WO2013151066A1 - アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ - Google Patents

アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ Download PDF

Info

Publication number
WO2013151066A1
WO2013151066A1 PCT/JP2013/060125 JP2013060125W WO2013151066A1 WO 2013151066 A1 WO2013151066 A1 WO 2013151066A1 JP 2013060125 W JP2013060125 W JP 2013060125W WO 2013151066 A1 WO2013151066 A1 WO 2013151066A1
Authority
WO
WIPO (PCT)
Prior art keywords
analyte
ligand
test strip
detecting
quantifying
Prior art date
Application number
PCT/JP2013/060125
Other languages
English (en)
French (fr)
Inventor
鶴紀 田村
勝好 高山
Original Assignee
コニカミノルタ株式会社
アドテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, アドテック株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/390,999 priority Critical patent/US20150079608A1/en
Priority to JP2014509176A priority patent/JP6248030B2/ja
Priority to EP13772362.3A priority patent/EP2835643A4/en
Publication of WO2013151066A1 publication Critical patent/WO2013151066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/11Orthomyxoviridae, e.g. influenza virus

Definitions

  • the present invention relates to an analyte detection or quantification method capable of detecting and quantifying an analyte contained in a sample with high sensitivity, a kit for detecting or quantifying an analyte and an analyte used in such a method.
  • the present invention relates to a test strip for lateral flow chromatography for quantification.
  • test strip When detecting or quantifying analytes contained in biological samples such as blood, urine, saliva, or food samples, using a lateral flow type chromatographic test strip (hereinafter “test strip”) Detection and quantification can be performed quickly and easily without the need for particularly large equipment. For this reason, test strips are widely used in various clinical tests and certification tests such as POCT (Point Of Care Testing).
  • POCT Point Of Care Testing
  • This test strip comprises a membrane such as a nitrocellulose membrane as described later, and as a labeling substance, proteins containing enzymes, metal colloids such as gold colloids, colored latex particles, etc. are generally used. ing.
  • a labeling substance proteins containing enzymes, metal colloids such as gold colloids, colored latex particles, etc. are generally used.
  • a fluorescent substance fluorescence generated by excitation light is detected at the time of detection of an analyte, etc., but ultraviolet light of about 200 nm or more and 400 nm or less is used as the excitation light. Yes.
  • an analyte for example, an antigen
  • a ligand for example, an antibody against the antigen
  • the formed complex is added to the test strip as a mobile phase, developed on the membrane by the principle of chromatography, and the complex with the capture ligand (for example, the second antibody against the antigen) at the reaction site on the membrane.
  • the phosphor is irradiated with excitation light to detect a signal emitted from the phosphor, and the analyte in the sample is analyzed qualitatively or quantitatively.
  • Patent Document 1 discloses an embodiment of a “two-step type” immunochromatography method, and discloses a method for quantifying an analyte with high sensitivity.
  • a ligand labeled with a fluorescent substance is previously contacted with a substance to be detected before being applied to a test strip. Therefore, the analyte can be detected and quantified more easily than the “two-step type” immunochromatography method.
  • the test strip used in the “one-step type” immunochromatography method basically has a membrane and a reaction part (conjugate pad) in the direction in which the sample containing the analyte flows in the membrane (development direction). ), A detection unit (test line), and a sample addition unit, a control unit (control line), and an absorption pad as necessary.
  • the reaction part contains a labeled ligand (ligand labeled with a labeling substance) that specifically binds to the analyte. Therefore, the analyte binds to the labeled ligand through a specific binding reaction such as an antigen-antibody reaction, and a complex containing the analyte and the labeled ligand is formed.
  • a labeled ligand ligand labeled with a labeling substance
  • the formed complex moves to the detection unit.
  • a ligand capture ligand
  • the complex is captured by the detection unit via a binding reaction between the analyte in the complex and the capture ligand.
  • the detection unit the presence or absence or strength of a signal such as coloring or fluorescence due to the labeled substance in the captured complex is measured, and the analyte in the sample is analyzed qualitatively or quantitatively.
  • Patent Document 2 discloses a test strip that can detect or quantify at least two kinds of detection objects (analytes) contained in a specimen (sample) at a time.
  • a test strip includes: “a sample addition member, a conjugate pad for immunochromatography, on which a labeled particle for the first detection target is fixed, a first direction relative to a direction in which the labeled particle flows for the first detection target.
  • An antibody immobilization unit for detecting the detection target of the cell and an antibody immobilization unit for capturing the labeled particle for the first detection target are sequentially provided, and the membrane and the label particle for the second detection target are fixed.
  • the immunochromatographic conjugate pad, the membrane having the antibody immobilization part for detecting the second detection target, and the absorption pad are connected in series in this order. "(Claim 1 etc.) .
  • Patent Documents 3 to 4 disclose immunochromatographic labeled silica nanoparticles or silica nanoparticles that can be provided with various hues, fluorescence wavelengths, etc. by changing the labeling substances contained therein, and that do not turn black due to aggregation or the like. Has been. Furthermore, in these patent documents, a sample addition member, a member impregnated with the above-described immunochromatographic labeled silica nanoparticles or silica nanoparticles, a membrane having an antibody immobilization part, and an absorption pad are connected in series. Is disclosed.
  • the present inventor has used a ligand (labeled ligand) labeled with a phosphor that is excited by light having a wavelength of 600 nm or more and 800 nm or less to generate fluorescence, thereby providing a test strip material. It was found that the fluorescence intensity of the fluorescence can be measured and the high signal / background ratio (S / B) can be exhibited in a state where the autofluorescence derived from is reduced or eliminated. In addition, a “one-step” immunochromatography was achieved by setting the zeta potential of the ligand labeled with the phosphor to ⁇ 30 mV or less.
  • the present invention can measure the fluorescence intensity of the fluorescence in a state where autofluorescence derived from the material of the test strip is reduced or eliminated, and thus exhibits a high signal / background ratio (S / B), and the analyte. It is an object of the present invention to provide an analyte detection or quantification method, a detection or quantification kit, and a lateral flow type chromatographic test strip capable of improving the sensitivity of detection or quantification.
  • a method for detecting or quantifying an analyte reflecting one aspect of the present invention has the following configuration.
  • An analyte detection or quantification method comprising the following steps (i) to (iii): Step (i): The analyte contained in the sample is labeled with a fluorescent substance (1) that is excited by light having a wavelength of 600 nm or more and 800 nm or less to the ligand (1) that specifically binds to the analyte and generates fluorescence. Step (ii): The complex containing the analyte and the labeled ligand (A) formed in step (i) is captured by the detection unit at the detection unit (ii).
  • a lateral flow type chromatographic test strip including a membrane and a detection unit in which a capture ligand that specifically binds to the analyte is fixed to the membrane;
  • a detection reagent comprising a labeled ligand (1) formed by labeling the ligand (1) that specifically binds to the analyte with a phosphor (1) that is excited by light having a wavelength of 600 nm to 800 nm and generates fluorescence.
  • a lateral flow type chromatographic test strip including a membrane and a detection unit in which a capture ligand that specifically binds to the analyte is fixed to the membrane;
  • a lateral flow type chromatographic test strip reflecting one aspect of the present invention has the following configuration.
  • a test strip for lateral flow chromatography for detecting or quantifying an analyte contained in a sample, In the membrane and the direction in which the sample develops, A detection unit to which a capture ligand (2) that specifically binds to the analyte is immobilized;
  • a reaction part containing the conjugated ligand (1) including.
  • a high signal / background ratio (S / B) Can improve the sensitivity of analyte detection or quantification.
  • FIGS. 1A to 1B are diagrams showing an embodiment of a test strip for lateral flow chromatography used in the analyte detection or quantification method of the present invention.
  • the analyte detection or quantification method uses a lateral flow type chromatographic test strip including a membrane and a detection portion in which a capture ligand that specifically binds to the analyte is immobilized on the membrane.
  • a method for detecting or quantifying an analyte contained therein comprising the following steps (i) to (iii) as essential steps.
  • the sample and the analyte sample are not particularly limited as long as the sample contains protein, saccharide, nucleic acid, and various physiologically active substances.
  • a biological sample containing the analyte of interest i.e., whole blood, serum, plasma, urine, saliva, sputum, nasal or throat swab, cerebrospinal fluid, amniotic fluid, nipple discharge, tears, sweat, exudate from the skin, Extracts from tissues, cells and stool
  • food extracts i.e., whole blood, serum, plasma, urine, saliva, sputum, nasal or throat swab, cerebrospinal fluid, amniotic fluid, nipple discharge, tears, sweat, exudate from the skin, Extracts from tissues, cells and stool.
  • the analyte contained in the sample is contacted with the labeled ligand (1) in order to facilitate the specific binding reaction between the labeled ligand (1) and the capture ligand (2) and the analyte.
  • the analyte contained in the sample may be pretreated.
  • the pretreatment include chemical treatment using various chemicals such as acids, bases, and surfactants, and physical treatment using heating, stirring, ultrasonic waves, and the like. It may be used.
  • the analyte is a substance that is not normally exposed on the surface, such as an influenza virus NP antigen
  • a nonionic surfactant may be used in consideration of specific binding reaction, for example, binding reactivity between ligand and analyte such as antigen-antibody reaction. .
  • the sample may be appropriately diluted with a solvent (water, physiological saline, buffer solution or the like) used in a usual immunological analysis method or a water-miscible organic solvent.
  • a solvent water, physiological saline, buffer solution or the like
  • the analyte include tumor markers, signaling substances, hormones and other proteins (including polypeptides and oligopeptides), nucleic acids (single-stranded or double-stranded DNA, RNA, polynucleotides, oligonucleotides, PNAs) (Including peptide nucleic acids)) or substances having nucleic acids, sugars (including oligosaccharides, polysaccharides, sugar chains, etc.) or substances having sugar chains, and other molecules such as lipids, labeled ligand (1) And as long as it specifically binds to the capture ligand (2), for example, carcinoembryonic antigen (CEA), HER2 protein, prostate specific antigen (PSA),
  • the labeled ligand (1) is formed by labeling the ligand (1) that specifically binds to the analyte with a phosphor (1) that is excited by light having a wavelength of 600 nm to 800 nm and generates fluorescence.
  • ligand (1) refers to the unlabeled ligand itself which is not labeled with the phosphor (1).
  • the labeled ligand (1) is used to form a complex containing the analyte and the labeled ligand (1) by contacting with the analyte contained in the sample.
  • the phosphor (1) constituting the labeled ligand (1) is not particularly limited as long as it is a fluorescent substance excited by light having a wavelength of 600 nm or more and 800 nm or less.
  • a fluorescent substance excited by light having a wavelength of 600 nm or more and 800 nm or less For example, orange visible light or red visible light or Examples thereof include fluorescent dyes or fluorescent proteins that are excited by near-infrared light.
  • the “fluorescent dye” refers to a fluorescent substance excluding a fluorescent protein.
  • the light (excitation light) that causes the phosphor (1) to emit fluorescence is light having a wavelength of 600 nm to 800 nm.
  • the fluorescence wavelength range (fluorescence measurement wavelength range) of the fluorescence intensity measured when the phosphor (1) emits fluorescence is 600 nm or more and 1200 nm or less, preferably 650 nm or more and 1000 nm or less.
  • the fluorescence measurement wavelength region is smaller than the lower limit, in the step (iii), the background fluorescence intensity is increased due to autofluorescence from a material such as PET constituting the test strip, and the detection sensitivity is increased. May decrease.
  • the fluorescence measurement wavelength region is larger than the upper limit value, the quantum efficiency decreases as the fluorescence measurement wavelength region shifts to a long wavelength, so that the light receiving sensitivity of the detector is greatly reduced in step (iii). There are things to do.
  • the phosphor (1) that emits fluorescence with excitation light of 600 nm or more and 800 nm or less has an indocyanine skeleton such as Cy3.5, Alixa Fluor 647, Cy5, Cy5.5, Alexa Fluor 680, Cy7, Alexa Fluor 790, etc.
  • the ligand (1) constituting the labeled ligand (1) refers to a molecule or molecular fragment that recognizes an analyte contained in a sample or is recognized by the analyte and can specifically bind to the analyte. .
  • molecules or molecular fragments examples include nucleic acids (which may be single-stranded or double-stranded, DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc., or nucleosides, Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligos, polysaccharides, substances containing sugar chains, etc.), lipids, or modifications thereof Examples include molecules and complexes.
  • antibody includes a polyclonal antibody or a monoclonal antibody, an antibody obtained by genetic recombination, and an antibody fragment.
  • labeling means the labeled ligand to the extent that the phosphor (1) is not detached from the labeled ligand (1) in the steps (i) to (iii) described later. In (1), it means that the phosphor (1) is fixed directly or indirectly by chemical or physical bonding or adsorption.
  • the labeled ligand (1) may be one in which the phosphor (1) is directly bonded to the ligand (1), or the ligand (1) and the phosphor (1) are used as linker molecules. It may be formed by bonding with each other, or each may be fixed to insoluble particles.
  • the ligand (1) and the phosphor (1) are separated from the labeled ligand (1) to the insoluble particles so that the phosphor (1) is not detached from the labeled ligand (1) in steps (i) to (iii) described later.
  • the phosphor (1) there is no particular limitation as long as it is physically or chemically fixed by bonding or adsorption.
  • the phosphor (1) when the insoluble particles are particles made of a polymer compound such as latex particles, the phosphor (1) is exposed to the surface of the particles, or to the extent that excitation light can reach in the step (iii). It may be kneaded or adsorbed so as to be present near the surface of the particle.
  • the labeled ligand (1) is preferably formed by fixing the ligand (1) and the phosphor (1) to insoluble particles.
  • the average particle diameter of the insoluble particles is preferably 50 nm or more and 1000 nm or less, and more preferably, The average particle size is 100 nm or more and 500 nm or less.
  • the fluorescent intensity of the phosphor (1) may be reduced in the step (iii), and when the average particle size is larger than the upper limit value, the step (iii) In this case, the background fluorescence intensity may increase.
  • the said average particle diameter refers to the value of the average primary particle diameter measured by the dynamic light scattering method.
  • the zeta potential of the labeled ligand (1) may be ⁇ 30 mV or less. Preferably, it is ⁇ 51 mV or more and ⁇ 32 mV or less, and particularly preferably ⁇ 46 mV or more and ⁇ 35 mV or less.
  • the zeta potential is in such a range, when the labeled ligand (1) or the complex (A) containing the labeled ligand (1) and the analyte is provided on the test strip, the zeta potential is labeled at each site.
  • the conjugated ligand (1) or the complex can be uniformly developed without stagnation.
  • the zeta potential is a value measured using a particle size measuring device (“Zeta Sizer” manufactured by Malvern).
  • the zeta potential tends to move positively when the amount of ligand immobilized on insoluble particles is large, the zeta potential can be adjusted based on the amount of ligand.
  • the immobilized amount of the ligand per insoluble particle mg / g particle
  • the zeta potential of the labeled ligand (1) is ⁇ 60 mV or more.
  • a suitable range of about ⁇ 30 mV or less is ⁇ 60 mV or more.
  • the insoluble particles synthetic polymer particles, inorganic compound particles or polysaccharide particles are used.
  • the synthetic polymer particles are not particularly limited, and examples thereof include latex particles and polylactic acid particles, and latex particles are preferable.
  • the material of the latex particles is not particularly limited.
  • the inorganic compound particles are not particularly limited, and examples thereof include metal particles such as gold, silver and platinum, or metal oxide particles such as metal colloid particles, porous glass particles, silica and alumina.
  • the polysaccharide particles are not particularly limited, and examples thereof include agarose particles, dextran particles, cellulose particles, and chitosan particles.
  • the method for fixing the ligand (1) to the insoluble particles can be roughly classified into a method by physically adsorbing the ligand (1) to the insoluble particles and a method by covalent bonding as a chemical bond.
  • Examples of the former include a method in which a ligand (1) is added to a solution in which silica particles and gold particles are dispersed in a colloidal form, and then left for a predetermined time to be physically adsorbed. Has the advantage of simple operation.
  • the latter includes, for example, a method in which a carboxyl group introduced on the particle surface of the insoluble particle and the amino group of the ligand (1) are bonded with an amide bond using a condensing agent, or a so-called cross-linking reagent.
  • a method of binding the ligand (1) examples include a method of binding the ligand (1), and such a method has an advantage that the ligand (1) can be quantitatively and irreversibly introduced into the insoluble particles.
  • a blocking agent such as bovine serum albumin solution is added and the antibody is in an unbound state. It is preferable to block the surface.
  • Lateral flow chromatographic test strip (sometimes simply referred to as a test strip) has at least a membrane and a capture ligand that binds specifically to the analyte immobilized on the membrane.
  • the detection part which becomes and may contain arbitrary members, such as a reaction part, a reagent addition part, a control part, and a water absorption pad which are mentioned later as needed.
  • the sample addition unit 11 the reaction unit 12 including the labeled ligand (1) 17, and the capture ligand (2) 19 are arranged on the membrane.
  • the detection unit 13 is fixed, the control unit 14 is fixed to the capture ligand (3) 19 ', and the water absorption pad 15. Further, in the test strip numbered 20 in FIG. 1B, in the sample development direction, the sample addition unit 21, the detection ligand 23 with the capture ligand (2) 29 fixed to the membrane, and the capture ligand (3). 29 'is fixed, and the control part 24 and the reaction part are not provided.
  • the membrane used for the membrane test strip is, for example, a microporous material that exhibits a capillary phenomenon and develops the sample at the same time as the sample is added, like the membrane used for a general test strip.
  • Made of an inert substance a substance that does not react with an analyte, various ligands, various phosphors, etc.
  • Specific membranes include a fibrous or non-woven fibrous matrix composed of polyurethane, polyester, polyethylene, polyvinyl chloride, polyvinylidene fluoride, nylon, cellulose derivatives such as nitrocellulose or cellulose acetate, membranes, filter paper, Examples thereof include glass fiber filter paper, cloth, and cotton.
  • a membrane composed of a cellulose derivative or nylon, a filter paper, a glass fiber filter paper, etc. are preferably used, more preferably a nitrocellulose membrane, a mixed nitrocellulose ester (mixture of nitrocellulose and cellulose acetate) membrane, a nylon membrane, a filter paper. Is used.
  • the form and size of the membrane are not particularly limited, and may be appropriate in terms of actual operation and measurement of fluorescence intensity described later.
  • the membrane is preferably supported by a support made of plastic or the like.
  • the membrane may be one in which the capture ligand (2) is directly immobilized on the membrane, or cellulose filter paper, glass fiber, nonwoven fabric, etc., on which the capture ligand (2) is immobilized on the membrane. It may be fixed to a pad made of
  • captured ligand is immobilized means that even when a sample is provided on the test strip, the captured ligand is directly or indirectly applied to the membrane so that the captured ligand does not move from the detection unit. In particular, it refers to the state immobilized by physical or chemical bonding or adsorption.
  • the sample addition portion test strip is positioned upstream of the detection portion when the reaction portion is not formed as shown in FIG. 1 (B).
  • a sample addition part for adding a sample containing an analyte may be provided upstream of the reaction part.
  • the sample addition part is a part for receiving the sample containing the analyte in the test strip, and may be formed on the membrane, or may be cellulose filter paper, glass fiber, polyurethane, polyacetate, cellulose acetate, nylon , And a sample addition pad made of a material such as cotton cloth may be formed on the membrane.
  • a sample addition portion having a sample addition pad is preferable in that it can exhibit a function of filtering aggregates and the like in the sample.
  • the material constituting the sample addition pad is preliminarily nonspecific. It is preferable that the anti-adsorption treatment is performed.
  • the reaction part test strip contains the labeled ligand (1) upstream of the detection part in the direction of sample flow in the membrane, as indicated by reference numeral 12 in FIG. It is preferable that a reaction part is formed.
  • the reaction part is formed in the test strip, when the sample containing the analyte is supplied to the reaction part or the sample addition part, the analyte contained in the sample and the labeled ligand ( 1) can be brought into contact with each other. That is, as the step (i), after performing the step of bringing the analyte contained in the sample into contact with the labeled ligand (1), the operation of providing the test strip becomes unnecessary, and the sample is simply put into the reaction part.
  • the sample (a) can be used in step (i), and as a result, the complex (A) containing the analyte and the labeled ligand (1) can be easily formed.
  • the reaction part is not particularly limited as long as it contains the labeled ligand (1) that specifically binds to the analyte, but may be one in which the labeled ligand (1) is directly applied to the membrane, Alternatively, a pad (conjugate pad) made of cellulose filter paper, glass fiber, nonwoven fabric or the like is impregnated with the labeled ligand (1), and the pad impregnated with the labeled ligand (1) is fixed to the membrane. There may be.
  • the control section test strip is labeled ligand (1) in the direction in which the sample develops on the membrane.
  • a control unit may be formed in which a third ligand that specifically binds to is immobilized.
  • step (iii) which will be described later, the fluorescence intensity is measured at the control unit together with the detection unit, so that the sample provided for the test strip is developed and reaches the reaction unit and the detection unit, and the test is normally performed. Can be confirmed.
  • the control unit is created in the same manner as the above-described detection unit, except that the capture ligand (3) is used instead of the capture ligand (2), and can have the same configuration.
  • the water absorption pad test strip is formed on the membrane in the direction in which the sample develops, when the control unit is not formed, on the downstream side of the detection unit or when the control unit is formed, As indicated by the number 15 in FIG. 1A and the number 25 in FIG. 1B, a water absorbing pad may be formed on the downstream side of the control unit.
  • the water absorbing pad is formed of a water absorbing material such as cellulose filter paper, non-woven fabric, cloth, cellulose acetate or the like.
  • the moving speed of the sample after the development front (front line) of the added sample reaches the water absorption pad differs depending on the material and size of the water absorption pad, so the selection is suitable for the detection and quantification of the analyte. Can be set.
  • Step (i) is a phosphor (1) that generates fluorescence by exciting a ligand (1) that specifically binds to an analyte contained in a sample with light having a wavelength of 600 nm to 800 nm.
  • This is a step of contacting the labeled ligand (1) formed by labeling, and the form of contact is not particularly limited as long as the complex (A) containing the analyte and the labeled ligand (1) is formed. .
  • step (i) may be performed in the reaction portion of the test strip after the sample is supplied to the reaction portion or the sample addition portion of the test strip, or the sample is applied to the test strip without using the test strip.
  • the sample and the labeled ligand (1) may be brought into contact with each other before providing.
  • the test strip needs to have a reaction part, but the analyte contained in the sample and the labeled ligand (1) are brought into contact with each other.
  • the composite (A) containing the analyte and the labeled ligand (1) can be easily formed by simply supplying the sample to the reaction part or the sample addition part without providing it to the test strip. it can.
  • the test strip does not need to have a reaction part.
  • the analyte contained in the sample needs to be provided to the test strip after contacting the labeled ligand (1) in the detection reagent according to the present invention.
  • the complex (A) formed in the step (i) is developed on the test strip and reaches the detection unit.
  • the complex (A) containing the analyte and the labeled ligand (1) formed in the step (1) at the detection part of the test strip is used as the capture ligand (2).
  • the step of contacting with is performed.
  • the capture ligand (2) recognizes the analyte in the complex (A) or is recognized by the analyte, and the complex (A ) Specifically binds to the analyte.
  • the complex (A) is captured by the detection unit.
  • the capture ligand (2) does not specifically bind to the labeled ligand (1). Pass by.
  • the control part is formed, the labeled ligand (1) that has passed through the detection part continues to develop, and when reaching the control part, the capture ligand (3) that specifically binds to the labeled ligand (1) Is immobilized, the labeled ligand (1) binds to the capture ligand (3).
  • the labeled ligand (1) that does not form a complex (A) with the analyte is captured by the control unit.
  • step (ii) before performing step (iii) as necessary, the test strip is washed with a buffer solution commonly used in biochemical tests such as water, physiological saline, and phosphate buffer solution. And removing the free labeled ligand (1) that has not been captured by the detection unit or the detection unit and the control unit (the labeled ligand (1) that has not formed a complex (A) with the analyte). You may implement (washing
  • a buffer solution commonly used in biochemical tests such as water, physiological saline, and phosphate buffer solution.
  • test strip After performing the step (ii) or the washing step as necessary, the test strip is subjected to orange visible light or excitation light as the excitation light of the phosphor (1) contained in the labeled ligand (1) in the complex (A).
  • a step of irradiating red visible light or near-infrared light to generate fluorescence of the phosphor (1) and measuring the fluorescence intensity of the fluorescence is performed.
  • excitation light is dependent on the excitation wavelength of fluorescent substance (1), it is light which has a wavelength of 600 nm or more and 800 nm or less. Irradiation with such excitation light can reduce or eliminate the generation of autofluorescence, even if the test strip such as a membrane is made of a material that autofluoresces by ultraviolet light such as PET, Analytes can be detected and quantified with high detection sensitivity.
  • step (iii) as a means for measuring the fluorescence intensity of the phosphor (1), a known fluorescent signal detection device such as a CCD detector can be used to cut a signal having a specific wavelength, if necessary. Can be used with filters.
  • a known fluorescent signal detection device such as a CCD detector can be used to cut a signal having a specific wavelength, if necessary. Can be used with filters.
  • the labeled ligand (1) is captured by the capture ligand (3) at the control part in step (ii), and the labeled ligand (1) and the captured part are captured.
  • a complex comprising the ligand (3) is formed. Therefore, as a step (iii), when the test strip is irradiated with the excitation light of the phosphor (1), fluorescence can be emitted in the control unit as well as the detection unit, and the fluorescence intensity of the phosphor (1) can be increased. It can be measured.
  • Analyte detection / quantification kit As another embodiment of the present invention, a kit for use in a method for detecting or quantifying an analyte contained in a sample is provided using the test strip for lateral flow chromatography as described above. .
  • the kit according to the present invention includes a membrane and a test strip for lateral flow chromatography including a detection part in which a capture ligand that specifically binds to the analyte is fixed to the membrane; and the kit specifically binds to the analyte.
  • the analyte in the sample and the labeled ligand (1) in the detection reagent are brought into contact with each other, and then the step (i) is performed.
  • Steps (ii) to (iii) may be performed sequentially by providing a sample.
  • a detection reagent is applied to the upstream side of the detection part of the test strip and dried to form a reaction part
  • the formed reaction part or a position upstream of the reaction part for example, sample addition) Part ()
  • steps (i) to (iii) may be performed sequentially.
  • the detection liquid 1A containing the labeled antibody 1A was prepared by binding to the body 1A.
  • Anti-influenza A virus monoclonal antibody (Anti-Influenza A, nucleoprotein, clone A3 manufactured by Millipore) was dialyzed against 10 mM Tris-HCl (pH 7.5), and after filtration, filtered through a 0.22 ⁇ m pore size filter.
  • -A capture antibody (2) solution containing anti-influenza A virus monoclonal antibody was prepared by diluting with HCl (pH 7.5).
  • anti-mouse IgG antibody (Adar Biotech Co., Ltd., Anti-IgG, Mouse, Goat-Poly) was dialyzed against 10 mM Tris-HCl (pH 7.5) and filtered through a 0.22 ⁇ m pore size filter after dialysis.
  • a capture antibody (3) solution containing an anti-mouse IgG antibody was prepared by diluting with 10 mM Tris-HCl (pH 7.5).
  • the capture antibody (2) solution and the capture antibody (3) solution were applied in a linear form at a position of 14 mm and a position of 14 mm, respectively, using a positive pressure spray device (BioJet; BioDot). After spraying for a minute, it dried and formed the detection part and the control part, respectively. Further, a non-woven fabric made of polyester (width 6 mm ⁇ length 10 mm) was impregnated with the detection liquid 1A, and the non-woven fabric impregnated with the detection liquid 1A was fixed to the membrane upstream of the detection unit.
  • a plastic backing sheet manufactured by BioDot
  • the cellulose nonwoven fabric was cut into a width of 15 mm and a length of 10 cm, and was placed on the upper surface of the membrane so that the upstream end of the membrane overlapped by 2 mm, and was attached to form a sample addition portion.
  • test strip 1A was manufactured by cutting 5 mm along the long axis direction.
  • influenza A virus was buffered (20 mM MES buffer (pH 6.0), 1 (W / V)%) TritonX-100 so as to be 280.0 pfu / ml (pfu: plaque forming unit). 2 (W / V)% arginine hydrochloride, 1.0 (W / V)% bovine serum albumin) and suspended to prepare a sample.
  • the prepared sample is added to the sample addition portion of the test strip 1A, the sample is developed on the test strip 1A from the sample addition portion to the water absorption pad, washed, and then excited with a wavelength of 488 nm using a fluorescence measuring device.
  • the test strip 1A was irradiated with light, and the fluorescence intensity at a wavelength of 520 ⁇ 30 nm was measured.
  • the fluorescence measuring apparatus includes a light emitting unit for irradiating excitation light that excites the phosphor (1), and a light receiving unit that receives the fluorescence emission of the phosphor (1) and converts it into an electrical signal,
  • the light emitting unit is configured to irradiate the excitation light from an angle at which the excitation light specularly reflected by the phosphor does not enter the light receiving unit.
  • Signal / background ratio (S / B) was calculated by the following calculation formula (1).
  • the calculated signal / background ratio (S / B) is shown in Table 1.
  • the background fluorescence intensity is the fluorescence intensity of the entire test strip excluding the detection part and the control part.
  • Example 1B The same as Comparative Example 1A, except that the monoclonal antibody and fluorescent protein 1B were bound via the thiol group of fluorescent protein 1B ("Allophycocyanin" manufactured by Dojindo) instead of fluorescent substance 1A. Thus, a detection solution 1B containing the labeled antibody 1B was prepared, and a test strip 1B was produced.
  • test strip 1B was used instead of the test strip 1A, the wavelength of the excitation light was changed from 488 nm to 633 nm, and the fluorescence intensity at a wavelength of 660 ⁇ 10 nm was measured.
  • the signal / background ratio (S / B) was calculated. The results are shown in Table 1.
  • Example 1C instead of the phosphor 1A, the same procedure as in Comparative Example 1A was performed except that the monoclonal antibody and the phosphor 1C were bonded via the carboxyl group of the phosphor 1C (AlexaFluor680 (Molecular Probes)). Thus, a detection solution 1C containing the labeled antibody 1C was prepared to prepare a test strip 1C.
  • test strip 1C was used instead of the test strip 1A, the wavelength of the excitation light was changed from 488 nm to 680 nm, and the fluorescence intensity at a wavelength of 700 ⁇ 10 nm was measured.
  • the signal / background ratio (S / B) was calculated. The results are shown in Table 1.
  • Example 1D instead of the phosphor 1A, the same procedure as in Comparative Example 1A was conducted except that the monoclonal antibody and the phosphor 1D were bound via the carboxyl group of the phosphor 1D (AlexaFluor780 (Molecular Probes)). Thus, a detection solution 1D containing the labeled antibody 1D was prepared to prepare a test strip 1D.
  • test strip 1D was used instead of the test strip 1A, the wavelength of the excitation light was changed from 488 nm to 780 nm, and the fluorescence intensity at a wavelength of 800 ⁇ 10 nm was measured.
  • the signal / background ratio (S / B) was calculated. The results are shown in Table 1.
  • Example 2A Comparative Example 1A except that phosphor 2A described in Table 2 (AlexaFluor 680, manufactured by Molecular Probes) was used instead of phosphor 1A to bind the monoclonal antibody and phosphor 2A. Similarly, a detection solution 2A containing a labeled antibody 2A was prepared, and a test strip 2A was produced.
  • phosphor 2A described in Table 2 AlexaFluor 680, manufactured by Molecular Probes
  • test strip 2A was used instead of the test strip 1A, the excitation wavelength was changed from 488 nm to 680 nm, and the fluorescence intensity at a wavelength of 700 ⁇ 10 nm was measured. / Background ratio (S / B) was calculated. The results are shown in Table 2.
  • Example 2B Comparative Example 1A except that phosphor 2B described in Table 2 (AlexaFluor 790, manufactured by Molecular Probes) was used instead of phosphor 1A to bind the monoclonal antibody and phosphor 2B. Similarly, a detection solution 2B containing a labeled antibody 2B was prepared, and a test strip 2B was produced.
  • phosphor 2B described in Table 2 AlexaFluor 790, manufactured by Molecular Probes
  • Example 2C instead of the phosphor 1A, fluorescent latex particles 2C shown in Table 2 (FC02F8612 (average particle size 0.39 ⁇ m, manufactured by Bangs Laboratories)) were used, and the monoclonal antibody and the fluorescence were exchanged via the carboxyl group of the fluorescent particles 2C.
  • a detection solution 2C containing a labeled antibody 2C was prepared and a test strip 2A was prepared in the same manner as in Comparative Example 1A except that latex particles 2C were bound.
  • Example 2D instead of the phosphor 1A, fluorescent latex particles 2D (FC02F8782 (average particle size 0.32 ⁇ m, manufactured by Bangs Laboratories)) shown in Table 2 were used, and the monoclonal antibody and A detection solution 2D containing a labeled antibody 2D was prepared in the same manner as in Comparative Example 1A except that fluorescent latex particles 2D were bound, and a test strip 2D was produced.
  • fluorescent latex particles 2D FC02F8782 (average particle size 0.32 ⁇ m, manufactured by Bangs Laboratories)
  • FC02F8782 average particle size 0.32 ⁇ m, manufactured by Bangs Laboratories
  • Example 3A Instead of the phosphor 1A, fluorescent latex particles 3A (FC02F8655 (average particle size 65 nm, manufactured by Bangs Laboratories)) shown in Table 3 were used, and the monoclonal antibody and the fluorescent latex were passed through the carboxyl group of the fluorescent latex particles 3A.
  • a detection liquid 3A containing a labeled antibody 3A was prepared in the same manner as in Comparative Example 1A except that the particles 3A were bound, and a test strip 3A was produced.
  • test strip 3A was used instead of the test strip 1A, the excitation wavelength was changed from 488 nm to 680 nm, and the fluorescence intensity at a wavelength of 700 ⁇ 10 nm was measured. / Background ratio (S / B) was calculated. The results are shown in Table 3.
  • Example 3B instead of phosphor 1A, fluorescent latex particles 3B (FC02F9770 (average particle size 190 nm, manufactured by Bangs Laboratories)) shown in Table 3 were used, and the monoclonal antibody and fluorescent latex were passed through the carboxyl group of fluorescent latex particles 3B.
  • a detection solution 3B containing a labeled antibody 3B was prepared in the same manner as in Example 3A except that the particles 3B were bound, and a test strip 3B was produced.
  • Example 3C instead of phosphor 1A, fluorescent latex particles 3C shown in Table 3 (Lx (average particle size 300 nm, manufactured by Fujikura Kasei Co., Ltd.)) were used, and the monoclonal antibody and fluorescent latex were passed through the carboxyl group of fluorescent latex particles 3C.
  • a detection solution 3C containing a labeled antibody 3C was prepared in the same manner as in Example 3A except that the particles 3C were bound, and a test strip 3C was produced.
  • Example 3D instead of the phosphor 1A, fluorescent latex particles 3D (FC02F9990 (average particle size 400 nm, manufactured by Bangs Laboratories)) shown in Table 3 were used, and the monoclonal antibody and the fluorescent latex were passed through the carboxyl group of the fluorescent latex particles 3D.
  • a detection solution 3D containing a labeled antibody 3D was prepared in the same manner as in Example 3A except that the particles 3D were bound, and a test strip 3D was produced.
  • Example 3E instead of phosphor 1A, fluorescent latex particles 3E (FC02F8632 (average particle size 510 nm, manufactured by Bangs Laboratories)) shown in Table 3 were used, and the monoclonal antibody and fluorescent latex were passed through the carboxyl group of fluorescent latex particles 3E.
  • a detection solution 3E containing a labeled antibody 3E was prepared in the same manner as in Example 3A except that the particles 3E were bound, and a test strip 3E was produced.
  • Example 3F instead of the phosphor 1A, fluorescent latex particles 3F (FC02F4194 (average particle size 890 nm, manufactured by Bangs Laboratories)) shown in Table 3 were used, and the monoclonal antibody and the fluorescent latex were passed through the carboxyl group of the fluorescent latex particles 3F.
  • a test solution 3F containing a labeled antibody 3F was prepared in the same manner as in Example 3A except that the particles 3F were bound, and a test strip 3F was produced.
  • Example 4A Instead of phosphor 1A, fluorescent latex particles 4A (FS02F9862 (average particle size 190 nm, manufactured by Bangs Laboratories)) listed in Table 4 were used, except that the monoclonal antibody and fluorescent latex particles 4A were bound. In the same manner as in Comparative Example 1A, a detection solution 4A containing a labeled antibody 4A was prepared, and a test strip 4A was produced.
  • fluorescent latex particles 4A F02F9862 (average particle size 190 nm, manufactured by Bangs Laboratories) listed in Table 4 were used, except that the monoclonal antibody and fluorescent latex particles 4A were bound.
  • a detection solution 4A containing a labeled antibody 4A was prepared, and a test strip 4A was produced.
  • influenza A virus was buffered (20 mM MES buffer (pH 6.0), 1 (W / V)% TritonX) so that it became 280.0 pfu / ml (pfu: plaque forming unit). -100, 2 (W / V)% arginine hydrochloride, 1.0 (W / V)% bovine serum albumin) and suspended to prepare a sample.
  • the obtained sample is added to the sample addition portion of the test strip 4A, the sample is spread from the sample addition portion to the water absorption pad, washed, and then excited light having a wavelength of 680 nm is applied to the test strip 1A using a fluorescence measuring apparatus. And a fluorescent image of fluorescence having a wavelength of 700 ⁇ 10 nm was obtained.
  • the obtained fluorescence image was observed, and developability was evaluated based on the following evaluation criteria.
  • Evaluation criteria Good: Almost no fluorescence was observed at a site upstream of the detection part. Slightly good: Some fluorescence was observed at a site upstream of the detection part. Poor: Significant fluorescence was observed at a site upstream of the detection part.
  • Example 4B A fluorescent latex particle 4B (FC02F9770 (average particle size 190 nm, manufactured by Bangs Laboratories)) shown in Table 4 was used in place of the fluorescent latex particle 4A, except that the monoclonal antibody and the fluorescent latex particle 4B were bound.
  • a detection solution 4B containing a labeled antibody 4B was prepared, a test strip 4B was prepared, and the developability of the labeled antibody 4B was evaluated.
  • fluorescent latex particles 4C (FC02F8612 (average particle size 390 nm, manufactured by Bangs Laboratories)) shown in Table 4 were used, except that the monoclonal antibody and fluorescent latex particles 4C were bound.
  • Example 4D A fluorescent latex particle 4D (FC02F9990 (average particle size 400 nm, manufactured by Bangs Laboratories)) shown in Table 4 was used in place of the fluorescent latex particle 4A, except that the monoclonal antibody and the fluorescent latex particle 4D were bound.
  • fluorescent latex particle 4E (FC02F9889 (average particle size 490 nm, manufactured by Bangs Laboratories)) shown in Table 4 was used, except that the monoclonal antibody and fluorescent latex particle 4E were bound.
  • a test solution 4E containing a labeled antibody 4E was prepared to produce a test strip 4E. Further, in the same manner as in Example 4A, the zeta potential of labeled antibody 4E was measured, and the developability of labeled antibody 4E was evaluated.
  • Example 4F instead of the fluorescent latex particles 4A, the fluorescent latex particles 4F shown in Table 4 (FKFL1171 (average particle size 220 nm, manufactured by Fujikura Kasei)) were used, except that the monoclonal antibody and the fluorescent latex particles 4F were bound.
  • Example 4G Instead of fluorescent latex particles 4A, fluorescent latex particles 4G (FKFL1175 (average particle size 310 nm, manufactured by Fujikura Kasei Co., Ltd.)) shown in Table 4 were used, except that the monoclonal antibody and fluorescent latex particles 4G were bound.
  • a detection solution 4G containing a labeled antibody 4G in the same manner as in Example 4A to prepare a test strip 4G. Further, in the same manner as in Example 4A, the zeta potential of the labeled antibody 4G was measured, and the developability of the labeled antibody 4G was evaluated.
  • Example 4H Except that fluorescent latex particles 4H (Lx (average particle size 200 nm, manufactured by Fujikura Kasei Co., Ltd.)) shown in Table 4 were used instead of fluorescent latex particles 4A, and the monoclonal antibody and fluorescent latex particles 4H were bound.
  • a detection solution 4H containing a labeled antibody 4H was prepared, a test strip 4H was prepared, and the developability of the labeled antibody 4H was evaluated.
  • Example 4I Instead of fluorescent latex particles 4A, fluorescent latex particles 4I (Lx (average particle size 300 nm, manufactured by Fujikura Kasei Co., Ltd.)) shown in Table 4 were used, except that the monoclonal antibody and fluorescent latex particles 4I were bound.
  • a detection solution 4I containing a labeled antibody 4I was prepared, a test strip 4I was prepared, and the developability of the labeled antibody 4I was evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 テストストリップの材料に由来する自家蛍光を低減乃至無くした状態で、蛍光の蛍光強度を測定でき、アナライトの検出または定量の感度を向上できるアナライトの検出または定量方法を提供すること。本発明に係る、試料中に含まれるアナライトの検出または定量方法は、特定のラテラルフロー型クロマト用テストストリップを用いて、試料に含まれるアナライトを、アナライトに特異的に結合するリガンド(1)を特定の光で励起される蛍光体(1)で標識化してなる標識化リガンド(1)に接触させる工程と、特定の工程を含む。

Description

アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ
 本発明は、試料中に含まれるアナライトを高感度に検出および定量できるアナライトの検出または定量方法、そのような方法に用いる、アナライトを検出または定量するためのキットおよびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップに関する。
 血液、尿、唾液などの生体試料や食品の抽出試料などの試料中に含まれるアナライトを検出または定量する際に、ラテラルフロー型クロマト法用テストストリップ(以下「テストストリップ」)を用いると、検出および定量が、迅速かつ、特に大型の設備を必要とすることなく簡便にできる。そのため、テストストリップは、POCT(Point Of Care Testing)などの各種臨床検査や検定試験において汎用されている。
 このテストストリップは、ニトロセルロース膜等のメンブレンに、後述するような部位を具備しており、標識物質として、酵素を含む蛋白質、金コロイドなどの金属コロイド、着色ラテックス粒子等が一般的に使用されている。たとえば、標識物質として、蛍光体が含まれる場合、アナライトの検出等の際に、励起光によって生じる蛍光を検出するが、励起光としては、200nm以上、400nm以下程度の紫外光が使用されている。
 また、このようなテストストリップを用いたイムノクロマト法は、操作手順の回数に応じて、いわゆる「1ステップ型」と「2ステップ型」に大別される。
 「2ステップ型」のイムノクロマトグラフ法では、まず、アナライト(たとえば抗原)に、そのアナライトと特異的に結合し、蛍光体で標識化されたリガンド(たとえば前記抗原に対する抗体)を接触させて複合体を形成する。次いで、形成された複合体を、移動相として、テストストリップに添加し、クロマトグラフィーの原理によりメンブレンに、展開させ、メンブレン上の反応部で捕捉リガンド(たとえば前記抗原に対する第二抗体)により前記複合体を捕捉した後、蛍光体の励起光を照射して、蛍光体から発せられるシグナルを検出して、試料中のアナライトを定性的ないし定量的に分析する。
 たとえば、特許文献1には、「2ステップ型」のイムノクロマトグラフ法の一態様が開示され、高い感度で、アナライトを定量する方法が開示されている。
 一方、「1ステップ型」のイムノクロマトグラフ法では、「2ステップ型」のイムノクロマトグラフ法とは異なって、テストストリップに供する前に、予め、被検出物質に蛍光体で標識化されたリガンドを接触させる工程を必要としないために、「2ステップ型」のイムノクロマトグラフ法と比べて、より簡便にアナライトの検出や定量が可能である。
 「1ステップ型」のイムノクロマトグラフ法に使用されるテストストリップは、基本的な構成として、メンブレンと、当該メンブレンに、アナライトを含む試料が流れる方向(展開方向)において、反応部(コンジュゲートパッド)、検出部(テストライン)を、さらに必要に応じて、試料添加部、コントロール部(コントロールライン)や吸収パッドを備えている。
 まず、試料添加部に、アナライトを含む試料を添加すると、添加された試料が、メンブレンにおける毛細管現象により、メンブレン上を試料添加部から検出部に向かって移動(展開)する。ここで、反応部では、アナライトと特異的に結合する標識化リガンド(標識物質で標識化されたリガンド)が含まれている。そのため、アナライトは、抗原抗体反応等の特異的な結合反応を介して、標識化リガンドと結合し、アナライトおよび標識化リガンドを含む複合体が形成される。
 次いで、形成された複合体は、検出部に移動する。検出部では、複合体中のアナライトと特異的に結合するリガンド(捕捉リガンド)が、メンブレンに、固定されている。そのため、この複合体が検出部に移動すると、複合体中のアナライトと捕捉リガンドとの結合反応を介して、複合体は検出部にて捕捉される。次いで、検出部において、捕捉された複合体中の標識物質による着色または蛍光などのシグナルの有無や強弱を測定して、試料中のアナライトを定性的ないし定量的に分析する。
 このような「1ステップ型」のイムノクロマトグラフ法に使用されるテストストリップは、たとえば特許文献2~4に開示されている。
 特許文献2では、検体(試料)に含まれる少なくとも2種の検出対象物(アナライト)を一度で検出又は定量できるテストストリップが開示されている。かかるテストストリップは、「試料添加用部材、第1の検出対象物に対する標識粒子が固定されたイムノクロマト法用コンジュゲートパッド、前記第1の検出対象物に対する標識粒子が流れる方向に対して、第1の検出対象物を検出するための抗体固定化部及び第1の検出対象物に対する標識粒子を捕捉するための抗体固定化部を順次設けた、メンブレン、第2の検出対象物に対する標識粒子が固定化されたイムノクロマト法用コンジュゲートパッド、第2の検出対象物を検出するための抗体固定化部を有するメンブレン、及び吸収パッドをこの順に直列連結して有する」ものである(請求項1等)。
 特許文献3~4では、含有される標識物質を変えることで様々な色相、蛍光波長等を付与することができ、かつ凝集等によっても黒ずんだ色にならないイムノクロマト用標識シリカナノ粒子またはシリカナノ粒子が開示されている。さらに、これらの特許文献では、試料添加用部材、前記イムノクロマト用標識シリカナノ粒子またはシリカナノ粒子を含浸させてなる部材、抗体固定化部を有するメンブレン及び吸収パッドが直列連結してなるイムノクロマト法用テストストリップが開示されている。
特開2005-522698公報 特開2011-27693公報 特開2008-304401公報 特開2009-115822公報
 しかしながら、従来のテストストリップを用いたイムノクロマト法によるアナライトの検出・定量方法おいて、標識物質である蛍光体の励起光として、200nm以上、400nm以下程度の紫外光を使用した場合、検出部における標識物質のみならず、テストストリップを構成するPETフィルム等の材料からも蛍光(いわゆる「自家蛍光」)が生じてしまう。そのため、従来のテストストリップを用いると、検出部の蛍光強度に対して、バックグラウンドの蛍光強度(検出部を除く他の部からのシグナル)も高くなるために、シグナル/バックグラウンド比(S/B)が低くなってしまっていた。また、「1ステップ型」のイムノクロマトのように、アナライトと特異的に結合する蛍光体で標識されたリガンドが反応部に含まれている場合、アナライトと蛍光体で標識されたリガンドとの反応効率が低下し、より一層シグナル/バックグラウンド比(S/B)が低くなってしまっていた。このように従来のアナライトの検出・定量方法には、検出感度や定量性に関して、依然として改善の余地があった。
 そこで、本発明者は、鋭意検討の結果、600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体で標識化されたリガンド(標識化リガンド)を用いることで、テストストリップの材料に由来する自家蛍光を低減乃至無くした状態で、蛍光の蛍光強度を測定でき、高いシグナル/バックグラウンド比(S/B)を発揮できることを見出した。また、蛍光体で標識化されたリガンドのゼータ電位を-30mV以下とすることで、「1ステップ型」イムノクロマトを達成した。
 すなわち、本発明は、テストストリップの材料に由来する自家蛍光を低減乃至無くした状態で、蛍光の蛍光強度を測定できるため、高いシグナル/バックグラウンド比(S/B)を発揮して、アナライトの検出または定量の感度を向上できるアナライトの検出または定量方法、該検出または定量用のキット、および、ラテラルフロー型クロマト用テストストリップを提供することを目的とする。
 上述した目的のうち少なくとも1つを実現するために、本発明の一側面を反映したアナライトの検出または定量をする方法は、以下の構成を有する。
 メンブレンと当該メンブレンに、アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出または定量する方法であって、
 下記工程(i)~(iii)を含むアナライトの検出または定量方法。
 工程(i):試料に含まれるアナライトを、アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)に接触させる工程
 工程(ii):前記検出部にて、工程(i)において形成された、アナライトと標識化リガンドとを含む複合体(A)を、捕捉リガンドに接触させる工程
 工程(iii):テストストリップに、複合体(A)に含まれる蛍光体(1)の励起光として、600nm以上800nm以下の波長を有する光を照射し、蛍光体(1)の蛍光を生じさせ、該蛍光の蛍光強度を測定する工程
 また、上述した目的のうち少なくとも1つを実現するために、本発明の一側面を反映した上記検出または定量用のキットは、以下の構成を有する。
 ラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出または定量するためのキットであって、
 メンブレンと当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップと、
 前記アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)を含む検出試薬と、を含む。
 また、上述した目的のうち少なくとも1つを実現するために、本発明の一側面を反映したラテラルフロー型クロマト用テストストリップは、以下の構成を有する。
 試料中に含まれるアナライトを検出または定量するためのラテラルフロー型クロマト用テストストリップであって、
 メンブレンと、前記試料が展開する方向において、当該メンブレンに、
 前記アナライトと特異的に結合する捕捉リガンド(2)が固定されてなる検出部と、
 当該検出部よりも上流側に、前記アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)が含まれる反応部と、
を含む。
 本発明によれば、テストストリップの材料に由来する自家蛍光の発生を低減した状態乃至自家蛍光が発生しない状態で、蛍光の蛍光強度を測定できるため、高いシグナル/バックグラウンド比(S/B)を発揮して、アナライトの検出または定量の感度を向上できる。
図1(A)~(B)は、本発明のアナライトの検出または定量方法に用いられるラテラルフロー型クロマト法用テストストリップの一態様を示す図である。
 本発明に係るアナライトの検出または定量方法は、メンブレンと当該メンブレンに、アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出または定量する方法であって、下記工程(i)~(iii)を必須工程として含む。
 工程(i):試料に含まれるアナライトを、アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)に接触させる工程
 工程(ii):前記検出部にて、工程(i)において形成された、アナライトと標識化リガンドとを含む複合体(A)を、捕捉リガンドに接触させる工程
 工程(iii):テストストリップに、複合体(A)に含まれる蛍光体(1)の励起光として、600nm以上800nm以下の波長を有する光を照射し、蛍光体(1)の蛍光を生じさせ、該蛍光の蛍光強度を測定する工程
 以下、各構成要件について詳細に説明する。
             1.試料およびアナライト
 試料は、アナライトとして、蛋白質、糖類、核酸、各種生理活性物質を含むものである限り特に限定されるものではない。たとえば、目的のアナライトを含む生体試料(すなわち、全血、血清、血漿、尿、唾液、喀痰、鼻腔又は咽頭拭い液、髄液、羊水、乳頭分泌液、涙、汗、皮膚からの浸出液、組織や細胞および便からの抽出液等)や食品の抽出液等が挙げられる。必要に応じて、標識化リガンド(1)および捕捉リガンド(2)とアナライトとの特異的な結合反応が生じやすくするために、試料に含まれるアナライトを、標識化リガンド(1)に接触させる工程(工程(i))に先立って、試料に含まれるアナライトを前処理してもよい。ここで、前処理としては、酸、塩基、界面活性剤等の各種化学薬品等を用いた化学的処理や、加熱・撹拌・超音波等を用いた物理的処理が挙げられ、またその両方を用いても良い。特に、アナライトがインフルエンザウイルスNP抗原等の、通常は表面に露出していない物質である場合、界面活性剤等による処理を行うのが好ましい。この目的に使用される界面活性剤として、特異的な結合反応、たとえば、抗原抗体反応等のリガンドとアナライトとの結合反応性を考慮して、非イオン性界面活性剤が用いられてもよい。
 また、前記試料は、通常の免疫学的分析法で用いられる溶媒(水、生理食塩水、または緩衝液等)や水混和有機溶媒で適宜希釈されていてもよい。
 前記アナライトとしては、腫瘍マーカー、シグナル伝達物質、ホルモン等のタンパク質(ポリペプチド、オリゴペプチド等を含む)、核酸(一本鎖または二本鎖の、DNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等を含む)または核酸を有する物質、糖(オリゴ糖、多糖類、糖鎖等を含む)または糖鎖を有する物質、脂質などその他の分子が挙げられ、標識化リガンド(1)および捕捉リガンド(2)に特異的に結合するものである限り特に限定されないが、たとえば、癌胎児性抗原(CEA)、HER2タンパク、前立腺特異抗原(PSA)、CA19-9、α-フェトプロテイン(AFP)、免疫抑制酸性タンパク(IPA)、CA15-3、CA125、エストロゲンレセプター、プロゲステロンレセプター、便潜血、トロポニンI、トロポニンT、CK-MB、CRP、ヒト絨毛性ゴナドトロピン(HCG)、黄体形成ホルモン(LH)、卵胞刺激ホルモン(FSH)、梅毒抗体、インフルエンザウイルス、ヒトヘモグロビン、クラミジア抗原、A群β溶連菌抗原、HBs抗体、HBs抗原、ロタウイルス、アデノウイルス、アルブミン、糖化アルブミン等が挙げられる。これらの中でも非イオン性界面活性剤により可溶化される抗原が好ましく、ウイルス核タンパク質のように自己集合体を形成する抗原がより好ましい。
             2.標識化リガンド(1)
 標識化リガンド(1)は、アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる。ここで、「リガンド(1)」とは、蛍光体(1)で標識化されていない、未標識のリガンドそのものを指す。標識化リガンド(1)は、後述する工程(i)において、試料に含まれるアナライトに接触させて、アナライトと標識化リガンド(1)とを含む複合体を形成するために使用される。
 標識化リガンド(1)を構成する蛍光体(1)は、600nm以上800nm以下の波長を有する光で励起される蛍光物質である限り、特に限定されないが、たとえば、橙色可視光もしくは赤色可視光または近赤外光で励起される、蛍光色素または蛍光蛋白質が挙げられる。なお、「蛍光色素」とは、蛍光蛋白質を除く、蛍光物質であることを指す。
 なお、蛍光体(1)を蛍光発光させる光(励起光)は、600nm以上800nm以下の波長を有する光である。
 また、蛍光体(1)が蛍光発光した際に測定される蛍光強度の蛍光波長域(蛍光測定波長域)は、600nm以上で、1200nm以下であり、好ましくは650nm以上、1000nm以下である。
 上記蛍光測定波長域が上記下限値よりも小さい場合、工程(iii)において、テストストリップを構成するPET等の材料からの自家蛍光に由来して、バックグラウンドの蛍光強度が大きくなり、検出感度が低下することがある。また、上記蛍光測定波長域が上記上限値よりも大きい場合、蛍光測定波長域が長波長にシフトするに従って量子効率が下がっていくために、工程(iii)において、検出器の受光感度が大きく低下することがある。
 600nm以上、800nm以下の励起光で蛍光発光する蛍光体(1)としては、Cy3.5,Alixa Flor 647,Cy5, Cy5.5,Alexa Fluor 680、Cy7,Alexa Fluor 790等のインドシアニン骨格を有した有機色素、アクリフラビン、DDAO等のアクリジン誘導体、ブリリアントブルー、ブリリアントグリーン等のシアニン誘導体、アロフィコシアニン等の蛍光蛋白質などが挙げられる。
 標識化リガンド(1)を構成するリガンド(1)は、試料に含まれるアナライトを認識し、またはアナライトに認識されて、アナライトと特異的に結合することができる分子または分子断片を言う。
 このような分子または分子断片としては、たとえば、核酸(一本鎖であっても二本鎖であってもよい、DNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、蛋白質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ等、多糖類、糖鎖を含む物質等)、脂質、またはこれらの修飾分子、複合体等が挙げられる。
 上記蛋白質としては、たとえば、抗体やレクチン等が挙げられる。なお、本明細書において、「抗体」との用語は、ポリクローナル抗体またはモノクローナル抗体、遺伝子組み換えにより得られた抗体、および抗体断片を包含する。
 また、標識化リガンド(1)において「標識化」とは、後述する工程(i)~(iii)において、標識化リガンド(1)から蛍光体(1)が脱離しない程度に、標識化リガンド(1)に蛍光体(1)が直接的にまたは間接的に、化学的または物理的な、結合や吸着等で固定されていることを意味する。
 たとえば、標識化リガンド(1)は、リガンド(1)に蛍光体(1)が直接結合してなるものであってもよいし、リガンド(1)と蛍光体(1)とが、リンカー分子を介して結合してなるものや、それぞれが不溶性粒子に固定されてなるものであってもよい。
 また、リガンド(1)と蛍光体(1)とは、不溶性粒子に、後述する工程(i)~(iii)において、標識化リガンド(1)から蛍光体(1)が脱離しない程度に、物理的または化学的に結合または吸着等で固定されているものである限り、特に限定されない。なお、蛍光体(1)は、不溶性粒子がラテックス粒子などの高分子化合物製の粒子である場合、粒子の表面に露出するように、あるいは、工程(iii)において励起光が到達できる程度に、粒子の表面近くに存在するように、練り込まれていていたり、吸着されていたりしてもよい。
 検出感度を向上させるという観点からは、標識化リガンド(1)は、好ましくは、リガンド(1)と蛍光体(1)とを不溶性粒子に固定させてなるものである。ここで、より検出感度を向上させることや、イムノストリップ上での展開性の向上という観点からは、より好ましくは、不溶性粒子の平均粒子径が、50nm以上、1000nm以下であり、さらに好ましくは、該平均粒子径が、100nm以上、500nm以下である。該平均粒子径が上記下限値よりも小さい場合、工程(iii)において蛍光体(1)の蛍光強度が小さくなることがあり、該平均粒子径が上記上限値よりも大きい場合、工程(iii)においてバックグラウンドの蛍光強度が大きくなることがある。なお、上記平均粒子径とは、動的光散乱法で測定された平均一次粒子径の値を指す。
 標識化リガンド(1)は、リガンド(1)と蛍光体(1)とを不溶性粒子に固定させてなるものである場合、標識化リガンド(1)のゼータ電位は、-30mV以下であることが好ましく、-51mV以上、-32mV以下であることがより好ましく、-46mV以上、-35mV以下であることが特に好ましい。前記ゼータ電位がこのような範囲にあると、標識化リガンド(1)、または標識化リガンド(1)とアナライトとを含む複合体(A)をテストストリップ上に供した場合、各部位で標識化リガンド(1)または複合体が滞留することなく、均一に展開することができる。すなわち、展開性が良好となる。なお、前記ゼータ電位は、粒子径測定装置(Malvern社製「ゼータサイザー」)を用いて測定される値である。また、前記ゼータ電位は、不溶性粒子に固定されたリガンドの量が大きいと、正に移動する傾向があるために、前記ゼータ電位は、前記リガンド量に基づいて調整することができる。たとえば、不溶性粒子1粒子あたりのリガンドの固定量(mg/g粒子)を、1mg/g粒子以上、500mg/g粒子以下に範囲にした場合、標識化リガンド(1)のゼータ電位は-60mV以上、-30mV以下程度の好適な範囲になる。
 また、不溶性粒子としては、合成高分子粒子、無機化合物粒子または多糖類粒子が用いられる。前記合成高分子粒子としては、特に制限されないが、例えば、ラテックス粒子、ポリ乳酸粒子等があげられ、好ましくは、ラテックス粒子である。前記ラテックス粒子の材質としては、特に制限されないが、例えば、ポリスチレン、スチレン-ブタジエン共重合体、スチレン-アクリレート共重合体、スチレン-マレイン酸共重合体、ポリエチレンイミン、ポリアクリル酸、ポリメタクリル酸、ポリメチルメタクリレート等があげられ、好ましくは、ポリスチレン、スチレン-アクリレート共重合体である。前記無機化合物粒子としては、特に制限されないが、例えば、金、銀、白金のような金属粒子、または金属コロイド粒子、多孔性ガラス粒子、シリカ、アルミナ等の金属酸化物粒子があげられる。前記多糖類粒子としては、特に制限されないが、例えば、アガロース粒子、デキストラン粒子、セルロース粒子、キトサン粒子等があげられる。
 リガンド(1)を不溶性粒子に固定させる方法としては、リガンド(1)を不溶性粒子に物理的に吸着による方法と、化学的な結合として共有結合による方法に大別することができる。前者としては、例えば、シリカ粒子や金粒子がコロイド状に分散した溶液に、リガンド(1)を添加した後、所定の時間放置して物理吸着させるような方法が挙げられ、このような方法には操作が簡便であるという利点がある。一方、後者としては、例えば、不溶性粒子の粒子表面に導入したカルボキシル基とリガンド(1)のアミノ基とを縮合剤を用いてアミド結合で結合する方法や、いわゆる架橋試薬を用いて不溶性粒子とリガンド(1)とを結合する方法が挙げられ、このような方法にはリガンド(1)を不溶性粒子に定量的かつ不可逆的に導入することができるという利点がある。また、上記のような方法により、蛍光体(1)およびリガンド(1)を不溶性粒子に固定した後は、牛血清アルブミン溶液のようなブロッキング剤を添加して抗体が未結合な状態である粒子表面をブロッキングすることが好ましい。
       3.ラテラルフロー型クロマト用テストストリップ
 ラテラルフロー型クロマト用テストストリップ(単に、テストストリップと称することもある)は、少なくとも、メンブレンと、当該メンブレンに、アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含み、必要に応じて、後述するような、反応部、試薬添加部、コントロール部、吸水パッド等の任意部材を含んでいてもよい。たとえば、図1(A)の付番10のテストストリップでは、試料の展開方向において、メンブレンに、試料添加部11、標識化リガンド(1)17を含む反応部12、捕捉リガンド(2)19が固定されてなる検出部13、捕捉リガンド(3)19´が固定されてなるコントロール部14および吸水パッド15を備えている。また、図1(B)の付番20のテストストリップでは、試料の展開方向において、メンブレンに、試料添加部21、捕捉リガンド(2)29が固定されてなる検出部23、捕捉リガンド(3)29´が固定されてなるコントロール部24およびを備え、反応部を備えていない。
 (1)メンブレン
 テストストリップに使用されるメンブレンは、一般的なテストストリップに使用されるメンブレンと同様に、たとえば、毛管現象を示し、試料を添加すると同時に、試料が展開するような微細多孔性物質からなる不活性物質(アナライト、各種リガンド、各種蛍光体などと反応しない物質)で形成されているものである。具体的なメンブレンとしては、ポリウレタン、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、ナイロン、ニトロセルロース又は酢酸セルロース等のセルロース誘導体等で構成される繊維状又は不織繊維状マトリクス、膜、濾紙、ガラス繊維濾紙、布、綿等が挙げられる。中でも、好ましくはセルロース誘導体やナイロンで構成される膜、濾紙、ガラス繊維濾紙等が用いられ、より好ましくはニトロセルロース膜、混合ニトロセルロースエステル(ニトロセルロースと酢酸セルロースの混合物)膜、ナイロン膜、濾紙が用いられる。
 メンブレンの形態および大きさは特に制限されるものではなく、実際の操作の点および後述する蛍光強度の測定の際において適切であればよい。操作をより簡便にするためには、メンブレンが、プラスチック製等の支持体で支持されていることが好ましい。
 (2)検出部
 検出部は、標識化リガンド(1)とアナライトとを含む複合体(A)が、アナライトと特異的に結合する捕捉リガンド(2)に接触するような構成である限り特に限定されないが、メンブレンに、直接、捕捉リガンド(2)が固定されてなるものであってもよいし、あるいは捕捉リガンド(2)をメンブレンに、固定されたセルロース濾紙、グラスファイバー、および不織布等からなるパッドに固定してなるものであってもよい。
 なお、本明細書における「捕捉リガンドが固定された」とは、テストストリップに試料を提供した場合においても、捕捉リガンドが、検出部から移動することないように、メンブレンに、直接的にまたは間接的に、物理的または化学的な結合や吸着等によって不動化している状態を指す。
 (3)試料添加部
 テストストリップは、試料が展開する方向において、図1(B)に示されるように反応部が形成されていない場合は、検出部よりも上流側に、図1(A)に示されるように反応部が形成されている場合は、反応部よりも上流側に、アナライトを含む試料を添加するための試料添加部を有していてもよい。
 試料添加部とは、テストストリップに、アナライトを含む試料を受け入れるための部位であり、メンブレンに形成されているものでもよく、あるいは、セルロース濾紙、ガラス繊維、ポリウレタン、ポリアセテート、酢酸セルロース、ナイロン、および綿布などの材料で構成された試料添加パッドがメンブレンに形成されてなるものであってもよい。試料添加パッドを有する試料添加部は、試料中の凝集物等を濾過する機能を発揮することができる点で好ましい。また、試料中のアナライトが試料添加部の材質に非特異的に吸着して、分析の精度を低下させることを防止するという観点からは、試試料添加パッドを構成する材料は、予め非特異的吸着防止処理されていることが好ましい。
 (4)反応部
 テストストリップには、図1(A)の付番12で示されるように、メンブレンに、試料が流れる方向において、検出部よりも上流側に、標識化リガンド(1)を含む反応部が形成されていることが好ましい。このように、テストストリップにおいて、反応部が形成されている場合、アナライトを含む試料を反応部にまたは試料添加部に供すると、反応部にて、試料に含まれるアナライトと標識化リガンド(1)とを接触させることができる。すなわち、工程(i)として、試料に含まれるアナライトを標識化リガンド(1)とを接触させる工程を実施した後に、テストストリップに提供するような操作が不要になり、試料を、単に反応部にまたは試料添加部に供することで、工程(i)を実施することができ、その結果、アナライトと標識化リガンド(1)とを含む複合体(A)を簡便に形成させることができる。
 反応部は、アナライトと特異的に結合する標識化リガンド(1)を含む限り特に限定されないが、メンブレンに、直接、標識化リガンド(1)が塗布されてなるものであってもよいし、あるいはセルロース濾紙、グラスファイバー、および不織布等からなるパッド(コンジュゲートパッド)に標識化リガンド(1)を含浸して、標識化リガンド(1)を含浸したパッドを、メンブレンに固定してなるものであってもよい。
 (5)コントロール部
 テストストリップは、図1(A)の付番14や図1(B)の付番24に示されるように、メンブレンに、試料が展開する方向において、標識化リガンド(1)と特異的に結合する第3リガンドが固定されてなるコントロール部が形成されていてもよい。後述する工程(iii)において、検出部とともに、コントロール部でも蛍光強度が測定されることにより、テストストリップに供した試料が展開して、反応部および検出部に到達し、検査が正常に行われたことを確認することができる。なお、コントロール部は、捕捉リガンド(2)の代わりに捕捉リガンド(3)を用いることを除いては、上述の検出部と同様にして作成され、同様の構成を採ることができる。
 (6)吸水パッド
 テストストリップは、メンブレンに、試料が展開する方向に向かって、コントロール部が形成されていない場合は、検出部よりも下流側に、あるいはコントロール部が形成されている場合は、図1(A)の付番15や図1(B)の付番25で示されるように、コントロール部よりも下流側に、吸水パッドが形成されていてもよい。
 吸水パッドは、たとえば、セルロ-ス濾紙、不織布、布、セルロースアセテート等の吸水性材料から形成される。添加された試料の展開前線(フロントライン)が吸水パッドに届いてからの試料の移動速度は、吸水パッドの材質、大きさなどにより異なるので、その選定によりアナライトの検出・定量に合った速度を設定することができる。
             工程(i)~(iii)
 工程(i)は、試料に含まれるアナライトを、アナライトに特異的に結合するリガンド(1)を、600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)に接触させる工程であり、アナライトと標識化リガンド(1)とを含む複合体(A)を形成する限り、接触の態様は特に限定されるものではない。
 たとえば、テストストリップの反応部または試料添加部に試料を供した後、テストストリップの反応部において、工程(i)が実施されてもよいし、あるいは、テストストリップを用いないで、テストストリップに試料を供する前に、試料と標識化リガンド(1)とを接触させてもよい。
 前者の場合、図1(A)の付番10で示されるように、テストストリップが、反応部を備えている必要があるが、試料に含まれるアナライトと標識化リガンド(1)とを接触した後にテストストリップに提供することなく、単に、試料を反応部にまたは試料添加部に供することで、アナライトと標識化リガンド(1)とを含む複合体(A)を簡便に形成させることができる。
 一方で、後者の場合、図1(B)の付番20で示されるように、テストストリップが、反応部を備えている必要はない。ただし、試料に含まれるアナライトを、本発明に係る検出試薬中の標識化リガンド(1)と接触した後に、テストストリップに提供する必要がある。
 次いで、工程(i)で形成された複合体(A)は、テストストリップ上で展開していき、検出部に至る。ここで、工程(ii)として、テストストリップの検出部にて、工程(1)において形成された、アナライトと標識化リガンド(1)とを含む複合体(A)を、捕捉リガンド(2)に接触させる工程を実施する。複合体(A)を、捕捉リガンド(2)に接触させると、捕捉リガンド(2)は、複合体(A)中のアナライトを認識して、あるいはアナライトに認識されて、複合体(A)のアナライトに特異的に結合する。その結果、複合体(A)が検出部において捕捉される。なお、標識化リガンド(1)単独が検出部に至った場合、捕捉リガンド(2)は、標識化リガンド(1)に特異的に結合しないために、標識化リガンド(1)単独は、検出部を通り過ぎる。コントロール部が形成されている場合、検出部を通過した標識化リガンド(1)は展開をし続け、かかるコントロール部に至ると、標識化リガンド(1)に特異的に結合する捕捉リガンド(3)が固定されているために、標識化リガンド(1)は捕捉リガンド(3)と結合する。結果として、アナライトと複合体(A)を形成していない標識化リガンド(1)は、コントロール部で捕捉されることになる。
 さらに、工程(ii)の後、必要に応じて工程(iii)を実施する前に、水、生理食塩水、リン酸緩衝液等の生化学検査で汎用される緩衝液で、テストストリップを洗浄して、検出部または、検出部およびコントロール部に捕捉されなかったフリーの標識化リガンド(1)(アナライトと複合体(A)を形成していない標識化リガンド(1))を除去する工程(洗浄工程)を実施してもよい。かかる工程を実施することで、工程(iii)にて、検出部または、検出部およびコントロール部における蛍光体(1)の蛍光強度を測定する際に、バックグラウンドの蛍光強度を低減させることができ、シグナル/バックグラウンド比を高め、一層検出感度や定量性を向上することができる。
 工程(ii)または必要に応じて洗浄工程を実施した後、テストストリップに、複合体(A)中の標識化リガンド(1)に含まれる蛍光体(1)の励起光として、橙色可視光もしくは赤色可視光または近赤外光を照射し、蛍光体(1)の蛍光を生じさせ、該蛍光の蛍光強度を測定する工程(工程(iii)を実施する。テストストリップの材料、特に有機ポリマーは、可視光よりも小さな波長を有する光(例:紫外光)によって、自家蛍光するところ、上記工程では、蛍光体(1)の励起光として特定の長波長の光を照射するために、上記自家蛍光は依然として発生するものの、その強度を小さくすることができる。そのため、自家蛍光に起因するバックグラウンドの蛍光強度の増加を低減でき、シグナル/バックグラウンド比を向上させて、検出感度や定量性を向上させることができる。
 すなわち、自家蛍光に起因するバックグラウンドの蛍光強度の増加を低減でき、シグナル/バックグラウンド比を向上させて、検出感度や定量性を向上させることができる。
 ここで、励起光は、蛍光体(1)の励起波長に依存するが、600nm以上、800nm以下の波長を有する光である。このような励起光を照射すると、メンブレン等のテストストリップがPET等の紫外光によって自家蛍光するような材料で構成されていたとしても、自家蛍光の発生を低減乃至発生を無くすことができるため、高い検出感度で、アナライトを検出および定量できる。
 また、工程(iii)において、蛍光体(1)の蛍光強度を測定する手段としては、CCD検出器等の公知の蛍光シグナルの検出機器を、必要に応じて、特定の波長のシグナルをカットできるフィルターとともに用いることができる。
 なお、テストストリップにコントロール部が形成されている場合、工程(ii)によって、コントロール部にて、標識化リガンド(1)を捕捉リガンド(3)によって捕捉して、標識化リガンド(1)および捕捉リガンド(3)を含む複合体が形成される。そのため、工程(iii)として、テストストリップに、蛍光体(1)の励起光を照射すると、検出部とともにコントロール部においても、蛍光発光を生じさせることができ、蛍光体(1)の蛍光強度を測定できる。このように、検出部とともにコントロール部においても蛍光強度を測定することで、測定された蛍光強度に基づいて、テストストリップに供した試料が展開して、反応部および検出部に到達したか否かを確認できる。すなわち、コントロール部で蛍光が検出されなければ、検査失敗であると判断できる。
           5.アナライト検出・定量キット
 本発明の別態様として、上述のような、ラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトの検出または定量方法に使用するためのキットを提供する。本発明に係るキットは、メンブレンと当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップと、前記アナライトに特異的に結合するリガンド(1)を橙色可視光もしくは赤色可視光または近赤外光で励起される蛍光体(1)で標識化してなる標識化リガンド(1)を含む検出試薬とを必須構成要素として含み、必要に応じて、さらにその他の構成要素を含むものであってもよい。
 本発明に係るキットを使用するにあたっては、試料中のアナライトと検出試薬中の標識化リガンド(1)とを接触させて工程(i)を実施した後、テストストリップの反応部または試料添加部に試料を供して、工程(ii)~(iii)を順次実施してもよい。あるいは、テストストリップの検出部よりも上流側に、検出試薬を塗布して、適宜乾燥させて反応部を形成した後、形成された反応部あるいは該反応部よりも上流側の位置(たとえば試料添加部)に試料を添加して、工程(i)~(iii)を順次実施してもよい。
 以下、実施例を用いて、本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。
[比較例1A]
[標識化抗体1Aの調製]
 抗A型インフルエンザウイルスモノクローナル抗体(Millipore社製、Anti-Influenza A, nucleoprotein, clone A3)を50mM MES(2-Morpholinoethanesulfonic acid, monohydrate: 同仁化学社製)緩衝液(pH6.0)溶液で透析した後、蛍光体1A(FAM (5-FAM-X (6-(Fluorescein-5-carboxamido) hexanoic acid, succinimidyl ester)、Kirkegaard & Perry Laboratories,Inc.)を、アミノ基を介して、前記モノクローナル抗体と蛍光体1Aとを結合させて、標識抗体1Aを含む検出液1Aを調製した。
[テストストリップ1Aの作製]
 抗A型インフルエンザウイルスモノクローナル抗体(Millipore社製Anti-Influenza A, nucleoprotein, clone A3)を10mM Tris-HCl(pH7.5)に透析し、透析後に孔径0.22μmのフィルターでろ過を行い、10mM Tris-HCl(pH7.5)で希釈して抗A型インフルエンザウイルスモノクローナル抗体を含む捕捉抗体(2)液を調製した。
 また、抗マウスIgG抗体(Adar Biotech Ltd.社製、Anti-IgG, Mouse, Goat-Poly)を10mM Tris-HCl(pH7.5)に透析し、透析後に孔径0.22μmのフィルターでろ過を行い、10mM Tris-HCl(pH7.5)で希釈して抗マウスIgG抗体を含む捕捉抗体(3)液を調製した。
 次いで、トリニトロセルロースメンブレン(Millipore株式会社製、白色、幅60mm×長さ350mm)上に、該メンブレンの端部から展開方向に(前記端部からもう一方の端部に向かって)、7mmの位置および14mmの位置に、陽圧噴霧装置(BioJet;BioDot社)を用いて、それぞれ、捕捉抗体(2)液および捕捉抗体(3)液を線状に塗布し、45℃の温風を10分間吹き付けた後、乾燥して、それぞれ、検出部およびコントロール部を形成した。また、ポリエステル製の不織布(幅6mm×長さ10mm)に、検出液1Aを含浸させ、検出液1Aを含浸した不織布を、前記検出部の上流側においてメンブレンに固定した。
 次に、メンブレンを固定し、かつ強度を向上させるため、メンブレンの検出液1Aが塗布された面の反対側に、プラスチック製バッキングシート(BioDot社製)を接着した。
 次に、セルロース不織布を幅15mm、長さ10cmに切断し、メンブレンの上面に、メンブレンの上流端が2mm重なる様に配置して貼り付け、試料添加部を形成した。
 また、幅30mm、長さ10cmのセルロースろ紙(ワットマン社)をメンブレンの上面に、メンブレンの下流端と5mm重なる様に配置して貼り付け、サンプル吸収パッドを形成した。最後に長軸方向に沿って、5mmずつ切断し、テストストリップ1Aを作製した。
[シグナル/バックグラウンド比(S/B)の測定]
 アナライトとして、インフルエンザA型ウイルスを、280.0pfu/ml(pfu:プラーク形成単位)になるように、緩衝液(20mM MES緩衝液(pH6.0)、1(W/V)% TritonX-100、2(W/V)% アルギニン塩酸塩、1.0(W/V)%ウシ血清アルブミン)に添加し懸濁して、試料を調製した。調製さられた試料を、テストストリップ1Aの試料添加部に添加し、該試料を試料添加部から吸水パッドまでテストストリップ1A上で展開させ、洗浄後、蛍光測定装置を用いて、波長488nmの励起光をテストストリップ1Aに照射して、波長520±30nmの蛍光強度を測定した。
 なお、上記蛍光測定装置は、蛍光体(1)を励起させる励起光を照射するための発光部と、蛍光体(1)の蛍光発光を受光して電気信号に変換する受光部とを備え、発光部が、蛍光体で正反射した励起光が受光部に入射しない角度から励起光を照射するように構成されている。
 シグナル/バックグラウンド比(S/B)を、以下の計算式(1)により算出した。算出されたシグナル/バックグラウンド比(S/B)を表1に示す。
Figure JPOXMLDOC01-appb-M000001
 ここでバックグラウンドの蛍光強度とは、検出部とコントロール部とを除くテストストリップ全体の蛍光強度である。
[実施例1B]
 蛍光体1Aの代わりに、蛍光蛋白質1B(「アロフィコシアニン」同仁化学社製)のチオール基を介して、前記モノクローナル抗体と蛍光蛋白質1Bとを結合させたことを除いては、比較例1Aと同様にして、標識化抗体1Bを含む検出液1Bを調製し、テストストリップ1Bを作製した。
 次いで、テストストリップ1Aの代わりに、テストストリップ1Bを用い、励起光の波長を488nmから633nmに変更し、波長660±10nmの蛍光強度を測定したことを除いては、比較例1Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表1に示す。
[実施例1C]
 蛍光体1Aの代わりに、蛍光体1C(AlexaFluor680(モレキュラープローブス社製)のカルボキシル基を介して、前記モノクローナル抗体と蛍光体1Cとを結合させたことを除いては、比較例1Aと同様にして、標識化抗体1Cを含む検出液1Cを調製し、テストストリップ1Cを作製した。
 次いで、テストストリップ1Aの代わりに、テストストリップ1Cを用い、励起光の波長を488nmから680nmに変更し、波長700±10nmの蛍光強度を測定したことを除いては、比較例1Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表1に示す。
[実施例1D]
 蛍光体1Aの代わりに、蛍光体1D(AlexaFluor780(モレキュラープローブス社製)のカルボキシル基を介して、前記モノクローナル抗体と蛍光体1Dとを結合させたことを除いては、比較例1Aと同様にして、標識化抗体1Dを含む検出液1Dを調製し、テストストリップ1Dを作製した。
 次いで、テストストリップ1Aの代わりに、テストストリップ1Dを用い、励起光の波長を488nmから780nmに変更し、波長800±10nmの蛍光強度を測定したことを除いては、比較例1Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例2A]
 蛍光体1Aの代わりに、表2に記載の蛍光体2A(AlexaFluor 680、モレキュラープローブス社製)を用いて、前記モノクローナル抗体と蛍光体2Aを結合させたことを除いては、比較例1Aと同様にして、標識化抗体2Aを含む検出液2Aを調製し、テストストリップ2Aを作製した。
 次いで、テストストリップ1Aの代わりに、テストストリップ2Aを用い、励起波長を488nmから680nmに変更し、波長700±10nmの蛍光強度を測定したことを除いては、比較例1Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表2に示す。
[実施例2B]
 蛍光体1Aの代わりに、表2に記載の蛍光体2B(AlexaFluor 790、モレキュラープローブス社製)を用いて、前記モノクローナル抗体と蛍光体2Bを結合させたことを除いては、比較例1Aと同様にして、標識化抗体2Bを含む検出液2Bを調製し、テストストリップ2Bを作製した。
 次いで、テストストリップ2Aの代わりに、テストストリップ2Bを用いたことを除いては、実施例2Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表2に示す。
[実施例2C]
 蛍光体1Aの代わりに、表2に記載の蛍光ラテックス粒子2C(FC02F8612(平均粒径0.39μm、Bangs Laboratories社製))を用い、蛍光粒子2Cのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子2Cを結合させたことを除いては、比較例1Aと同様にして、標識化抗体2Cを含む検出液2Cを調製し、テストストリップ2Aを作製した。
 次いで、テストストリップ2Aの代わりに、テストストリップ2Cを用いたことを除いては、実施例2Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表2に示す。
[実施例2D]
 蛍光体1Aの代わりに、表2に記載の蛍光ラテックス粒子2D(FC02F8782(平均粒径0.32μm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子2Dのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子2Dを結合させたことを除いては、比較例1Aと同様にして、標識化抗体2Dを含む検出液2Dを調製し、テストストリップ2Dを作製した。
 次いで、テストストリップ2Aの代わりに、テストストリップ2Dを用いたことを除いては、実施例2Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例3A]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3A(FC02F8655(平均粒径65nm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子3Aのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Aを結合させたことを除いては、比較例1Aと同様にして、標識化抗体3Aを含む検出液3Aを調製し、テストストリップ3Aを作製した。
 次いで、テストストリップ1Aの代わりに、テストストリップ3Aを用い、励起波長を488nmから680nmに変更し、波長700±10nmの蛍光強度を測定したことを除いては、比較例1Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
[実施例3B]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3B(FC02F9770(平均粒径190nm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子3Bのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Bを結合させたことを除いては、実施例3Aと同様にして、標識化抗体3Bを含む検出液3Bを調製し、テストストリップ3Bを作製した。
 次いで、テストストリップ3Aの代わりに、テストストリップ3Bを用いたことを除いては、実施例3Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
[実施例3C]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3C(Lx(平均粒径300nm、藤倉化成社製))を用い、蛍光ラテックス粒子3Cのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Cを結合させたことを除いては、実施例3Aと同様にして、標識化抗体3Cを含む検出液3Cを調製し、テストストリップ3Cを作製した。
 次いで、テストストリップ3Aの代わりに、テストストリップ3Cを用いたことを除いては、実施例3Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
[実施例3D]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3D(FC02F9990(平均粒径400nm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子3Dのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Dを結合させたことを除いては、実施例3Aと同様にして、標識化抗体3Dを含む検出液3Dを調製し、テストストリップ3Dを作製した。
 次いで、テストストリップ3Aの代わりに、テストストリップ3Dを用いたことを除いては、実施例3Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
[実施例3E]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3E(FC02F8632(平均粒径510nm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子3Eのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Eを結合させたことを除いては、実施例3Aと同様にして、標識化抗体3Eを含む検出液3Eを調製し、テストストリップ3Eを作製した。
 次いで、テストストリップ3Aの代わりに、テストストリップ3Eを用いたことを除いては、実施例3Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
[実施例3F]
 蛍光体1Aの代わりに、表3に記載の蛍光ラテックス粒子3F(FC02F4194(平均粒径890nm、Bangs Laboratories社製))を用い、蛍光ラテックス粒子3Fのカルボキシル基を介して、前記モノクローナル抗体と蛍光ラテックス粒子3Fを結合させたことを除いては、実施例3Aと同様にして、標識化抗体3Fを含む検出液3Fを調製し、テストストリップ3Fを作製した。
 次いで、テストストリップ3Aの代わりに、テストストリップ3Fを用いたことを除いては、実施例3Aと同様にして、シグナル/バックグラウンド比(S/B)を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
[実施例4A]
 蛍光体1Aの代わりに、表4に記載の蛍光ラテックス粒子4A(FS02F9862(平均粒径190nm、Bangs Laboratories社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Aを結合させたことを除いては、比較例1Aと同様にして、標識化抗体4Aを含む検出液4Aを調製し、テストストリップ4Aを作製した。
 また、標識化抗体4Aのゼータ電位を、粒子径測定装置(Malvern社製「ゼータサイザー」を用いて測定した。
 次いで、アナライトとして、インフルエンザA型ウイルスを、280.0pfu/ml(pfu:プラーク形成単位)になるように、緩衝液(20mM MES緩衝液(pH6.0)、1(W/V)% TritonX-100、2(W/V)% アルギニン塩酸塩、1.0(W/V)%ウシ血清アルブミン)に添加して懸濁させて、試料を調製した。得られた試料を、テストストリップ4Aの試料添加部に添加し、該試料を試料添加部から吸水パッドまで展開させ、洗浄した後、蛍光測定装置を用いて、波長680nmの励起光をテストストリップ1Aに照射して、波長700±10nmの蛍光の蛍光画像を得た。
 得られた蛍光画像を観察し、下記評価基準に基づいて、展開性を評価した。
[評価基準]
良:検出部よりも上流側の部位において、ほとんど蛍光が観察されなかった。
やや良:検出部よりも上流側の部位において、若干蛍光が観察された。
不良;検出部よりも上流側の部位において、著しく蛍光が観察された。
 なお、検出部よりも上流側の部位において、蛍光の強度が大きいほど、標識化抗体の展開性が悪く、検出部に至らずに検出部上流側に滞留している標識化抗体が多いことを示している。
[実施例4B]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4B(FC02F9770(平均粒径190nm、Bangs Laboratories社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Bを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Bを含む検出液4Bを調製し、テストストリップ4Bを作製し、標識化抗体4Bの展開性を評価した。
[実施例4C]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4C(FC02F8612(平均粒径390nm、Bangs Laboratories社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Cを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Cを含む検出液4Cを調製して、テストストリップ4Cを作製した。また、実施例4Aと同様にして、標識化抗体4Cのゼータ電位を測定し、標識化抗体4Cの展開性を評価した。
[実施例4D]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4D(FC02F9990(平均粒径400nm、Bangs Laboratories社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Dを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Dを含む検出液4Dを調製して、テストストリップ4Dを作製した。また、実施例4Aと同様にして、標識化抗体4Dのゼータ電位を測定し、標識化抗体4Dの展開性を評価した。
[実施例4E]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4E(FC02F9889(平均粒径490nm、Bangs Laboratories社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Eを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Eを含む検出液4Eを調製して、テストストリップ4Eを作製した。また、実施例4Aと同様にして、標識化抗体4Eのゼータ電位を測定し、標識化抗体4Eの展開性を評価した。
[実施例4F]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4F(FKFL1171(平均粒径220nm、藤倉化成社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Fを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Fを含む検出液4Fを調製して、テストストリップ4Fを作製した。また、実施例4Aと同様にして、標識化抗体4Fのゼータ電位を測定し、標識化抗体4Fの展開性を評価した。
[実施例4G]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4G(FKFL1175(平均粒径310nm、藤倉化成社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Gを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Gを含む検出液4Gを調製して、テストストリップ4Gを作製した。また、実施例4Aと同様にして、標識化抗体4Gのゼータ電位を測定し、標識化抗体4Gの展開性を評価した。
[実施例4H]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4H(Lx(平均粒径200nm、藤倉化成社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Hを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Hを含む検出液4Hを調製し、テストストリップ4Hを作製し、標識化抗体4Hの展開性を評価した。
[実施例4I]
 蛍光ラテックス粒子4Aの代わりに、表4に記載の蛍光ラテックス粒子4I(Lx(平均粒径300nm、藤倉化成社製))を用い、前記モノクローナル抗体と蛍光ラテックス粒子4Iを結合させたことを除いては、実施例4Aと同様にして、標識化抗体4Iを含む検出液4Iを調製し、テストストリップ4Iを作製し、標識化抗体4Iの展開性を評価した。
Figure JPOXMLDOC01-appb-T000005
 10,20:ラテラルフロー型クロマト法用テストストリップ
 11,21:試料添加部
 12:反応部
 13,23:検出部
 14,24:コントロール部
 15,25:吸水パッド
 16,26:複合体(A)
 17,27:標識化リガンド(1)
 18,28:アナライト
 19,29:捕捉リガンド(2)
 19´,29´:捕捉リガンド(3)

Claims (9)

  1.  メンブレンと当該メンブレンに、アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出または定量するアナライトの検出または定量方法であって、
     下記工程(i)~(iii)を含むアナライトの検出または定量方法。
     工程(i):試料に含まれるアナライトを、アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)に接触させる工程
     工程(ii):前記検出部にて、工程(i)において形成された、アナライトと標識化リガンドとを含む複合体(A)を、捕捉リガンドに接触させる工程
     工程(iii):テストストリップに、複合体(A)に含まれる蛍光体(1)の励起光として、600nm以上800nm以下の波長を有する光を照射し、蛍光体(1)の蛍光を生じさせ、該蛍光の蛍光強度を測定する工程
  2.  工程(iii)の蛍光強度の測定波長が、600nm以上である、請求項1に記載のアナライトの検出または定量方法。
  3.  前記前記蛍光体(1)が、蛍光色素および/または蛍光蛋白質である、請求項1または2に記載のアナライトの検出または定量方法。
  4.  標識化リガンド(1)が、前記リガンド(1)と前記蛍光体(1)とが、不溶性粒子に担持されてなる、請求項1~3の何れか一項に記載のアナライトの検出または定量方法。
  5.  前記不溶性粒子は、合成高分子粒子、無機化合物粒子および多糖類粒子からなる群から選択される少なくとも1種類である、請求項1~4の何れか一項に記載のアナライトの検出または定量方法。
  6.  前記不溶性粒子は、100nm以上、600nm以下の平均粒子径を有する、請求項1~4の何れか一項に記載のアナライトの検出または定量方法。
  7.  -30mV以下のゼータ電位を有する、請求項1~6の何れか一項に記載のアナライトの検出または定量方法。
  8.  ラテラルフロー型クロマト用テストストリップを用いて、試料中に含まれるアナライトを検出または定量するためのキットであって、
     メンブレンと当該メンブレンに、前記アナライトと特異的に結合する捕捉リガンドが固定されてなる検出部を含むラテラルフロー型クロマト用テストストリップと、
     前記アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)を含む検出試薬と、
    を含むアナライトを検出または定量するためのキット。
  9.  試料中に含まれるアナライトを検出または定量するためのラテラルフロー型クロマト用テストストリップであって、
     メンブレンと、前記試料が展開する方向において、当該メンブレンに、
     前記アナライトと特異的に結合する捕捉リガンド(2)が固定されてなる検出部と、
     当該検出部よりも上流側に、前記アナライトに特異的に結合するリガンド(1)を600nm以上800nm以下の波長を有する光で励起されて蛍光を生じる蛍光体(1)で標識化してなる標識化リガンド(1)が含まれる反応部と、
    を含むラテラルフロー型クロマト用テストストリップ。
PCT/JP2013/060125 2012-04-06 2013-04-02 アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ WO2013151066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/390,999 US20150079608A1 (en) 2012-04-06 2013-04-02 Method for detecting or quantifying analyte, kit for detecting or quantifying analyte, and test strip for lateral flow type chromatography method for detecting or quantifying analyte
JP2014509176A JP6248030B2 (ja) 2012-04-06 2013-04-02 アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ
EP13772362.3A EP2835643A4 (en) 2012-04-06 2013-04-02 METHOD FOR DETECTING OR QUANTITATING ANALYSTS, KIT FOR DETECTING OR QUANTIFYING ANALYSTS AND TEST STRIPS FOR SIDEFLOW CHROMATOGRAPHY FOR DETECTING OR QUANTIFYING ANALYTES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-087723 2012-04-06
JP2012087723 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151066A1 true WO2013151066A1 (ja) 2013-10-10

Family

ID=49300547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060125 WO2013151066A1 (ja) 2012-04-06 2013-04-02 アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ

Country Status (4)

Country Link
US (1) US20150079608A1 (ja)
EP (1) EP2835643A4 (ja)
JP (1) JP6248030B2 (ja)
WO (1) WO2013151066A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199954A1 (ja) 2013-06-10 2014-12-18 旭化成せんい株式会社 イムノクロマト診断キット
JP2017129422A (ja) * 2016-01-19 2017-07-27 プリマハム株式会社 イムノクロマト処理によるアレルゲンの検出方法
WO2017131066A1 (ja) * 2016-01-28 2017-08-03 国立大学法人京都大学 Her2タンパク質を治療標的分子とする抗体医薬の投与が有効ながん患者を選択するためのキットおよび方法
WO2018043687A3 (ja) * 2016-08-31 2018-04-26 積水化学工業株式会社 診断薬用蛍光粒子及びそれを用いた免疫測定試薬
WO2022163124A1 (ja) * 2021-01-29 2022-08-04 東洋濾紙株式会社 イムノクロマトアッセイ用メンブレン、イムノクロマトアッセイ用テストストリップ、および検査方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700587A (zh) * 2016-02-24 2018-10-23 积水医疗株式会社 利用免疫色谱法检测癌胚纤连蛋白的方法
WO2019115725A1 (en) * 2017-12-13 2019-06-20 Bloom Diagnostics Ag Preparation device, diagnostic apparatus, diagnostic kit and diagnostic system
EP3791167A1 (en) 2018-05-07 2021-03-17 Immundiagnostik AG System for analysing quantitative lateral flow chromatography
US20220163525A1 (en) 2019-02-15 2022-05-26 Immundiagnostik Ag Rapid test for diagnosis of bacterial infections in neonates
JP2023517061A (ja) 2020-03-07 2023-04-21 イムンディアグノスティック アー ゲー スキャナとして使用するためのデジタルカメラのキャリブレーション

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522698A (ja) 2002-04-10 2005-07-28 レスポンス バイオメディカル コーポレイション 高感度の免疫クロマトグラフィーアッセイ法
JP2008304401A (ja) 2007-06-08 2008-12-18 Furukawa Electric Co Ltd:The イムノクロマト法試薬用標識シリカナノ粒子、イムノクロマト法試薬、それを用いたイムノクロマト法用テストストリップ、及びイムノクロマト法用蛍光検出システム
JP2009115822A (ja) 2009-02-23 2009-05-28 Furukawa Electric Co Ltd:The イムノクロマト法試薬用標識シリカナノ粒子、イムノクロマト法試薬、それを用いたイムノクロマト法用テストストリップ、及びイムノクロマト法用蛍光検出システム
JP2011027693A (ja) 2009-07-29 2011-02-10 Furukawa Electric Co Ltd:The イムノクロマト法用テストストリップ
JP2012505402A (ja) * 2008-10-07 2012-03-01 ユィロス・パテント・アクチボラグ 試料中のアナライトの検出のための半逐次アッセイ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719662A (en) * 1980-07-09 1982-02-01 Fuji Photo Film Co Ltd Preparation of microcapsule reagent for immune reaction
US4988568A (en) * 1988-03-30 1991-01-29 Nippon Zeon Co., Ltd. Hydrophilic fine gel particles and process for production thereof
US5266497A (en) * 1990-08-31 1993-11-30 Japan Synthetic Rubber Co., Ltd. Immunochromatographic assay with improved colored latex
US5750409A (en) * 1991-11-18 1998-05-12 Boehringer Mannheim Gmbh Pentacyclic compounds and their use as absorption or fluorescent dyes
US5714386A (en) * 1996-01-11 1998-02-03 Board Of Trustees Of The Leland Stanford Junior University Cy7-allophycocyanin conjugates for use in multiplex fluorescence detection assays
US6027890A (en) * 1996-01-23 2000-02-22 Rapigene, Inc. Methods and compositions for enhancing sensitivity in the analysis of biological-based assays
US6528325B1 (en) * 2000-10-13 2003-03-04 Dexall Biomedical Labs, Inc. Method for the visual detection of specific antibodies in human serum by the use of lateral flow assays
US20050112703A1 (en) * 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US20060024651A1 (en) * 2004-08-02 2006-02-02 Davis Antonio M Sneeks
US20060246513A1 (en) * 2005-05-02 2006-11-02 Bohannon Robert C Method and device to detect the presence of analytes in a sample
WO2007002579A2 (en) * 2005-06-23 2007-01-04 Bioveris Corporation Assay cartridges and methods for point of care instruments
US8323899B2 (en) * 2007-02-01 2012-12-04 Siemens Healthcare Diagnostics Inc. Silica magnetic particles with a high nucleic acid binding capacity
WO2010074325A1 (en) * 2008-12-25 2010-07-01 Canon Kabushiki Kaisha Labeling composition for intraocular tissue, labeling method of intraocular tissue, and screening method
WO2010074326A1 (en) * 2008-12-25 2010-07-01 Canon Kabushiki Kaisha Probe for a biological specimen and labelling method and screening method using the probe
US8945471B2 (en) * 2009-01-21 2015-02-03 California Institute Of Technology Multipurpose analysis using second harmonic generating nanoprobes
TWI395613B (zh) * 2009-03-31 2013-05-11 Yeu Kuang Hwu 微粒及其形成方法
US9233067B2 (en) * 2009-11-30 2016-01-12 Amsilk Gmbh Silk particles for controlled and sustained delivery of compounds
CA2851344C (en) * 2011-09-05 2017-10-03 Hiroshi Maeda Polymer-type fluorescent molecule probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522698A (ja) 2002-04-10 2005-07-28 レスポンス バイオメディカル コーポレイション 高感度の免疫クロマトグラフィーアッセイ法
JP2008304401A (ja) 2007-06-08 2008-12-18 Furukawa Electric Co Ltd:The イムノクロマト法試薬用標識シリカナノ粒子、イムノクロマト法試薬、それを用いたイムノクロマト法用テストストリップ、及びイムノクロマト法用蛍光検出システム
JP2012505402A (ja) * 2008-10-07 2012-03-01 ユィロス・パテント・アクチボラグ 試料中のアナライトの検出のための半逐次アッセイ
JP2009115822A (ja) 2009-02-23 2009-05-28 Furukawa Electric Co Ltd:The イムノクロマト法試薬用標識シリカナノ粒子、イムノクロマト法試薬、それを用いたイムノクロマト法用テストストリップ、及びイムノクロマト法用蛍光検出システム
JP2011027693A (ja) 2009-07-29 2011-02-10 Furukawa Electric Co Ltd:The イムノクロマト法用テストストリップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835643A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199954A1 (ja) 2013-06-10 2014-12-18 旭化成せんい株式会社 イムノクロマト診断キット
KR20160003240A (ko) 2013-06-10 2016-01-08 아사히 가세이 셍이 가부시키가이샤 이뮤노크로마토 진단 키트
US9863944B2 (en) 2013-06-10 2018-01-09 Asahi Kasei Fibers Corporation Immunochromatographic diagnosis kit
JP2017129422A (ja) * 2016-01-19 2017-07-27 プリマハム株式会社 イムノクロマト処理によるアレルゲンの検出方法
WO2017131066A1 (ja) * 2016-01-28 2017-08-03 国立大学法人京都大学 Her2タンパク質を治療標的分子とする抗体医薬の投与が有効ながん患者を選択するためのキットおよび方法
WO2018043687A3 (ja) * 2016-08-31 2018-04-26 積水化学工業株式会社 診断薬用蛍光粒子及びそれを用いた免疫測定試薬
WO2022163124A1 (ja) * 2021-01-29 2022-08-04 東洋濾紙株式会社 イムノクロマトアッセイ用メンブレン、イムノクロマトアッセイ用テストストリップ、および検査方法

Also Published As

Publication number Publication date
JP6248030B2 (ja) 2017-12-13
EP2835643A1 (en) 2015-02-11
US20150079608A1 (en) 2015-03-19
JPWO2013151066A1 (ja) 2015-12-17
EP2835643A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6248030B2 (ja) アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ
FI92883B (fi) Testimenetelmä ja reagenssikitti sitä varten
JP6847077B2 (ja) 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
US7955866B2 (en) Labelled silica nanoparticles for immunochromatographic assays
JP2013120120A (ja) ラテラルフロー型クロマト法用テストストリップ、およびそれを用いたアナライトの検出または定量方法
WO2014084260A1 (ja) イムノクロマトグラフィー、これに用いられる検出装置および試薬
JP2008507692A (ja) 大型病原体を検出するための横流型装置
JP6526810B2 (ja) 樹脂−白金複合体及びその利用
US11371987B2 (en) Method of amplifying detection light using light-reflecting material, in immunochromatography
US20140170674A1 (en) Membraine-Based Assay Devices Utilizing Time-Resolved Up-Converting Luminescence
JP6381642B2 (ja) 樹脂−金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
JP7451431B2 (ja) 側方流動アッセイのシグナルを増幅させるシステム、装置および方法
WO2014070686A1 (en) Lateral flow assay utilizing infrared dye for multiplex detection
JP5006459B1 (ja) 標識用複合粒子
WO2014077142A1 (ja) クロマトグラフィー試験片、クロマトグラフィー試験方法及びメンブレン
JP5825190B2 (ja) アナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ
JP3654591B2 (ja) 特異結合分析方法および特異結合分析デバイス
JP4980944B2 (ja) 免疫学的測定方法
JP2012215494A (ja) イムノクロマト測定法ならびにそれに用いられるキットおよびシステム
JP2020052017A (ja) 検体処理液及びそれを用いたイムノクロマトキット
JP7358360B2 (ja) 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法
JP7265315B2 (ja) 免疫学的測定用金属ナノ粒子-セルロース複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ
JPH0933526A (ja) 免疫学的検査キット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14390999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013772362

Country of ref document: EP