WO2013161450A1 - 炭化珪素半導体素子の製造方法 - Google Patents

炭化珪素半導体素子の製造方法 Download PDF

Info

Publication number
WO2013161450A1
WO2013161450A1 PCT/JP2013/057744 JP2013057744W WO2013161450A1 WO 2013161450 A1 WO2013161450 A1 WO 2013161450A1 JP 2013057744 W JP2013057744 W JP 2013057744W WO 2013161450 A1 WO2013161450 A1 WO 2013161450A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
alignment mark
carbide substrate
main surface
epitaxial layer
Prior art date
Application number
PCT/JP2013/057744
Other languages
English (en)
French (fr)
Inventor
崇 辻
福田 憲司
Original Assignee
富士電機株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 独立行政法人産業技術総合研究所 filed Critical 富士電機株式会社
Priority to US14/397,141 priority Critical patent/US9236248B2/en
Publication of WO2013161450A1 publication Critical patent/WO2013161450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide semiconductor element in which silicon carbide (SiC) is used as a semiconductor material, and in particular, current is passed from the front surface side to the back surface side of a semiconductor substrate.
  • SiC silicon carbide
  • silicon carbide semiconductor Since silicon carbide semiconductor has a large band gap compared to silicon (Si) semiconductor, it has a high breakdown field strength. Since the ON resistance, which is the resistance in the conductive state, is inversely proportional to the cube of the dielectric breakdown electric field strength, for example, in a widely used silicon carbide semiconductor called 4H type (four-layer periodic hexagonal crystal: 4H—SiC) The on-resistance can be suppressed to 1/100 of silicon semiconductors.
  • 4H type four-layer periodic hexagonal crystal: 4H—SiC
  • silicon carbide semiconductors are expected to serve as next-generation low-loss power semiconductor elements, combined with large thermal conductivity characteristics that facilitate heat dissipation.
  • silicon carbide semiconductors with various structures such as Schottky barrier diodes, MOSFETs (insulated gate field effect transistors), PN diodes, IGBTs (insulated gate bipolar transistors), GTOs (gate turn-off thyristors), etc. Devices have been developed.
  • the photomask is used in a dry etching process of silicon carbide, an ion implantation process into silicon carbide, a contact hole forming process of an oxide film, and electrode pattern forming processes such as a source electrode, a gate electrode, and an emitter electrode.
  • electrode pattern forming processes such as a source electrode, a gate electrode, and an emitter electrode.
  • the photoresist 103 in the exposed portion is removed by dipping in a developer. As a result, the unexposed photoresist 103 remains in the same pattern as the photomask. Then, the remaining photoresist 103 is baked and cured. Next, using the remaining photoresist 103 as a mask, the oxide film 102 exposed at the opening of the photoresist 103 is removed by dry etching using trifluoromethane (CHF 3 ) or the like as a main source gas.
  • CHF 3 trifluoromethane
  • the photoresist 103 is completely removed by ashing.
  • silicon oxide substrate 102 as a mask, silicon carbide substrate 101 exposed in the opening of oxide film 102 is formed by dry etching using fluorine sulfide (SF 6 ) or carbon tetrafluoride (CF 4 ) as a main source gas. It is removed at a depth of about 1 to 2 ⁇ m. Thereby, concave alignment mark 104 is formed on silicon carbide substrate 101.
  • the oxide film 102 is removed by wet etching such as buffered hydrofluoric acid (BHF).
  • the reason why the alignment mark 104 is formed not only on the oxide film 102 but also on the silicon carbide substrate 101 is performed at a temperature of 1500 ° C. or more for the purpose of activating the ion implantation species implanted into the silicon carbide substrate 101. This is because, in the annealing process, it is necessary to remove the oxide film 102 so that only the silicon carbide substrate 101 is present.
  • the annealing process is performed in a state where oxide film 102 is formed on silicon carbide substrate 101, since the annealing temperature is as high as 1500 ° C., oxide film 102 evaporates and silicon carbide is removed when oxide film 102 evaporates. There is a problem that the substrate 101 is etched.
  • the base layer of a MOSFET is generally formed by ion implantation, but is known to be formed by epitaxial growth that increases the crystal while maintaining the arrangement of crystal atoms.
  • a method has been proposed in which a MOSFET base layer is formed by epitaxial growth, crystal defects in the base layer are suppressed, and the mobility of carriers flowing through the inversion layer (channel) is improved (see Patent Document 1 below).
  • FIG. 7 is an explanatory view schematically showing the state of the main surface of the silicon carbide substrate to be epitaxially grown.
  • FIG. 7 shows a state where the main surface 110 is inclined by ⁇ degrees in the ⁇ 11-20> direction from the normal N direction.
  • the step-like ⁇ 0001 ⁇ c-plane appears on main surface 110 of silicon carbide substrate 101
  • the ⁇ 0001 ⁇ c-plane terrace portion having weak interatomic bonding force is formed on main surface 110 of silicon carbide substrate 101.
  • 111 and the step part 112 with a strong bonding force between atoms exist.
  • the growth mechanism of the epitaxial layer consists of adsorption of Si atoms and carbon (C) atoms to the main surface of the silicon carbide substrate, surface migration (diffusion) and bonding of adsorbed atoms, and desorption of adsorbed atoms from the main surface of the silicon carbide substrate. It consists of a combination of each reaction such as (sublimation). The occurrence probability of these reactions changes according to growth conditions such as the substrate temperature and the pressure of the source gas, and changes the growth rate and the crystal defect density in the epitaxial layer.
  • the growth conditions should be such that the epitaxial growth at the terrace portion 111 is suppressed and the epitaxial growth at the step portion 112 is promoted. (See Non-Patent Document 1 below.)
  • the epitaxial growth in the terrace portion 111 is epitaxial growth in the ⁇ 0001> c-axis direction (longitudinal direction) centering on nuclei formed by atoms adsorbed on the terrace portion 111.
  • the stacking order in the vertical direction of the atoms of the 4H structure on the main surface of the silicon carbide substrate as the base is not reflected.
  • an epitaxial layer made of cubic silicon carbide (3C—SiC) is formed on the main surface of a silicon carbide substrate serving as a base.
  • 3C-SiC is not sufficiently high in material properties as compared with 4H-SiC, and thus cannot achieve the element performance expected for a vertical power device semiconductor element.
  • the epitaxial growth at the step portion 112 proceeds in the ⁇ 11-20> direction (lateral direction) starting from the step portion 112 for each atomic layer of the ⁇ 0001 ⁇ c plane. Therefore, an epitaxial layer is formed that takes over the 4H structure of the main surface of the silicon carbide substrate that is the base as it is.
  • step flow growth such an epitaxial growth mode is referred to as step flow growth.
  • FIG. 3 is a cross-sectional view showing a state after forming an epitaxial layer of a conventional alignment mark.
  • FIG. 4 is a plan view schematically showing a planar shape after forming an epitaxial layer of a conventional alignment mark.
  • the direction in which the crystal phase grows is the downstream side, and the direction opposite to the direction in which the crystal phases grow is the upstream side.
  • epitaxial layer 121 is formed on the main surface of silicon carbide substrate 101 along the side walls and the bottom surface of alignment mark 104 that is the etched portion of silicon carbide substrate 101.
  • the position of the upper portion 121a of the alignment mark 104a newly formed by the epitaxial layer 121 covering the upstream side wall of the alignment mark 104 in the ⁇ 11-20> direction hardly changes.
  • epitaxial growth does not proceed near the upper portion 121b of the side wall of the alignment mark 104, and the thickness of the epitaxial layer 121 becomes thinner than other portions.
  • the position 121c above the side wall of the newly formed alignment mark 104a is greatly shifted in the downstream direction.
  • FIG. 4 a conventional rectangular shape having a cross-shaped planar shape in which a rectangle whose longitudinal direction is parallel to the ⁇ 11-20> direction and a rectangle whose longitudinal direction is parallel to the ⁇ 1-100> direction are orthogonal to each other.
  • the outline of the alignment mark changes before the epitaxial layer 121 is formed (FIG. 4A) and after the epitaxial layer 121 is formed (FIG. 4B).
  • the contour of the alignment mark changes in this way, in the image recognition of the exposure apparatus, the position of the alignment mark 104 in the process performed after the alignment mark 104 is formed and before the epitaxial layer 121 is formed, and the process performed after the epitaxial layer 121 is grown.
  • the position of the alignment mark 104a is different.
  • the amount of misalignment of the alignment mark 104a newly formed after the growth of the epitaxial layer 121 depends on the film thickness of the epitaxial layer 121 and is not constant. It has been confirmed by the earnest research of the elderly. Since the shift amount of the alignment mark is not constant, when the element design is made in consideration of the shift amount of the alignment mark, there is a problem that it is difficult to miniaturize the element and the on-resistance cannot be reduced. Alternatively, there is a problem that the element does not operate normally even if the element is miniaturized.
  • An object of the present invention is to provide a method for manufacturing a silicon carbide semiconductor device capable of miniaturizing the device in order to solve the problems caused by the above-described conventional technology.
  • a method for manufacturing a silicon carbide semiconductor device has the following characteristics.
  • the surface where the ⁇ 0001> c-axis of the silicon carbide substrate is inclined by ⁇ in the ⁇ 11-20> direction from the normal line direction of the main surface of the silicon carbide substrate, and the region where the alignment mark is formed A step of removing the main surface layer of the silicon carbide substrate so as to surround the periphery and leaving the convex alignment mark is performed.
  • a process of growing an epitaxial layer on the main surface of the silicon carbide substrate so as to cover the alignment mark is performed.
  • the width X of the alignment mark parallel to the main surface of the silicon carbide substrate satisfies Y ⁇ X ⁇ tan ⁇ in relation to the film thickness Y of the epitaxial layer.
  • a method for manufacturing a silicon carbide semiconductor device has the following characteristics. First, a surface in which the ⁇ 0001> c-axis of the silicon carbide substrate is inclined by ⁇ in the ⁇ 11-20> direction from the normal direction of the main surface of the silicon carbide substrate is defined as a main surface, and the main surface of the silicon carbide substrate Then, a step of covering a region other than the region where the alignment mark is formed with a tantalum carbide film is performed.
  • a step of growing a convex first epitaxial layer serving as the alignment mark on the main surface of the silicon carbide substrate on the side coated with the tantalum carbide film, a step of removing the tantalum carbide film, A step of growing a second epitaxial layer on the main surface of the silicon carbide substrate so as to cover the alignment mark is performed.
  • the width X of the alignment mark parallel to the main surface of the silicon carbide substrate satisfies Y ⁇ X ⁇ tan ⁇ in relation to the film thickness Y of the second epitaxial layer.
  • a method for manufacturing a silicon carbide semiconductor device has the following characteristics.
  • the main surface layer of the silicon carbide substrate is selected by setting the surface on which the ⁇ 0001> c-axis of the silicon carbide substrate is inclined in the ⁇ 11-20> direction from the normal direction of the main surface of the silicon carbide substrate.
  • the step of forming a concave alignment mark is performed.
  • a step of coating a region including the alignment mark in the main surface of the silicon carbide substrate with a tantalum carbide film, and an epitaxial layer on the main surface of the silicon carbide substrate selectively covered with the tantalum carbide film The process of growing is performed.
  • the alignment mark has a cross shape in which two rectangles whose longitudinal directions are inclined by 45 degrees with respect to the ⁇ 11-20> direction are orthogonal to each other. It is formed so as to have a planar shape.
  • the alignment mark is not displaced and the alignment mark is not deformed before and after the formation of the epitaxial layer on the upper surface of the alignment mark. Accordingly, when the alignment mark is used as a target for recognizing the position of the photomask and the stepper recognizes the image, the stepper can accurately recognize the outline of the alignment mark.
  • FIG. 1 is an explanatory view showing a state during the manufacture of the silicon carbide semiconductor element according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a state after the formation of the epitaxial layer of the alignment mark of the comparative example.
  • FIG. 3 is a cross-sectional view showing a state after forming an epitaxial layer of a conventional alignment mark.
  • FIG. 4 is a plan view schematically showing a planar shape after forming an epitaxial layer of a conventional alignment mark.
  • FIG. 5 is a cross-sectional view showing a state of a silicon carbide substrate in the middle of forming a conventional alignment mark.
  • FIG. 6 is a cross-sectional view showing a state of the silicon carbide substrate after formation of a conventional alignment mark.
  • FIG. 7 is an explanatory view schematically showing the state of the main surface of the silicon carbide substrate to be epitaxially grown.
  • FIG. 1 is an explanatory view showing a state during the manufacture of the silicon carbide semiconductor element according to the first embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a cross-sectional structure taken along the section line AA ′ of FIG. 1B, and is a cross-sectional view of a main part showing a state after the formation of the p ⁇ -type epitaxial layer 2 of the alignment mark 10. is there.
  • FIG. 1B is a plan view showing a planar shape of the alignment mark 10.
  • n on one main surface - -type silicon carbide single crystal substrate (hereinafter, n - - type silicon carbide epitaxial layers are stacked, n consisting of four layers periodic hexagonal silicon carbide (4H-SiC) -type carbide 1 is prepared.
  • the main surface of n ⁇ -type silicon carbide substrate 1 is a (000-1) C plane having an off angle ⁇ in the ⁇ 11-20> direction.
  • the surface may be inclined.
  • a mask oxide film is deposited on the main surface of n ⁇ type silicon carbide substrate 1 to a thickness of 1 ⁇ m.
  • the remaining photoresist is baked and cured to form a resist pattern.
  • dry etching is performed using the resist pattern as a mask to selectively remove the mask oxide film. Then, the resist pattern is removed by ashing.
  • the mask oxide film by dry etching (not shown) as a mask, an n so as to surround the region where the alignment marks 10 are formed - type silicon carbide substrate 1
  • the main surface layer is removed at a depth of about 2 ⁇ m, for example.
  • n - type silicon carbide main surface layer of the substrate 1 by removing only the range of the alignment mark 10 centered example around 100 ⁇ m angle, n - -type silicon carbide substrate 1 is surrounded by a removed region
  • the convex alignment mark 10 is left.
  • alignment mark 10 is formed on a scribe line of n ⁇ type silicon carbide substrate 1.
  • the alignment mark 10 is a position recognition target used for alignment of a plurality of photomasks.
  • the planar shape of the alignment mark 10 is preferably a cross shape in which two rectangles having a width w1 in the short direction of, for example, 5 ⁇ m and a width w2 in the longitudinal direction of, for example, 50 ⁇ m are orthogonal to each other.
  • the cross-shaped planar shape of the alignment mark 10 is preferably such that the longitudinal direction of the rectangle constituting the planar shape is inclined by, for example, 45 degrees with respect to the ⁇ 11-20> direction (FIG. 1B). Thereby, the effect of this invention appears notably.
  • the mask oxide film is removed using, for example, buffered hydrofluoric acid.
  • the main surface of n ⁇ -type silicon carbide substrate 1 has a thickness of, for example, 0.5 ⁇ m so as to cover alignment mark 10.
  • the p ⁇ type epitaxial layer 2 is grown by At this time, the step portion of the atomic layer disappears from the upper surface of the alignment mark 10, and the entire upper surface of the alignment mark 10 is defined as a ⁇ 0001 ⁇ plane terrace portion (hereinafter simply referred to as a terrace portion) 10a.
  • the step portion is a portion parallel to the main surface of n ⁇ -type silicon carbide substrate 1 on the upper surface of alignment mark 10.
  • Terrace portion 10 a is a portion having an inclination with respect to the main surface of n ⁇ -type silicon carbide substrate 1.
  • the film thickness of the p ⁇ type epitaxial layer 2 is increased sufficiently, or the n ⁇ of the alignment mark 10
  • the width parallel to the main surface of type silicon carbide substrate 1 is made sufficiently small.
  • the thickness of p ⁇ type epitaxial layer 2 is Y
  • the width of alignment mark 10 parallel to the main surface of n ⁇ type silicon carbide substrate 1 is X
  • the width X of the alignment mark 10 parallel to the main surface of the n ⁇ -type silicon carbide substrate 1 is the length of the diagonal line of the square portion (region) where two rectangles constituting the cross-shaped planar shape of the alignment mark 10 overlap. That's it.
  • FIG. 2 is an explanatory view showing a state after the formation of the epitaxial layer of the alignment mark of the comparative example.
  • FIG. 2A is a cross-sectional view showing a cross-sectional structure taken along a cutting line BB ′ in FIG.
  • FIG. 2B is a plan view showing the planar shape of the alignment mark 20.
  • the film thickness y of the p ⁇ -type epitaxial layer 22 is too small, or the alignment mark 20 is parallel to the main surface of the n ⁇ -type silicon carbide substrate 1.
  • the ⁇ 0001 ⁇ plane terrace portion 20a and the step portion 20b are mixed on the upper surface of the alignment mark 20. For this reason, in the image recognition by the stepper, the boundary between the terrace portion 20a and the step portion 20b is recognized as the outline of the alignment mark 20, which causes a photomask shift.
  • the stepper recognizes the image of the cross-shaped contour of the convex portion of the alignment mark 10 as it is, so that there is almost no photomask displacement.
  • the alignment mark 10 is formed in accordance with the above-described first embodiment and the off angle ⁇ of the n ⁇ type silicon carbide substrate 1 is 4 degrees and the film thickness Y of the p ⁇ type epitaxial layer 2 is 0.5 ⁇ m
  • X ⁇ 7.15 ⁇ m is satisfied. There is a need.
  • the width X of the alignment mark 10 parallel to the main surface of the n ⁇ -type silicon carbide substrate 1 was 7.07 ⁇ m.
  • the contour of the alignment mark 10 was accurately recognized by the stepper.
  • the (000-1) C plane having an off angle ⁇ in the ⁇ 11-20> direction of the silicon carbide substrate is the main surface, and the main surface layer of the silicon carbide substrate is By selectively removing the periphery of the portion to be the alignment mark to leave a convex alignment mark and forming the epitaxial layer on the upper surface of the alignment mark so as to satisfy the above expression (1), the epitaxial layer on the upper surface of the alignment mark is formed. Before and after the formation, the alignment mark is not displaced and the alignment mark is not deformed. Accordingly, when the alignment mark is used as a target for recognizing the position of the photomask and the stepper recognizes the image, the stepper can accurately recognize the outline of the alignment mark. This eliminates the need for a wide cell pitch that takes into account the misalignment of the alignment marks, thereby reducing the cell pitch. Therefore, miniaturization of the silicon carbide semiconductor element can be achieved.
  • the silicon carbide semiconductor device manufacturing method according to the second embodiment differs from the silicon carbide semiconductor device manufacturing method according to the first embodiment in that the main surface of the n ⁇ -type silicon carbide substrate has a cruciform planar shape and a convex shape.
  • the silicon carbide epitaxial layer grown in this manner is used as an alignment mark.
  • alignment marks are formed as follows.
  • n on one main surface - providing a -type silicon carbide substrate - -type silicon carbide epitaxial layer is n stacked.
  • a tantalum carbide (TaC) film is formed on the main surface of the n ⁇ type silicon carbide substrate on the n ⁇ type silicon carbide epitaxial layer side.
  • the tantalum carbide film may be formed by direct sputtering, or after sputtering tantalum on the main surface of the n ⁇ -type silicon carbide substrate, in a source gas containing carbon (C) such as propane (C 3 H 8 ). It may be formed by annealing.
  • a resist pattern is formed by applying, exposing, developing, and baking a photoresist, and then etching is performed using the resist pattern as a mask to selectively remove the tantalum carbide film.
  • the alignment mark formation region is exposed in the opening of the tantalum carbide film.
  • the resist pattern is removed by ashing.
  • a silicon carbide epitaxial layer (first epitaxial layer) is grown on the main surface of the n ⁇ -type silicon carbide substrate exposed at the opening of the tantalum carbide film.
  • a silicon carbide epitaxial layer grown in the opening of the tantalum carbide film is an alignment mark.
  • the planar shape and dimensions of the alignment mark are the same as those in the first embodiment.
  • the film thickness of the silicon carbide epitaxial layer increases from the upstream side to the downstream side of the step flow growth along the ⁇ 11-20> direction, and the film thickness is maximized on the most downstream side. Since the periphery of the main surface of the n ⁇ -type silicon carbide substrate on which the silicon carbide epitaxial layer is grown is surrounded by a tantalum carbide film, the step flow of silicon carbide on the most upstream side is suppressed and a ⁇ 0001 ⁇ plane terrace portion appears. . Then, as the film thickness of the silicon carbide epitaxial layer increases, the width of the terrace portion increases from the upstream side toward the downstream side.
  • the silicon carbide epitaxial layer does not grow on the surface of the tantalum carbide film, but grows only on the main surface of the n ⁇ -type silicon carbide substrate exposed at the opening of the tantalum carbide film while gradually increasing the width of the terrace portion.
  • the conductivity type and impurity concentration of the silicon carbide epitaxial layer can be variously changed.
  • the tantalum carbide film is removed using, for example, buffered hydrofluoric acid, and after performing a plurality of steps for forming an element structure of, for example, a silicon carbide semiconductor element, as in the first embodiment, for example, 0.5 ⁇ m
  • a p ⁇ -type epitaxial layer (second epitaxial layer) is grown with a thickness.
  • the thickness Y of the p ⁇ type epitaxial layer, the width X parallel to the main surface of the n ⁇ type silicon carbide substrate of the alignment mark, and The off angle ⁇ of the n ⁇ type silicon carbide substrate is selected.
  • the terrace portion can be formed on the entire upper surface of the alignment mark.
  • the (000-1) C surface having an off angle ⁇ in the ⁇ 11-20> direction of the silicon carbide substrate is the main surface, and protrudes from the main surface of the silicon carbide substrate.
  • the method of manufacturing the silicon carbide semiconductor device according to the third embodiment is different from the method of manufacturing the silicon carbide semiconductor device according to the first embodiment in that an alignment mark recessed in a concave shape is formed from the main surface of the n ⁇ -type silicon carbide substrate. In addition, the region including the alignment mark is covered with a tantalum carbide film.
  • alignment marks are formed as follows.
  • the mask oxide film deposited on the main surface of the n ⁇ -type silicon carbide substrate is patterned by photolithography and etching.
  • a mask oxide film in which an alignment mark formation region is opened is formed.
  • dry etching is performed using the mask oxide film as a mask to selectively remove the n ⁇ -type silicon carbide substrate to form a concave alignment mark.
  • the region including the alignment mark is covered with a tantalum carbide film.
  • the region including the alignment mark is a region in the range of, for example, a 100 ⁇ m square around the alignment mark.
  • the sidewall and bottom surface of the alignment mark may be covered with a tantalum carbide film.
  • a p ⁇ type epitaxial layer is grown on the main surface of the n ⁇ type silicon carbide substrate. Since the p ⁇ type epitaxial layer does not grow in the region including the alignment mark covered with the tantalum carbide film, a groove having a planar shape similar to that of the alignment mark is formed in the surface layer of the p ⁇ type epitaxial layer.
  • the (000-1) C plane having an off angle ⁇ in the ⁇ 11-20> direction of the silicon carbide substrate is the main surface, and the main surface layer of the silicon carbide substrate is By forming the concave alignment mark and covering the region including the alignment mark with the tantalum carbide film, the same effect as in the first embodiment can be obtained.
  • Example 2 Next, it verified about the cell pitch of the silicon carbide semiconductor element manufactured by the manufacturing method of the silicon carbide semiconductor element concerning embodiment of this invention.
  • an alignment mark was formed in accordance with the first embodiment, and a MOSFET was manufactured as a position recognition target using the alignment mark for alignment of a plurality of photomasks (hereinafter referred to as Example 1).
  • a MOSFET was manufactured using a conventional alignment mark as a position recognition target (hereinafter referred to as a conventional example).
  • the conventional example could only be miniaturized up to a cell pitch of 15 ⁇ m.
  • the cell pitch could be reduced to 8 ⁇ m.
  • the on-resistance of the embodiment it is possible to greatly reduce from the on-resistance 5.6Emuomegacm 2 conventional example to 4.0m ⁇ cm 2.
  • the same effect as that of Example 1 can be obtained also in the MOSFET manufactured using the alignment marks formed according to the second and third embodiments as the position recognition target.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the present invention similarly holds when the p-type and the n-type are interchanged or when the silicon carbide substrate and the epitaxial layer grown on the main surface of the silicon carbide substrate are of the same conductivity type.
  • the method for manufacturing a silicon carbide semiconductor device according to the present invention is useful for a silicon carbide semiconductor device using silicon carbide as a semiconductor material.
  • a current flows from the front surface side to the back surface side of the semiconductor substrate. It is suitable for a vertical power device semiconductor element that flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 n-型炭化珪素基板(1)の<11-20>方向にオフ角θを有する(000-1)C面を主面とし、この主表面層のアライメントマーク(10)となる部分の周囲を選択的に除去し、凸状のアライメントマーク(10)を残す。アライメントマーク(10)は、長手方向が<11-20>方向に対して45度傾いた2つの矩形が直交する十字状の平面形状を有する。次に、p-型エピタキシャル層(2)の膜厚をYとし、アライメントマーク(10)のn-型炭化珪素基板(1)の主表面に平行な幅をXとし、n-型炭化珪素基板(1)のオフ角をθとしたときに、Y≧X・tanθを満たすようにアライメントマーク(10)上面にエピタキシャル層を形成する。これにより、アライメントマーク(10)の上面から原子層のステップ部が消失し、アライメントマーク(10)上面全面が{0001}面テラス部(10a)となる。このようにして、炭化珪素半導体素子の微細化を図ることができる。

Description

炭化珪素半導体素子の製造方法
 この発明は、半導体材料として炭化珪素(SiC)を用い、特に、半導体基板のおもて面側から裏面側に電流を流す炭化珪素半導体素子の製造方法に関する。
 炭化珪素半導体は、シリコン(Si)半導体と比較して大きなバンドギャップを持つため、高い絶縁破壊電界強度を有する。導通状態における抵抗であるオン抵抗は、その絶縁破壊電界強度の3乗に逆比例するため、例えば広く用いられている4H型と呼ばれる炭化珪素半導体(四層周期六方晶:4H-SiC)においては、そのオン抵抗をシリコン半導体の数100分の1に抑制することができる。
 このため、炭化珪素半導体は、放熱が容易となる大きな熱伝導度の特性ともあいまって、次世代の低損失な電力用半導体素子としての期待が持たれている。例えば、炭化珪素半導体を用いて、ショットキーバリアダイオードやMOSFET(絶縁ゲート型電界効果トランジスタ)、PNダイオード、IGBT(絶縁ゲート型バイポーラトランジスタ)、GTO(ゲートターンオフサイリスタ)など様々な構造の炭化珪素半導体素子が開発されている。
 このような半導体素子の作製には、複数のフォトマスクが必要である。フォトマスクは、炭化珪素のドライエッチング工程、炭化珪素へのイオン注入工程、酸化膜のコンタクトホール形成工程、ソース電極やゲート電極、エミッタ電極などの各電極パターン形成工程に使用される。各工程においてフォトマスクと半導体基板と位置合わせを自動で行うために、まず、炭化珪素基板表面に位置認識用ターゲットとなるアライメントマークを形成する。従来のアライメントマーク形成工程について、図5,6を参照して説明する。
 図5は、従来のアライメントマーク形成途中の炭化珪素基板の状態を示す断面図である。図6は、従来のアライメントマーク形成後の炭化珪素基板の状態を示す断面図である。まず、図5に示すように、炭化珪素半導体素子の素子構造を作製する最初の工程として、炭化珪素基板101上に十分に膜厚が厚い酸化膜102を形成した後、酸化膜102の表面にフォトレジスト103を塗布する。次に、アライメントマークを設けたフォトマスクを通してフォトレジスト103に紫外光を照射(露光)する。
 次に、現像液に浸漬して露光部のフォトレジスト103を除去する。これにより、フォトマスクと同じパターンで未露光部のフォトレジスト103が残る。そして、残っているフォトレジスト103をベーキングして硬化させる。次に、残っているフォトレジスト103をマスクとして、三フッ化メタン(CHF3)などを主な原料ガスとするドライエッチングによって、フォトレジスト103の開口部に露出する酸化膜102を除去する。
 次に、図6に示すように、アッシングによってフォトレジスト103をすべて除去する。次に、酸化膜102をマスクとして、硫化フッ素(SF6)や四フッ化炭素(CF4)を主な原料ガスとするドライエッチングによって、酸化膜102の開口部に露出する炭化珪素基板101を1~2μm程度の深さで除去する。これにより、炭化珪素基板101に凹状のアライメントマーク104が形成される。その後、バッファードフッ酸BHF:Buffered Hydrogen Fluoride)などによるウェットエッチングによって、酸化膜102を除去する。
 このように酸化膜102のみではなく炭化珪素基板101にもアライメントマーク104を形成する理由は、炭化珪素基板101に注入されたイオン注入種の活性化を目的として1500℃以上の温度で実施されるアニール工程では、酸化膜102を除去し、炭化珪素基板101のみの状態にする必要があるからである。炭化珪素基板101に酸化膜102が形成された状態でアニール工程を行う場合、アニール温度が1500℃と高温であるため、酸化膜102が蒸発してしまい、酸化膜102が蒸発する際に炭化珪素基板101がエッチングされるという問題がある。
 また、炭化珪素半導体素子の製造方法の一例として、炭化珪素基板にアライメントマークを形成した後に、炭化珪素基板のアライメントマークが形成された表面にエピタキシャル層を成長させる場合がある。例えばMOSFETのベース層は、一般的にイオン注入によって形成されるが、結晶の原子の配列等を保ったまま結晶を増大させるエピタキシャル成長によって形成されることが公知である。そして、エピタキシャル成長によってMOSFETのベース層を形成し、ベース層における結晶欠陥を抑制し反転層(チャネル)を流れるキャリアの移動度を向上させる方法が提案されている(下記、特許文献1参照。)。
 次に、炭化珪素基板101の主表面に成長させたエピタキシャル層について説明する。図7は、エピタキシャル成長させる炭化珪素基板の主表面の状態を模式的に示す説明図である。結晶欠陥の少ないエピタキシャル層を成長させるためには、炭化珪素基板101の<0001>c軸を主表面110の法線N方向から<11-20>方向にわずかに傾ける必要がある。図7には、主表面110の法線N方向から<11-20>方向にα度だけ傾いた状態を示す。このとき、炭化珪素基板101の主表面110には階段状の{0001}c面があらわれるため、炭化珪素基板101の主表面110には、原子間の結合力が弱い{0001}c面テラス部111と、原子間の結合力が強いステップ部112とが存在することになる。
 エピタキシャル層の成長メカニズムは、Si原子や炭素(C)原子の炭化珪素基板の主表面への吸着、吸着原子の表面マイグレーション(拡散)および結合、吸着原子の炭化珪素基板の主表面からの脱離(昇華)などの各反応の組み合わせからなる。これらの反応の発生確率は、基板温度や原料ガスの圧力などの成長条件に応じて変化し、成長速度やエピタキシャル層中の結晶欠陥密度を変化させる。結晶欠陥密度の低い高品質なエピタキシャル層を成長させるためには、テラス部111でのエピタキシャル成長を抑制し、ステップ部112でのエピタキシャル成長を促進するような成長条件とする必要があることが提案されている(下記、非特許文献1参照。)。
 テラス部111でのエピタキシャル成長は、テラス部111上に吸着された原子によって形成された核を中心に<0001>c軸方向(縦方向)のエピタキシャル成長となる。この場合、下地となる炭化珪素基板の主表面の4H構造の原子の縦方向での積層順番が反映されなくなる。一般的には、下地となる炭化珪素基板の主表面に、立方晶炭化珪素(3C-SiC)からなるエピタキシャル層が形成されてしまう。3C-SiCは、4H-SiCに比べて材料物性が十分高くないため、縦型パワーデバイス半導体素子に期待される素子性能を実現することができない。
 一方、ステップ部112でのエピタキシャル成長においては、{0001}c面の原子層1層毎にステップ部112を起点にして<11-20>方向(横方向)にエピタキシャル成長が進行する。このため、下地となる炭化珪素基板の主表面の4H構造をそのまま引き継ぐエピタキシャル層が形成される。また、ステップ部112でのエピタキシャル成長を促進させるためには、ステップ部112表面の吸着原子の表面マイグレーション長を増加させる必要がある。このため、エピタキシャル成長時の基板温度の増加やガス圧の低減が主に実施されている。以下、このようなエピタキシャル成長モードをステップフロー成長とする。
特開2004-036655号公報
ティー・キモト(T.Kimoto)、外3名、グロウス メカニズム オブ 6H-SiC イン ステップ-コントロールド エピタキシー(Growth mechanism of 6H-SiC in step-controlled epitaxy)、ジャーナル オブ アプライド フィジクス(Journal of Applied Physics)、1993年1月、第73巻、第2号、p.726-732
 しかしながら、炭化珪素基板の主表面にアライメントマークを形成した後にエピタキシャル層を成長させた場合、アライメントマークの輪郭がエピタキシャル層成長前後で変化してしまうという問題がある。その理由は、次のとおりである。図3は、従来のアライメントマークのエピタキシャル層形成後の状態を示す断面図である。図4は、従来のアライメントマークのエピタキシャル層形成後の平面形状を模式的に示す平面図である。以下、<11-20>方向のうち、結晶相が成長していく方向を下流側、結晶相が成長していく方向に対して反対側の方向を上流側とする。
 図3に示すように、炭化珪素基板101の主表面に、炭化珪素基板101のエッチング部であるアライメントマーク104の側壁および底面に沿ってエピタキシャル層121を形成する。このとき、アライメントマーク104の<11-20>方向の上流側の側壁を覆うエピタキシャル層121により新たに形成されたアライメントマーク104aの側壁の上方121aの位置はほとんど変化しない。一方、アライメントマーク104の<11-20>方向の下流側では、アライメントマーク104の側壁の上方121b付近におけるエピタキシャル成長が進まず、エピタキシャル層121の厚さが他の部分よりも薄くなる。これにより、新たに形成されるアライメントマーク104aの側壁の上方121cの位置が大きく下流方向にずれる。
 したがって、図4に示すように、長手方向が<11-20>方向に平行な矩形と、長手方向が<1-100>方向に平行な矩形とが直交した十字状の平面形状を有する従来のアライメントマークの輪郭は、エピタキシャル層121形成前(図4(a))とエピタキシャル層121形成後(図4(b))とで変化する。このようにアライメントマークの輪郭が変化した場合、露光装置の画像認識において、アライメントマーク104形成後でエピタキシャル層121形成前に行う工程でのアライメントマーク104の位置と、エピタキシャル層121成長後に行う工程でのアライメントマーク104aの位置とが異なってしまう。
 また、エピタキシャル層121成長後に新たに形成されるアライメントマーク104aの位置のずれ量(以下、単にアライメントマークのずれ量とする)は、エピタキシャル層121の膜厚に依存し、一定しないことが本発明者の鋭意研究により確認されている。アライメントマークのずれ量が一定しないため、アライメントマークのずれ量を考慮した素子設計とした場合、素子の微細化が難しくなりオン抵抗を低減することができないという問題がある。または、素子の微細化を図ったとしても素子が正常動作しないなどの問題がある。
 この発明は、上述した従来技術による問題点を解消するため、素子の微細化を図ることができる炭化珪素半導体素子の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる炭化珪素半導体素子の製造方法は、次の特徴を有する。まず、炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向にθだけ傾いている面を主面とし、アライメントマークが形成される領域の周囲を囲むように前記炭化珪素基板の主表面層を除去して凸状の前記アライメントマークを残す工程を行う。続いて、前記炭化珪素基板の主表面に、前記アライメントマークを覆うようにエピタキシャル層を成長させる工程を行う。そして、前記アライメントマークの前記炭化珪素基板の主表面に平行な幅Xは、前記エピタキシャル層の膜厚Yとの関係においてY≧X・tanθを満たす。
 また、上述した課題を解決し、目的を達成するため、この発明にかかる炭化珪素半導体素子の製造方法は、次の特徴を有する。まず、炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向にθだけ傾いている面を主面とし、前記炭化珪素基板の主表面の、アライメントマークが形成される領域以外の領域を炭化タンタル膜で被覆する工程を行う。続いて、前記炭化タンタル膜で被覆された側の前記炭化珪素基板の主表面に、前記アライメントマークとなる凸状の第1エピタキシャル層を成長させる工程と、前記炭化タンタル膜を除去する工程と、前記炭化珪素基板の主表面に、前記アライメントマークを覆うように第2エピタキシャル層を成長させる工程を行う。そして、前記アライメントマークの前記炭化珪素基板の主表面に平行な幅Xは、前記第2エピタキシャル層の膜厚Yとの関係においてY≧X・tanθを満たす。
 また、上述した課題を解決し、目的を達成するため、この発明にかかる炭化珪素半導体素子の製造方法は、次の特徴を有する。まず、炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向に傾いている面を主面とし、前記炭化珪素基板の主表面層を選択的に除去して凹状のアライメントマークを形成する工程を行う。続いて、前記炭化珪素基板の主表面のうち、前記アライメントマークを含む領域を炭化タンタル膜で被覆する工程と、前記炭化タンタル膜で選択的に被覆された前記炭化珪素基板の主表面にエピタキシャル層を成長させる工程を行う。
 また、この発明にかかる炭化珪素半導体素子の製造方法は、上述した発明において、前記アライメントマークを、長手方向が<11-20>方向に対して45度傾いた2つの矩形が直交する十字状の平面形状となるように形成することを特徴とする。
 上述した発明によれば、アライメントマーク上面へのエピタキシャル層の形成前後で、アライメントマークの位置ずれおよびアライメントマークの輪郭変形は生じない。これにより、アライメントマークをフォトマスクの位置認識用ターゲットとして使用し、ステッパーに画像認識させるときに、ステッパーにアライメントマークの輪郭を正確に認識させることができる。
 本発明にかかる炭化珪素半導体素子の製造方法によれば、素子の微細化を図ることができるという効果を奏する。
図1は、本発明の実施の形態1にかかる炭化珪素半導体素子の製造途中の状態を示す説明図である。 図2は、比較例のアライメントマークのエピタキシャル層形成後の状態を示す説明図である。 図3は、従来のアライメントマークのエピタキシャル層形成後の状態を示す断面図である。 図4は、従来のアライメントマークのエピタキシャル層形成後の平面形状を模式的に示す平面図である。 図5は、従来のアライメントマーク形成途中の炭化珪素基板の状態を示す断面図である。 図6は、従来のアライメントマーク形成後の炭化珪素基板の状態を示す断面図である。 図7は、エピタキシャル成長させる炭化珪素基板の主表面の状態を模式的に示す説明図である。
 以下に添付図面を参照して、この発明にかかる炭化珪素半導体素子の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。なお、本明細書では、ミラー指数の表記において、"-"はその直後の指数につくバーを意味しており、指数の前に"-"を付けることで負の指数を表している。
(実施の形態1)
 本発明の実施の形態1にかかる炭化珪素半導体素子の製造方法について説明する。図1は、本発明の実施の形態1にかかる炭化珪素半導体素子の製造途中の状態を示す説明図である。図1(a)は、図1(b)の切断線A-A'における断面構造を示す断面図であり、アライメントマーク10のp-型エピタキシャル層2形成後の状態を示す要部断面図である。図1(b)は、アライメントマーク10の平面形状を示す平面図である。
 まず、例えば一方の主表面にn-型炭化珪素エピタキシャル層が積層された、炭化珪素の四層周期六方晶(4H-SiC)からなるn-型炭化珪素単結晶基板(以下、n-型炭化珪素基板とする)1を用意する。n-型炭化珪素基板1の主面は、<11-20>方向にオフ角θを有する(000-1)C面である。具体的には、n-型炭化珪素基板1の主面は、n-型炭化珪素基板1の<0001>c軸が法線方向Nから<11-20>方向に4度(θ=4度)傾いている面であってもよい。
 次に、n-型炭化珪素基板1の主表面に、1μmの厚さでマスク酸化膜を堆積する。次に、マスク酸化膜の表面にフォトレジストを塗布し、露光および現像によりフォトレジストをパターニングした後、残っているフォトレジストをベーキングして硬化させレジストパターンを形成する。次に、レジストパターンをマスクとしてドライエッチングを行い、マスク酸化膜を選択的に除去する。そして、レジストパターンを灰化(アッシング)により除去する。
 次に、図1(a)に示すように、マスク酸化膜(不図示)をマスクとしてドライエッチングを行い、アライメントマーク10が形成される領域の周囲を囲むようにn-型炭化珪素基板1の主表面層を例えば約2μm深さで除去する。このとき、n-型炭化珪素基板1の主表面層の、アライメントマーク10を中心に例えば周囲100μm角の範囲のみを除去することにより、n-型炭化珪素基板1が除去された領域に囲まれた凸状のアライメントマーク10を残す。アライメントマーク10は、例えば、n-型炭化珪素基板1のスクライブラインに形成される。アライメントマーク10は、複数枚のフォトマスクの位置合わせに使用する位置認識用ターゲットである。
 アライメントマーク10の平面形状は、短手方向の幅w1が例えば5μmで、長手方向の幅w2が例えば50μmの2つの矩形が直交した十字状であるのが好ましい。アライメントマーク10の十字状の平面形状は、当該平面形状を構成する矩形の長手方向が<11-20>方向に対して例えば45度傾いているのがよい(図1(b))。これにより、本発明の効果が顕著にあらわれる。そして、例えばバッファードフッ酸を用いてマスク酸化膜を除去する。
 次に、例えば炭化珪素半導体素子の素子構造を形成するための複数の工程を行った後、n-型炭化珪素基板1の主表面に、アライメントマーク10を覆うように例えば0.5μmの厚さでp-型エピタキシャル層2を成長させる。このとき、アライメントマーク10の上面から原子層のステップ部を消失させ、アライメントマーク10上面全面を{0001}面テラス部(以下、単にテラス部とする)10aとする。ステップ部とは、アライメントマーク10の上面の、n-型炭化珪素基板1の主表面に平行な部分である。テラス部10aは、n-型炭化珪素基板1の主表面に対して斜度を有する部分である。
 アライメントマーク10上面から原子層のステップ部を消失させ、アライメントマーク10上面全面をテラス部10aとするためには、p-型エピタキシャル層2の膜厚を十分大きくするか、アライメントマーク10のn-型炭化珪素基板1の主表面に平行な幅を十分小さくする。具体的には、p-型エピタキシャル層2の膜厚をYとし、アライメントマーク10のn-型炭化珪素基板1の主表面に平行な幅をXとし、n-型炭化珪素基板1のオフ角をθとした場合、下記(1)式を満たすようにそれぞれの値を選択する。アライメントマーク10のn-型炭化珪素基板1の主表面に平行な幅Xとは、アライメントマーク10の十字状の平面形状を構成する2つの矩形が重なってなる正方形部分(領域)の対角線の長さである。
 Y≧X・tanθ ・・・(1)
 アライメントマーク10上面全面をテラス部10aとする理由は、次のとおりである。図2は、比較例のアライメントマークのエピタキシャル層形成後の状態を示す説明図である。図2(a)は、図2(b)の切断線B-B'における断面構造を示す断面図である。図2(b)は、アライメントマーク20の平面形状を示す平面図である。図2に示すように、上記(1)式を満たしていない場合、すなわちp-型エピタキシャル層22の膜厚yが小さ過ぎるか、アライメントマーク20のn-型炭化珪素基板1の主表面に平行な幅xが大きすぎる場合には、アライメントマーク20上面に{0001}面テラス部20aとステップ部20bとが混在する。このため、ステッパーによる画像認識において、テラス部20aとステップ部20bの境界をアライメントマーク20の輪郭と認識されてしまい、フォトマスクずれの原因となる。
 一方、上記(1)式を満たす場合、ステッパーはアライメントマーク10の凸部の十字状の輪郭をそのまま画像認識するため、フォトマスクずれはほとんど生じない。例えば、上述した実施の形態1にしたがい、n-型炭化珪素基板1のオフ角θを4度とし、p-型エピタキシャル層2の膜厚Yを0.5μmとしてアライメントマーク10を形成した場合、アライメントマーク10のn-型炭化珪素基板1の主表面に平行な幅Xの最大値Xmaxが7.15μm(=0.5/tan(4度))であるため、X≦7.15μmを満たす必要がある。実施の形態1にしたがい、アライメントマーク10を形成した実施例を作製した結果、アライメントマーク10のn-型炭化珪素基板1の主表面に平行な幅Xは7.07μmとなり上記(1)式を満たしており、ステッパーによってアライメントマーク10の輪郭が正確に認識された。
 以上説明したように、実施の形態1によれば、炭化珪素基板の<11-20>方向にオフ角θを有する(000-1)C面を主面とし、炭化珪素基板の主表面層のアライメントマークとなる部分の周囲を選択的に除去して凸状のアライメントマークを残し、上記(1)式を満たすようにアライメントマーク上面にエピタキシャル層を形成することにより、アライメントマーク上面へのエピタキシャル層の形成前後で、アライメントマークの位置ずれおよびアライメントマークの輪郭変形は生じない。これにより、アライメントマークをフォトマスクの位置認識用ターゲットとして使用し、ステッパーに画像認識させるときに、ステッパーにアライメントマークの輪郭を正確に認識させることができる。これにより、アライメントマークの位置ずれを考慮した広いセルピッチとする必要がなくなるため、セルピッチを狭くすることができる。したがって、炭化珪素半導体素子の微細化を図ることができる。
(実施の形態2)
 次に、実施の形態2にかかる炭化珪素半導体素子の製造方法について説明する。実施の形態2にかかる炭化珪素半導体素子の製造方法が実施の形態1にかかる炭化珪素半導体素子の製造方法と異なる点は、n-型炭化珪素基板の主表面に十字状の平面形状で凸状に成長させた炭化珪素エピタキシャル層をアライメントマークとする点である。具体的には、実施の形態2にかかる炭化珪素半導体素子の製造方法においては、次のようにアライメントマークを形成する。
 まず、実施の形態1と同様に、一方の主表面にn-型炭化珪素エピタキシャル層が積層されたn-型炭化珪素基板を用意する。次に、n-型炭化珪素基板のn-型炭化珪素エピタキシャル層側の主表面に、例えば炭化タンタル(TaC)膜を形成する。炭化タンタル膜は、直接スパッタによって形成されてもよいし、n-型炭化珪素基板の主表面にタンタルをスパッタした後、プロパン(C38)などの炭素(C)を含む原料ガス中でアニールすることにより形成されてもよい。
 次に、実施の形態1と同様に、フォトレジストの塗布、露光、現像およびベーキングによるレジストパターンを形成した後、レジストパターンをマスクとしてエッチングを行い、炭化タンタル膜を選択的に除去する。これにより、炭化タンタル膜の開口部に、アライメントマークの形成領域が露出される。そして、レジストパターンを灰化により除去する。次に、炭化タンタル膜の開口部に露出するn-型炭化珪素基板の主表面に、炭化珪素エピタキシャル層(第1エピタキシャル層)を成長させる。炭化タンタル膜の開口部に成長させた炭化珪素エピタキシャル層がアライメントマークである。アライメントマークの平面形状や寸法は、実施の形態1と同様である。
 炭化珪素エピタキシャル層は<11-20>方向に沿ったステップフロー成長の上流側から下流側に行くにしたがって膜厚が増加し、最も下流側にて膜厚が最大になる。炭化珪素エピタキシャル層を成長させるn-型炭化珪素基板主表面の周囲は炭化タンタル膜で囲まれているため、最も上流側での炭化珪素のステップフローは抑制され、{0001}面テラス部があらわれる。そして、炭化珪素エピタキシャル層の膜厚が大きくなるにしたがってテラス部の幅が上流側から下流側に向かって拡大していく。
 炭化珪素エピタキシャル層の膜厚が十分大きくない場合、アライメントマーク上面の上流側に{0001}面テラス部があらわれるが、アライメントマーク上面の下流側にはステップ部がまだ存在している。すなわち、炭化珪素エピタキシャル層は、炭化タンタル膜の表面には成長せず、炭化タンタル膜の開口部に露出するn-型炭化珪素基板の主表面にのみ、テラス部の幅を徐々に広げながら成長する。この炭化珪素エピタキシャル層の導電型や不純物濃度は、種々変更可能である。
 次に、例えばバッファードフッ酸を用いて炭化タンタル膜を除去し、実施の形態1と同様に、例えば炭化珪素半導体素子の素子構造を形成する複数の工程を行った後、例えば0.5μmの厚さでp-型エピタキシャル層(第2エピタキシャル層)を成長させる。このとき、実施の形態1と同様に、上記(1)式を満たすように、p-型エピタキシャル層の膜厚Y、アライメントマークのn-型炭化珪素基板の主表面に平行な幅X、およびn-型炭化珪素基板のオフ角θを選択する。これにより、実施の形態1と同様に、アライメントマーク上面全面にテラス部を形成することができる。
 以上説明したように、実施の形態2によれば、炭化珪素基板の<11-20>方向にオフ角θを有する(000-1)C面を主面とし、炭化珪素基板の主表面から突出する凸状のアライメントマークを形成し、上記(1)式を満たすようにアライメントマーク上面にエピタキシャル層を形成することにより、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
 次に、実施の形態3にかかる炭化珪素半導体素子の製造方法について説明する。実施の形態3にかかる炭化珪素半導体素子の製造方法が実施の形態1にかかる炭化珪素半導体素子の製造方法と異なる点は、n-型炭化珪素基板の主表面から凹状に凹んだアライメントマークを形成し、アライメントマークを含む領域を炭化タンタル膜で被覆する点である。具体的には、実施の形態3にかかる炭化珪素半導体素子の製造方法においては、次のようにアライメントマークを形成する。
 実施の形態3においては、まず、実施の形態1と同様に、n-型炭化珪素基板の主表面に堆積したマスク酸化膜をフォトリソグラフィおよびエッチングによりパターニングする。このとき、実施の形態3においては、アライメントマークの形成領域が開口するマスク酸化膜を形成する。次に、マスク酸化膜をマスクとしてドライエッチングを行い、n-型炭化珪素基板を選択的に除去し、凹状のアライメントマークを形成する。
 次に、アライメントマークを含む領域を炭化タンタル膜で被覆する。アライメントマークを含む領域とは、アライメントマークを中心に例えば周囲100μm角の範囲の領域である。アライメントマークの側壁および底面を炭化タンタル膜で被覆してもよい。次に、n-型炭化珪素基板の主表面に、p-型エピタキシャル層を成長させる。p-型エピタキシャル層は、炭化タンタル膜で被覆されたアライメントマークを含む領域では成長しないため、p-型エピタキシャル層の表面層にはアライメントマークと同様の平面形状を有する溝が形成される。
 以上説明したように、実施の形態3によれば、炭化珪素基板の<11-20>方向にオフ角θを有する(000-1)C面を主面とし、炭化珪素基板の主表面層に凹状のアライメントマークを形成し、アライメントマークを含む領域を炭化タンタル膜で被覆することにより、実施の形態1と同様の効果を得ることができる。
(実施例)
 次に、本発明の実施の形態にかかる炭化珪素半導体素子の製造方法によって製造された炭化珪素半導体素子のセルピッチについて検証した。まず、実施の形態1にしたがいアライメントマークを形成し、当該アライメントマークを複数枚のフォトマスクの位置合わせに使用する位置認識用ターゲットとしてMOSFETを作製した(以下、実施例1とする)。また、比較として、従来のアライメントマークを位置認識用ターゲットとしてMOSFETを作製した(以下、従来例とする)。
 その結果、従来例では15μmのセルピッチまでしか微細化することができなかった。それに対して、実施例1においては8μmまでセルピッチを微細化することができた。このように、従来例よりも微細化されたことによって、実施例のオン抵抗は、従来例のオン抵抗5.6mΩcm2から4.0mΩcm2へと大きく低減することができた。また、実施の形態2,3にしたがって形成したアライメントマークを位置認識用ターゲットとして作製されたMOSFETにおいても、実施例1と同様の効果を得ることができることが確認された。
 以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、本発明は、p型とn型とを入れ替えた場合や、炭化珪素基板と炭化珪素基板主表面に成長させるエピタキシャル層とを同導電型とした場合も同様に成り立つ。
 以上のように、本発明にかかる炭化珪素半導体素子の製造方法は、半導体材料として炭化珪素を用いた炭化珪素半導体素子に有用であり、特に、半導体基板のおもて面側から裏面側に電流を流す縦型パワーデバイス半導体素子に適している。
 1 n-型炭化珪素基板
 2 p-型エピタキシャル層
 10 アライメントマーク
 10a {0001}面テラス部
 X アライメントマークのn-型炭化珪素基板の主表面に平行な幅
 Y p-型エピタキシャル層の膜厚
 θ n-型炭化珪素基板1のオフ角
 w1 アライメントマークの十字状の平面形状を構成する矩形の短手方向の幅
 w2 アライメントマークの十字状の平面形状を構成する矩形の長手方向の幅

Claims (4)

  1.  炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向にθだけ傾いている面を主面とし、アライメントマークが形成される領域の周囲を囲むように前記炭化珪素基板の主表面層を除去して凸状の前記アライメントマークを残す工程と、
     前記炭化珪素基板の主表面に、前記アライメントマークを覆うようにエピタキシャル層を成長させる工程と、
     を含み、
     前記アライメントマークの前記炭化珪素基板の主表面に平行な幅Xは、前記エピタキシャル層の膜厚Yとの関係においてY≧X・tanθを満たすことを特徴とする炭化珪素半導体素子の製造方法。
  2.  炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向にθだけ傾いている面を主面とし、前記炭化珪素基板の主表面の、アライメントマークが形成される領域以外の領域を炭化タンタル膜で被覆する工程と、
     前記炭化タンタル膜で被覆された側の前記炭化珪素基板の主表面に、前記アライメントマークとなる凸状の第1エピタキシャル層を成長させる工程と、
     前記炭化タンタル膜を除去する工程と、
     前記炭化珪素基板の主表面に、前記アライメントマークを覆うように第2エピタキシャル層を成長させる工程と、
     を含み、
     前記アライメントマークの前記炭化珪素基板の主表面に平行な幅Xは、前記第2エピタキシャル層の膜厚Yとの関係においてY≧X・tanθを満たすことを特徴とする炭化珪素半導体素子の製造方法。
  3.  炭化珪素基板の<0001>c軸が当該炭化珪素基板の主面の法線方向から<11-20>方向に傾いている面を主面とし、前記炭化珪素基板の主表面層を選択的に除去して凹状のアライメントマークを形成する工程と、
     前記炭化珪素基板の主表面のうち、前記アライメントマークを含む領域を炭化タンタル膜で被覆する工程と、
     前記炭化タンタル膜で選択的に被覆された前記炭化珪素基板の主表面にエピタキシャル層を成長させる工程と、
     を含むことを特徴とする炭化珪素半導体素子の製造方法。
  4.  前記アライメントマークを、長手方向が<11-20>方向に対して45度傾いた2つの矩形が直交する十字状の平面形状となるように形成することを特徴とする請求項1~3のいずれか一つに記載の炭化珪素半導体素子の製造方法。
PCT/JP2013/057744 2012-04-27 2013-03-18 炭化珪素半導体素子の製造方法 WO2013161450A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,141 US9236248B2 (en) 2012-04-27 2013-03-18 Fabrication method of silicon carbide semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104236A JP6041292B2 (ja) 2012-04-27 2012-04-27 炭化珪素半導体素子の製造方法
JP2012-104236 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161450A1 true WO2013161450A1 (ja) 2013-10-31

Family

ID=49482787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057744 WO2013161450A1 (ja) 2012-04-27 2013-03-18 炭化珪素半導体素子の製造方法

Country Status (3)

Country Link
US (1) US9236248B2 (ja)
JP (1) JP6041292B2 (ja)
WO (1) WO2013161450A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015937A1 (ja) * 2013-07-31 2015-02-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
US9263347B2 (en) * 2014-04-17 2016-02-16 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor device
JP2017168599A (ja) * 2016-03-15 2017-09-21 富士電機株式会社 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
WO2024071048A1 (ja) * 2022-09-30 2024-04-04 JDI Design and Development 合同会社 メタルマスク

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287193B2 (ja) * 2013-12-26 2018-03-07 住友電気工業株式会社 炭化珪素半導体装置の製造方法
CN104730869B (zh) * 2015-03-25 2017-02-22 上海华力微电子有限公司 一种通过显微镜法实现纳米级套刻精度的方法
JP6950396B2 (ja) * 2017-09-19 2021-10-13 株式会社デンソー 炭化珪素半導体基板およびそれを用いた炭化珪素半導体装置の製造方法
JP6975912B2 (ja) * 2017-10-04 2021-12-01 パナソニックIpマネジメント株式会社 半導体装置およびその製造方法
JP7073767B2 (ja) * 2018-02-09 2022-05-24 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素基板の製造方法
KR101943926B1 (ko) * 2018-04-19 2019-01-31 주식회사 예스파워테크닉스 SiC를 이용한 반도체에서의 마스크 정렬 방법
CN113013236A (zh) * 2021-02-22 2021-06-22 上海华力集成电路制造有限公司 氮掺杂栅氧化层的形成工艺的监控方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120497A (ja) * 1996-10-17 1998-05-12 Denso Corp 炭化珪素基板およびその製造方法
JP2003142357A (ja) * 2001-11-05 2003-05-16 Denso Corp 半導体装置の製造方法、エピタキシャル膜の膜厚測定方法及び半導体装置
JP2005019898A (ja) * 2003-06-27 2005-01-20 Denso Corp 半導体基板およびその製造方法
JP2007281157A (ja) * 2006-04-06 2007-10-25 Mitsubishi Electric Corp 半導体装置の製造方法
JP2008053363A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd 半導体基板およびその製造方法
WO2010004715A1 (ja) * 2008-07-09 2010-01-14 パナソニック株式会社 半導体素子およびその製造方法
JP2010184829A (ja) * 2009-02-12 2010-08-26 Denso Corp 炭化珪素単結晶の製造方法
JP2011100928A (ja) * 2009-11-09 2011-05-19 Denso Corp 炭化珪素半導体装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036655A (ja) 2002-06-28 2004-02-05 Ricoh Co Ltd セルフタップネジ用ボス状突起
US20060211210A1 (en) * 2004-08-27 2006-09-21 Rensselaer Polytechnic Institute Material for selective deposition and etching
US7595241B2 (en) * 2006-08-23 2009-09-29 General Electric Company Method for fabricating silicon carbide vertical MOSFET devices
JP5455973B2 (ja) * 2011-05-27 2014-03-26 三菱電機株式会社 炭化珪素半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120497A (ja) * 1996-10-17 1998-05-12 Denso Corp 炭化珪素基板およびその製造方法
JP2003142357A (ja) * 2001-11-05 2003-05-16 Denso Corp 半導体装置の製造方法、エピタキシャル膜の膜厚測定方法及び半導体装置
JP2005019898A (ja) * 2003-06-27 2005-01-20 Denso Corp 半導体基板およびその製造方法
JP2007281157A (ja) * 2006-04-06 2007-10-25 Mitsubishi Electric Corp 半導体装置の製造方法
JP2008053363A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd 半導体基板およびその製造方法
WO2010004715A1 (ja) * 2008-07-09 2010-01-14 パナソニック株式会社 半導体素子およびその製造方法
JP2010184829A (ja) * 2009-02-12 2010-08-26 Denso Corp 炭化珪素単結晶の製造方法
JP2011100928A (ja) * 2009-11-09 2011-05-19 Denso Corp 炭化珪素半導体装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015937A1 (ja) * 2013-07-31 2015-02-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
US9263347B2 (en) * 2014-04-17 2016-02-16 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor device
JP2017168599A (ja) * 2016-03-15 2017-09-21 富士電機株式会社 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
WO2024071048A1 (ja) * 2022-09-30 2024-04-04 JDI Design and Development 合同会社 メタルマスク

Also Published As

Publication number Publication date
JP2013232565A (ja) 2013-11-14
US9236248B2 (en) 2016-01-12
JP6041292B2 (ja) 2016-12-07
US20150111368A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6041292B2 (ja) 炭化珪素半導体素子の製造方法
JP5209152B1 (ja) 炭化珪素半導体素子およびその製造方法
JP5135879B2 (ja) 炭化珪素半導体装置の製造方法
TW577127B (en) Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment and methods of fabricating same
JP5017855B2 (ja) 半導体装置の製造方法
US7981817B2 (en) Method for manufacturing semiconductor device using multiple ion implantation masks
US20060043480A1 (en) Semiconductor device and fabrication method of the same
JP5725024B2 (ja) 炭化珪素半導体装置の製造方法
JP2013219161A (ja) 半導体装置および半導体装置の製造方法
WO2015040966A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2009139140A1 (ja) 半導体素子
JP2008053363A (ja) 半導体基板およびその製造方法
JPH09172187A (ja) 接合型電界効果半導体装置およびその製造方法
JP2006128191A (ja) 半導体装置及びその製造方法
WO2010095538A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
TWI588944B (zh) 具有漂移區的高壓無接面場效元件及其製造方法
JP6705670B2 (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP6098474B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2019067902A (ja) 半導体装置の製造方法
JP2012156444A (ja) 炭化珪素半導体装置およびその製造方法
JPWO2020004067A1 (ja) 炭化珪素半導体装置
WO2015049925A1 (ja) 炭化珪素半導体装置およびその製造方法
TWI847883B (zh) 半導體裝置及其製造方法
CN114975127B (zh) 一种碳化硅平面式功率mosfet器件的制造方法
JP5309584B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780793

Country of ref document: EP

Kind code of ref document: A1