液体2は細孔1a内に保持されている。
 構造体1は、主鎖に典型金属元素を含む多孔性配位高分子で構成されている。多孔性配位高分子としては、MOF(Metal-Organic Framework)、PCP(Porous Coordination Polymer)などが挙げられる。このような多孔性配位高分子は、細孔1aの直径および形状が均一であるため、細孔1a内に保持されたイオン液体の物性が均一になる。構造体1を構成する多孔性配位高分子としては、主鎖に典型金属元素を含む多孔性配位高分子を使用している。しかし、本発明においては、多孔性配位高分子は、主鎖に典型金属元素を含むものに限定されない。
 多孔性配位高分子は、マイクロ孔領域の細孔1aを多数有している上に、細孔1aの直径が結晶構造に由来して決定されるために均一である。したがって、細孔1a内に保持されているイオン液体2の融点などの物性が均一になる。さらに、多孔性配位高分子の細孔1aは、上記のように結晶格子に由来する。そのため、マイクロ孔領域で、均一な細孔径の細孔1aを有する構造体1を再現良く製造することができる。
 多孔性配位高分子としては、例えば、
  Zn(MeIM)2(以下、ZIF-8と記載する)
  Al(OH)[BDC](以下、MIL-53(Al)と記載する)
  Cr(OH)[BDC](以下、MIL-53(Cr)と記載する)
  Fe(OH)[BDC](以下、MIL-53(Fe)と記載する)
  Zn2(DOBDC)(以下、MOF-74(Zn)と記載する)
  Mg2(DOBDC)(以下、MOF-74(Mg)と記載する)
  Al(OH)(1,4-NDC)
  Cr3F(H2O)2O(BDC)3(以下、MIL-101(Cr)と記載する)
  Al8(OH)12{(OH)3(H2O)3}[BTC]3(以下、MIL-110(Al)と記載する)
  Cu3(BTC)2(以下、HKUST-1と記載する)
  Zr(BDC)2(以下、UiO-66と記載する)
  Zr(BPDC)2(以下、UiO-67と記載する)
  Zr(TPDC)2(以下、UiO-68と記載する)
などが挙げられる。
 上記化学式で用いた略号は、
  HMeIM:2-メチルイミダゾール
  H2BDC:1,4-ベンゼンジカルボン酸
  H4DOBDC:2,5-ジヒドロキシテレフタル酸
  H2NDC:1,4-ナフタレンジカルボン酸
  H3BTC:1,3,5-ベンゼントリカルボン酸
  H2BPDC:4,4’-ビフェニルジカルボン酸
  H2TPDC:4,4’’-p-テルフェニルジカルボン酸
を表わす。
 さらに、構造体1には、イオン液体に対する耐久性が要求される。金属イオンに有機配位子を配位結合させることによって主鎖を形成している多孔性配位高分子は、その金属イオンをルイス酸、有機配位子をルイス塩基とした場合、同程度の硬さを有する酸および塩基を組み合わせると、イオン液体2と接触しても多孔性配位高分子の結晶構造を維持できる。HSAB則によれば、一般的に硬い酸と硬い塩基とは結合が強く、軟らかい酸と軟らかい塩基とは結合が強い。多孔性配位高分子においては、金属イオンがルイス酸、有機配位子がルイス塩基であり、これらの結合の強さが多孔性配位高分子のイオン液体への耐性を支配している。
 硬い酸、硬い塩基、軟らかい酸、軟らかい塩基、中間的な酸、および中間的な塩基の例は、例えばThomas, G. Medicinal Chemistry: An Introduction, 2nd edition; Wiley: New York, 2007.などに記されている。
 例えば、1,4-ベンゼンジカルボン酸、2,5-ジヒドロキシテレフタル酸、1,4-ナフタレンジカルボン酸、1,3,5-ベンゼントリカルボン酸などは、分子中にRCOO-の構造を有する硬い塩基である。そのため、これらの化合物と硬い酸である金属イオン(例えば、Al3+、Cr3+、Mg2+、Fe3+、Zr4+など)とから得られる多孔性配位高分子は、イオン液体に対して優れた耐性を有する。このような多孔性配位高分子としては、具体的には、金属イオンがAl3+のMIL-53(Al)、Al(OH)(1,4-NDC)、金属イオンがCr3+のMIL-53(Cr)、MIL-101(Cr)、金属イオンがMg2+のMOF-74(Mg)、金属イオンがFe3+のMIL-53(Fe)、金属イオンがZr4+のUiO-66、UiO-67、UiO-68などが挙げられる。
 一方、硬い塩基である上記化合物と、中間的な硬さを有する酸である金属イオン(例えば、Fe2+、Co2+、Zn2+、Cu2+など)とから得られる多孔性配位高分子は、硬い塩基と硬い酸とから得られる多孔性配位高分子と比べると、イオン液体に対する耐性が若干低くなる。このような多孔性配位高分子としては、具体的には、金属イオンがZn2+のMOF-74(Zn)、金属イオンがCu2+のHKUST-1などが挙げられる。
 例えば、イミダゾールは中間的な硬さを有する塩基である。したがって、イミダゾール系配位子と中間的な硬さを有する酸である金属イオンとから得られる多孔性配位高分子は、イオン液体に対して優れた耐性を有する。例えば、Fe2+、Co2+、またはZn2+からなるZIF(Zeolitic Imidazolate Frameworks)系の多孔性配位高分子はすべて該当し、代表的なものはZIF-8である。
 多孔性配位高分子は、その金属イオンが配位不飽和サイト有していないことが好ましい。金属イオンが配位不飽和サイトを有していると、イオン液体のアニオンが多孔性配位高分子の金属イオンに近接することが容易となる。その結果、金属イオンと有機配位子の結合を弱め、多孔性配位高分子が破壊されることがる。すなわち、配位不飽和サイトを有さないMIL-53(Al)、Al(OH)(1,4-NDC)、MIL-53(Cr)、MIL-53(Fe)、およびZIF系(ZIF-8など)は、イオン液体に対して優れた耐性を有する。
 逆に、配位不飽和サイトを有するMIL-101(Cr)、MOF-74(Mg)、MOF-74(Zn)、HKUST-1、UiO-66、UiO-67、およびUiO-68は、イオン液体に対する耐性が若干低くなる。
 多孔性配位高分子が配位不飽和サイトを有するか否かは、多孔性配位高分子の結晶構造によって判断することができる。多孔性配位高分子の結晶構造は、X線回折、赤外分光法などによって調べることができる。配位不飽和サイトの数は、多孔性配位高分子の種類によって決定される。例えば、MIL-101(Cr)、MOF-74(Mg)、MOF-74(Zn)、HKUST-1、UiO-66、UiO-67、およびUiO-68は、配位不飽和サイトの数と金属イオンの数とが同じである。
 MIL-101(Cr)、MOF-74(Mg)、MOF-74(Zn)、およびHKUST-1は、各金属イオンが6個の酸素原子と配位結合している。6個のうち5個は有機配位子の酸素原子であり、残りの1個は溶媒(例えばDMFなど)分子の酸素原子である。このような多孔性配位高分子を、例えば真空引きしながら加熱することによって、金属イオンに配位している溶媒分子を除去することができる。その結果、金属イオンの配位サイト6個のうち1個が空き、配位不飽和サイトが形成される。
 UiO-66、UiO-67、およびUiO-68は、各Zr4+は8個の酸素原子と配位結合している。8個のうち4個は有機配位子の酸素原子であり、2個はO2-に由来する酸素原子であり、残りの2個はOH-に由来する酸素原子である。このような多孔性配位高分子を、例えば真空引きしながら加熱することによって、各Zr4+に配位している酸素原子が、有機配位子の4個の酸素原子とO2-に由来する3個の酸素原子に変化する。その結果、配位不飽和サイトが1個形成される。
 ほとんどの多孔性配位高分子は、有機配位子の酸素原子や窒素原子で金属イオンの配位サイトが全て占有されているため、配位不飽和サイトが存在しない。なお、多孔性配位高分子とイオン液体とからなる複合体の場合、イオン液体のアニオンが、金属イオンの配位不飽和サイトに容易に配位して、配位不飽和サイトが消滅していると考えられる。本明細書においては、多孔性配位高分子内の細孔内のイオン液体を除去し、さらに真空引きしながら加熱などを行うことによって、配位不飽和サイトを形成することが可能な場合、「多孔性配位高分子が配位不飽和サイトを有する」と定義する。
 細孔内のイオン液体を除去し、真空引きしながら加熱などを行うことによって、配位不飽和サイトが形成されたか否かは、赤外分光法、元素分析などによって確認することができる。
 多孔性配位高分子は、金属イオンが典型金属元素であることが好ましい。典型金属元素とは、金属元素のうち、遷移金属の系列にない、例えば周期表の1族、2族および12族から18族に属する金属元素のことをいう。すなわち、電子が最外殻のs軌道またはp軌道に順次配置され、その上に金属としての特有の性質を持つものである。典型金属元素は価数が変動しにくいため、これらを主鎖に含む多孔性配位高分子は、イオン液体2と接触しても多孔性配位高分子の結晶構造を維持することができる。一方、主鎖に含まれる金属元素が遷移金属元素の場合、イオン液体2との接触によってその価数が変化し、多孔性配位高分子の結晶構造が破壊されることがある。この観点から、好ましい多孔性配位高分子としては、MIL-53(Al)、Al(OH)(1,4-NDC)、ZIF-8、およびZIF系のうち金属イオンがZn2+のものが挙げられる。
 多孔性配位高分子は、原料として金属化合物および有機化合物を使用し、これらを反応溶剤中で反応させることで合成される。金属化合物は金属イオンの供給源であり、例えば金属硝酸化物などが挙げられる。有機化合物は有機配位子の供給源であり、例えば1,4-ベンゼンジカルボン酸(慣用名:テレフタル酸)、1,4-ナフタレンジカルボン酸、2-メチルイミダゾールなどが挙げられる。
 反応溶剤としては、金属化合物および有機化合物を溶解し得るものであれば特に限定されず、例えば水、N,N-ジメチルホルムアミド(DMF)、メタノールなどが挙げられる。また、イオン液体を反応溶剤として用いてもよい。反応溶剤に、金属化合物および有機化合物を混合し、室温で撹拌、または圧力容器中100~200℃で5~100時間保持する。これにより、金属イオンと有機配位子とが反応し、配位結合して、多孔性配位高分子が形成される。反応後、反応溶剤中に沈殿した多孔性配位高分子の粒子を、例えばろ過、遠心分離などの手法で回収する。
 あるいは、金属化合物および有機化合物を含む溶液を基材に塗布し、室温または高温で反応させることで、膜状の多孔性配位高分子を作製してもよい。
 反応は、原料の変質を防ぐため、不活性ガス雰囲気中で行ってもよい。反応後、洗浄および乾燥して反応溶剤を除去することにより、多孔性配位高分子の粉末または膜を得ることができる。
 多孔性配位高分子が形成されているか否かは、得られた多孔性配位高分子の粉末X線回折(XRD)測定を行い、得られた回折パターンを解析することで確認できる。
 このような多孔性配位高分子からなる構造体1を絶縁性、すなわち電子伝導性を有さない絶縁材とし、その細孔1a内部にイオン液体2を保持させる。これにより、複合体3は、イオン伝導性を有するが電子伝導性を有さないものとなり、電池や電気二重層キャパシタの電解質として用いることができる。
 細孔1aをマイクロ孔領域の大きさとすることにより、多孔質ガラスなどのメソ孔にイオン液体2を充填した場合(例えば、特許文献1を参照)のイオン液体2の融点や、さらにマイクロ孔相当の直径を有する細孔にイオン液体2を充填した場合に予想されるイオン液体2の融点と比較して、イオン液体2の融点を著しく低下させることができる。
 これは、イオン液体2を保持する細孔1aの大きさがマイクロ孔の領域になると、細孔1a内に存在できるイオン対の数は、細孔1aの直径方向に10対(つい)オーダー以下にまで減少することに起因する。イオン液体2は凝固するときに、イオン液体2を構成するカチオンとアニオンとが水素結合によって規則的に配列する必要がある。しかし、細孔1aの大きさがマイクロ孔の領域になると、細孔1a内に存在するイオンの数が極端に少なくなる。そのため、イオンが極性の異なる他のイオンを容易に見つけられず、イオン対の形成、さらにはイオン液体の凝固が困難になる。その結果、イオン液体2の融点が、大幅に低下すると考えられる。
 また、多孔性配位高分子によっては、細孔内に存在する分子によって、細孔の大きさが膨張あるいは収縮する性質を有するものがある。このような多孔性配位高分子からなる構造体1の細孔1aにイオン液体2を充填すると、カチオンとアニオンとが規則的に配列しやすくなるように、細孔1aが最適な大きさに変形する。そのため、イオン液体2は固体状態が安定となり、融点が上昇すると考えられる。
 細孔の大きさが膨張あるいは収縮する性質を有する多孔性配位高分子としては、例えばMIL-53(Al)などが挙げられる。
 国際純正応用化学連合(IUPAC)の触媒分野において、マイクロ孔とは直径2nm以下の細孔で定義され、同様に直径2~50nmの細孔をメソ孔、直径50nm以上の細孔をマクロ孔と定義されている。また、イオン液体とは、一般に100℃以下の融点を有する塩のことを意味する。しかし、本明細書では、細孔内に保持することにより融点が100℃以下になる塩を含めてイオン液体と称する。
 細孔1aの直径は、1.5nm以下であることが好ましく、これによりイオン液体2の融点をさらに大きく低下させることができる。また、細孔1aの直径は0.3nm以上であることが好ましい。0.3nmより小さい細孔1aの中には、イオン液体を構成するイオンを存在させにくくなるためである。細孔1aの直径は、たとえばガス吸着法で測定したり、X線構造解析により得られた結晶構造から求めたりできる。ガス吸着法で測定する場合は、複合体3を水などで洗浄するなどして、細孔1a内のイオン液体や吸着物を除去した後に測定すればよい。
 本明細書においては、細孔1aの直径を、測定した細孔径分布の平均値、または構造体1が図1に示すような結晶構造に由来する細孔1aを有する場合には、細孔1aの内壁に内接する球の直径とし、細孔1aの直径が2nm以下である場合を、細孔1aがマイクロ孔の領域であるとした。
 細孔1aの形状は1次元、2次元および3次元のいずれでもよいが、3次元であることが特に好ましい。細孔1aの形状が3次元であると、イオン伝導のパスが最も確実に構築される。すなわち、イオン伝導のパスが等方的に形成されるとともに相互接続が容易になり、イオン伝導率が高くなるからである。
 構造体1の形状は、特に限定されず、例えば、粒子状、ワイヤー(線)状、ロッド(棒)状、シート(板)状、膜状、バルク(塊)状など、いずれの形状であってもよい。イオン液体2が細孔1aを通じて構造体1の中心部に達するまでの移動距離が短いほど、より確実にイオン液体2を構造体1内部の細孔1a内まで注入することが可能になる。具体的には、構造体1の外周から中心部までの距離が、10μm以下であることが好ましい。したがって、構造体1の形状は、より好ましくは、直径20μm以下の粒子状、線状、棒状または厚さ20μm以下の膜状である。
 イオン液体2としては、イミダゾリウム塩、ピロリジニウム塩、ピリジニウム塩、4級アンモニウム塩、4級ホスホニウム塩、スルホニウム塩などが挙げられる。リチウム塩、ナトリウム塩などのアルカリ金属塩を用いてもよい。これらの中でも、カチオンのサイズが比較的小さく、融点の低いイミダゾリウム塩が特に好適に用いられる。アニオンとしては、例えばCl-、Br-などのハロゲン、BF4 -、PF6 -、CF3SO3 -、FSO2NSO2-(FSI)、CF3SO2NSO2CF3 -(TFSI)、C25SO2NSO225 -(BETI)、ClO4 -、SO364CH3 -(p-トルエンスルホナート)、SCN-などが挙げられる。
 これらのイオン液体2は、単独で用いてもよく、2種以上を併用してもよい。電池の電解質としては、リチウム塩、ナトリウム塩を溶解させたものが特に好適に用いられる。
 このようなイオン液体2を、構造体1の細孔1a内に注入することにより、複合体3が得られる。このとき、上述のようなイオン液体に対する耐性が若干低い多孔性配位高分子は解離度が高く、カチオンとアニオンとが個別に運動しやすいイオン液体2、例えば1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)などを用いると破壊されることがある。このような多孔性配位高分子を用いて複合体3を形成する場合は、解離度が低いイオン液体2、例えば、カチオンとしてピロリジニウムイオン、ピペリジニウムイオン、ピリジニウムイオン、脂肪族4級アンモニウムイオン、脂肪族4級ホスホニウムイオン、脂肪族3級スルホニウムイオンを含むもの、あるいはアニオンとしてCl-、Br-などのハロゲン、BF4 -、PF6 -、CF3SO3 -、ClO4 -、SO364CH3 -(p-トルエンスルホナート)、SCN-を含むものなどを用いればよい。
 構造体1の細孔1a内にイオン液体2を注入する前に、細孔1aの内部に吸着した分子やイオンを除去することが好ましい。細孔1aの内部に吸着した分子やイオンが残存していると、その分子やイオンにより細孔1aが狭められたり完全に塞がれたりして、イオン液体2を細孔1a内に注入しにくくなる。また、不純物の混入によりイオン液体2の物性が変化して融点の制御が困難となる懸念がある。
 細孔1aの内部に吸着した分子やイオンを除去する方法としては、例えば、構造体1を洗浄液で洗浄し、細孔1aの内部に吸着した分子やイオンを洗い流す方法や、高温での加熱処理、真空加熱処理などによって吸着した分子やイオンを脱離させる方法がある。洗浄液としては水、メタノール、エタノール、ジメチルホルムアミドなどが好適に用いられる。洗浄後は、洗浄液が細孔1aの内部に残存しないように、構造体1を加熱処理や真空処理、真空加熱処理などに供して、洗浄液を除去することが好ましい。
 細孔1a内にイオン液体2を注入する方法としては、細孔1aを有する構造体1が粒子状の場合、例えば構造体1の粒子とイオン液体2との混合物を静置しておく方法などが挙げられる。イオン液体2の構造体1内部への拡散を促進するため、混合物を例えば100~200℃程度の温度環境下に静置してもよい。基本的には、温度が高いほど、イオン液体2が細孔1a内を拡散しやすいが、温度が高すぎると構造体1とイオン液体2とが反応しやすくなる懸念があるので、構造体1とイオン液体2との組み合わせにより、静置温度は適宜調整される。また、細孔1aやイオン液体2への水分の吸着を防ぐため、構造体1へのイオン液体2の注入処理は、例えば真空中、露点-20℃以下の乾燥雰囲気中で行うことが好ましい。さらに、構造体1やイオン液体2の酸化還元などの化学反応を防止するため、真空中や、窒素、アルゴンなどの不活性雰囲気中で注入処理することがさらに好ましい。
 構造体1が膜状の場合は、例えば基材上に形成した膜状の構造体1表面にイオン液体を塗布する、もしくは膜状の構造体1を基材ごとイオン液体に浸漬し、膜状の構造体1にイオン液体2を注入するなどの方法により、複合体3を含むイオン伝導性膜が得られる。余剰のイオン液体は、水、メタノールなどの溶剤を用いて洗浄、ろ紙を押し当てて吸収するなどして除去すればよい。
 複合体3を含むイオン伝導性膜は、イオン液体2に複合体1の粒子を分散させたスラリーを、周知の塗布法やテープ成形法などにより膜状やシート状に成形することでも作製できる。余剰のイオン液体は、膜状の構造体1の場合と同様に、水、メタノールなどの溶剤を用いて洗浄、ろ紙を押し当てて吸収するなどして除去すればよい。
 細孔1aを有する構造体1とイオン液体2との混合比率は、構造体1に含まれる細孔1aの全容積とイオン液体2の体積とが等しくなるように混合することが好ましいが、イオン液体2が過少・過剰となるような比率で混合しても構わない。ただし、イオン液体2が過少となる場合でも、細孔1aの全容積に対するイオン液体2の体積は、20%以上であることが好ましい。20%未満の場合は、イオン液体のパスが途切れてしまい、イオン伝導が遮断される可能性がある。また、イオン液体2が過剰となる場合には、細孔1aの全容積に対するイオン液体2の体積は、200%(2倍)未満であることが好ましい。特に、融点低下を目的とする場合、200%(2倍)以上になると、余剰のイオン液体が構造体1の外周を覆ってしまい、複合体3のイオン伝導度は、細孔1a外に存在するイオン液体2により律速されることになる。この場合、特に、細孔1a内のイオン液体が液体状であっても、細孔1a外に存在する余剰のイオン液体2が固体状となる温度域では、複合体3のイオン伝導度が、固体状のイオン液体により律速されることになる。そのため、マイクロ孔領域の細孔1a内にイオン液体2を保持することによるイオン液体2の融点低下の効果が得られない。
 構造体1の細孔1a内部にイオン液体2が保持されていることは、例えば、イオン液体2単独および複合体3の示差走査熱量分析(DSC)を行い、発熱または吸熱を示すピークの出現温度が、イオン液体2単独の場合と複合体3の場合とで異なるか否かを確認すればよい。
 あるいは、構造体1の細孔1aの容積に対してイオン液体2が過剰に存在する場合は、イオン液体2単独の場合と同じ融点を示すこともある。このような場合には、複合体3を、固体核磁気共鳴(NMR)分析法、交流インピーダンス法などの手法で測定温度を変えながら評価し、イオン液体2単独の場合の融点よりも低温における相転移挙動の有無を確認することで、構造体1の細孔1a内にイオン液体2が存在するか否かを判断できる。
 細孔1a内部に吸蔵している分子の種類によって構造体1の結晶構造が変化する場合は、複合体3のX線回折(XRD)パターンの解析から、細孔1a内にイオン液体2が保持されていることを確認することもできる。例えば、多孔性配位高分子としてMIL-53(Al)を用いた場合、MIL-53(Al)単独で細孔1a内に水分のみが吸着している場合は、図2のAに示すような単斜晶の構造を有する。一方、MIL-53(Al)の細孔1a内にイオン液体2であるEMI-TFSIが存在する場合は、図2のBに示すような斜方晶の構造を有する。そのため、X線回折(XRD)パターンの解析から細孔1a内部に吸蔵している物質の種類を判別できる。
 なお、使用する多孔性配位高分子やイオン液体の種類および組成は、元素分析、X線回折(XRD)測定、核磁気共鳴(NMR)分析などにより特定すればよい。
 本発明に係る多孔性配位高分子-イオン液体複合体の他の実施態様を、図3および4に基づいて説明する。図3(A)は、この実施態様で用いた構造体11の断面図を示し、図3(B)は、構造体11の細孔にイオン液体12を注入して得られた複合体131である。
 構造体11は、多孔性配位高分子からなる複数の粒子111を圧縮成形して得られた成形体である。このような構造体11を用いて得られる複合体131は、電池や電気二重層キャパシタの電解質として用いられた場合、構造体11が緻密な構造を有するため、粒子間のイオン伝導パスがつながりやすくなる。したがって、このような複合体131は、イオンの良伝導体となる。
 多孔性配位高分子からなる複数の粒子111を圧縮成形して得られた構造体11を用いる場合、多孔性配位高分子の粒子111間には複数の空隙が形成される。この複数の空隙のうち少なくとも一部には、図4の複合体132に示すように、好ましくはイオン伝導性物質5が存在している。空隙にイオン伝導性物質5が存在することによって、イオン伝導パスが構築される。
 イオン伝導性物質5としては、たとえば水、有機電解液、イオン液体、イオン伝導性高分子などが挙げられる。これらの中でも、イオン伝導性が高く蒸気圧が低い点から、イオン液体を用いることが好ましい。蒸気圧が低いイオン液体は、通常の有機電解液と異なり、蒸発によって失われることがない。特に、構造体11の細孔内に保持されているイオン液体12と同一の物質(イオン液体)を用いた場合には、複合体132の粒子内外のイオン伝導がよりスムーズになり好ましい。
 イオン伝導性物質5として、固体のイオン伝導性物質を用いてもよい。固体のイオン伝導性物質としては、イオン伝導性高分子の粒子、無機イオン伝導性物質の粒子などが挙げられる。一般に固体のイオン伝導性物質はイオン伝導度が低いものの、主たるイオン伝導パスを複合体132が担い、イオン伝導性物質5は補助的な位置づけであるため、イオン伝導度が低くてもその影響は小さい。固体のイオン伝導性物質の中でも、構造体11の形状を保持し易いという点から、イオン伝導性高分子を空隙に充填することが特に好ましい。
 構造体11は、多孔性配位高分子からなる複数の粒子111を、一軸プレス、静水圧プレス、ローラー圧延、押出成形など、周知の方法で加圧成形して得られる。あるいは、構造体11は、多孔性配位高分子からなる複数の粒子111を溶剤に分散したスラリーを、テープキャスティング、スリップキャスティング、スピンコーティングなどの周知のシート成形法で成形し、乾燥することによっても得られる。
 このようにして得られた構造体11の細孔に、イオン液体12が注入される。なお、注入方法は、上述の通りである。また、イオン伝導性物質5を用いる場合は、通常、イオン液体12の注入後に、粒子111間の空隙にイオン伝導性物質5が注入される。例えば、イオン伝導性物質5は、多孔性配位高分子の粒子111と固体(粉末)のイオン伝導性物質5とを混合したり、液状のイオン伝導性物質5を溶剤として使用したりして、粒子111間の空隙に存在させてもよい。
 図5に示すように、多孔性配位高分子の粒子111の細孔にイオン液体12を注入した後、注入後の粒子を所望の形状に成形してもよい。もちろん、図5に示す複合体131についても、粒子111間の空隙にイオン伝導性物質5を存在させてもよい。
 図3~5では、構造体11は、多孔性配位高分子からなる複数の粒子111が不規則に配列したものを例示しているが、規則的に配列していてもよい。また、構造体11(複合体131、132)の形状は、特に限定されず、例えば球状、柱状(円柱状および角柱状)、錘状(円錐状および角錐状)、ワイヤー(線)状、ロッド(棒)状、シート(板)状、膜状など、所望の形状が採用される。
 さらに、複合体131、132は、本発明の効果を阻害しない範囲で、例えばバインダなどの添加剤を含有していてもよい。
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 細孔を有する絶縁性の構造体(以下、単に「構造体」と記載する場合がある)として、市販のZIF-8、ならびに以下の方法で合成したAl(OH)(1,4-NDC)およびMOF-74(Zn)の粉末を用いた。これらは全て、表1に示すように直径2nm以下のマイクロ孔領域の細孔を有する。
 <Al(OH)(1,4-NDC)の合成>
 有機配位子供給源としてH2NDC、金属イオン供給源としてAl(NO33・9H2O、および反応溶媒としてイオン交換水を用いた。10mLのイオン交換水に、0.5mmolのH2NDCおよび1.0mmolのAl(NO33・9H2Oを加えて撹拌した。次いで、得られた混合物を耐圧容器に封入し、180℃で18時間保持してAl(OH)(1,4-NDC)粒子を得た。次いで、吸引ろ過によりAl(OH)(1,4-NDC)粒子を分離し、イオン交換水を用いて洗浄、吸引ろ過を行い室温で1時間乾燥させることにより、Al(OH)(1,4-NDC)粉末を得た。
 <MOF-74(Zn)の合成>
 有機配位子供給源としてH4DOBDC、金属イオン供給源としてZn(NO32・6H2O、および反応溶媒としてDMFと2-プロパノールと水との混合溶媒を用いた。2mLのDMFと0.1mLの2-プロパノールと0.1mLのイオン交換水との混合溶媒に、0.096mmolのH4DOBDCおよび0.20mmolのZn(NO32・6H2Oを撹拌した。次いで、得られた混合物を耐圧容器に封入し、105℃で20時間保持してMOF-74(Zn)粒子を得た。次いで、吸引ろ過によりMOF-74(Zn)粒子を分離し、DMFとエタノールとを用いて順次洗浄、吸引ろ過を行い室温で1時間乾燥させることにより、MOF-74(Zn)粉末を得た。
 得られた合成粉末については、X線回折(XRD)測定により多孔性配位高分子の結晶構造を確認し、多孔性配位高分子が形成されていることを確認した。
 ZIF-8の粉末についても、適した溶媒で洗浄して乾燥を行い、細孔内部に吸着した分子を除去した。
 さらに、これらの構造体の粉末を真空乾燥処理に供して(150℃、15時間)、細孔内の水分を除去した。なお、これらの構造体の粉末の粒径は、透過型電子顕微鏡(TEM)観察により確認し、画像解析による平均粒径が0.1μmのものを用いた。
 イオン液体としては、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(以下、EMI-TFSIと記載する場合がある)、および1-エチル-3-メチルイミダゾリウムクロリド(以下、EMI-Clと記載する場合がある)の2種類を用いた。これらのイオン液体についても真空乾燥処理に供して(150℃、15時間)、水分を除去した。
 次いで、真空乾燥された構造体の細孔内部に、イオン液体を注入した。構造体の粉末とイオン液体とを混合し、必要に応じて乾燥Ar雰囲気下で熱処理を行い、複合体を調製した。構造体の粉末を1とした場合のイオン液体の質量比および熱処理条件を表1に示す。
 得られた複合体について、X線回折(XRD)測定を行い、多孔性配位高分子の回折ピークが確認できたものを○、確認できなかったものを×と評価した。結果を表1に示す。
 得られた複合体の示差走査熱量分析(DSC)を、-150~100℃の温度範囲にて行った。なお、-150~-100℃の温度範囲では5℃/分、-100~100℃の温度範囲では1℃/分の速度で昇降温を行った。昇温過程で観測された融点を表1に示す。ただし、測定温度範囲で吸熱ピークおよび発熱ピークのいずれも観測されなかった場合は、融点が-150℃よりも低いものとして記載した。構造体の細孔の容積に対するイオン液体の体積が明らかに過剰となる試料(イオン液体の質量比が10の試料)については、イオン液体単体と同様の挙動を示すため、示差走査熱量分析(DSC)を行わなかった。
Figure JPOXMLDOC01-appb-T000001
 図4に、EMI-Cl単独および試料No.7および8の示差走査熱量分析(DSC)における0~100℃の昇温過程の測定結果を示す。図4のAはEMI-Cl単独、BはZIF-8:EMI-Cl=5:1(質量比)の複合体(試料No.8)、CはZIF-8:EMI-Cl=5:4(質量比)の複合体(試料No.7)の測定結果である。
 AのDSCパターンでは、吸熱ピークが84℃付近に現れており、EMI-Cl単独の融点は84℃程度である。一方、BのDSCパターンには、-150~100℃の範囲で、融解または凝固に相当するピークが全く出現せず、試料No.8の複合体は、この温度範囲に融点および凝固点を有さないことがわかる。これは、84℃の融点を有するEMI-Cl単体は存在せず、EMI-Clは全てZIF-8の細孔内に存在し、融点が-150℃よりも低くなった、すなわち融点が234℃以上低下したためと考えられる。非特許文献1によれば、例えば直径が1.2nmの細孔を有するZIF-8にイオン液体を注入した場合、融点の低下は、140~187℃程度と予想されるが、本実施例ではそれよりも50℃以上低い融点を示したことになる。
 仮に、ZIF-8の細孔内に存在するEMI-Clの融点が100℃よりも高いとすると、ZIF-8とEMI-Clとを混合して100℃で加熱した際、EMI-ClはZIF-8の細孔内に入った瞬間に凝固する。そのため、さらなるEMI-Clの浸入が阻害され、単独のEMI-Clが残存してその融点が観測されると推定される。
 また、CのDSCパターンからは、試料No.7の複合体の場合、融点が78℃とEMI-Cl単独の場合とほとんど変化していないことがわかる。これは、ZIF-8細孔内に存在するEMI-Clの融点は-150℃より低いためBと同様に観測されず、ZIF-8の細孔内に浸入できなかった余剰のEMI-Clの融点が、78℃に観測されたものと考えられる。
 試料No.4、5および12でも、試料No.8と同様に、-150~100℃の範囲で、融解または凝固に相当するピークが全く出現せず、イオン液体はすべて構造体の細孔内に存在し、融点が-150℃よりも低くなったと考えられる。また、試料No.3および11で観測された融点は、試料No.7と同様に構造体の細孔内に浸入できなかった余剰のイオン液体のものである。試料No.1~5および9~13で用いたイオン液体(EMI-TFSI)単体の融点は-17℃である。
 このように、試料No.1~13では、複合体が形成され、イオン液体の融点が単体の場合よりも低下したことが確認できた。
 さらに、試料No.18および19について、DSC測定を行った。試料No.18において、-20℃および56℃の2種の融点が記載されているのは、DSCパターンにおいて-20℃および56℃付近の2ヶ所にピークが出現したためである。これは、試料No.18に、余剰のイオン液体(EMI-TFSI(融点-17℃))と複合体を形成しているイオン液体(融点56℃)とが存在していることを示している。
 試料No.19において、20℃および41℃の2つの融点が記載されているのは、DSCパターンにおいて20℃および41℃付近の2ヶ所にピークが出現したためである。これは、構造体(MIL-53(Al))中におけるイオン液体(EMI-TFSI)の充填率にバラツキがあり、凝固したイオン液体の結晶構造が2種類存在するため(すなわち、2種類の複合体が存在するため)と推察される。
 このように、試料No.16~20では、複合体が形成され、イオン液体の融点が単体の場合よりも上昇したことが確認できた。
 試料No.14および15は、多孔性配位高分子として配位不飽和サイトを有するMIL-101(Cr)およびHKUST-1を用いている。また、これらは主鎖に遷移金属を含んでいる。一方、イオン液体として用いたEMI-TFSIは、解離度が高くカチオンとアニオンとが個別に運動しやすいイオン液体である。このように、配位不飽和サイトを有し、イオン液体に対する耐性が若干低い多孔性配位高分子と、解離度が高いEMI-TFSIとを混合すると、配位不飽和サイトの周辺に多数のアニオンが接近し、多孔性配位高分子の金属イオンと有機配位子との結合を弱める。さらに、これらの多孔性配位高分子の主鎖に含まれる遷移金属は、イオン液体との接触により価数が変化しやすく、結晶構造が変化しやすくなる。これらの要因によって、多孔性配位高分子が破壊されたと考えられる。
 融点を厳密に評価するため、19F NMR測定を行った。乾燥アルゴン雰囲気下にて試料をパイレックス(登録商標)ガラスに封入し、磁場9.4T、周波数376.5MHz、温度-150~30℃にて、staticで測定を行った。
 図7に、イオン液体EMI-TFSIの19F NMRスペクトルを示す。フッ素原子を含んでいるのはTFSI-であり、19F NMRスペクトルはTFSI-の運動状態を観察していると考えてよい。-120℃ではブロードなピークが見られた。これはEMI-TFSIが凝固しているため、ピークがブロードニングしたものと考えられる。これを加熱すると、-30℃でシャープなピークが出現した。これはEMI-TFSIが部分的に融解して、TFSI-の一部が自由に運動できるようになったため、ピークが先鋭化するMortional narrowingが起こったためと考えられる。さらに0℃まで加熱するとピークが完全に先鋭化した。これはすべてのTFSI-が自由に運動できるようになったことを示しており、EMI-TFSIがすべて融解したことを示している。
 図8に、ZIF-8とEMI-TFSIとの複合体の19F NMRスペクトルを示す。試料はZIF-8を真空乾燥してゲスト分子を除去した後に、質量比ZIF-8:EMI-TFSI=4:1で混合し、200℃で15時間加熱して作製した。ZIF-8はフッ素原子を含んでいないため、図8の19F NMRスペクトルはTFSI-の運動状態を観察していると考えてよい。図7の場合と異なり、19F NMRスペクトルのピーク幅は連続的に狭くなっている。これはZIF-8の細孔内でのTFSI-の運動性が温度に伴って連続的に上昇していることを示唆しており、また、明確な融点が消失していることを示している。もし、ZIF-8の細孔外にEMI-TFSIが残存していれば、図7のような先鋭化したピークが出現するはずである。しかし、そのような先鋭化したピークが見られないことから、EMI-TFSIはすべてZIF-8の細孔内に取り込まれたことがわかる。
 図9に、イオン液体EMI-TFSIおよびZIF-8とEMI-TFSIとの複合体の、19F NMRスペクトルの半値幅の温度依存性を示す。図9中AのEMI-TFSIは-30℃付近で半値幅の急激な減少が起こった。これは先に述べたように、融解によってピークが先鋭化したためである。一方、図9中BのZIF-8とEMI-TFSIとの複合体は半値幅の急激な変化は起こらず、温度とともに連続的に半値幅が小さくなった。これはすなわち、EMI-TFSIをZIF-8の細孔内に閉じ込めることによって、EMI-TFSIの凝固および融解が一切起こらなくなったことを示している。室温付近での半値幅がEMI-TFSI単独の場合よりも大きいのは、ZIF-8の細孔内にEMI-TFSIのイオンが閉じ込められ、イオンの運動性が若干低下したためである。
 次に、試料のイオン伝導度を評価した。図10にイオン伝導度の温度依存性を示す。イオン伝導度の値は室温におけるイオン伝導度の値で規格化している。測定は試料をSUS製の電極で挟み込み、乾燥アルゴン雰囲気下で交流インピーダンス法によってイオン伝導度を評価した。測定周波数は1Hz~1MHzである。
 図10中AはEMI-TFSIのイオン伝導度である。試料として直径3mm、厚さ0.15mmのろ紙を3枚重ね、そこにEMI-TFSIを染み込ませたものを用いた。EMI-TFSIの融点は-17℃であるが、その近傍でイオン伝導度の急激な変化が起こっている。すなわち、低温では凝固しているためイオン伝導度が極端に低く、高温では融解によって伝導度の急激な上昇が起こっていることがわかる。
 一方、図10中BはZIF-8とEMI-TFSIとの複合体のイオン伝導度である。ZIF-8を真空乾燥してゲスト分子を除去した後に、ZIF-8:EMI-TFSI=2.7:1(質量比)で混合して混合物を得た。得られた混合物を200℃で15時間加熱し、この粉末を直径3mm、厚さ0.5mmにプレス成型して試料を調製した。この試料のイオン伝導度は、19F NMRスペクトルの半値幅と同様に、温度とともに連続的な変化を見せており、低温でのイオン伝導度の低下はEMI-TFSI単独の場合よりも小さい。すなわち、ZIF-8とEMI-TFSIの複合体は、低温でも動作する有望なイオン伝導体である。
 このように、本発明の複合体は、マイクロ孔領域の細孔を有する多孔性配位分子の細孔内にイオン液体を保持することにより、イオン液体の融点を大きく低下させることができ、電池や電気二重層キャパシタの電解質として、有機溶媒を電解質として用いた場合と同等以上の広い温度域で使用可能なことがわかった。
 本発明に係る多孔性配位高分子-イオン液体複合体は、例えば電気化学デバイスの用途に利用される。このような電気化学デバイスは、本発明の複合体を含む電解質層を、一対の電極間に配置し、外装体に封入することによって得られる。
 電極としては、活物質を含有する電極、たとえば金属酸化物、複合酸化物などの活物質の焼結体、活物質を導電剤とともに結着材で固めたもの、金属、炭素系材料などを用いればよい。電極と複合体とは、電解液などを介して接触していてもよいが、直接接触させれば、電極と複合体内部のイオン液体(またはイオン伝導性物質)との間で直接イオンの授受が可能となるため好ましい。
 外装体としては、一般に用いられる形態、材料のものを用いればよいが、絶縁樹脂などで被覆するだけでも構わない。
 本発明に係る多孔性配位高分子-イオン液体複合体におけるイオン液体の融点が、イオン液体単体の融点よりも上昇する場合、イオン液体の吸収剤として液漏れ防止などの用途に利用される。一般的な多孔質吸収剤は、吸収したイオン液体が再度漏れ出る可能性がある。一方、特定の多孔性配位高分子を吸着剤として用い、本発明の複合体を形成すると、吸収されたイオン液体はすぐに凝固するため、より確実にイオン液体の液漏れを防止することができる。
 さらに、本発明に係る複合体におけるイオン液体の融点が、イオン液体単体の融点よりも上昇する場合、イオン液体中のリチウムイオンなどを濃縮することも可能である。
 例えば、上記試料No.18で得られた複合体におけるイオン液体の融点は56℃であり、用いたイオン液体(EMI-TFSI)単体の融点は-17℃である。リチウム塩を溶解したイオン液体の中に、MIL-53(Al)粉末を入れて65℃程度を維持すると、MIL-53(Al)の細孔内にリチウムイオンが入ったときのみ、細孔内のイオン液体が凝固する(リチウム塩を多量に溶解すると、イオン液体の融点は上昇するため)。したがって、MIL-53(Al)の細孔内にリチウムイオン濃度が高められたイオン液体を充填することができる。

Claims (11)

  1.  多孔性配位高分子からなる絶縁性の構造体と、前記多孔性配位高分子の細孔内に保持されたイオン液体とを有する、多孔性配位高分子-イオン液体複合体。
  2.  前記多孔性配位高分子が、ルイス酸である金属イオンとルイス塩基である有機配位子とを含み、前記ルイス酸および前記ルイス塩基が、HSAB則における硬い酸および硬い塩基の組合せ、柔らかい酸および柔らかい塩基の組合せ、ならびに中間的な硬さの酸と中間的な硬さの塩基の組合せのいずれかである、請求項1に記載の多孔性配位高分子-イオン液体複合体。
  3.  前記多孔性配位高分子が、配位不飽和サイトを有していない、請求項1または2に記載の多孔性配位高分子-イオン液体複合体。
  4.  前記多孔性配位高分子が、主鎖に典型金属元素を含む、請求項1~3のいずれかに記載の多孔性配位高分子-イオン液体複合体。
  5.  前記典型金属元素が、ZnまたはAlである、請求項4に記載の多孔性配位高分子-イオン液体複合体。
  6.  前記構造体が、膜状である、請求項1~5のいずれかに記載の多孔性配位高分子-イオン液体複合体。
  7.  前記構造体が、粒子状である、請求項1~5のいずれかに記載の多孔性配位高分子-イオン液体複合体。
  8.  前記構造体が、前記多孔性配位高分子からなる複数の粒子によって構成された成形体である、請求項1~5のいずれかに記載の多孔性配位高分子-イオン液体複合体。
  9.  前記成形体が、前記粒子間に設けられた複数の空隙を有し、該複数の空隙のうち少なくとも一部の空隙に、イオン伝導性物質を有している、請求項8に記載の多孔性配位高分子-イオン液体複合体。
  10.  前記イオン伝導性物質が、イオン液体である、請求項9に記載の多孔性配位高分子-イオン液体複合体。
  11.  前記イオン伝導性物質が、前記細孔内に保持されているイオン液体と同一のイオン液体である、請求項9または10に記載の多孔性配位高分子-イオン液体複合体。
PCT/JP2013/057756 2012-04-23 2013-03-19 多孔性配位高分子-イオン液体複合体 WO2013161452A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13780742.6A EP2843749B1 (en) 2012-04-23 2013-03-19 Porous coordination polymer-ionic liquid composite
JP2014512422A JP5924627B2 (ja) 2012-04-23 2013-03-19 多孔性配位高分子−イオン液体複合体および電気化学デバイス用電解質
US14/381,816 US10535474B2 (en) 2012-04-23 2013-03-19 Porous coordination polymer-ionic liquid composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-098134 2012-04-23
JP2012098134 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013161452A1 true WO2013161452A1 (ja) 2013-10-31

Family

ID=49482789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057756 WO2013161452A1 (ja) 2012-04-23 2013-03-19 多孔性配位高分子-イオン液体複合体

Country Status (4)

Country Link
US (1) US10535474B2 (ja)
EP (1) EP2843749B1 (ja)
JP (1) JP5924627B2 (ja)
WO (1) WO2013161452A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145454A (ja) * 2014-02-03 2015-08-13 国立大学法人京都大学 イオン伝導性複合体およびその製造方法
JP2015156364A (ja) * 2014-01-20 2015-08-27 国立大学法人京都大学 イオン伝導性複合体
JP2015162457A (ja) * 2014-02-28 2015-09-07 栗田工業株式会社 Co及びco2吸着材及びこれを用いた蓄電デバイス、並びにco及びco2吸着材の製造方法
JP2015165462A (ja) * 2014-03-03 2015-09-17 国立大学法人京都大学 イオン伝導性複合体
CN105390744A (zh) * 2014-08-29 2016-03-09 三星电子株式会社 复合物、其制备方法、包括其的电解质及锂二次电池
JP2016136513A (ja) * 2015-01-12 2016-07-28 アイメック・ヴェーゼットウェーImec Vzw 固体バッテリおよび製造方法
WO2016136132A1 (ja) * 2015-02-27 2016-09-01 ソニー株式会社 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20170040175A (ko) * 2014-08-29 2017-04-12 삼성전자주식회사 복합체, 그 제조방법, 이를 포함하는 전해질 및 리튬이차전지
WO2018016385A1 (ja) * 2016-07-19 2018-01-25 国立研究開発法人物質・材料研究機構 有機/金属ハイブリッドポリマーとイオン液体とを含有する複合体、それを用いたエレクトロクロミックデバイス、および、それらの製造方法
KR20180098603A (ko) 2016-01-22 2018-09-04 신닛테츠스미킨 카부시키카이샤 미소 스위치 및 그것을 사용하는 전자 디바이스
WO2019244922A1 (ja) * 2018-06-20 2019-12-26 株式会社ニックス 成形用組成物及び成形体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127711A (ko) * 2017-02-07 2019-11-13 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 전해질 조절제, 그 제조 방법 및 응용
US20200220219A1 (en) * 2017-02-07 2020-07-09 Ford Cheer International Limited Electrospun composite separator for electrochemical devices and applications of same
US20200185788A1 (en) * 2017-02-07 2020-06-11 Ford Cheer International Limited Electrodes having electrode additive for high performance batteries and applications of same
US11316148B2 (en) * 2017-08-14 2022-04-26 Sila Nanotechnologies, Inc. Nanocomposite of a nanoporous material and an active material and method of synthesizing thereof
CN113036174B (zh) * 2019-12-09 2022-05-31 中国科学院大连化学物理研究所 一种有机骨架共聚物支撑的多孔离子传导膜及其制备和应用
CN111392813B (zh) * 2020-03-24 2022-01-28 西南石油大学 一种可循环、快速破乳的MIL-100(Fe)复合材料的制备方法
CN112844471A (zh) * 2020-12-25 2021-05-28 山东科技大学 一种用于烟道气中NOx脱除的多孔离子液体的合成方法
CN114558620B (zh) * 2022-01-28 2024-04-26 沈阳工业大学 金属有机骨架固载离子液体催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281105A (ja) 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology ナノ細孔を用いたイオン性液体の制御方法
JP2006348085A (ja) * 2005-06-13 2006-12-28 Nissan Motor Co Ltd イオン性液体を用いたクッションアクチュエータ、及びそれからなる車両用部品
JP2008004533A (ja) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd イオン伝導体
JP2011228114A (ja) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc 二次電池用電極、その製造方法及び二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489679B2 (en) * 1999-12-06 2002-12-03 Sumitomo Metal (Smi) Electronics Devices Inc. High-frequency package
JP2001319689A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd リチウムポリマー二次電池
DE10061959A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran
US6857391B1 (en) * 2002-07-06 2005-02-22 Clarence Leroy Gantt Animal toilet enclosure
DE10238941B4 (de) * 2002-08-24 2013-03-28 Evonik Degussa Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung in Lithium-Hochleistungsbatterien sowie eine den Separator aufweisende Batterie
US20050287441A1 (en) * 2004-06-23 2005-12-29 Stefano Passerini Lithium polymer electrolyte batteries and methods of making
JP2006040853A (ja) * 2004-06-25 2006-02-09 Tokyo Institute Of Technology イオン伝導性フィラーおよびイオン伝導性高分子組成物
DE102005056564B4 (de) 2005-11-25 2009-11-12 Gkss-Forschungszentrum Geesthacht Gmbh Polymerelektrolytmembran mit Koordinationspolymer, Verfahren zu seiner Herstellung sowie Verwendung in einer Brennstoffzelle
JP2012019159A (ja) * 2010-07-09 2012-01-26 Tdk Corp セラミック電子部品
KR101669215B1 (ko) * 2010-09-27 2016-10-26 삼성전자주식회사 리튬 전지용 전해질막, 이를 이용한 리튬 전지 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281105A (ja) 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology ナノ細孔を用いたイオン性液体の制御方法
JP2006348085A (ja) * 2005-06-13 2006-12-28 Nissan Motor Co Ltd イオン性液体を用いたクッションアクチュエータ、及びそれからなる車両用部品
JP2008004533A (ja) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd イオン伝導体
JP2011228114A (ja) * 2010-04-20 2011-11-10 Konica Minolta Holdings Inc 二次電池用電極、その製造方法及び二次電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN Y: "Ionic Liquid/Metal-Organic Framework Composite for C02 Capture: A Computational Investigation", JOURNAL OF PHYSICAL CHEMISTRY, vol. 115, no. 44, 2011, pages 21736 - 21742, XP055160387 *
M. KANAKUBO, CHEMICAL COMMUNICATIONS, 2006, pages 1828 - 1830
S. CHEN, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 9, 2007, pages 2416 - 2417
SINGH MP: "Properties of ionic liquid confined in porous silica matrix", CHEMPHYSCHEM, vol. 11, no. 9, 2010, pages 2036 - 2043, XP055160388 *
THOMAS, G.: "Medicinal Chemistry: An Introduction", 2007, WILEY

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156364A (ja) * 2014-01-20 2015-08-27 国立大学法人京都大学 イオン伝導性複合体
JP2015145454A (ja) * 2014-02-03 2015-08-13 国立大学法人京都大学 イオン伝導性複合体およびその製造方法
JP2015162457A (ja) * 2014-02-28 2015-09-07 栗田工業株式会社 Co及びco2吸着材及びこれを用いた蓄電デバイス、並びにco及びco2吸着材の製造方法
JP2015165462A (ja) * 2014-03-03 2015-09-17 国立大学法人京都大学 イオン伝導性複合体
US10290898B2 (en) 2014-08-29 2019-05-14 Samsung Electronics Co., Ltd. Composite, method of preparing the composite, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
CN105390744A (zh) * 2014-08-29 2016-03-09 三星电子株式会社 复合物、其制备方法、包括其的电解质及锂二次电池
KR102230650B1 (ko) * 2014-08-29 2021-03-23 삼성전자주식회사 복합체, 그 제조방법, 이를 포함하는 전해질 및 리튬이차전지
KR20170040175A (ko) * 2014-08-29 2017-04-12 삼성전자주식회사 복합체, 그 제조방법, 이를 포함하는 전해질 및 리튬이차전지
JP2016136513A (ja) * 2015-01-12 2016-07-28 アイメック・ヴェーゼットウェーImec Vzw 固体バッテリおよび製造方法
CN107112590B (zh) * 2015-02-27 2020-01-14 株式会社村田制作所 电解质、电池、电池组、电子装置、电动车辆、蓄电装置和电力系统
CN107112590A (zh) * 2015-02-27 2017-08-29 索尼公司 电解质、电池、电池组、电子装置、电动车辆、蓄电装置和电力系统
WO2016136132A1 (ja) * 2015-02-27 2016-09-01 ソニー株式会社 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10749209B2 (en) 2015-02-27 2020-08-18 Murata Manufacturing Co., Ltd. Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
US11127898B2 (en) 2016-01-22 2021-09-21 Nippon Steel Corporation Microswitch and electronic device in which same is used
CN108496251A (zh) * 2016-01-22 2018-09-04 新日铁住金株式会社 微小开关及使用其的电子设备
KR20180098603A (ko) 2016-01-22 2018-09-04 신닛테츠스미킨 카부시키카이샤 미소 스위치 및 그것을 사용하는 전자 디바이스
CN108496251B (zh) * 2016-01-22 2022-08-12 日本制铁株式会社 微小开关及使用其的电子设备
WO2018016385A1 (ja) * 2016-07-19 2018-01-25 国立研究開発法人物質・材料研究機構 有機/金属ハイブリッドポリマーとイオン液体とを含有する複合体、それを用いたエレクトロクロミックデバイス、および、それらの製造方法
JPWO2018016385A1 (ja) * 2016-07-19 2019-04-04 国立研究開発法人物質・材料研究機構 有機/金属ハイブリッドポリマーとイオン液体とを含有する複合体、それを用いたエレクトロクロミックデバイス、および、それらの製造方法
US11203688B2 (en) 2016-07-19 2021-12-21 National Institute For Materials Science Composite containing organic/metallic hybrid polymer and ionic liquid, electrochromic device in which same is used, and method for manufacturing said composite and device
WO2019244922A1 (ja) * 2018-06-20 2019-12-26 株式会社ニックス 成形用組成物及び成形体
JPWO2019244922A1 (ja) * 2018-06-20 2021-07-08 株式会社ニックス 成形用組成物及び成形体
JP7526482B2 (ja) 2018-06-20 2024-08-01 株式会社ニックス 成形用組成物及び成形体

Also Published As

Publication number Publication date
US10535474B2 (en) 2020-01-14
JPWO2013161452A1 (ja) 2015-12-24
EP2843749A1 (en) 2015-03-04
EP2843749A4 (en) 2015-12-09
US20150004499A1 (en) 2015-01-01
JP5924627B2 (ja) 2016-05-25
EP2843749B1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5924627B2 (ja) 多孔性配位高分子−イオン液体複合体および電気化学デバイス用電解質
Li et al. Defects engineering of lightweight metal–organic frameworks-based electrocatalytic membrane for high-loading lithium–sulfur batteries
Liu et al. Physicochemical confinement effect enables high-performing zinc–iodine batteries
Long et al. Roles of metal ions in MXene synthesis, processing and applications: a perspective
Xiao et al. Metal–organic framework derived CoS2 wrapped with nitrogen-doped carbon for enhanced lithium/sodium storage performance
Wang et al. Enhancing ion transport: function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries
Suriyakumar et al. Mitigation of polysulfide shuttling by interlayer/permselective separators in lithium–sulfur batteries
Valverde et al. Metal–organic framework based PVDF separators for high rate cycling lithium-ion batteries
Sun et al. ZIF-8-based quasi-solid-state electrolyte for lithium batteries
Zhou et al. Metal–organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery
Ma et al. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries
Sun et al. Functional materials derived from open framework templates/precursors: synthesis and applications
Fang et al. Inorganic cyanogels and their derivatives for electrochemical energy storage and conversion
Singh et al. TiO phase stabilized into freestanding nanofibers as strong polysulfide immobilizer in Li–S batteries: evidence for Lewis acid–base interactions
Volosskiy et al. Tuning the catalytic activity of a metal–organic framework derived copper and nitrogen co-doped carbon composite for oxygen reduction reaction
JP6121456B2 (ja) 窒素及びホウ素でドープされたグラフェンを原料とするエアロゲル
Yin et al. Nanoarchitecturing carbon nanodot arrays on zeolitic imidazolate framework-derived cobalt–nitrogen-doped carbon nanoflakes toward oxygen reduction electrocatalysts
Yu et al. Engineering two-dimensional metal–organic framework on molecular basis for fast Li+ conduction
Elanthamilan et al. Cost effective synthesis of a copper-1 H-imidazole@ activated carbon metal organic framework as an electrode material for supercapacitor applications
Sarkar et al. Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes
Ye et al. ZIF-67@ Se@ MnO2: a novel Co-MOF-based composite cathode for lithium–selenium batteries
KR102626921B1 (ko) 리튬전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 리튬전지
Elseman et al. CoFe2O4@ Carbon spheres electrode: a one‐step solvothermal method for enhancing the electrochemical performance of hybrid supercapacitors
Dai et al. Effects of the inherent tubular structure and graphene coating on the lithium ion storage performances of electrospun NiO/Co3O4 nanotubes
Bai et al. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013780742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14381816

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014512422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE