WO2013153779A1 - 水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム - Google Patents

水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム Download PDF

Info

Publication number
WO2013153779A1
WO2013153779A1 PCT/JP2013/002313 JP2013002313W WO2013153779A1 WO 2013153779 A1 WO2013153779 A1 WO 2013153779A1 JP 2013002313 W JP2013002313 W JP 2013002313W WO 2013153779 A1 WO2013153779 A1 WO 2013153779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
electrolyte
hydrogen generation
hole
oxygen
Prior art date
Application number
PCT/JP2013/002313
Other languages
English (en)
French (fr)
Inventor
孝浩 鈴木
野村 幸生
羽藤 一仁
憲一 徳弘
田村 聡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/115,029 priority Critical patent/US9447509B2/en
Priority to JP2013548686A priority patent/JP6118991B2/ja
Priority to CN201380001465.2A priority patent/CN103582608B/zh
Publication of WO2013153779A1 publication Critical patent/WO2013153779A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generation cell, a hydrogen generation device, and an energy system using the same, which obtain hydrogen by decomposing water into hydrogen and oxygen using light.
  • Patent Documents As a method of using a semiconductor material that functions as a photocatalyst, it is known to generate water or generate electrical energy by decomposing water by irradiating the semiconductor material with light (for example, Patent Documents). 1).
  • Patent Document 1 discloses a photowater electrolysis apparatus having a function of converting light energy obtained from sunlight into hydrogen energy.
  • This photowater electrolysis apparatus is composed of a plurality of layered photowater electrolysis cells.
  • Each photowater electrolysis cell has a box-shaped casing whose outer peripheral portion is surrounded by an outer wall made of a transparent glass plate or synthetic resin plate, and is inclined at an arbitrary angle from the horizontal state.
  • An electrolytic solution is accommodated in the lower part of the photowater electrolysis cell, and a partition that divides the photowater electrolysis cell into two spaces is provided at the center in the thickness direction.
  • This partition wall is formed by integrally joining a gas separation membrane disposed on the upper side and a photowater electrolysis electrode membrane assembly disposed on the lower side, and serves to separate generated hydrogen and generated oxygen. Fulfill.
  • a photocatalyst electrode and a platinum counter electrode are respectively formed on both sides of a Nafion membrane, which is an ion conductive membrane, disposed in the central portion in the thickness direction in the photowater electrolysis electrode membrane assembly.
  • photowater electrolysis electrode membrane assembly photowater electrolysis is caused by irradiation with sunlight, and oxygen is produced from the photocatalyst electrode and hydrogen is produced from the platinum counter electrode.
  • the rectangular through-hole is formed in the lower end of a partition, and electrolyte solution can distribute
  • a flow hole having a rectangular shape in plan view is formed on the outer wall of the photowater electrolysis cell, and a movable wall is provided that allows the opening area of the flow hole to be varied.
  • the electrolyte solution is supplied to each photowater electrolysis cell by allowing the electrolyte solution overflowing in the adjacent upstream photowater electrolysis cell to flow in through the flow holes.
  • the electrolyte solution is discharged from each photowater electrolysis cell when the electrolyte solution overflows and flows out to the adjacent downstream photowater electrolysis cell.
  • the present invention provides a hydrogen generation device that generates hydrogen using a water decomposition reaction by an optical semiconductor and an energy system using the same. Specifically, the pipe length of the hydrogen collection pipe and the number of manifolds connected to each hydrogen generation cell constituting the hydrogen generation device are greatly reduced. In order to put the hydrogen generation device into practical use, it is indispensable to generate a sufficient amount of hydrogen by connecting a large number of hydrogen generation cells. Therefore, a simple and rational connecting member and connecting method for hydrogen generating cells are provided.
  • a hydrogen generation cell includes a housing having a light-transmitting surface, a separator that divides a space inside the housing into a first space and a second space, and a first space.
  • a counter electrode disposed in the second space, an optical semiconductor electrode disposed on the conductive substrate, and an electrical connection for electrically connecting the optical semiconductor electrode and the counter electrode;
  • connects the electrolyte supply hole and electrolyte discharge hole which penetrate a housing
  • the electrolytic solution supply hole is arranged vertically above the electrolytic solution discharge hole
  • the first hydrogen circulation hole is arranged vertically above the electrolytic solution supply hole
  • the second hydrogen circulation hole is electrolyzed. Arranged vertically above the liquid discharge hole.
  • an electrolyte supply hole and an electrolyte discharge hole, a first hydrogen circulation hole and a second hydrogen circulation hole of adjacent hydrogen generation cells are connected to each other to constitute a hydrogen generation device.
  • the pipe length and the number of manifolds of the hydrogen collection pipe connected to each hydrogen generation cell constituting the hydrogen generation device are greatly reduced. be able to.
  • FIG. 1A is a schematic diagram showing a configuration of a hydrogen generation cell according to Embodiment 1 of the present invention.
  • FIG. 1B is a schematic view of the configuration of the hydrogen generation cell according to Embodiment 1 of the present invention as viewed from the first space side.
  • FIG. 2A is a schematic diagram showing a configuration of a hydrogen generation cell according to Embodiment 2 of the present invention.
  • FIG. 2B is a schematic diagram illustrating another configuration of the hydrogen generation cell according to Embodiment 2 of the present invention.
  • FIG. 3A is a schematic diagram showing a configuration of a hydrogen generation device according to Embodiment 3 of the present invention.
  • FIG. 3B is a schematic diagram showing a configuration of a modified example of the hydrogen generation device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram showing a configuration of a hydrogen generation device according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of an energy system according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic diagram showing a configuration of an energy system according to Embodiment 6 of the present invention.
  • the hydrogen generation cell according to the present invention includes an electrolyte supply hole, an electrolyte discharge hole, and first and second hydrogen circulation holes provided in a casing, and is disposed in the above-described positional relationship. It has the following functions for the flow of hydrogen.
  • the mutual positional relationship (vertically upward, vertically downward, etc.) of the electrolyte supply hole, the electrolyte discharge hole, the first and second hydrogen circulation holes, etc. in the hydrogen generation cell of the present invention is finally the hydrogen generation. What is necessary is just to be satisfied in the state in which the cell was installed as a hydrogen generation device or an energy system.
  • the electrolytic solution is supplied from the electrolytic solution supply hole to the first and second spaces inside the housing, and is discharged from the electrolytic solution discharge hole. Since the supply hole is located vertically above the discharge hole, among the electrolyte supplied from the supply hole, the electrolyte vertically above the height of the lower end of the discharge hole is automatically electrolyzed according to gravity. It is discharged from the liquid discharge hole. Therefore, the height of the electrolytic solution surface is determined by the height of the lower end of the electrolytic solution discharge hole. In addition, since the first and second hydrogen circulation holes are arranged vertically above the electrolyte discharge hole, the electrolyte surface does not rise to the height of the lower end of the circulation hole, and only hydrogen should originally flow.
  • the electrolytic solution is one-way and automatically flows from the supply hole to the discharge hole by gravity. Furthermore, by connecting the electrolyte supply hole and the electrolyte discharge hole of the adjacent hydrogen generation cell, the electrolyte overflowed in the upstream cell is one-way and automatically passed through the connection to the downstream cell by gravity. In circulation. If the above thing is seen as the whole hydrogen generating device comprised by connecting several hydrogen generating cells, it will only supply electrolyte solution from one electrolyte solution supply hole of the hydrogen generating cell arrange
  • the electrolyte is sequentially supplied to all the hydrogen generation cells from the upstream side, and is discharged from only one electrolyte discharge hole of the hydrogen generation cell arranged at the most downstream side.
  • the electrolyte surface is stably maintained at a predetermined height in each hydrogen generation cell.
  • the hydrogen generated on the counter electrode of each hydrogen generation cell floats in the electrolyte and collects on the electrolyte surface above the first space.
  • the first and second hydrogen circulation holes are The electrolyte is not mixed and always comes into contact with hydrogen.
  • the hydrogen collected in the upper part of the first space can move to the outside of the hydrogen generation cell through the first and second hydrogen circulation holes.
  • hydrogen flows to the adjacent cell through the connection portion.
  • the effect of adopting the hydrogen generation cell connection configuration of the present invention can be seen.
  • a configuration in which a plurality of hydrogen generation cells are connected in the vertical vertical direction is considered.
  • hydrogen generated in a certain hydrogen generation cell floats to the upper part of the cell, and flows into the lowermost part of the adjacent hydrogen generation cell via the connecting portion.
  • the inflowing hydrogen floats up in the electrolyte solution of the upper hydrogen generation cell, and further flows into the upper hydrogen generation cell. If it does in this way, the bubble of the hydrogen produced
  • a large amount of bubbles mixed in the electrolytic solution causes polarization of the electrode and scattering of light irradiated to the surface of the optical semiconductor electrode, so that the hydrogen generation efficiency in the hydrogen generation cell is lowered.
  • a plurality of hydrogen generation cells are connected in the vertical lateral direction.
  • hydrogen generated in a certain hydrogen generation cell floats to the upper part of the cell and flows into a space above the electrolyte surface of the hydrogen generation cell adjacent to the side through the connecting portion. If it does in this way, it will prevent that the hydrogen bubble produced
  • the configuration of the present invention in which a plurality of hydrogen generation cells are connected in the vertical lateral direction is suitable as a hydrogen generation device.
  • FIG. 1A is a schematic diagram illustrating the configuration of the hydrogen generation cell according to the present embodiment
  • FIG. 1B is a schematic diagram illustrating the configuration of the hydrogen generation cell according to the present embodiment as viewed from the first space side.
  • the hydrogen generation cell 100 includes a housing 1 having a translucent surface at least on a surface irradiated with light (irradiation light 30).
  • the separator 2 is provided in a direction substantially parallel to the surface irradiated with light of the housing 1 so that the space inside the housing 1 is divided into two.
  • the conductive substrate 5 is provided in a direction substantially parallel to the surface irradiated with the light of the housing 1.
  • An optical semiconductor electrode 6 is formed on the conductive substrate 5.
  • a counter electrode 7 is provided in the first space.
  • the electrical connection portion 8 electrically connects the conductive substrate 5 and the counter electrode 7.
  • the electrolytic solution 9 containing water exists in the first space and the second space.
  • the hydrogen generation cell 100 Describing along the traveling direction of the light applied to the hydrogen generation cell 100, the hydrogen generation cell 100 includes, from the light irradiation side, one surface of the light-transmitting casing 1, the electrolyte 9, and light.
  • the semiconductor electrode 6, the conductive substrate 5, the separator 2, the counter electrode 7, the electrolytic solution 9, and the other surface of the housing 1 are arranged in this order.
  • the optical semiconductor electrode 6 and the separator 2 may be in contact with each other or may be separated from each other. Further, the counter electrode 7 and the separator 2 may be in contact with each other or separated from each other.
  • the separator 2 plays a role of exchanging ions between the electrolytic solution 9 in the first space and the electrolytic solution 9 in the second space. Therefore, at least a part of the separator 2 is in contact with the electrolytic solution 9 in the first and second spaces.
  • the electrolytic solution supply hole 10 and the electrolytic solution discharge hole 11 are provided on each of the first space side and the second space side so as to penetrate the housing 1.
  • the first hydrogen circulation hole 12 and the second hydrogen circulation hole 13 are provided on the first space side so as to penetrate the housing 1. Further, the electrolyte supply / discharge hole and the hydrogen circulation hole are arranged so as to have the following positional relationship when the hydrogen generation cell 100 is arranged.
  • the electrolyte solution supply hole 10 is disposed vertically above the electrolyte solution discharge hole 11.
  • the first hydrogen circulation hole 12 is arranged vertically above the electrolyte supply hole 10.
  • the second hydrogen circulation hole 13 is disposed vertically above the electrolyte discharge hole 11.
  • An oxygen exhaust hole can be provided on the second space side.
  • the first oxygen circulation hole 14 and the second oxygen circulation hole 15 are the same as the hydrogen circulation hole so as to penetrate the housing 1. Due to the positional relationship, it can be provided on the second space side.
  • the surface of the housing 1 that is irradiated with light is made of a material that has corrosion resistance and insulation against the electrolyte solution 9 and that transmits light in the visible light region, and more preferably light including peripheral wavelengths in the visible light region.
  • the material include glass and resin.
  • the material of the other surface of the housing 1 only needs to have corrosion resistance and insulation against the electrolytic solution 9 and does not need to have a property of transmitting light.
  • a metal whose surface is corrosion-resistant and insulated can be used as the material.
  • the separator 2 has a function of allowing the electrolyte in the electrolyte 9 to permeate and suppressing the permeation of hydrogen and oxygen in the electrolyte 9.
  • Examples of the material of the separator 2 include a solid electrolyte such as a polymer solid electrolyte, and examples of the polymer solid electrolyte include an ion exchange membrane such as Nafion.
  • a conductive substrate or a substrate on which a conductive material is formed is used as the conductive substrate 5.
  • the conductive substrate 5 include a platinum plate, indium tin oxide (ITO) glass, and fluorine-doped tin oxide (FTO) glass.
  • the optical semiconductor electrode 6 is formed of an n-type semiconductor or a p-type semiconductor. If the optical semiconductor electrode 6 is formed of an n-type semiconductor, oxygen is generated from the optical semiconductor electrode 6 and hydrogen is generated from the counter electrode 7. Conversely, if the optical semiconductor electrode 6 is a p-type semiconductor, hydrogen is generated from the optical semiconductor electrode 6 and oxygen is generated from the counter electrode 7.
  • the photo semiconductor electrode 6 needs to decompose water by excitation of electrons by light irradiation. Therefore, the band edge level of the conduction band is 0 eV (vs. NHE) or less, which is the standard reduction potential of hydrogen ions, and the band edge level of the valence band is 1.23 eV (the standard oxidation potential of water). vs.
  • NHE NHE
  • semiconductors include titanium, zirconium, vanadium, tantalum, niobium, tungsten, iron, copper, zinc, cadmium, gallium, indium and germanium oxides, oxynitrides and nitride simple substances, and complex oxides thereof. Oxynitrides and nitrides, and those obtained by adding alkali metal ions or alkaline earth metal ions to these are preferably used.
  • NHE NHE
  • a band edge level in the valence band whose standard oxidation potential is 1.23 eV vs.
  • a laminated film obtained by bonding films made of a substance higher than (NHE) to each other is also effectively used.
  • a WO 3 / ITO / Si laminated film is preferably used.
  • the counter electrode 7 is made of a conductive material that is active in the hydrogen generation reaction when the optical semiconductor electrode 6 is an n-type semiconductor and active in the oxygen generation reaction when it is a p-type semiconductor.
  • Examples of the material of the counter electrode 7 include carbon and noble metals that are generally used as an electrode for water electrolysis. Specifically, carbon, platinum, platinum-supporting carbon, palladium, iridium, ruthenium, nickel, and the like can be employed.
  • a general metal conductor can be used for the electrical connection portion 8.
  • the electrolytic solution 9 placed in the first and second spaces may be an electrolytic solution containing water, and may be acidic, neutral, or basic.
  • sulfuric acid, hydrochloric acid, potassium chloride, sodium chloride, potassium sulfate, sodium sulfate, sodium bicarbonate, sodium hydroxide and the like are preferably used.
  • the electrolyte solution supply hole 10 and the electrolyte solution discharge hole 11 a material having corrosion resistance and insulation against the electrolyte solution 9 is used.
  • the first hydrogen circulation hole 12, the second hydrogen circulation hole 13, the first oxygen circulation hole 14 and the second oxygen circulation hole 15 have a function of preventing hydrogen or oxygen from permeating and adsorbing at a pressure below atmospheric pressure.
  • a material having is used. Specifically, glass, resin, metal whose surface is corrosion-resistant and insulated, and the like can be used.
  • the positional relationship between the electrolyte supply hole 10, the electrolyte discharge hole 11, the first hydrogen circulation hole 12, the second hydrogen circulation hole 13, the first oxygen circulation hole 14, and the second oxygen circulation hole 15. Is as described above.
  • the hydrogen generation cell 100 In the hydrogen generation cell 100, light transmitted through the electrolytic solution 9 placed in the housing 1 and the second space is incident on the optical semiconductor electrode 6.
  • the optical semiconductor electrode 6 absorbs light and photoexcitation of electrons occurs, and in the optical semiconductor electrode 6, electrons are generated in the conduction band and holes are generated in the valence band.
  • the contact between the optical semiconductor electrode 6 and the electrolytic solution 9 causes band bending near the surface of the optical semiconductor electrode 6 (interface with the electrolytic solution 9). Therefore, holes generated by light irradiation follow the band bending. Then, it moves to the surface of the optical semiconductor electrode 6 (interface with the electrolytic solution 9). These holes oxidize water molecules on the surface of the optical semiconductor electrode 6 to generate oxygen (the following reaction formula (1)).
  • the amount of electrolyte 9 decreases.
  • the required amount of electrolyte is supplied from the electrolyte supply hole 10 to the first space and the second space.
  • the electrolyte solution is supplied excessively, it is automatically discharged from the electrolyte solution discharge hole 11 by gravity, so that the liquid surface height of the electrolyte solution 9 in the first space and the second space is the electrolytic level.
  • the height of the lower end of the liquid discharge hole 11 is always kept constant. For this reason, the electrolyte 9 is not mixed in all the hydrogen and oxygen circulation holes 12 to 15 arranged vertically above the electrolyte discharge hole 11, and a mechanism in which only gas flows can be easily obtained. it can.
  • the electrolyte supply hole 10, the electrolyte discharge hole 11, the first hydrogen circulation hole 12, and the second hydrogen circulation hole 13 are assumed on the assumption that the hydrogen generation cell 100 is installed on a horizontal plane.
  • the hydrogen generation cell is installed on the assumption that it is installed at a certain angle, for example, on the roof or rooftop, or placed at 90 degrees on the water surface of the pool. You may define a positional relationship.
  • FIG. 2A is a schematic diagram showing the configuration of the hydrogen generation cell of the present embodiment.
  • the hydrogen generation cell 200 includes the same components as the hydrogen generation cell 100 in the first embodiment. Compared to the hydrogen generation cell 100, only the positions of the electrolyte supply hole 10, the electrolyte discharge hole 11, the first hydrogen circulation hole 12, and the second hydrogen circulation hole 13 are different from each other, but with an angle ⁇ with respect to the horizontal plane. In the installed state, the positional relationship between them is the same as that of the hydrogen generation cell 100.
  • the electrolytic solution supply hole 10 is disposed vertically above the electrolytic solution discharge hole 11, and the first hydrogen circulation hole 12 is the electrolytic solution supply hole 10.
  • the second hydrogen circulation hole 13 is arranged vertically above the electrolyte discharge hole 11.
  • the first oxygen circulation hole 14 and the second oxygen circulation hole 15 are placed in the state where the hydrogen generation cell 200 is installed, according to the same positional relationship as in the first embodiment. What is necessary is just to provide in the 2nd space side.
  • the electrolyte supply hole 10 is disposed vertically above the electrolyte discharge hole 11, and the first oxygen circulation hole 14 is the electrolyte supply hole 10.
  • the second oxygen circulation hole 15 is disposed vertically above the electrolyte discharge hole 11.
  • the angle ⁇ is set to a value that takes into account, for example, the latitude of Japan, more irradiation light 30 can be taken.
  • the hydrogen production efficiency can be improved.
  • it can contribute to space saving because it can be efficiently installed on an oblique roof or the like.
  • the hydrogen generation efficiency can be further improved.
  • FIG. 2B is a schematic diagram showing another configuration of the hydrogen generation cell 200 of the present embodiment.
  • the first hydrogen circulation hole 12 is provided directly below the corner portion A of the housing 1 which is the most vertically upper position in the first space 3.
  • the second hydrogen circulation hole 13 be as close to the first hydrogen circulation hole as possible.
  • the liquid surface of the electrolytic solution 9 is as vertical as possible in the first space 3. Since it can raise to upper direction, it becomes possible to enlarge the area of the counter electrode 7 immersed in the electrolyte solution 9 as much as possible.
  • the first oxygen circulation hole 14 immediately below the corner portion B of the housing 1 which is the most vertically upper position in the second space 4.
  • the second oxygen circulation hole 15 be as close to the first oxygen circulation hole as possible.
  • the liquid surface of the electrolytic solution 9 is as vertical as possible in the second space 4. Since it can be raised to the upper side, the area of the optical semiconductor electrode 6 immersed in the electrolytic solution 9 can be increased as much as possible.
  • the dead space in the first space 3 or the second space 4 of the hydrogen generation cell 200 can be minimized, and the areas of the optical semiconductor electrode 6 and the counter electrode 7 immersed in the electrolytic solution 9 can be maximized. Therefore, the hydrogen generation efficiency of the hydrogen generation cell 200 can be further improved.
  • FIG. 3A is a schematic diagram illustrating the configuration of the hydrogen generation device according to the present embodiment.
  • the first joint 16 and the second joint 17 are added, and a plurality of hydrogen generation cells are connected via the first joint 16 and the second joint 17.
  • the present embodiment is implemented except that an electrolyte storage unit 19, an electrolyte supply pipe 20, and an electrolyte discharge pipe 21 are added as an electrolyte circulation mechanism, and a hydrogen collection pipe 22 is added as a hydrogen collection mechanism.
  • the hydrogen generation cell 100 of the first embodiment has the same configuration. Therefore, here, only the first and second joints, the connection mechanism of the plurality of hydrogen generation cells, the electrolyte circulation mechanism, and the hydrogen collection mechanism will be described.
  • the first joint 16 and the second joint 17 are provided as follows.
  • the electrolytic solution supply hole 10 and the electrolytic solution discharge hole 11 are provided with a first joint 16 that is simply connected to each other.
  • the 1st coupling 16 should just be comprised with the material which has the corrosion resistance with respect to electrolyte solution, and insulation, and becomes a mechanism in which the electrolyte solution does not leak out.
  • the material which has the corrosion resistance with respect to electrolyte solution, and insulation, and becomes a mechanism in which the electrolyte solution does not leak out for example, rubber, resin, metal whose surface is corrosion-resistant and insulated, and the like can be used.
  • the first hydrogen circulation hole 12 and the second hydrogen circulation hole 13 are provided with a second joint 17 that is easily connected to each other.
  • the second joint 17 may be made of a material having a function of preventing hydrogen from permeating and adsorbing at a pressure equal to or lower than atmospheric pressure, and may be a mechanism that does not cause hydrogen leakage.
  • a material having a function of preventing hydrogen from permeating and adsorbing at a pressure equal to or lower than atmospheric pressure may be a mechanism that does not cause hydrogen leakage.
  • rubber, resin, metal whose surface is corrosion-resistant and insulated, and the like can be used.
  • the first oxygen circulation hole 14 and the second oxygen circulation hole 15 may be provided with a third joint 18 (not shown) that is simply connected to each other.
  • the third joint 18 may be made of a material having a function of preventing oxygen from permeating and adsorbing at a pressure equal to or lower than atmospheric pressure, and may be a mechanism that does not cause oxygen leakage.
  • rubber, resin, metal whose surface is corrosion-resistant and insulated, and the like can be used.
  • the distance between the position of the electrolyte supply hole 10 in contact with the first space side and the position of the first hydrogen circulation hole 12 is the electrolyte discharge hole of the hydrogen generation cell on the upstream side of the electrolyte in contact with the first space side. 11 and the position of the 2nd hydrogen circulation hole 13 are arrange
  • the distance between the position of the electrolyte supply hole 10 in contact with the second space side and the position of the first oxygen circulation hole 14 is 2 is disposed so as to be equal to the distance between the position of the electrolyte discharge hole 11 of the hydrogen generation cell on the upstream side of the electrolyte and the position of the second oxygen circulation hole 15.
  • two identical hydrogen generation cells 310 can be connected at at least three points of the first joint 16 and the second joint 17 on the first space side and the second space side.
  • the hydrogen generation cells 310 can be connected endlessly.
  • the hydrogen generation device 300 is provided with an electrolyte storage unit 19, an electrolyte supply pipe 20, an electrolyte discharge pipe 21, and a hydrogen collection pipe 22.
  • the electrolytic solution storage unit 19, the electrolytic solution supply pipe 20, and the electrolytic solution discharge pipe 21 are formed of a material having corrosion resistance to the electrolytic solution.
  • a material having corrosion resistance to the electrolytic solution For example, glass, resin, metal whose surface is corrosion-resistant and insulated, and the like can be used.
  • the electrolytic solution storage unit 19 is provided with a mechanism for supplying water and electrolyte into the storage unit so that the concentration of the electrolytic solution can be appropriately adjusted. In addition, a mechanism for flowing out a required amount of the electrolytic solution to the electrolytic solution supply pipe 20 is provided.
  • the electrolyte solution supply pipe 20 connects the electrolyte solution storage unit 19 and the electrolyte solution supply hole 10 of the hydrogen generation cell 310 arranged on the uppermost vertical side (the most upstream when viewed from the electrolyte solution) in the hydrogen generation device 300. Be placed.
  • the electrolytic solution discharge pipe 21 connects the electrolytic solution storage unit 19 and the electrolytic solution discharge hole 11 of the hydrogen generation cell 310 arranged on the lowest vertical side (the most downstream as viewed from the electrolytic solution) in the hydrogen generation device 300. Placed in.
  • the hydrogen collecting pipe 22 is formed of a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure.
  • a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure for example, glass, resin, metal, etc. can be used.
  • one end of the hydrogen collection pipe 22 is connected to the first hydrogen circulation hole 12 of the hydrogen generation cell 310 arranged on the uppermost vertical side (the uppermost stream when viewed from the electrolyte) in the hydrogen generation device 300. Be placed. At this time, it is preferable that the hydrogen circulation holes remaining without being connected to others are sealed.
  • an oxygen collection pipe 23 formed of a material having a function of not allowing oxygen to permeate and adsorbing at a pressure below atmospheric pressure and arranged in the same manner as the hydrogen collection pipe 22 can be provided. At this time, it is preferable that the oxygen circulation holes remaining without being connected to others are sealed.
  • the operation of the hydrogen generation device 300 is that the first to third joints 16 to 18 are added, a plurality of hydrogen generation cells are connected via the first to third joints 16 to 18, and the electrolytic solution.
  • the first embodiment is the same as the first embodiment except that an electrolyte storage unit 19, an electrolyte supply pipe 20, and an electrolyte discharge pipe 21 are added as a circulation mechanism, and a hydrogen collection pipe 22 is added as a hydrogen collection mechanism. This is the same as the case of the hydrogen generation cell 100. Therefore, here, only the first to third joints, the connection mechanism of the plurality of hydrogen generation cells, the electrolyte circulation mechanism, and the hydrogen collection mechanism will be described.
  • the required amount of the electrolyte stored in the electrolyte storage unit 19 passes through the electrolyte supply pipe 20 when the electrolyte storage unit 19 is actuated, and the uppermost vertical side (as viewed from the electrolyte) in the hydrogen generation device 300. It is supplied to the hydrogen generation cell 310 arranged in the uppermost stream. Further, the electrolytic solution is sequentially supplied to each hydrogen generation cell from the upstream side to the downstream side via the connection point of the first joint 16. As a result, each hydrogen generation cell is stabilized in a state where the electrolyte surface is at a predetermined height.
  • the electrolytic solution discharged from the electrolytic solution discharge hole 11 of the hydrogen generation cell arranged on the most vertically lower side passes through the electrolytic solution discharge pipe 21 and is stored in the electrolytic solution storage unit.
  • the hydrogen stored in the upper part of the first space of each hydrogen generation cell 310 repeatedly moves to the adjacent cell through the hydrogen circulation hole, and is finally collected from the hydrogen collection pipe 22.
  • the electrolytic solution storage unit 19 is appropriately supplemented with water and an electrolyte. Thereby, the density
  • an oxygen collecting pipe 23 that operates in the same manner as the hydrogen collecting pipe 22 is provided, so that oxygen stored in the upper part of the second space of each hydrogen generation cell 310 can be efficiently collected.
  • FIG. 3B is a schematic diagram illustrating a configuration of a modification of the hydrogen generation device according to the present embodiment.
  • the hydrogen generation device 301 is provided with an electrolyte detection sensor 31 that can detect whether or not the electrolyte has passed in the middle of the electrolyte discharge pipe 21 in the hydrogen generation device 300.
  • the electrolytic solution detection sensor 31 may be provided in the electrolytic solution storage unit 19.
  • the electrolytic solution 9 gradually decreases due to the operation of the hydrogen generation device 301. Therefore, for example, at a predetermined time, the electrolyte solution 9 is supplied from the electrolyte solution storage unit 19 to each hydrogen generation cell 310 via the electrolyte solution supply pipe 20.
  • the electrolyte 9 flows one after another from the electrolyte supply hole 10 of each hydrogen generation cell 310 via the electrolyte discharge hole 11, and finally flows out to the electrolyte discharge pipe 21 and is detected by the electrolyte detection sensor 31. Is done.
  • FIG. 4 is a schematic diagram showing the configuration of the hydrogen generation cell of the present embodiment.
  • the hydrogen generation device 400 of the present embodiment includes the positional relationship between the hydrogen generation cells 410 constituting the hydrogen generation device 400, the electrolyte supply holes 10, the electrolyte discharge holes 11, and the first of the hydrogen generation cells 410.
  • the hydrogen generation device 300 has the same configuration as that of the hydrogen generation device 300 according to the third embodiment except that the arrangement of the hydrogen flow holes 12 and the second hydrogen flow holes 13 is the same. Therefore, here, only the positional relationship between the hydrogen generation cells and the arrangement of the electrolyte supply / discharge pipe and the hydrogen circulation hole will be described.
  • all the hydrogen generation cells 410 are arranged such that there is no step between the upper surfaces and the lower surfaces.
  • the electrolyte supply hole 10, the electrolyte discharge hole 11, the first hydrogen circulation hole 12, and the second hydrogen circulation hole 13 in each hydrogen generation cell 410 are arranged so as to observe the rules regarding the positional relationship described above. That is, the electrolyte solution supply hole 10 is disposed vertically above the electrolyte solution discharge hole 11. The first hydrogen circulation hole 12 is arranged vertically above the electrolyte supply hole 10. The second hydrogen circulation hole 13 is disposed vertically above the electrolyte discharge hole 11. In addition, the electrolyte supply hole 10 and the electrolyte discharge hole 11, the first hydrogen circulation hole 12, and the second hydrogen circulation hole 13, which are connection counterparts in adjacent cells, have the same height (distance from the cell lower surface). ).
  • an oxygen circulation hole can be arrange
  • all the hydrogen generation cells are arranged in a horizontal line when the hydrogen generation device is installed. Therefore, when constructing a rectangular or trapezoidal building or a hydrogen station roof, etc. The area of the portion where the generation cell is not arranged can be further reduced, and the practicality is improved.
  • the operation of the hydrogen generation device 400 is the same as that of the hydrogen generation device 300 of the third embodiment, the description thereof is omitted.
  • the reduced electrolyte is automatically replenished. It is also possible.
  • FIG. 5 is a schematic diagram showing the configuration of the energy system of the present embodiment.
  • the energy system 500 of the present embodiment is provided with a hydrogen storage unit 25, a hydrogen supply pipe 26, and a fuel cell 27. .
  • the material and the configuration of the hydrogen generation device 24 are the same as those of the hydrogen generation device 300 shown in the third embodiment. Only the portions related to the hydrogen supply pipe 26 and the fuel cell 27 will be described.
  • the hydrogen storage unit 25 is provided such that one is connected to the hydrogen collection pipe 22 and the other is connected to the hydrogen supply pipe 26.
  • the other end of the hydrogen supply pipe 26 is provided so as to be connected to the fuel cell 27.
  • the hydrogen storage section 25 and the hydrogen supply pipe 26 are formed of a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure.
  • a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure for example, glass, resin, metal, etc. can be used.
  • the hydrogen storage unit 25 has a function of taking in and storing a necessary amount of the hydrogen flowing through the hydrogen collecting pipe 22 and a function of flowing out the necessary amount of the stored hydrogen to the hydrogen supply pipe 26.
  • the fuel cell 27 can employ a general fuel cell that uses hydrogen as a negative electrode active material.
  • a polymer electrolyte fuel cell a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, an alkaline electrolyte fuel cell and the like can be used.
  • the hydrogen generation device 24 is the same as the hydrogen generation device 300 shown in the third embodiment, and therefore, the description thereof is omitted here, and the hydrogen storage unit 25, the hydrogen supply pipe 26, and the fuel cell are omitted. Only the operation related to 27 will be described.
  • Hydrogen flowing through the hydrogen collection pipe 22 of the hydrogen generation device flows into the hydrogen storage unit 25 by the operation of the hydrogen storage unit 25 and is temporarily stored. Further, the stored hydrogen is supplied from the hydrogen storage unit 25 to the fuel cell 27 through the hydrogen supply pipe 26 in accordance with the operating state of the fuel cell 27. In addition to hydrogen, a gas containing a positive electrode active material, such as air, is sent to the fuel cell 27, and power generation and hot water supply are performed in the fuel cell 27. The consumed hydrogen is discharged from the fuel cell 27 as water or the like. As a result, an energy system is provided in which the light energy of the irradiation light 30 can be converted into hydrogen energy by the hydrogen generation device 24 and further converted into electric energy by the fuel cell 27 as necessary.
  • a gas containing a positive electrode active material such as air
  • FIG. 6 is a schematic diagram showing the configuration of the energy system of the present embodiment.
  • the energy system 600 of the present embodiment has the same configuration as the hydrogen generation device 300 of the third embodiment, and in addition to the hydrogen generation device 24 provided with the oxygen collection pipe 23, the hydrogen storage unit 25, the hydrogen A supply pipe 26, a fuel cell 27, an oxygen storage unit 28, and an oxygen supply pipe 29 are provided.
  • the materials and configurations of the hydrogen generation device 24, the hydrogen storage unit 25, the hydrogen supply pipe 26, and the fuel cell 27 are the same as those of the energy system 500 shown in the fifth embodiment. Therefore, the description is omitted. Here, only parts related to the oxygen storage unit 28 and the oxygen supply pipe 29 will be described.
  • the oxygen storage unit 28 is provided so that one is connected to the oxygen collection pipe 23 and the other is connected to the oxygen supply pipe 29.
  • the other end of the oxygen supply pipe 29 is provided so as to be connected to the fuel cell 27.
  • the oxygen storage section 28 and the oxygen supply pipe 29 are formed of a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure.
  • a material having a function of preventing hydrogen from permeating and adsorbing at a pressure below atmospheric pressure for example, glass, resin, metal, etc. can be used.
  • the operation of the energy system 600 will be described.
  • the hydrogen generation device 24, the hydrogen storage unit 25, the hydrogen supply pipe 26, and the fuel cell 27 are the same as those of the energy system 500 shown in the fifth embodiment, and thus the description thereof is omitted.
  • the oxygen storage unit 28 and the oxygen supply pipe 29 will be described.
  • the oxygen flowing through the oxygen collecting pipe 23 of the hydrogen generation device flows into the oxygen storage unit 28 by the operation of the oxygen storage unit 28 and is temporarily stored. Furthermore, the stored oxygen is supplied from the oxygen storage unit 28 to the fuel cell 27 through the oxygen supply pipe 29 in accordance with the operating state of the fuel cell 27.
  • the fuel cell 27 is supplied with hydrogen as the negative electrode active material and oxygen as the positive electrode active material, and the fuel cell 27 generates power and hot water. The consumed hydrogen and oxygen react to become water and are discharged from the fuel cell 27. Since the energy system 600 of the present embodiment uses pure oxygen to operate the fuel cell, the energy conversion efficiency of the fuel cell is significantly higher than that of the energy system 500 of the fifth embodiment that uses air or the like. A system is provided.
  • the hydrogen generation cell, the hydrogen generation device and the energy system using the same according to the present invention can improve the efficiency of the hydrogen generation reaction by light irradiation, it can be suitably used as a hydrogen supply source for a fuel cell or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 本発明の水素生成セルは、筐体を貫通する電解液供給孔、電解液排出孔、第1の水素流通孔および第2の水素流通孔が設けられ、水素生成セルの設置時に、電解液供給孔が、電解液排出孔よりも鉛直上側に配置され、第1の水素流通孔が、電解液供給孔よりも鉛直上側に配置され、第2の水素流通孔が、電解液排出孔よりも鉛直上側に配置される。本構成により、電解液および水素に関係する配管長およびマニホールド数を大幅に低減するとともに、水素生成セル同士を簡便かつ合理的に連結することができる。

Description

水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム
 本発明は、光を用いて水を水素と酸素とに分解することにより水素を得る、水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステムに関するものである。
 従来、光触媒として機能する半導体材料の利用方法として、半導体材料に光を照射することにより、水を分解して水素を生成することまたは電気エネルギーを生成することが知られている(例えば、特許文献1)。
 特許文献1には、太陽光から得られる光エネルギーを水素エネルギーに変換する機能を有する光水電解装置が開示されている。この光水電解装置は、重層された複数の光水電解セルから構成される。それぞれの光水電解セルは、外周部分が透明なガラス板または合成樹脂板からなる外壁によって囲まれた箱状のケーシングを有しており、水平状態から任意の角度だけ傾斜して配置される。光水電解セル内の下部には電解液が収容されており、また、厚さ方向中央には、光水電解セル内を2つの空間に画成する隔壁が設けられる。この隔壁は、上部側に配置されたガス分離膜と、下部側に配置された光水電解電極膜接合体とが一体に接合されたものであり、生成水素と生成酸素とを分離する役割を果たす。光水電解電極膜接合体には、厚さ方向中央部に配置されたイオン伝導膜であるナフィオン膜の両面に、光触媒電極と白金対極とがそれぞれ形成される。この光水電解電極膜接合体では、太陽光の照射により光水電解を起こし、光触媒電極からは酸素、白金対極からは水素が生成する。また、隔壁の下端には、矩形状の貫通孔が形成されており、貫通孔を介して光水電解セル内を電解液が流通することができる。そして、光水電解セルの外壁には、平面視矩形状の流通孔が形成されており、該流通孔の開口面積を可変自在とする可動壁が設けられる。
 そして、各光水電解セルへの電解液の供給は、隣接する上流側の光水電解セルにてあふれた電解液が、流通孔を介して流入することにより行われる。同様に、各光水電解セルからの電解液の排出は、隣接する下流側の光水電解セルへ電解液があふれて流出することにより行われる。このような機構を採用することにより、電解液供給・排出用に必要となる配管長および配管設置に要する工数の低減がなされている。
 しかしながら、前述の光水電解装置の場合、生成した水素収集用に必要となる配管に関しては、何らの工夫も示されていない。
 例えば、複数の光水電解セルが重層された光水電解装置について、各光水電解セル全てに、個別の水素収集管を取り付ける方法を考える。この方法では、少なくとも配置する光水電解セルの全数量と同じだけの水素収集管を取り付ける必要であり、さらに水素収集管が複数のマニホールドを形成することになる。このような構成では、水素収集管の配管長が著しく長くなり煩雑であるだけでなく、マニホールドが多数あるために水素の流通制御が難しく、また配管設置に要する工数も多くなる。このことは、光水電解装置の実用化を考えた際に、大きな課題となる。
 そこで本発明は、上記従来の課題を鑑み、光半導体による水の分解反応を利用して水素を生成する水素生成デバイスおよびそれを用いたエネルギーシステムを提供する。具体的には、水素生成デバイスを構成する各水素生成セルに接続する、水素収集管の配管長およびマニホールド数を大幅に低減する。また、水素生成デバイスを実用化するためには、多数の水素生成セルの連結により、十分な量の水素を生成することが不可欠である。そのための簡便かつ合理的な水素生成セル同士の連結部材および連結方法を提供する。
特開2008-75097号公報
 本発明に係る水素生成セルは、光が照射される面が透光性を有する筐体と、筐体内部の空間を、第1の空間および第2の空間に分けるセパレータと、第1の空間内に配置された対極と、第2の空間内に配置され、導電性基板上に形成された光半導体電極と、光半導体電極と対極との間を電気的に接続する電気的接続部と、第1の空間内および第2の空間内に水を含む電解液と、を有する。そして、筐体を貫通する電解液供給孔および電解液排出孔と、第1の空間または第2の空間のうち水素が生成する側と接する筐体を貫通する、第1の水素流通孔および第2の水素流通孔と、を設ける。このとき、電解液供給孔が、電解液排出孔よりも鉛直上側に配置され、第1の水素流通孔が、電解液供給孔よりも鉛直上側に配置され、第2の水素流通孔が、電解液排出孔よりも鉛直上側に配置される。
 さらに、隣接する水素生成セルの電解液供給孔と電解液排出孔、第1の水素流通孔と第2の水素流通孔が、それぞれ相互に接続して水素生成デバイスを構成する。
 かかる構成によって、電解液供給・排出用配管および生成水素収集管の、配管長およびマニホールド数を大幅に低減するとともに、光半導体電極に光を照射することにより水を分解して水素を生成する。
 本発明における水素生成セル、水素生成デバイス、およびそれを用いたエネルギーシステムによれば、水素生成デバイスを構成する各水素生成セルに接続する、水素収集管の配管長およびマニホールド数を大幅に低減することができる。また、十分な量の水素を生成するための多数の水素生成セルの連結を容易にする、簡便かつ合理的な水素生成セル同士の連結部材および連結方法を提供することができる。
図1Aは、本発明の実施の形態1に係る水素生成セルの構成を示す概略図である。 図1Bは、本発明の実施の形態1に係る水素生成セルの構成を第1の空間側から見た概略図である。 図2Aは、本発明の実施の形態2に係る水素生成セルの構成を示す概略図である。 図2Bは、本発明の実施の形態2に係る水素生成セルの他の構成を示す概略図である。 図3Aは、本発明の実施の形態3に係る水素生成デバイスの構成を示す概略図である。 図3Bは、本発明の実施の形態3に係る水素生成デバイスの変形例の構成を示す概略図である。 図4は、本発明の実施の形態4に係る水素生成デバイスの構成を示す概略図である。 図5は、本発明の実施の形態5に係るエネルギーシステムの構成を示す概略図である。 図6は、本発明の実施の形態6に係るエネルギーシステムの構成を示す概略図である。
 本発明の水素生成セルは、筐体に設けられた電解液供給孔、電解液排出孔、第1および第2の水素流通孔が、前述した位置関係に配置されることにより、電解液および生成水素の流通について次のような機能を有する。
 ここで、本発明の水素生成セルにおける電解液供給孔、電解液排出孔、第1および第2の水素流通孔等の相互の位置関係(鉛直上方、鉛直下方等)は、最終的に水素生成セルが、水素生成デバイスやエネルギーシステムとして設置された状態において充足されればよい。
 なお、以下の本願明細書では、後述する光半導体電極がn型半導体であって酸素を生成する側であり、対極が水素を生成する側である場合に即した説明をする。ただし、光半導体電極がp型半導体である場合は、前述のn型半導体の場合に即した説明において、水素と酸素を入れ替えることにより説明される。
 まず、電解液の流通について述べる。電解液は、電解液供給孔から筐体内部の第1および第2の空間に供給され、電解液排出孔から排出される。供給孔の方が排出孔よりも鉛直上側に配置されるため、供給孔から供給された電解液のうち、排出孔の下端の高さよりも鉛直上側にある電解液は、重力に従って自動的に電解液排出孔から排出される。よって、電解液面の高さは電解液排出孔下端の高さによって定まる。また、第1および第2の水素流通孔の方が電解液排出孔よりも鉛直上側に配置されるため、電解液面が流通孔下端の高さまで上がることはなく、本来水素のみが流通すべき流通孔に電解液が混入する、という事態が防止される。すなわち、電解液は供給孔から排出孔へのみ重力によって一方通行かつ自動的に流通する。さらに、隣接する水素生成セルの電解液供給孔と電解液排出孔を接続することにより、接続部を介して、上流側のセルであふれた電解液が下流側のセルへ重力によって一方通行かつ自動的に流通する。以上のことを、複数の水素生成セルを接続することで構成される水素生成デバイス全体として見れば、最上流に配置された水素生成セルの電解液供給孔1箇所のみから電解液を供給するだけで、全ての水素生成セルに上流側から順々に電解液が供給され、最下流に配置された水素生成セルの電解液排出孔1箇所のみから排出される。加えて、各水素生成セルにおいて電解液面が所定の高さに安定的に保たれる。このように、電解液に関して全ての水素生成セルを直列に接続することにより、必要となる電解液供給・排出用配管は、最も上流側の水素生成セルと接続する電解液供給管、および最も下流側の水素生成セルと接続する電解液排出管のみとなり、配管長およびマニホールド数を大幅に低減することが可能となる。
 次に、生成水素の流通について述べる。各水素生成セルの対極上で生成した水素は、電解液中を浮上し、第1の空間上部の電解液面上に集まる。前述したように、第1と第2の水素流通孔下端は、電解液面の高さを規定する電解液排出孔よりも鉛直上側に配置されるため、第1と第2の水素流通孔は電解液が混入することはなく、常に水素とのみ接することになる。これにより、第1の空間上部に集まった水素は、第1と第2の水素流通孔を通って該水素生成セルの外部へ移動することが可能となる。さらに、隣接する水素生成セルの第1の水素流通孔と第2の水素流通孔を接続することにより、接続部を介して、隣接するセルへ水素が流通する。以上のことを、複数の水素生成セルを接続することで構成される水素生成デバイス全体として見れば、各水素生成セルの水素が集まった空間が全て繋がり、この空間部分がまるで全ての水素生成セルを繋ぐ配管のような役割を果たすことになる。この構成であれば、任意の1つの水素生成セルの第1の空間最上部に別途水素収集管を接続するだけで、全ての水素生成セルで生成した水素を収集することができる。すなわち、必要となる水素の流通・収集管は、水素収集管のみとなり、配管長およびマニホールド数を大幅に低減することが可能となる。
 さらに別の視点でも、本発明の水素生成セル接続構成を採ることによる効果が見られる。本発明に対する比較として、複数の水素生成セルを鉛直縦方向に接続した構成を考える。この場合、ある水素生成セルで生成した水素はセル上部へ浮上し、接続部を介してひとつ上に隣接する水素生成セルの最下部に流入する。流入した水素はひとつ上の水素生成セルの電解液中を浮上し、さらに上の水素生成セルへと流入する。このようにすると、ある水素生成セルの電解液中には、自身よりも下側に配置された全ての水素生成セルで生成した水素の気泡が混入することになる。これは、より上側に接続された水素生成セルほど顕著となる。電解液中への大量の気泡混入は、電極の分極や光半導体電極面へ照射される光の散乱を引き起こすため、該水素生成セルでの水素生成効率を低下させる。
 これに対して、本発明の水素生成セルでは、複数の水素生成セルを鉛直横方向に接続する。この場合、ある水素生成セルで生成した水素はセル上部へ浮上し、接続部を介して横に隣接する水素生成セルの電解液面よりも上の空間に流入する。このようにすると、ある水素生成セルの電解液中に、他の水素生成セルで生成した水素気泡が混入することが防止される。よって、前述のような気泡混入に由来する分極や光散乱が起こらず、水素生成デバイスを構成する全ての水素生成セルで高い水素生成効率を維持できる。
 この点から鑑みて、複数の水素生成セルを鉛直横方向に接続した本発明の構成は、水素生成デバイスとして好適であると言える。
 以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態は一例であり、本発明は以下の実施の形態に限定されない。また、以下の実施の形態では、同一部材に同一の符号を付して、重複する説明を省略する場合がある。
 (実施の形態1)
 本発明の実施の形態1の水素生成セルについて、図1Aおよび図1Bを用いて説明する。図1Aは、本実施の形態の水素生成セルの構成を示す概略図、図1Bは本実施の形態の水素生成セルの構成を第1の空間側から見た概略図である。
 本実施の形態の水素生成セル100は、少なくとも光(照射光30)が照射される面が透光性を有する筐体1を有する。筐体1内部の空間を2つに分けるように、筐体1の光が照射される面とほぼ平行になる向きにセパレータ2が設けられる。セパレータ2で隔てられた第1の空間3および第2の空間4と、第2の空間内において、筐体1の光が照射される面とほぼ平行になる向きに導電性基板5が設けられる。導電性基板5上に光半導体電極6が形成される。第1の空間内には、対極7が設けられる。電気的接続部8は、導電性基板5と対極7との間を電気的に接続する。水を含む電解液9は、第1の空間内および第2の空間内に存在する。
 水素生成セル100に照射される光の進行方向に沿って説明すると、水素生成セル100には、光を照射する側から、透光性を有する筐体1の一方の面、電解液9、光半導体電極6、導電性基板5、セパレータ2、対極7、電解液9、筐体1の他方の面が、この順に配置される。光半導体電極6とセパレータ2は互いに接していても離れていてもよい。また、対極7とセパレータ2は互いに接していても離れていてもよい。セパレータ2は、第1の空間内の電解液9と第2の空間内の電解液9との間でイオンのやり取りを行わせる役割を担う。そのため、セパレータ2の少なくとも一部分は、第1および第2の空間内の電解液9と接する。
 電解液供給孔10および電解液排出孔11は、筐体1を貫通するように、第1の空間側および第2の空間側のそれぞれに設けられる。第1の水素流通孔12および第2の水素流通孔13は、筐体1を貫通するように、第1の空間側に設けられる。さらに、電解液供給・排出孔および水素流通孔は、水素生成セル100の配置時に次のような位置関係となるよう配置される。電解液供給孔10は、電解液排出孔11よりも鉛直上側に配置される。第1の水素流通孔12は、電解液供給孔10よりも鉛直上側に配置される。第2の水素流通孔13は、電解液排出孔11よりも鉛直上側に配置される。また、第2の空間側には酸素排出孔を設けることができる。さらに、酸素の収集を行う場合には、酸素排出孔の代わりに、第1の酸素流通孔14および第2の酸素流通孔15を、筐体1を貫通するように、水素流通孔と同様の位置関係で、第2の空間側に設けることができる。
 次に、水素生成セル100の各構成について、酸素流通孔を設けた場合に即して具体的に説明する。
 筐体1の光が照射される面には、電解液9に対する耐腐食性および絶縁性を有し、可視光領域の光、さらに望ましくは可視光領域の周辺波長を含む光が透過する材料を用いる。その材料としては、例えば、ガラスおよび樹脂が挙げられる。筐体1のその他の面の材料については、電解液9に対する耐腐食性および絶縁性を有していればよく、光を透過する性質を持つ必要は無い。その材料としては、前述のガラス、樹脂に加えて、表面を耐腐食・絶縁加工した金属等を用いることができる。
 セパレータ2は、電解液9中の電解質を透過させ、かつ、電解液9中の水素および酸素の透過を抑制する機能を有する。セパレータ2の材料としては、例えば、高分子固体電解質等の固体電解質が挙げられる高分子固体電解質としては、ナフィオン等のイオン交換膜が挙げられる。
 導電性基板5には、導電性を有する基板、もしくは導電性を有する材料を表面に成膜した基板を用いる。導電性基板5としては、例えば、白金板、酸化インジウムスズ(ITO)ガラスおよびフッ素ドープ酸化スズ(FTO)ガラスが挙げられる。
 光半導体電極6は、n型半導体もしくはp型半導体によって形成される。光半導体電極6がn型半導体によって形成されていれば、光半導体電極6からは酸素が、対極7からは水素が生成する。逆に、光半導体電極6がp型半導体であれば、光半導体電極6からは水素が、対極7からは酸素が生成する。光半導体電極6は、光照射によって電子が励起して水を分解する必要がある。そのため、伝導帯のバンドエッジ準位が水素イオンの標準還元電位である0eV(vs.NHE)以下であり、かつ、価電子帯のバンドエッジ準位が水の標準酸化電位である1.23eV(vs.NHE)以上である半導体によって形成されることが好ましい。このような半導体としては、チタン、ジルコニウム、バナジウム、タンタル、ニオブ、タングステン、鉄、銅、亜鉛、カドミウム、ガリウム、インジウムおよびゲルマニウムの酸化物、酸窒化物および窒化物の単体、これらの複合酸化物、酸窒化物および窒化物、これらにアルカリ金属イオンやアルカリ土類金属イオンを添加したものが、好適に用いられる。また、伝導帯のバンドエッジ準位が水素イオンの標準還元電位0eV(vs.NHE)以下の物質からなる膜と、価電子帯のバンドエッジ準位が水の標準酸化電位1.23eV(vs.NHE)以上の物質からなる膜とを互いに接合した積層膜も、有効に用いられる。一例として、例えばWO/ITO/Si積層膜等が好適に用いられる。
 対極7には、導電性を有し、光半導体電極6がn型半導体である場合には水素生成反応に、p型半導体である場合には酸素生成反応に活性な材料を用いる。対極7の材料としては、水の電気分解用の電極として一般的に用いられるカーボンおよび貴金属が挙げられる。具体的には、カーボン、白金、白金担持カーボン、パラジウム、イリジウム、ルテニウムおよびニッケル等を採用できる。
 電気的接続部8には、一般的な金属導線を用いることができる。
 第1および第2の空間内に入れられた電解液9は、水を含む電解液であればよく、酸性であっても中性であっても塩基性であってもよい。例えば、硫酸、塩酸、塩化カリウム、塩化ナトリウム、硫酸カリウム、硫酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム等が好適に用いられる。
 電解液供給孔10および電解液排出孔11には、電解液9に対する耐腐食性および絶縁性を有する材料が用いられる。第1の水素流通孔12、第2の水素流通孔13、第1の酸素流通孔14および第2の酸素流通孔15には、大気圧以下の圧力において水素または酸素が透過せず吸着しない機能を有する材料が用いられる。具体的には、ガラス、樹脂、表面を耐腐食・絶縁加工した金属等を用いることができる。
 電解液供給孔10、電解液排出孔11、第1の水素流通孔12、第2の水素流通孔13、第1の酸素流通孔14および第2の酸素流通孔15の間の相互の位置関係は、前述した通りである。
 次に、水素生成セル100の動作について、酸素流通孔を設けた場合に即して説明する。
 水素生成セル100では、筐体1および第2の空間内に入れられた電解液9を透過した光が、光半導体電極6に入射する。光半導体電極6が光を吸収して電子の光励起が起こり、光半導体電極6において伝導帯に電子が、価電子帯に正孔がそれぞれ生じる。このとき、光半導体電極6と電解液9の接触により、光半導体電極6の表面(電解液9との界面)近傍にはバンドベンディングが生じるため、光照射によって生じた正孔は、バンドベンディングに従って、光半導体電極6の表面(電解液9との界面)側に移動する。この正孔が光半導体電極6の表面で水分子を酸化して酸素が生成する(下記反応式(1))。一方、伝導帯に生じた電子は導電性基板5側に移動する。導電性基板5に移動した電子は、電気的接続部8を介して対極7側に移動する。対極7の内部を移動して対極7表面(電解液9との界面)に到達した電子は、対極7の表面でプロトンを還元して水素が生成する。
 4h+2HO → O↑+4H   (1)
 4e+4H → 2H↑   (2)
 対極7の表面で生成した水素気泡は、第1の空間内に入れられた電解液9中を浮上し、電解液9の液面上に達する。その後、第1の水素流通孔12および第2の水素流通孔13を通じて、水素生成セル100の外部へ移動する。一方、光半導体電極6の表面で生成した酸素気泡は、第2の空間内に入れられた電解液9中を浮上し、電解液9の液面上に達する。その後、第1の酸素流通孔14および第2の酸素流通孔15を通じて、水素生成セル100の外部へ移動する。
 水の光分解による水素および酸素の生成が進行するとともに、電解液9の量が減少する。この減少分を補うため、電解液供給孔10から第1の空間および第2の空間へ電解液を必要量供給する。このとき、過剰に電解液を供給した場合は電解液排出孔11から重力によって自動的に排出されるため、第1の空間および第2の空間内における電解液9の液面高さは、電解液排出孔11下端の高さに常に一定に保たれる。このため、電解液排出孔11よりも鉛直上側に配置される全ての水素および酸素流通孔12~15には電解液9が混入することが無く、気体のみが流通する機構を容易に得ることができる。
 (実施の形態2)
 前述したように、本発明の水素生成セルにおける電解液供給孔10、電解液排出孔11、第1の水素流通孔12および第2の水素流通孔13の相互の位置関係は、水素生成セルが、最終的に水素生成デバイスやエネルギーシステムとして設置された状態において充足されればよい位置関係である。
 したがって、実施の形態1のように、水素生成セル100が水平面に設置される前提で電解液供給孔10、電解液排出孔11、第1の水素流通孔12および第2の水素流通孔13の位置関係を定めるだけでなく、水素生成セルが、例えば屋根や屋上等に一定の角度で傾けて設置されたり、プールの水面等に90度に寝かされて設置されるような前提で、かかる位置関係を定めてもよい。
 そこで、水平面に対し角度θをもって設置される場合の実施の形態である水素生成デバイスについて、図2Aを用いて説明する。
 図2Aは、本実施の形態の水素生成セルの構成を示す概略図である。
 水素生成セル200は、実施の形態1における水素生成セル100と同じ構成要素を備える。水素生成セル100と比較すると、電解液供給孔10、電解液排出孔11、第1の水素流通孔12および第2の水素流通孔13の位置のみが互いに相違するが、水平面に対し角度θをもって設置された状態では、それら相互の位置関係は、水素生成セル100と同様となる。
 すなわち、水素生成セル200が設置された図2Aの状態において、電解液供給孔10は、電解液排出孔11よりも鉛直上側に配置され、第1の水素流通孔12は、電解液供給孔10よりも鉛直上側に配置され、第2の水素流通孔13は、電解液排出孔11よりも鉛直上側に配置される。
 さらに、酸素の収集を行う場合には、第1の酸素流通孔14および第2の酸素流通孔15を、水素生成セル200が設置された状態において、実施の形態1と同様の位置関係により、第2の空間側に設ければよい。
 すなわち、水素生成セル200が設置された図2Aの状態において、電解液供給孔10は、電解液排出孔11よりも鉛直上側に配置され、第1の酸素流通孔14は、電解液供給孔10よりも鉛直上側に配置され、第2の酸素流通孔15は、電解液排出孔11よりも鉛直上側に配置される。
 以上により、水素生成セル200が、水平面に対し角度θで設置された状態においても、実施の形態1と同様に、電解液排出孔11よりも鉛直上側に配置される全ての水素および酸素流通孔12~15には電解液9が混入することが無く、気体のみが流通する機構を容易に得ることができる。
 さらに、本実施の形態の水素生成セルの構成によれば、角度θを、例えば、日本の緯度を考慮した値に設定すれば、照射光30をより多く取り入れることができるため、水素生成セル200の水素生成効率を向上させることができる。また、斜めの屋根等に効率よく設置できることで、省スペースにも貢献できる。
 ここで、水素生成セル200における第1の水素流通孔12を、第1の空間3内の最も鉛直上方の位置に設けることで、さらに、水素生成効率を向上させることができる。
 図2Bは、本実施の形態の水素生成セル200の他の構成を示す概略図である。
 本構成において、第1の水素流通孔12を、第1の空間3内の最も鉛直上方の位置である筐体1の角部Aの直下に設けてある。同時に、第2の水素流通孔13も、可能な限り第1の水素流通孔に近づけることが望ましいが、そうすることで、電解液9の液面を、第1の空間3内の、極力鉛直上方まで上昇させることができるので、電解液9に浸漬している対極7の面積も極力大きくすることが可能となる。
 あわせて、第1の酸素流通孔14を、第2の空間4内の最も鉛直上方の位置である筐体1の角部Bの直下に設けることが望ましい。同時に、第2の酸素流通孔15も、可能な限り第1の酸素流通孔に近づけることが望ましいが、そうすることで、電解液9の液面を、第2の空間4内の、極力鉛直上方まで上昇させることができるので、電解液9に浸漬している光半導体電極6の面積も極力大きくすることが可能となる。
 以上により、水素生成セル200の第1の空間3または第2の空間4におけるデッドスペースを最小にすることができるとともに、電解液9に浸漬する光半導体電極6や対極7の面積を最大にできるため、水素生成セル200の水素生成効率を、さらに向上させることができる。
 (実施の形態3)
 本発明の実施の形態3の水素生成デバイスについて、図3Aを用いて説明する。図3Aは、本実施の形態の水素生成デバイスの構成を示す概略図である。
 本実施の形態の水素生成デバイス300は、第1の継手16および第2の継手17が追加される点、複数の水素生成セルが第1の継手16および第2の継手17を介して接続される点、電解液循環機構として電解液貯蔵部19、電解液供給管20および電解液排出管21が追加される点、水素収集機構として水素収集管22が追加される点を除いては、実施の形態1の水素生成セル100と同様の構成を有する。そのため、ここでは、第1および第2の継手、複数の水素生成セルの接続機構、電解液循環機構および水素収集機構についてのみ説明する。
 水素生成デバイス300を構成する水素生成セル310には、次のように第1の継手16および第2の継手17が設けられる。
 電解液供給孔10および電解液排出孔11には、相互に簡便に接続する第1の継手16が設けられる。第1の継手16は、電解液に対する耐腐食性および絶縁性を有する材料で構成され、電解液の漏出が起こらない機構となるものであればよい。例えば、ゴム、樹脂、表面を耐腐食・絶縁加工した金属等が利用できる。
 第1の水素流通孔12、第2の水素流通孔13には、相互に簡便に接続する第2の継手17が設けられる。第2の継手17は、大気圧以下の圧力において水素が透過せず吸着しない機能を有する材料で構成され、水素の漏出が起こらない機構となるものであればよい。例えば、ゴム、樹脂、表面を耐腐食・絶縁加工した金属等が利用できる。
 また、必要に応じて第1の酸素流通孔14および第2の酸素流通孔15には、相互に簡便に接続する第3の継手18(図示せず)を設けてもよい。第3の継手18は、大気圧以下の圧力において酸素が透過せず吸着しない機能を有する材料で構成され、酸素の漏出が起こらない機構となるものであればよい。例えば、ゴム、樹脂、表面を耐腐食・絶縁加工した金属等が利用できる。
 第1の空間側に接する電解液供給孔10の位置と、第1の水素流通孔12の位置との間隔は、第1の空間側に接する電解液上流側の水素生成セルの電解液排出孔11の位置と、第2の水素流通孔13の位置との間隔と等しくなるように配置される。また、必要に応じて酸素流通孔を設けて相互接続する場合には、第2の空間側に接する電解液供給孔10の位置と、第1の酸素流通孔14の位置との間隔は、第2の空間側に接する電解液上流側の水素生成セルの電解液排出孔11の位置と、第2の酸素流通孔15の位置との間隔と等しくなるように配置される。これにより、全く同一の2つの水素生成セル310を、第1の空間側および第2の空間側の第1の継手16および第2の継手17の少なくとも3点で接続することが可能となる。単一の水素生成セル310を複数用意して接続を繰り返すだけで、水素生成セル310を延々と繋げることができる。
 この他、水素生成デバイス300には、電解液貯蔵部19、電解液供給管20、電解液排出管21および水素収集管22が設けられる。
 電解液貯蔵部19、電解液供給管20および電解液排出管21は、電解液に対する耐腐食性を有する材料によって形成される。例えば、ガラス、樹脂、表面を耐腐食・絶縁加工した金属等が利用できる。
 電解液貯蔵部19には、電解液濃度を適宜調整可能なように、水および電解質が貯蔵部内に供給される機構が設けられる。また、必要量の電解液を電解液供給管20へ流出する機構が設けられる。
 電解液供給管20は、電解液貯蔵部19と水素生成デバイス300において最も鉛直上側(電解液から見て最上流)に配置される水素生成セル310の電解液供給孔10とを接続するように配置される。
 電解液排出管21は、電解液貯蔵部19と水素生成デバイス300において最も鉛直下側(電解液から見て最下流)に配置される水素生成セル310の電解液排出孔11とを接続するように配置される。
 水素収集管22は、大気圧以下の圧力において水素が透過せず吸着しない機能を有する材料によって形成される。例えば、ガラス、樹脂、金属等が利用できる。
 水素収集管22は、例えば、その一端が水素生成デバイス300において最も鉛直上側(電解液から見て最上流)に配置される水素生成セル310の第1の水素流通孔12に接続されるように配置される。このとき、他と接続されずに余った水素流通孔は封止されることが好ましい。
 また、酸素収集を行う場合は、大気圧以下の圧力において酸素が透過せず吸着しない機能を有する材料によって形成され、水素収集管22と同様に配置される酸素収集管23を設けることができる。このとき、他と接続されずに余った酸素流通孔は封止されることが好ましい。
 従来の光水電解装置では、配置する光水電解セルの各々に水素収集管を取り付ける必要があるため、水素収集管の配管長が著しく長くなり煩雑である、マニホールドが多数あり水素の流通制御が難しい、配管設置に要する工数が多い、といった課題を抱えていた。しかし、本発明の水素生成デバイス300の構成を採ることにより、水素収集用の配管長およびマニホールド数を大幅に低減して、前述の課題を全て解決することが可能となる。また、多数の水素生成セルの連結を簡便かつ合理的に行うことができる。
 次に、水素生成デバイス300の動作について説明する。水素生成デバイス300の動作は、第1~第3の継手16~18が追加される点、複数の水素生成セルが第1~第3の継手16~18を介して接続される点、電解液循環機構として電解液貯蔵部19、電解液供給管20および電解液排出管21が追加される点、水素収集機構として水素収集管22が追加される点を除いては、実施の形態1で示した水素生成セル100の場合と同じである。そのため、ここでは、第1~第3の継手、複数の水素生成セルの接続機構、電解液循環機構および水素収集機構についてのみ説明する。
 電解液貯蔵部19に貯蔵された電解液は、電解液貯蔵部19が作動することにより、必要量が電解液供給管20を通って、水素生成デバイス300において最も鉛直上側(電解液から見て最上流)に配置される水素生成セル310に供給される。さらに電解液は、第1の継手16の接続点を介して、上流側から下流側へ向かって、各水素生成セルに順々に供給される。この結果、各水素生成セルにおいて電解液面が所定の高さになった状態で安定する。最終的に、最も鉛直下側(電解液から見て最下流)に配置された水素生成セルの電解液排出孔11から排出された電解液は、電解液排出管21を通って電解液貯蔵部19に戻る。
 各水素生成セル310の第1の空間上部に貯まった水素は、水素流通孔を介して隣接するセルへの移動を繰り返し、最終的に水素収集管22から収集される。
 水素生成デバイス300において光照射により水が分解した分だけ、電解液量が減少するため、電解液貯蔵部19に適宜水および電解質が補充される。これにより、水素生成デバイス300内の電解液9の濃度が一定に保たれる。
 以上の結果、水素収集用の配管長およびマニホールド数を大幅に低減して、多数の水素生成セルで生成した水素の収集を行うことができる。これにより、建築物や水素ステーションの屋根等への施工がしやすくなり、実用度が向上される。
 また、必要に応じて水素収集管22と同様に動作する酸素収集管23を設けることにより、各水素生成セル310の第2の空間上部に貯まった酸素を効率的に収集することも可能となる。
 本実施の形態の水素生成デバイスについては、電解液検出センサー31をさらに設けることにより、減少した電解液の自動的な補充が可能である。図3Bは、本実施の形態の水素生成デバイスの変形例の構成を示す概略図である。
 水素生成デバイス301は、水素生成デバイス300における電解液排出管21の途中に、電解液の通過の有無を検出できる電解液検出センサー31を設けたものである。なお、電解液検出センサー31は電解液貯蔵部19に設けられてもよい。
 電解液9は、水素生成デバイス301の動作により、次第に減少していく。そこで、例えば予め定められた時間に、電解液貯蔵部19から、電解液供給管20を介して、各水素生成セル310に電解液9を供給する。電解液9は、各水素生成セル310の電解液供給孔10から電解液排出孔11を経由し、次々に流れていき、最終的に電解液排出管21に流れ出し、電解液検出センサー31に検出される。このとき、電解液貯蔵部19からの電解液9の供給を止めることで、必要な量の電解液9を必要なときにだけ各水素生成セル310に自動的に補充することができる。
 (実施の形態4)
 本発明の実施の形態4の水素生成デバイスについて、図4を用いて説明する。図4は、本実施の形態の水素生成セルの構成を示す概略図である。
 本実施の形態の水素生成デバイス400は、水素生成デバイス400を構成する各水素生成セル410同士の位置関係、ならびに、各水素生成セル410における電解液供給孔10、電解液排出孔11、第1の水素流通孔12および第2の水素流通孔13の配置の仕方に関する点を除いては、実施の形態3の水素生成デバイス300と同様の構成を有する。そのため、ここでは、各水素生成セル同士の位置関係、ならびに、電解液供給・排出管および水素流通孔の配置の仕方ついてのみ説明する。
 水素生成デバイス400では、全ての水素生成セル410は、その上面同士、下面同士がそれぞれ段差の無いように配置される。
 各水素生成セル410における電解液供給孔10、電解液排出孔11、第1の水素流通孔12および第2の水素流通孔13は、前述の位置関係に関する規則を守るように配置される。すなわち、電解液供給孔10は、電解液排出孔11よりも鉛直上側に配置される。第1の水素流通孔12は、電解液供給孔10よりも鉛直上側に配置される。第2の水素流通孔13は、電解液排出孔11よりも鉛直上側に配置される。また、隣接するセルにおける接続相手の電解液供給孔10と電解液排出孔11、ならびに、第1の水素流通孔12と第2の水素流通孔13は、それぞれ同じ高さ(セル下面からの距離)に配置される。これにより、前述の「全ての水素生成セルが、その上面同士、下面同士がそれぞれ段差の無いように配置される」ことが保証される。ただし、その結果として必然的に、電解液供給・排出管および水素流通孔の配置高さ(セル下面からの距離)は各セルによって異なることとなる。
 なお、必要に応じて酸素収集のために、酸素流通孔を水素流通孔と同様の要領で配置することができる。
 本実施の形態の構成により、水素生成デバイス設置時に全ての水素生成セルが横一直線に並ぶため、一般的に長方形もしくは台形である建築物や水素ステーションの屋根等へ施工する際、施工面において水素生成セルが配置されない部分の面積をより少なくすることができ、実用度が向上される。
 水素生成デバイス400の動作については、実施の形態3の水素生成デバイス300と同様であるため、説明を省略する。
 なお、本実施の形態の水素生成デバイス400に、実施の形態3の水素生成デバイス301における電解液検出センサー31を適用し、同様の制御を行うことにより、減少した電解液を自動的に補充することも可能である。
 (実施の形態5)
 本発明の実施の形態5のエネルギーシステムについて、図5を用いて説明する。図5は、本実施の形態のエネルギーシステムの構成を示す概略図である。
 本実施の形態のエネルギーシステム500には、実施の形態3の水素生成デバイス300と同様の構成を有する水素生成デバイス24に加えて、水素貯蔵部25、水素供給管26および燃料電池27が設けられる。
 本実施の形態のエネルギーシステム500のうち、水素生成デバイス24の材料および構成については、実施の形態3で示した水素生成デバイス300と同様であるため、ここでは説明を省略し、水素貯蔵部25、水素供給管26および燃料電池27に関係する部分についてのみ説明する。
 水素貯蔵部25は、一方が水素収集管22と、他方が水素供給管26と接続されるように設けられる。水素供給管26の他端は燃料電池27と接続されるように設けられる。
 水素貯蔵部25および水素供給管26は、大気圧以下の圧力において水素が透過せず吸着しない機能を有する材料によって形成される。例えば、ガラス、樹脂、金属等が利用できる。
 水素貯蔵部25は、水素収集管22を流通する水素のうち必要量を取り入れて貯蔵する機能、ならびに、貯蔵した水素のうち必要量を水素供給管26へ流出する機能を有する。
 燃料電池27は、水素を負極活物質とする一般的な燃料電池を採用することが可能である。例えば、固体高分子形燃料電池、りん酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ電解質形燃料電池等が利用できる。
 次に、エネルギーシステム500の動作について説明する。エネルギーシステム500の動作のうち、水素生成デバイス24ついては、実施の形態3で示した水素生成デバイス300と同様であるため、ここでは説明を省略し、水素貯蔵部25、水素供給管26および燃料電池27に関係する動作についてのみ説明する。
 水素生成デバイスの水素収集管22を流通する水素は、水素貯蔵部25が作動することによって水素貯蔵部25内に流入し、一旦貯蔵される。さらに、貯蔵された水素は、燃料電池27の作動状況に応じて、水素貯蔵部25から水素供給管26を通って燃料電池27に供給される。燃料電池27には水素以外に、正極活物質を含んだ気体、例えば空気等、が送られ、燃料電池27において発電と給湯が行われる。消費された水素は、水等として燃料電池27から排出される。以上の結果、照射光30の光エネルギーを水素生成デバイス24で水素エネルギーに変換し、さらに必要に応じて燃料電池27で電気エネルギーに変換することができるエネルギーシステムが提供される。
 (実施の形態6)
 本発明の実施の形態6のエネルギーシステムについて、図6を用いて説明する。図6は、本実施の形態のエネルギーシステムの構成を示す概略図である。
 本実施の形態のエネルギーシステム600は、実施の形態3の水素生成デバイス300と同様の構成であって、かつ、酸素収集管23を設けた水素生成デバイス24に加えて、水素貯蔵部25、水素供給管26、燃料電池27、酸素貯蔵部28および酸素供給管29が設けられる。
 本実施の形態のエネルギーシステム600のうち、水素生成デバイス24、水素貯蔵部25、水素供給管26および燃料電池27の材料および構成については、実施の形態5で示したエネルギーシステム500と同様であるため、説明を省略する。ここでは、酸素貯蔵部28および酸素供給管29に関係する部分についてのみ説明する。
 酸素貯蔵部28は、一方が酸素収集管23と、他方が酸素供給管29と接続されるように設けられる。酸素供給管29の他端は燃料電池27と接続されるように設けられる。
 酸素貯蔵部28および酸素供給管29は、大気圧以下の圧力において水素が透過せず吸着しない機能を有する材料によって形成される。例えば、ガラス、樹脂、金属等が利用できる。
 次に、エネルギーシステム600の動作について説明する。エネルギーシステム600の動作のうち、水素生成デバイス24、水素貯蔵部25、水素供給管26および燃料電池27については、実施の形態5で示したエネルギーシステム500と同様であるため、説明を省略する。ここでは、酸素貯蔵部28および酸素供給管29に関係する動作についてのみ説明する。
 水素生成デバイスの酸素収集管23を流通する酸素は、酸素貯蔵部28が作動することによって酸素貯蔵部28内に流入し、一旦貯蔵される。さらに、貯蔵された酸素は、燃料電池27の作動状況に応じて、酸素貯蔵部28から酸素供給管29を通って燃料電池27に供給される。燃料電池27には負極活物質として水素が、正極活物質として酸素が送られ、燃料電池27において発電と給湯が行われる。消費された水素と酸素は反応して水となり、燃料電池27から排出される。本実施の形態のエネルギーシステム600は純酸素を利用して燃料電池を作動させるため、空気等を利用する実施の形態5のエネルギーシステム500と比較して、燃料電池のエネルギー変換効率が著しく高いエネルギーシステムが提供される。
 本発明の水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステムは、光の照射による水素生成反応の効率を向上させることができるので、燃料電池等への水素供給源として好適に利用できる。
1  筐体
2  セパレータ
3  第1の空間
4  第2の空間
5  導電性基板
6  光半導体電極
7  対極
8  電気的接続部
9  電解液
10  電解液供給孔
11  電解液排出孔
12  第1の水素流通孔
13  第2の水素流通孔
14  第1の酸素流通孔
15  第2の酸素流通孔
16  第1の継手
17  第2の継手
18  第3の継手
19  電解液貯蔵部
20  電解液供給管
21  電解液排出管
22  水素収集管
23  酸素収集管
24  水素生成デバイス
25  水素貯蔵部
26  水素供給管
27  燃料電池
28  酸素貯蔵部
29  酸素供給管
30  照射光
31  電解液検出センサー
100,200,310,410  水素生成セル
300,301,400  水素生成デバイス
500,600  エネルギーシステム

Claims (19)

  1.  光が照射される面が透光性を有する筐体と、
     前記筐体内部の空間を、第1の空間および第2の空間に分けるセパレータと、
     前記第1の空間内に配置された対極と、
     前記第2の空間内に配置され、導電性基板上に形成された光半導体電極と、
     前記光半導体電極と前記対極との間を電気的に接続する電気的接続部と、
     前記第1の空間内および前記第2の空間内に水を含む電解液と、を有し、
     前記筐体を貫通する電解液供給孔および電解液排出孔と、
     前記第1の空間または前記第2の空間のうち水素が生成する側と接する前記筐体を貫通する、第1の水素流通孔および第2の水素流通孔と、を設け、
     前記電解液供給孔が、前記電解液排出孔よりも鉛直上側に配置され、
     前記第1の水素流通孔が、前記電解液供給孔よりも鉛直上側に配置され、
     前記第2の水素流通孔が、前記電解液排出孔よりも鉛直上側に配置される、
    前記光半導体電極に光を照射することにより水を分解して水素を生成する、水素生成セル。
  2.  前記第1の空間または前記第2の空間のうち酸素が生成する側と接する前記筐体を貫通する、第1の酸素流通孔および第2の酸素流通孔と、をさらに設け、
     前記電解液供給孔が、前記電解液排出孔よりも鉛直上側に配置され、
     前記第1の酸素流通孔が、前記電解液供給孔よりも鉛直上側に配置され、
     前記第2の酸素流通孔が、前記電解液排出孔よりも鉛直上側に配置される、
    請求項1に記載の水素生成セル。
  3.  前記水素生成セルは、水平面に対し一定の角度θをもって設置され、その状態において、すべての前記配置を充足する、
    請求項1または2に記載の水素生成セル。
  4.  前記水素生成セルは、前記第1の水素流通孔を、前記第1または第2の空間のうち水素が生成する側の空間における最も鉛直上方の位置に配置する、
    請求項3に記載の水素生成セル。
  5.  前記水素生成セルは、水平面に対し一定の角度θをもって設置され、その状態において、すべての前記配置を充足し、
    前記水素生成セルは、前記第1の酸素流通孔を、前記第1または第2の空間のうち酸素が生成する側の空間における最も鉛直上方の位置に配置する、
    請求項2に記載の水素生成セル。
  6.  前記セパレータは、イオン交換膜である、
    請求項1から5のいずれか1項に記載の水素生成セル。
  7.  前記セパレータは、前記電解液が循環する開口部を有する、
    請求項1から5のいずれか1項に記載の水素生成セル。
  8.  前記電解液供給孔および前記電解液排出孔に、第1の継手を設け、
     前記第1の水素流通孔および前記第2の水素流通孔に、第2の継手を設ける、
    請求項1から5のいずれか1項に記載の水素生成セル。
  9.  前記第1の酸素流通孔および前記第2の酸素流通孔に、第3の継手を設ける、
    請求項8に記載の水素生成セル。
  10.  隣接させた複数の前記水素生成セルにおいて、
     前記電解液供給孔と前記電解液排出孔を前記第1の継手により相互に接続し、前記第1の水素流通孔と前記第2の水素流通孔を前記第2の継手により相互に接続する、
    請求項8に記載の水素生成セルを用いた水素生成デバイス。
  11.  隣接させた複数の前記水素生成セルにおいて、
     前記第1の酸素流通孔と前記第2の酸素流通孔を前記第3の継手により相互に接続する、
    請求項9に記載の水素生成セルを用いた水素生成デバイス。
  12.  前記複数の水素生成セルの上面同士、下面同士がそれぞれ段差の無いように配置され、
    一の水素生成セルの前記筐体における前記電解液供給孔の水素生成セルの上面からの位置は、前記電解液が供給される一つ前の水素生成セルの前記筐体における前記電解液供給孔の水素生成セルの上面からの位置よりも、鉛直方向下側に配置されている、
    請求項10または11に記載の水素生成デバイス。
  13.  電解液貯蔵部と、
     前記電解液貯蔵部から、前記水素生成デバイスにおいて最も鉛直上側に配置される電解液供給孔へ接続する電解液供給管と、
     前記水素生成セルもしくは水素生成デバイスにおいて最も鉛直下側に配置される電解液供給孔から、前記電解液貯蔵部へ接続する電解液排出管と、をさらに有する、
    請求項10または11に記載の水素生成デバイス。
  14. 前記電解液排出管または前記電解液貯蔵部に、電解液検出センサーをさらに設け、
    前記電解液検出センサーによる電解液の検出により、前記電解液貯蔵部から前記電解液供給管への電解液の供給を停止する、
    請求項13に記載の水素生成デバイス。
  15.  前記電解液貯蔵部内に、水および電解質が供給される機構を有する、
     請求項13に記載の水素生成デバイス。
  16.  前記水素生成デバイスにおいて、他の水素生成セルの第1または第2の水素流通孔と接続していない第1または第2の水素流通孔に、一端が接続された水素収集管を有する、
    請求項10または11に記載の水素生成デバイス。
  17.  前記水素生成デバイスにおいて、他の水素生成セルの第1または第2の酸素流通孔と接続していない第1または第2の酸素流通孔に、一端が接続された酸素収集管を有する、
    請求項10または11に記載の水素生成デバイス。
  18.  前記水素生成デバイスと、
     前記水素生成デバイスで生成した水素を貯蔵する水素貯蔵部と、
     燃料電池と、を有する、
    請求項10または11に記載の水素生成デバイスを用いたエネルギーシステム。
  19.  前記水素生成デバイスで生成した酸素を貯蔵する酸素貯蔵部をさらに有する、
    請求項18に記載のエネルギーシステム。
PCT/JP2013/002313 2012-04-11 2013-04-03 水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム WO2013153779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/115,029 US9447509B2 (en) 2012-04-11 2013-04-03 Hydrogen producing cell, hydrogen producing device, and energy system including the hydrogen producing device
JP2013548686A JP6118991B2 (ja) 2012-04-11 2013-04-03 水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム
CN201380001465.2A CN103582608B (zh) 2012-04-11 2013-04-03 氢生成设备及使用该氢生成设备的能量系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012089786 2012-04-11
JP2012-089786 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013153779A1 true WO2013153779A1 (ja) 2013-10-17

Family

ID=49327364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002313 WO2013153779A1 (ja) 2012-04-11 2013-04-03 水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム

Country Status (4)

Country Link
US (1) US9447509B2 (ja)
JP (1) JP6118991B2 (ja)
CN (1) CN103582608B (ja)
WO (1) WO2013153779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121378A (ja) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 水分解装置及び水分解システム
KR101887132B1 (ko) 2018-04-18 2018-08-09 (주)구츠 수소발생 및 수소수생성장치
US10590550B2 (en) 2015-09-04 2020-03-17 Kabushiki Kaisha Toshiba Electrochemical reaction device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132938A (zh) * 2015-09-08 2015-12-09 四川格伊尔生物科技有限公司 一种采用电解制氧发生器系统
CN105731463B (zh) * 2016-03-31 2018-02-27 华南理工大学 一种碳化钼微米球的制备方法及应用
CN105714326B (zh) * 2016-03-31 2017-10-20 华南理工大学 悬浮电催化解水产氢装置
JP6947698B2 (ja) * 2018-07-05 2021-10-13 本田技研工業株式会社 水素製造装置
TWI668332B (zh) * 2018-12-04 2019-08-11 林信湧 堆疊式產氫裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507464A (ja) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド 光電気化学システムおよびその方法
JP2008075097A (ja) * 2006-09-19 2008-04-03 Nissan Motor Co Ltd 光水電解装置及び光水電解システム
WO2010140353A1 (ja) * 2009-06-02 2010-12-09 パナソニック株式会社 光電気化学セル
WO2011096142A1 (ja) * 2010-02-08 2011-08-11 シャープ株式会社 水素製造装置および水素製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293088A (ja) * 1988-09-29 1990-04-03 Permelec Electrode Ltd 水電解方法及び装置
CN102369312B (zh) * 2009-04-15 2014-11-05 松下电器产业株式会社 氢气生成装置
JP5274663B2 (ja) 2009-08-05 2013-08-28 パナソニック株式会社 光電気化学セル及びそれを用いたエネルギーシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507464A (ja) * 2004-05-18 2008-03-13 ハイドロジェン ソーラー リミテッド 光電気化学システムおよびその方法
JP2008075097A (ja) * 2006-09-19 2008-04-03 Nissan Motor Co Ltd 光水電解装置及び光水電解システム
WO2010140353A1 (ja) * 2009-06-02 2010-12-09 パナソニック株式会社 光電気化学セル
WO2011096142A1 (ja) * 2010-02-08 2011-08-11 シャープ株式会社 水素製造装置および水素製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121378A (ja) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 水分解装置及び水分解システム
US10590550B2 (en) 2015-09-04 2020-03-17 Kabushiki Kaisha Toshiba Electrochemical reaction device
KR101887132B1 (ko) 2018-04-18 2018-08-09 (주)구츠 수소발생 및 수소수생성장치

Also Published As

Publication number Publication date
CN103582608A (zh) 2014-02-12
JP6118991B2 (ja) 2017-04-26
US20140072891A1 (en) 2014-03-13
US9447509B2 (en) 2016-09-20
JPWO2013153779A1 (ja) 2015-12-17
CN103582608B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6118991B2 (ja) 水素生成セル、水素生成デバイスおよびそれを用いたエネルギーシステム
US9774052B2 (en) Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
EP2439313B1 (en) Photoelectrochemical cell
JP7297710B2 (ja) 二酸化炭素反応装置
JP6246538B2 (ja) 化学反応装置
Rigdon et al. Carbonate dynamics and opportunities with low temperature, anion exchange membrane-based electrochemical carbon dioxide separators
EP3315633B1 (en) Electrochemical reaction device
US10544513B2 (en) Electrochemical reaction device
US20160076159A1 (en) Photochemical reaction device and thin film
JP2018150254A (ja) 化学反応システム
JP6142281B2 (ja) 水素生成デバイスおよび水素生成ユニットならびにそれらを用いたエネルギーシステム
JP2012046797A (ja) 水電解システム
JP2012238525A (ja) 光電気化学セルおよびそれを用いたエネルギーシステム
JP2015206085A (ja) 水素を生成するための方法、およびその方法に用いられる水素生成装置
JPWO2015146008A1 (ja) 光電気化学反応システム
JP5895562B2 (ja) 水素製造装置
JP5895563B2 (ja) 水素製造装置
JP2018193600A (ja) 水素製造システム
JP2023152115A (ja) 光電解モジュール
JP2020012201A (ja) 化学反応装置の動作方法
Bosserez et al. Integrated Solar Hydrogen Devices: Cell Design and Nanostructured Components in Liquid and Vapor‐Phase Water Splitting
JP2013220983A (ja) 光水素生成システム
JP2013155430A (ja) 水素製造装置
Kim et al. 3-dimensional CFD simulation modeling for optimal flow field design of direct methanol fuel cell bipolar plate
JP2018003041A (ja) 光水素生成セル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14115029

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775230

Country of ref document: EP

Kind code of ref document: A1