WO2013150978A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2013150978A1 WO2013150978A1 PCT/JP2013/059581 JP2013059581W WO2013150978A1 WO 2013150978 A1 WO2013150978 A1 WO 2013150978A1 JP 2013059581 W JP2013059581 W JP 2013059581W WO 2013150978 A1 WO2013150978 A1 WO 2013150978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reagent
- disk
- container
- reagent container
- sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/025—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00613—Quality control
- G01N35/00663—Quality control of consumables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00693—Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00613—Quality control
- G01N35/00663—Quality control of consumables
- G01N2035/00673—Quality control of consumables of reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0441—Rotary sample carriers, i.e. carousels for samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0443—Rotary sample carriers, i.e. carousels for reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0453—Multiple carousels working in parallel
Definitions
- the present invention relates to an automatic analyzer for clinical tests that performs qualitative and quantitative analysis of biological samples such as blood and urine, and more particularly, an automatic analyzer having a function of automatically supplying samples, reagents, and the like necessary for measurement to the apparatus.
- the present invention relates to an analyzer.
- Clinical analyzers measure specific components in biological samples such as blood and urine.
- a sample is dispensed from a sample container to a reaction container by a sample nozzle.
- the reagent is dispensed from the reagent container into the reaction container into which the sample has been dispensed by the reagent nozzle and stirred.
- the reaction is performed for a certain period of time, and the concentration of the target item is calculated from information such as absorbance and luminescence obtained from the reaction solution.
- the reagent used for the measurement is filled in a fixed volume in the reagent container, and the used reagent container is discarded or used by adding a new reagent.
- each reagent container is managed by a traceable label such as a barcode, and in order to prevent the reagent from being deteriorated as much as possible, the reagent container after use has not been added to the reagent container, and has become a disposable operation.
- the operator calculates the necessary amount by the end time of the next day with his / her hand and installs it in the analyzer. Since some reagents use multiple reagents per item, it may take more than an hour to check for missing reagents, take out the necessary reagents from the refrigerator, and set in the apparatus. In addition, in order to actually use the replaced reagent container for inspection, a calibration curve is created for each container, and a valued sample such as a quality control sample is used to inspect the reagent in the reagent container. You also need to check if it is possible. Therefore, the current situation is that the reagent replacement operation is very complicated.
- One solution to reduce reagent replacement maintenance is to set a new reagent container in the spare reagent store beforehand, and the analyzer will carry the new reagent container to the reagent store when needed, while replacing the used reagent container.
- What returns to a preliminary reagent storage is known (for example, refer to patent documents 1).
- the apparatus determines the necessary reagent when necessary, carries it into the apparatus and returns the used reagent container.
- Patent Document 1 a reagent for replacement is temporarily stored in a place where the reagent is pre-cooled, and the reagent container is transported to a place where the apparatus is used when necessary, and the used reagent container is returned to the same place as the reagent for replacement. I have to. It is useful in terms of reducing reagent replacement work that the apparatus determines the necessary reagent when necessary, carries it into the apparatus and returns the used reagent container.
- An object of the present invention is to provide an automatic analyzer that can perform measurement efficiently.
- the present invention provides a sample disk on which a sample container containing a sample to be analyzed, a standard solution, and a quality control sample is placed, and a reagent container containing a reagent used for a reaction.
- the measurement in the automatic analyzer can be performed efficiently.
- FIG. 1 is a block diagram showing an overall configuration of an automatic analyzer for clinical examination according to an embodiment of the present invention. It is a block diagram which shows the structure of the control arithmetic system in the automatic analyzer for clinical tests by one Embodiment of this invention. It is a flowchart which shows the specific example of reagent operation
- FIG. 1 is a block diagram showing the overall configuration of an automatic analyzer for clinical examination according to an embodiment of the present invention.
- FIG. 1 is a conceptual diagram of a control system added to the top layout of the main part of the automatic analyzer.
- the automatic analyzer to which the present invention is directed is provided with a mechanism for collecting a predetermined amount of a liquid such as a sample or a reagent using a dispensing nozzle.
- a mechanism for collecting a predetermined amount of a liquid such as a sample or a reagent using a dispensing nozzle.
- an automatic analyzer for clinical examination that analyzes a biological sample such as blood and urine.
- a rack system that carries in to an analysis unit using a sample rack, or a robot for moving reagent containers
- the present invention is not limited to this, such as a handling method.
- the automatic analyzer 1 includes a sample disk 2, a sample container 3 arranged concentrically therewith, a reaction disk 4, a reaction container 5, a sample dispensing mechanism 6, a first reagent disk 7, and various reagents. , A reagent dispensing mechanism 9, a stirring mechanism 10, a light source 11, a photometer (multi-wavelength photometer) 12, an A / D converter 13, a reaction container cleaning mechanism 14, Injection nozzle cleaning mechanism 15, second reagent disk 16, reagent container transport mechanism 17, interface 19, computer 20, storage means 21, display unit 22, opening mechanism 30, RFID reader 32, And a stirring mechanism 34.
- the reaction vessels 5 are installed at equal intervals in the circumferential direction of the reaction disk 4.
- the reagent containers 8 are arranged at equal intervals in the circumferential direction of the first reagent disk 7.
- the reagent containers 8 are arranged on the second reagent disk 16 at regular intervals in a matrix.
- the opening mechanism 30 opens the reagent container 8 conveyed by the reagent container conveying mechanism 17 when the opening has not been completed.
- the cap at the upper part of the reagent container 8 is removed, or a hole is made in the sealing part at the upper part of the reagent container 8.
- the RID reader 32 reads the reagent information stored in the reagent container 8 from the RFID tag attached to the reagent container 8 transported by the reagent container transport mechanism 17.
- the reagent information includes a reagent name, a reagent amount, a reagent expiration date, a lot number, and the like.
- the RFID reader 32 can also write information to the RFID tag.
- the opened flag is turned on.
- the stirring mechanism 34 is used for stirring the reagent in the reagent container. This is because the distribution of the reagent in the reagent container left for a long period of time may be uneven due to precipitation or the like. Stirring is performed, for example, by applying vibration to the reagent container.
- reagent containers 8 can be installed on the first reagent disk 7. Each of the reagent containers 8 to be installed has the same shape and may have a different capacity. Reagent containers 8 contain reagents used for analyzing different analysis items. However, when the remaining amount of the reagent stored in the first reagent container 8 for a certain analysis item is small, the second reagent container 8 storing the reagent for the same analysis item is held in the reagent disk 7. In some cases. In general, when an analysis item for biochemical analysis is analyzed, one type of reagent is used for one analysis item. When analyzing an analysis item of immunological analysis, there are two types of reagents used for one analysis item.
- the first reagent disk 7 is rotated by a motor or the like.
- the reagent container transported from the second reagent disk 16 by the reagent container transport mechanism 17 can be placed on the first reagent disk 7 at a position where the reagent container transport mechanism 17 and the first reagent disk 7 are close to each other. Therefore, the reagent container can be installed at an arbitrary position of the first reagent disk 7 by rotating the first reagent disk 7.
- the reagent container transport mechanism 17 can grip the reagent container 8 installed on the first reagent disk 7 and transport it to the second reagent disk 16. Therefore, by rotating the first reagent disk 7, the reagent container at an arbitrary position of the first reagent disk 7 can be transported to the second reagent disk 16.
- 100 reagent containers 8 can be installed on the second reagent disk 16.
- the second reagent disk 16 can move the plurality of reagent containers 8 in the plane and move the reagent containers 8 to the vicinity of the reagent container transport mechanism 17.
- the operator installs a new reagent container 8 on the second reagent disk 16.
- the installed reagent container 8 is moved to the vicinity of the reagent container transport mechanism 17 and is transported to the first reagent disk 7 by the reagent container transport mechanism 17.
- the reagent in the reagent container 8 transported to the first reagent disk 7 is subjected to calibration and accuracy management. If the remaining amount of the same type of reagent installed on the first reagent disk 7 is large after calibration and accuracy management are performed, the reagent container 8 is transferred to the second reagent disk 16 by the reagent container transport mechanism 17. Returned. Note that both calibration and accuracy control are not necessarily performed on the reagent in the new reagent container.
- the calibration for the new reagent is not executed and the calibration curve for the old reagent is not executed. Is used as is for a new reagent.
- the reagent container When the remaining amount of the reagent container installed on the first reagent disk 7 becomes zero, the reagent container is transported to the second reagent disk 16 by the reagent container transport mechanism 17.
- the second reagent disk 16 is provided with a disposal port 16 '.
- the second reagent disk 16 moves the reagent container with a remaining amount of 0 to the disposal port 16 'and is discarded downward from the disposal port 16'.
- 100 containers can be installed on the sample disk 2.
- two are standard solution containers containing first and second standard solutions for biochemical analysis.
- the first and second standard solutions contain different concentrations of components for the same analysis item.
- the computer 20 compares the first measurement value measured by the multiwavelength photometer 12 for the first analysis item with respect to the first standard solution and the first standard solution with respect to the second standard solution.
- a calibration curve is created by connecting the second measurement value measured by the multi-wavelength photometer 12 with a straight line for the analysis item.
- the first standard solution contains not only the first analysis item but also a first concentration component relative to other analysis items, and the second standard solution contains the first analysis item.
- concentration with respect to another analysis item is not restricted but is contained.
- the sample disc 2 is provided with a quality control sample container for biochemical analysis in which one quality control sample is stored.
- the quality control sample includes, for example, a component having a known concentration for the first analysis item. Therefore, if the quality control sample is measured and the error between the measurement result and the known concentration value is small, it can be determined that the accuracy of the analyzer is maintained.
- the quality control sample includes components having known concentrations of analysis items other than the first analysis item. Therefore, it is possible to manage the accuracy of a plurality of analysis items with one accuracy control sample.
- two types of quality control samples prepared by different manufacturers are held on the sample disk 2 and both quality control samples are analyzed to improve the accuracy of quality control. It is also possible to select from two types of quality control samples.
- the sample dispensing mechanism 6 dispenses the sample to be analyzed from the sample container 3 to the reaction container 5.
- the reagent dispensing mechanism 9 dispenses the reagent used for the analysis from the reagent container 8 to the reaction container 5.
- the stirring mechanism 10 stirs the mixed solution of the sample to be analyzed and the reagent.
- the reaction disk 4 has a thermostat, and the reaction vessel 5 is installed inside the thermostat. The stirred liquid mixture is held for a certain period of time at the temperature of the thermostat, and during that time, the reaction of the liquid mixture proceeds.
- the computer 20 includes a calculation unit, and the result obtained as a result of the calculation by the calculation unit is stored in the storage unit 21 and is output to the information device, for example, displayed on the display unit 22.
- a new reagent container 8 is installed from the second reagent disk 16 by the reagent container transport mechanism 17 at a position in the first reagent disk 7 where no reagent container is installed. Further, when there is no need or when the remaining amount of the reagent held in the reagent container 8 becomes 0 and the reagent container 8 is discarded, the reagent container is transferred to the second reagent disk 16 by the reagent container transport mechanism 17. Is done.
- the two dispensing nozzle cleaning mechanisms 15 respectively clean the tip of the dispensing nozzle each time the sample dispensing mechanism 6 and the reagent dispensing mechanism 9 dispense a sample or reagent.
- the reaction vessel 5 after the reaction is washed by the reaction vessel washing mechanism 14 and repeatedly used for the next reaction.
- the operation mechanisms of these analyzers are all controlled by a drive control unit included in the computer 20 via the communication means 18 and the interface 19.
- the second reagent disk 16 can be freely inserted and removed by the operator regardless of the state of the apparatus (analyzing or waiting).
- the reagent container newly inserted into the second reagent disk 16 is not subjected to analysis for a period of time specified by the operator on the computer 20 including the drive control unit or for a certain period of time by the reagent container transport mechanism 17. It is conveyed to the first reagent disk 7. Then, the reagent container is inserted into an empty position of the first reagent disk 7, and necessary calibration and accuracy management are performed.
- the reagent container transport mechanism 17 returns the reagent container 16 to the second reagent disk 16 and waits until it is used for analysis.
- the reagent container is transported to the second reagent disk 16 by the reagent container transport mechanism 17 and discarded from the discard port 16 '.
- the reagent container once returned to the second reagent disk 16 is transported to an empty space of the first reagent disk 7 by the reagent container transport mechanism 17.
- FIG. 2 is a block diagram showing a configuration of a control calculation system in the clinical analyzer automatic analyzer according to the embodiment of the present invention.
- the same reference numerals as those in FIG. 1 indicate the same parts.
- the computer 20 includes a determination unit 20A, a drive control unit 20B, and a calculation unit 20C.
- the determination unit 20A acquires information on the remaining amount of the reagent in the reagent container 8 detected by the remaining amount detection unit 9 '.
- the remaining amount detection unit 9 ′ includes a liquid level detector provided in the reagent dispensing mechanism 9. The tip of the dispensing nozzle of the reagent dispensing mechanism 9 is inserted into the reagent container 8, and at this time, the liquid level of the reagent is detected by the liquid level detector, so that the reagent remaining inside the reagent container 8 is detected. The remaining amount can be detected.
- the reagent information read by the RFID reader 32 is input to the determination unit.
- the information stored in the storage unit 21 is input to the determination unit 20A.
- the information stored in the storage means 21 is necessary, for example, when the number of tests per day for the analysis item a using the reagent A in the facility where the automatic analyzer 1 is installed or when the analysis item a is performed once. There is information such as the amount of reagent.
- the determination unit 20A uses these pieces of information to return the new reagent container whose calibration and accuracy control have been completed on the first reagent disk 7 to the second reagent disk 16 or to maintain the new reagent container on the first reagent disk 7. It is determined. Details of this will be described later with reference to FIGS.
- the drive control unit 20B stops the rotation of the reaction disk 4, the sample dispensing operation by the sample dispensing mechanism 6, the rotation stopping operation of the first reagent disk 7, and the reagent dispensing operation by the reagent dispensing mechanism 9.
- the stirring operation by the stirring mechanisms 10 and 34, the movement operation of the reagent container in the second reagent disk 16, the transport operation of the reagent container by the reagent container transport mechanism 17, and the opening operation of the reagent container by the opening mechanism 30 are performed. Control. Details of the operation of the drive control unit 20B will be described later with reference to FIGS.
- the calculation unit 20C creates a calibration curve from the measurement values obtained from the multiwavelength photometer 12 with respect to the standard solution. In addition, the calculation unit 20C performs quality control on the quality control sample from the measurement value obtained from the multiwavelength photometer 12. Further, the calculation unit 20C obtains a concentration value from a measurement value obtained from the multiwavelength photometer 12 for a sample having an unknown concentration using a calibration curve. The results obtained by these are stored in the storage means 21.
- FIG. 3 to FIG. 6 are flowcharts showing specific examples of reagent operation using the first reagent disk and the second reagent disk in the clinical analyzer automatic analyzer according to the embodiment of the present invention.
- 4 to 6 are detailed explanatory diagrams of the example shown in FIG.
- the operation using two reagent disks provided on the same automatic analyzer shown in FIG. 1 will be described.
- the first reagent disk and the second reagent disk are 1 It is not always necessary to be on the same analyzer so that two systems are configured with different modules.
- RFID is used for recognizing the reagent container, the recognizing method may be another means such as a barcode or an IC chip.
- FIG. 3 shows an operation example related to registration of a reagent container, loading into the first reagent disk, analysis, and unloading of the reagent container to the second reagent disk.
- the operator installs a reagent to be used in the analyzer in the future on the second reagent disk, and displays the GUI (graphics) displayed on the display unit 22.
- the reagent container is registered using the user interface.
- the contents to be registered include, for example, the name of the reagent held in the reagent container, the lot number when the reagent is manufactured, the expiration date of the reagent, the analysis parameter (for example, how much reagent amount is used per test), etc. It is.
- step S302 the determination unit 20A places the reagent container in a discarded state, and in step S304 The determination unit 20A sets the status of the reagent container to the “use prohibited” state. Reagents in which there is no remaining amount in the reagent container or the expiration date of the reagent has already been used in the first reagent disk 7 and have been returned from the first reagent disk 7 to the second reagent disk 16 It is a reagent.
- step S306 the determination unit 20A sets the status of the reagent container to “ “Unusable” state.
- Step S310 when the reagent container is in the “preparation 1” state, in step S310, the reagent is stirred and the reagent container is opened.
- “Preparation 1” is performed when the time specified by the operator (timed reagent preparation instruction) is reached, when the instruction is made manually on the apparatus, or when analysis is not performed (pre-operation).
- the time designated by the operator is, for example, “16:00”.
- daytime analysis processing is performed from 9:00 to 16:00 and ends at 16:00.
- the nighttime analysis process is performed from 17:00 on the next morning. Veterans are often assigned as daytime operators, and inexperienced operators are often assigned as nighttime operators.
- step S311 the drive control unit 20B controls the reagent container transport mechanism 17 to take out the reagent container 8 from the second reagent disk 16.
- step S313 the drive control unit 20B drives the stirring mechanism 34 to stir the reagent container 8.
- the drive control unit 20B opens in step S315.
- the stopper mechanism 30 is controlled to open the reagent container (piercing or opening the cap).
- step S317 the drive controller 20B controls the reagent container transport mechanism 17 to move the reagent container from the second reagent disk 16 to the first reagent disk 7, or in step S319, the drive controller 20B The reagent container transport mechanism 17 is controlled to move the reagent container from the first reagent disk to the second reagent disk.
- the agitation of the reagent container and the opening of the reagent container are not performed at the stage of moving to the first reagent disk, but may be performed after the movement, and are not carried into the first reagent disk after being opened, but carried out to the second reagent disk. May be.
- the determination unit 20A sets the status of the reagent container to “unusable” in step S320.
- step S330 when the reagent container is in the “preparation 2” state, in step S330, the reagent waiting on the first reagent disk 7 or the second reagent disk 16 is subjected to calibration and quality control (QC: Quality Control). Set the sample and perform the analysis.
- QC Quality Control
- step S332 the drive control unit 20B controls the reagent container transport mechanism 17 to take out the reagent container 8 from the second reagent disk 16.
- step S334 the drive control unit 20B carries the reagent container 8 into the first reagent disk 7.
- step S336 calibration and quality control sample measurement are performed. Specifically, at the time of calibration, the drive control unit 20B controls the sample dispensing mechanism 6 so that the first standard solution for the reagent stored in the loaded reagent container 8 is stored in the reaction container 5. Dispense. Here, the first standard solution is stored in the sample container 3 held on the sample disk 2, and is, for example, a low-concentration standard solution.
- the drive control unit 20B controls the reagent dispensing mechanism 9 to dispense a predetermined amount of reagent from the reagent container 8 and dispense it into the reaction container into which the first standard solution has been dispensed.
- the drive controller 20B controls the stirring mechanism 10 to stir the mixed solution in the reaction vessel.
- the drive control unit 20B controls the multi-wavelength photometer 12 to measure the absorbance.
- the measurement result is taken into the storage means 21 via the A / D converter 13.
- the drive control unit 20 ⁇ / b> B controls the sample dispensing mechanism 6 to dispense the second standard solution for the reagent stored in the loaded reagent container 8 into the reaction container 5.
- the second standard solution is stored in the sample container 3 held on the sample disk 2, and is a high-concentration standard solution, for example.
- the drive control unit 20B controls the reagent dispensing mechanism 9 to dispense a predetermined amount of reagent from the reagent container 8 and dispense it into the reaction container into which the second standard solution has been dispensed.
- the drive controller 20B controls the stirring mechanism 10 to stir the mixed solution in the reaction vessel.
- the drive control unit 20B controls the multi-wavelength photometer 12 to measure the absorbance. The measurement result is taken into the storage means 21 via the A / D converter 13.
- the calculation unit 20C reads the absorbance with respect to the first standard solution and the absorbance with respect to the second standard solution from the storage means 21, creates a calibration curve by connecting the two with a straight line, and creates the calibration curve.
- the above example is an example of creating a calibration curve using two types of standard solutions having different concentrations, but using three or more types of standard solutions having different concentrations, approximating three or more types of absorbances with a curve.
- a calibration curve can also be created. It should be noted that a calibration curve can also be created by correcting the offset of the calibration curve using two types of standard solutions.
- the drive control unit 20B controls the sample dispensing mechanism 6 to dispense the quality control sample from the sample container 3 held on the sample disk 2 to the reaction container 5. To do.
- the drive control unit 20B controls the reagent dispensing mechanism 9 to dispense a predetermined amount of reagent from the reagent container 8 and dispense it into the reaction container into which the quality control sample has been dispensed.
- the drive controller 20B controls the stirring mechanism 10 to stir the mixed solution in the reaction vessel.
- the drive control unit 20B controls the multi-wavelength photometer 12 to measure the absorbance.
- the calculation unit 20C calculates the concentration with respect to the measured absorbance using the calibration curve obtained in advance as described above.
- the operator later compares the measured concentration value for the accuracy control sample with the concentration value stored in advance in the storage means 21 as the concentration of the accuracy control sample, so that the accuracy of the automatic analyzer falls within the predetermined accuracy. You can check whether or not.
- step S336 is only the measurement of the quality control sample (QC measurement).
- the drive control unit 20B controls the reagent container transport mechanism 17 to take out the reagent container 8 held in the first reagent disk 7. Then, the reagent container 8 is carried out to the second reagent disk 16.
- the reagent container when the reagent container is not used immediately, the reagent container is returned to the second reagent disk, and when the currently used reagent runs out, calibration and quality control sample measurement can be performed. If the reagent container that has been completed and is waiting on the second reagent disk is carried into the first reagent disk, the reagent container can be quickly switched without stopping the analysis.
- the determination unit 20A is configured not to enter the first reagent disk 7 which is the main reagent disk, except for the reagent container currently used (reagent container in the current state). . Since the storage unit 21 stores information on what kind of reagent container is installed in the first reagent disk 7, the determination unit 20A determines the reagent installation position of the first reagent disk 7 based on this information. If it is determined that the reagent container is full, the reagent container storing the reagent used for the analysis item for which no measurement request has been entered is temporarily returned to the second reagent disk 16, which is a subordinate reagent disk. The presence / absence of a measurement request is stored in the storage means 21.
- a reagent container that is less frequently used is temporarily returned to the second reagent disk 16.
- Usage frequency information is also stored in the storage means 21.
- the operator can not only automatically determine the use frequency based on the past history, but also can be set by the operator using the GUI of the display unit 22.
- the determination unit 20A performs statistical processing based on the past use results, and if the number of remaining tests for each analysis item exceeds the second reagent It is determined whether to return to the disk 16. For example, it is assumed that the reagent a used for the analysis item A can be subjected to 500 tests with the amount of reagent stored in one reagent container. A first reagent container of reagent a is installed on the first reagent disk 7, and the remaining amount is 20 tests. On the other hand, in the facility where the automatic analyzer is installed, the number of test requests per day for the analysis item A is 400 tests based on the past usage record.
- the remaining amount of the first reagent container (for 20 tests) is insufficient with respect to the number of test requests per day, so calibration and quality control measurement are performed for the second reagent container for the same reagent a.
- the second reagent container is left on the first reagent disk 7. If a third reagent container for the same reagent a is installed on the second reagent disk 16 and the calibration or quality control measurement for the third reagent container is completed, the first reagent disk 7 has already been stored. Since the first and second reagent containers are installed and the total remaining amount is 520 tests, which is larger than the number of tests for one day, the third reagent container is returned to the second reagent disk. .
- the reagent container for which calibration or accuracy control measurement has been completed can be left on the first reagent disk 7 or returned to the second reagent disk 16 according to an operator's instruction.
- the remaining amount management function of the automatic analyzer it is left on the first reagent disk 7 according to information set in advance for each analysis item, or in advance using the automatic analyzer calibration or quality control measurement.
- the information set for each analysis item can be returned to the second reagent disk 16.
- step S340 the determination unit 20A The container status is set to “available”.
- the analysis is started on the patient sample in step S350. That is, the drive control unit 20 controls each unit to perform sample dispensing, reagent dispensing, mixed liquid agitation, and measurement using a multiwavelength photometer, and the calculation unit 20C determines the concentration of the sample from the measurement result. Calculate and perform sample analysis.
- the determination unit 20A sets the status of the reagent container to the “use prohibited” state in step S352, The reagent container is carried out to the second reagent disk, and the reagent container is discarded from the disposal port.
- FIG. 4 shows one example of operation when the reagent container is carried from the second reagent disk 16 to the first reagent disk 7.
- step S400 the drive control unit 20B waits for a reagent loading request.
- a reagent loading request As described in the previous stage of step S310 in FIG. 3, when there is an instruction such as “regular reagent preparation instruction / manual instruction / pre-operation”, reagent loading is started.
- the drive control unit 20B controls the second reagent disk 16 to open the carry-out port of the second reagent disk 16.
- the second reagent disk 16 is a cold box in order to maintain the quality of the reagent, and the reagent container is housed in the cold box. Accordingly, the carry-out port is normally closed by a lid, preventing cold air from escaping to the outside and warm air from entering the inside of the cool box. The carry-out port is opened only when necessary. At this time, the carry-out port of the second reagent disk is not independent and may be common to carry-in / out.
- step S410 the reagent container transport mechanism 17 installs the reagent container in the transport mechanism 17 under the control of the drive control unit 20B. Then, the carry-out port of the second reagent disk 16 is closed.
- the reagent container transport mechanism 17 confirms the presence or absence of the reagent container under the control of the drive control unit 20B.
- the reagent container transport mechanism 17 includes a gripping mechanism for gripping the reagent container. Whether or not the reagent container is correctly gripped from the opening / closing position of the gripping mechanism and whether the reagent container is accurately installed in the transport mechanism is determined. To check. Further, the determination unit 20 ⁇ / b> A reads information on the reagent container by the RFID reader 32. The information to be read includes a reagent name, a lot number when the reagent is manufactured, a manufacturing date, a reagent amount, and the like.
- gripping of the reagent container may fail or reading of the reagent container information may fail. In this case, these operations are repeated.
- the repeated confirmation of the presence / absence of the reagent container and the information reading confirmation of the reagent container are set to five times (Max 5), but other times may be used.
- the determination unit 20A then combines a plurality of reagent containers per item (for example, the first reagent, the second reagent, etc.) Perform pairing). For example, when a new first reagent is installed in the reagent container transport mechanism 17 in a state where the remaining first reagent and second reagent are installed in the first reagent disk 7, the first reagent disk 7 is installed in the first reagent disk. Combining the first and second reagents.
- step 430 the determination unit 20 ⁇ / b> A transports the reagent container installed in the reagent container transport mechanism 17 to the first reagent disk 7 or returns it to the second reagent disk 16 based on the result of temporary pairing. That is, the loading destination of the reagent container is determined.
- step S440 the drive control unit 20B performs a loading operation according to the reagent container loading destination determined by the determination unit 20A in step S430. That is, in step S442, the drive control unit 20B transports the reagent container to the first reagent disk 7, and in step S444, the drive control unit 20B transports the reagent container to the second reagent disk 7.
- the repeated loading operation is five times, but other times may be used.
- FIG. 5 shows the loading operation of the reagent container onto the first reagent disk.
- step S500 the determination unit 20A determines a reagent container and an item (buffer) to be loaded according to the reagent container loading rule determined in step S440 of FIG.
- step S510 the drive control unit 20B controls the reagent container transport mechanism 17 to move the loading target reagent container to the information recognition position (the position of the RFID reader 32).
- step S520 the determination unit 20A confirms the reagent container information to be loaded from the reagent container information read by the RFID reader 32.
- step S530 the drive control unit 20B controls the reagent container transport mechanism 17 to take out the target reagent container from the second reagent disk 16.
- step S540 the drive control unit 20B controls the reagent container transport mechanism 17 to move the target reagent container to the opening position by the opening mechanism 30, and the opening operation by the opening mechanism 30 in step S550.
- step S560 using the RFID reader 32, the opened flag, the opened date and time, and the like are written in the reagent container information stored in the RFID tag attached to the reagent container. The series of opening operations is omitted when the already opened reagent is the target reagent container.
- step S570 the drive control unit 20B waits for an instruction to move the target reagent container to the first reagent disk 7. This instruction waiting may be performed a plurality of times instead of once.
- step S580 the drive control unit 20B controls the reagent container transport mechanism 17 to install the target reagent container at the designated position on the first reagent disk 7. Loading is complete. At this time, the information about the reagent container that has already been calibrated and controlled for accuracy is also transmitted to the computer 20.
- FIG. 6 shows an operation example of unloading the reagent container to the second reagent disk or the like.
- step S600 the determination unit 20A waits for a reagent container unloading request.
- the unloading request is issued, for example, when the reagent remaining amount in the reagent container installed on the first reagent disk 7 becomes zero.
- step S610 the determination unit 20A performs the storage or disposal operation of the reagent container. Specifically, in step S611, determination unit 20A extracts a combination of reagent containers to be unloaded (for example, a first reagent, a second reagent, etc.). For example, if both the first reagent and the second reagent expire, both reagents are extracted. Further, even if the first reagent and the second reagent are started to be used at the same time, if the amount used per test is different, only one of them will have a remaining amount of 0. Are extracted as unloading targets.
- a combination of reagent containers to be unloaded for example, a first reagent, a second reagent, etc.
- step s612 the drive control unit 20B controls the reagent container transport mechanism 17 to move the unloading target reagent container to the reagent container information recognition position, and reads out the reagent container information by the RFID reader 32, step S613. Then, the determination unit 20A confirms the read reagent container information.
- step S614 the drive control unit 20B controls the reagent container transport mechanism 17 to take out the target reagent container from the first reagent disk 7, and in step S615, the determination unit 20A causes the RFID reader 32 to operate.
- the information such as the remaining amount of reagent and the number of valid tests is written in the reagent container information stored in the RFID tag attached to the reagent container.
- step S616 the drive control unit 20B controls the reagent container transport mechanism 17 to store the target reagent container in the second reagent disk 16 (step S616A), Or it discards to a reagent container disposal position (step S616B).
- This series of flow from the reagent unloading instruction in step S610 is performed for the number of reagent containers to be unloaded.
- the writing / reading of the reagent container information can be performed by another mechanism without being performed in the first reagent disk.
- the reagent for replacement is stored on the second reagent disk, and the calibration of the reagent container to be used next is performed at a specified time or when the apparatus is not performing analysis. If it is not needed immediately, return to the original replacement reagent storage mechanism (second reagent disk) and leave only the necessary reagents in the place where the instrument uses for analysis (first reagent disk). Thus, business and measurement can be performed efficiently.
- the analysis is not performed without the intervention of the operator.
- the reagent can be changed without stopping.
- the work efficiency can be improved by reducing the operator work for reagent replacement.
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
測定を効率的に行える自動分析装置を提供する。この自動分析装置は、反応に使用する試薬を収納した試薬容器を載置する第1試薬ディスク7と、第2試薬ディスク16と、前記第1試薬ディスクと前記第2試薬ディスクとの間で、試薬容器を搬送する試薬容器搬送機構17とを有する。コンピュータ20の判定部20A及び駆動制御部20Bは、試薬容器搬送機構17により、第2試薬ディスク16に設置された試薬容器を第1試薬ディスク7に搬送し、第1試薬ディスク7に搬送された試薬容器に保持された試薬を用いて、キャリブレーションと精度管理測定の内少なくとも精度管理測定を実行した後、試薬容器搬送機構17を用いて、試薬容器を第2試薬ディスク16に戻すようにする。
Description
本発明は、血液、尿等の生体サンプルの定性・定量分析を行う臨床検査用の自動分析装置に係り、特に、測定に必要な試料、試薬などを自動で装置に供給する機能を備えた自動分析装置に関する。
臨床検査用の分析装置では、血液や尿など、生体試料中の特定成分の測定を行っている。分析装置の一般的な動きとしては、まず、試料を試料ノズルによって試料容器から反応容器に分注する。その後、試料を分注した反応容器に、試薬容器から試薬を試薬ノズルによって分注し、攪拌する。その後、一定の時間反応させ、反応液から得られる吸光度や発光量などの情報から目的とする項目の濃度演算を行っている。測定の際に使用する試薬は、試薬容器に一定の体積で充填されており、使用済みの試薬容器は、廃棄するか、新しい試薬を継ぎ足して使用する。近年、試薬の充填ミスや本来試薬容器を設置するべき場所に別項目の試薬容器をセットした(置き間違い)ことに起因した測定ミスといった医療過誤防止が図られている。この観点から、バーコードなどトレース可能な標識によって試薬容器ごとに管理され、試薬の劣化を極力防ぐために使用後の試薬容器には試薬を継ぎ足さず、使い捨ての運用となってきている。
通常、試薬はその日の測定完了後に、オペレータが自分の手によって、次の日の終了時間までに必要な分を計算し、分析装置に設置する。試薬の中には1項目あたり複数の試薬を使用するものもあるため、足りない試薬の確認、冷蔵庫からの必要な試薬の取り出し、装置へのセッティングに1時間以上要することがある。また、交換した試薬容器を実際に検査に使用するためには、その容器ごとに検量線を作成し、精度管理試料などの値付けされた試料を用いて、その試薬容器内の試薬で検査が可能かどうかをチェックする必要もある。そのため、試薬交換作業は非常に煩雑なものであるのが現状である。
近年は、1台の自動分析装置を昼夜使用することが多くなっている。しかし、夜間勤務にて装置を使用するオペレータは、必ずしもその自動分析装置の担当者とは限らないため、試薬交換作業や、その他の装置メンテナンスなどはすべて日勤担当者が請け負うのが一般的である。また、24時間の運用では、メンテナンスに時間がかかると、その分だけ後ろの検査に遅れが生じる可能性があるため、試薬交換などの時間を要するメンテナンスの必要をなるべく減らすことが求められている。
試薬交換のメンテナンスを減らす解決策の一つとして、新しい試薬容器をあらかじめ予備試薬庫にセットし、必要な時に分析装置が試薬庫に新しい試薬容器を運び、その一方で、使用済みの試薬容器を予備試薬庫に戻すものが知られている(例えば、特許文献1参照)。このように、必要な時に必要な試薬を装置が判断し、装置に搬入して使用済みの試薬容器を戻すというのは、試薬交換作業の軽減という意味においては有用なものである。
ここで、臨床検査技師など臨床現場での作業者は、医療費削減の流れの中で最小限にとどめられ、一人の技師で複数の業務を担当し、多忙を極めている。そうした多忙な業務の中に、装置のメンテナンスや試薬交換、検量線管理、精度管理なども含まれる。そのため、現状、実際にオペレータが行わなければならない検査測定前のメンテナンスの数を減らすことが求められている。
特許文献1では、交換用の試薬をあらかじめ保冷した場所に、一時保管し、必要な時に装置が使用する場所に試薬容器を運び、使用済みの試薬容器を交換用の試薬と同じ場所に戻すようにしている。必要な時に必要な試薬を装置が判断し、装置に搬入して使用済みの試薬容器を戻すというのは、試薬交換作業の軽減という意味においては有用なものである。
一方で、交換した試薬を用いて臨床検査を行う際、新たに設置した試薬自体がきちんとした測定を行えるように、その試薬で検量線を作成(キャリブレーション)し、精度管理試料を用いて精度管理を行う必要がある。そのため、新しい試薬を設置しただけでは、検体検査中に現在使用中の試薬がなくなったとしても、すぐには新しい試薬容器からの分析はできない。そのため、新しい試薬を用いて臨床検査する場合には、検査開始前に、自動分析装置による分析作業を停止し、キャリブレーションや精度管理を実行する必要がある。これに要する時間は10分強であり、この時間内は測定を行えないため、測定の効率が低下するという問題があった。
本発明の目的は、測定を効率的に行える自動分析装置を提供することにある。
上記目的を達成するために、本発明は、被分析試料,標準液,精度管理試料を収納した試料容器を載置する試料ディスクと、反応に使用する試薬を収納した試薬容器を載置する第1試薬ディスクと、前記試薬ディスクに載置された試薬容器から分注した試料と、前記第1試薬ディスクに載置された試薬容器から分注した試薬とを反応させる反応容器を載置する反応ディスクと、前記反応容器を透過した光を検知する光度計と、反応に使用する試薬を収納した試薬容器を載置するとともに、前記第1試薬ディスクとは別に設けられた第2試薬ディスクと、前記第1試薬ディスクと前記第2試薬ディスクとの間で、試薬容器を搬送する試薬容器搬送機構とを有し、前記第1試薬ディスクに搬送された試薬容器に保持された試薬と、前記標準液を用いて、キャリブレーションを実施し、前記第1試薬ディスクに搬送された試薬容器に保持された試薬と、前記精度管理試料を用いて、精度管理測定を実施する自動分析装置であって、前記試薬容器搬送機構により、前記第2試薬ディスクに設置された試薬容器を開栓後、前記第1試薬ディスクに搬送し、前記第1試薬ディスクに搬送された試薬容器に保持された試薬を用いて、前記キャリブレーションと前記精度管理測定の内少なくとも前記精度管理測定を実行した後、前記試薬容器搬送機構を用いて、前記試薬容器を前記第2試薬ディスクに戻す演算制御部を備えるようにしたものである。
かかる構成により、測定を効率的に行えるものとなる。
かかる構成により、測定を効率的に行えるものとなる。
本発明によれば、自動分析装置における測定を効率的に行えるものとなる。
以下、図1~図6を用いて、本発明の一実施形態による臨床検査用の自動分析装置の構成及び動作について説明する。
最初に、図1を用いて、本実施形態による臨床検査用の自動分析装置の全体構成について説明する。
図1は、本発明の一実施形態による臨床検査用の自動分析装置の全体構成を示すブロック図である。図1は、自動分析装置の主要部分の上面レイアウトに制御系の概念図を追記している。
最初に、図1を用いて、本実施形態による臨床検査用の自動分析装置の全体構成について説明する。
図1は、本発明の一実施形態による臨床検査用の自動分析装置の全体構成を示すブロック図である。図1は、自動分析装置の主要部分の上面レイアウトに制御系の概念図を追記している。
本発明が対象とする自動分析装置は、試料,試薬等の液体を分注ノズルを用いて、所定量採取する機構を備えたものである。以下では、血液,尿等の生体試料の分析を行う、臨床検査用自動分析装置を例にとって説明するが、たとえば、試料ラックを用いて分析部まで搬入するラック方式や、試薬容器の移動におけるロボットハンドリング方式など、本発明はこれに限定されるものではない。
自動分析装置1は、試料ディスク2と、その同心円状に配置された試料容器3と、反応ディスク4と、反応容器5と、試料分注機構6と、第1試薬ディスク7と、種々の試薬が入った試薬容器8と、試薬分注機構9と、撹拌機構10と、光源11と、光度計(多波長光度計)12と、A/Dコンバータ13と、反応容器洗浄機構14と、分注ノズル洗浄機構15と、第2試薬ディスク16と、試薬容器搬送機構17と、インターフェース19と、コンピュータ20と、記憶手段21と、表示部22と、開栓機構30と、RFIDリーダ32と、攪拌機構34とを備える。反応容器5は、反応ディスク4の円周方向に等間隔で設置される。試薬容器8は、第1試薬ディスク7の円周方向に等間隔で配置される。また、試薬容器8は、第2試薬ディスク16にはマトリクス状に等間隔で配置される。
開栓機構30は、試薬容器搬送機構17によって搬送される試薬容器8に対して、開栓が済んでない場合には、開栓する。開栓方法としては、試薬容器8の上部のキャップを外したり、試薬容器8の上部の封止部に穴を開けたりする。RIDリーダ32は、試薬容器搬送機構17によって搬送される試薬容器8に取り付けられているRFIDタグから、試薬容器8に収納された試薬情報を読み取る。試薬情報としては、試薬名、試薬量、試薬の有効期限、ロット番号などがある。また、RFIDリーダ32は、RFIDタグに対する情報書き込みも可能である。書き込まれる情報としては、例えば、開栓機構30によって試薬容器8の開栓が終了すると、開栓済みフラグをオンにする。また、その開栓した際の時刻(開栓事項)も書き込むことが可能である。攪拌機構34は、試薬容器中の試薬を攪拌するために用いられる。これは、これは長期間放置された試薬容器中の試薬が沈殿等によりの分布が不均一になっている場合があるからである。攪拌は、例えば、試薬容器に振動を与えることで行われる。
第1試薬ディスク7には、例えば、60個の試薬容器8を設置することができる。設置される各試薬容器8の形状は同一であり、その容量は異なることもある。試薬容器8には、それぞれ異なる分析項目の分析に用いられる試薬が収納されている。但し、ある分析項目に対する第1の試薬容器8に収納された試薬の残量が少ない場合には、同じ分析項目に対する試薬が収納された第2の試薬容器8が、試薬ディスク7に保持される場合もある。一般に、生化学分析の分析項目の分析を行う場合、一つの分析項目に用いる試薬は1種類である。免疫分析の分析項目の分析を行う場合、一つの分析項目に用いる試薬は2種類である。
第1試薬ディスク7はモータ等により回転される。試薬容器搬送機構17と第1試薬ディスク7が近接する位置において、試薬容器搬送機構17が第2試薬ディスク16から搬送してきた試薬容器を第1試薬ディスク7に設置することができる。従って、第1試薬ディスク7を回転することで、第1試薬ディスク7の任意の位置に、試薬容器を設置することができる。また、試薬容器搬送機構17は、第1試薬ディスク7に設置された試薬容器8を把持して、第2試薬ディスク16に搬送することができる。従って、第1試薬ディスク7を回転することで、第1試薬ディスク7の任意の位置の試薬容器を、第2試薬ディスク16に搬送することができる。
第2試薬ディスク16には、例えば、100個の試薬容器8を設置することができる。第2試薬ディスク16は、平面内で、複数の試薬容器8を移動して、試薬容器搬送機構17の近傍まで試薬容器8を移動することができる。
第2試薬ディスク16には、オペレータが新しい試薬容器8を設置する。設置された試薬容器8は、試薬容器搬送機構17の近傍まで移動され、試薬容器搬送機構17によって第1試薬ディスク7に搬送される。第1試薬ディスク7に搬送された試薬容器8の中の試薬は、キャリブレーションや精度管理が実行される。キャリブレーションや精度管理が実行された後、第1試薬ディスク7に設置された同じ種類の試薬の残量が多い場合は、その試薬容器8は、試薬容器搬送機構17により第2試薬ディスク16に戻される。なお、新しい試薬容器の中の試薬に対して、キャリブレーションや精度管理の両方が行われるとは限らない。例えば、最初に古い試薬に対して作成された検量線を用いて精度管理を実行し、精度管理の結果が良好である場合には、新しい試薬に対するキャリブレーションは実行されず、古い試薬に対する検量線をそのまま新しい試薬に対して用いる。
第1試薬ディスク7に設置された試薬容器で、残量が0になると、その試薬容器は試薬容器搬送機構17によって、第2試薬ディスク16に搬送される。第2試薬ディスク16には、廃棄口16’が設けられている。第2試薬ディスク16は、残量が0の試薬容器を廃棄口16’まで移動し、廃棄口16’から下方に廃棄される。
試料ディスク2には、例えば、100個の容器が設置可能である。このうち、2個は生化学分析のための第1及び第2の標準液を収納した標準液容器である。第1及び第2の標準液には、それぞれ同じ分析項目に対して異なる濃度の成分が含まれている。キャリブレーション時、コンピュータ20は、第1の標準液に対して、第1の分析項目について多波長光度計12で測定された第1の測定値と、第2の標準液に対して、第1の分析項目について多波長光度計12で測定された第2の測定値とを直線で結んで、検量線を作成する。また、第1の標準液には、第1の分析項目に限らず、他の分析項目に対する第1の濃度の成分が含まれており、第2の標準液には、第1の分析項目に限らず、他の分析項目に対する第2の濃度の成分が含まれている。このように、生化学分析の場合、複数の分析項目のキャリブレーションが可能なマルチキャリブレータの標準液が2個である。但し、免疫分析の場合、一つの分析項目に対して必要となる標準液は3個以上となる。また、それぞれの分析項目毎に3個の以上の標準液が必要となる。作成される検量線は、直線の場合もあるが、曲線の場合もある。
また、試料ディスク2には、1個の精度管理試料が収納された生化学分析のための精度管理試料容器が設置されている。精度管理試料には、例えば、第1の分析項目に対する既知の濃度の成分が含まれている。従って、精度管理試料を測定し、その測定結果と既知の濃度値との誤差が小さければ、分析装置の精度が維持されていると判定できる。また、精度管理試料には、第1の分析項目以外の他の分析項目の既知濃度の成分も含まれている。従って、1個の精度管理試料で、複数の分析項目に対する精度管理が可能である。但し、例えば、異なるメーカーによって調製された2種類の精度管理試料を試料ディスク2に保持して、両方の精度管理試料に対する分析を行い、精度管理の精度を高めることも行われる。また、2種類の精度管理試料から、選択することもできる。
次に、自動分析装置1による分析処理の流れについて、以下に説明する。
まず、試料分注機構6は、被分析試料を試料容器3から反応容器5に分注する。次に、試薬分注機構9が、分析に使用する試薬を試薬容器8から反応容器5に分注する。続いて、撹拌機構10は、被分析試料と試薬の混合液を撹拌する。反応ディスク4は恒温槽を有しており、反応容器5はこの恒温槽の内部に設置される。攪拌された混合液は、恒温槽の温度で一定時間保持され、その間、混合液の反応が進行する。一定時間経過後、光源11から発生し、混合液の入った反応容器5を透過した光は、光度計(多波長光度計)12により検知・測定され、A/Dコンバータ13を介してインターフェイス19に送信される。コンピュータ20は、演算部を含んでおり、演算部による演算の結果、得られた結果は、記憶手段21に保存されるとともに、情報機器に出力され、たとえば、表示部22に表示される。
第1試薬ディスク7内の試薬容器が設置されていない位置には、必要に応じて第2試薬ディスク16より、新しい試薬容器8が試薬容器搬送機構17によって設置される。また、必要がない時や、試薬容器8に保持された試薬の残量が0となり、その試薬容器8を廃棄するときは、試薬容器搬送機構17によって第2試薬ディスク16に当該試薬容器が移設される。
また、2箇所の分注ノズル洗浄機構15は、それぞれ、試料分注機構6、および試薬分注機構9が、試料、または試薬の分注を行うごとに、分注ノズルの先端を洗浄する。また、反応後の反応容器5は、反応容器洗浄機構14によって洗浄され、次の反応に繰り返し使用される。これら分析装置の動作機構は、すべて通信手段18、インターフェイス19と介してコンピュータ20に含まれる駆動制御部によって制御される。
上述した、第1試薬ディスク7から第2試薬ディスク16への試薬の移動について、以下より詳細に記載する。第2試薬ディスク16は、装置の状態(分析中か待機中か)によらず、オペレータが自由に試薬容器の出し入れが可能である。第2試薬ディスク16に新規に投入された試薬容器は、駆動制御部を含むコンピュータ20上でオペレータが指定した時間、または、一定時間分析が行われていない状態において、試薬容器搬送機構17によって、第1試薬ディスク7に搬送される。そして、その試薬容器は、第1試薬ディスク7の空き位置に投入され、必要なキャリブレーション、精度管理が行われる。なお、前述のように精度管理のみが行われ、キャリブレーションが行われない場合や、キャリブレーションと精度管理の両方が行われる場合がある。これらの処理の終了後、その試薬容器中の試薬をすぐに使用しない場合は、試薬容器搬送機構17によって、第2試薬ディスク16に戻され、分析に使用されるまで待機することになる。第1試薬ディスク7に保持されている試薬容器の残量が0になると、その試薬容器は、試薬容器搬送機構17によって第2試薬ディスク16に搬送され、廃棄口16’から廃棄される。その一方で、キャリブレーションや精度管理が終了し、一旦第2試薬ディスク16に戻された試薬容器は、試薬容器搬送機構17によって、第1試薬ディスク7の空いた空間に搬送される。ここで、第1試薬ディスク7に搬送された新しい試薬容器の中の試薬に対するキャリブレーションや、精度管理は既に実行されているため、第1試薬ディスク7に投入後、迅速に測定開始が可能になる。すなわち、従来は試薬容器の交換の際、一旦分析装置を停止し、新しい試薬容器を第1試薬ディスクに搬送後、分析装置を停止したままで、キャリブレーションや精度管理を行っており、この時間が無駄であった。それに対して、本実施形態では、かかる無駄を省いて、測定を効率的に行う事ができる。なお、試薬残量が0でなくても、オペレータの指示により、例えば、試薬の有効期限が切れた場合等に、試薬容器を廃棄することも可能である。
次に、図2を用いて、本実施形態による臨床検査用の自動分析装置の制御演算系の構成について説明する。
図2は、本発明の一実施形態による臨床検査用の自動分析装置における制御演算系の構成を示すブロック図である。なお、図1と同一符号は、同一部分を示している。
図2は、本発明の一実施形態による臨床検査用の自動分析装置における制御演算系の構成を示すブロック図である。なお、図1と同一符号は、同一部分を示している。
コンピュータ20は、判定部20Aと、駆動制御部20Bと、演算部20Cとを備えている。判定部20Aは、残量検知部9’によって検出された試薬容器8中の試薬の残量の情報を取得する。残量検知部9’は、試薬分注機構9に設けられた液面検出器などからなる。試薬分注機構9の分注ノズルの先端を試薬容器8の中に挿入し、このとき、液面検知器により試薬の液面を検出することで、試薬容器8の内部に残っている試薬の残量を検知することができる。また、判定部には、RFIDリーダ32によって読み取られた試薬情報が入力する。また、判定部20Aには、記憶手段21に記憶された情報が入力する。記憶手段21に記憶された情報としては、例えば、自動分析装置1が設置された施設における、試薬Aを用いる分析項目aの1日のテスト数や、分析項目aを1回実施する際に必要とする試薬量などの情報がある。判定部20Aは、これらの情報を用いて、第1試薬ディスク7でキャリブレーションや精度管理の終了した新しい試薬容器を、第2試薬ディスク16に戻すか、又は、第1試薬ディスク7に維持するか等を判定する。なお、この詳細については,図3~図6を用いて後述する。
駆動制御部20Bは、反応ディスク4の回転停止動作や、試料分注機構6による試料の分注動作や、第1試薬ディスク7の回転停止動作や、試薬分注機構9による試薬の分注動作や、撹拌機構10,34による攪拌動作や、第2試薬ディスク16における試薬容器の移動動作や、試薬容器搬送機構17による試薬容器の搬送動作や、開栓機構30による試薬容器の開栓動作を制御する。なお、駆動制御部20Bの動作の詳細についても,図3~図6を用いて後述する。
演算部20Cは、標準液に対して、多波長光度計12から得られた測定値から、検量線を作成する。また、演算部20Cは、精度管理試料に対して、多波長光度計12から得られた測定値から、精度管理を実行する。さらに、演算部20Cは、未知濃度の試料に対して、多波長光度計12から得られた測定値から、検量線を用いて濃度値を求める。これらにより得られた結果は、記憶手段21に記憶される。
次に、図3~図6を用いて、本実施形態による臨床検査用の自動分析装置における第1試薬ディスク、第2試薬ディスクを用いた試薬運用の具体例について説明する。
図3~図6は、本発明の一実施形態による臨床検査用の自動分析装置における第1試薬ディスク、第2試薬ディスクを用いた試薬運用の具体例を示すフローチャートである。なお、図4~図6は、図2に示す例の詳細説明図である。
図3~図6は、本発明の一実施形態による臨床検査用の自動分析装置における第1試薬ディスク、第2試薬ディスクを用いた試薬運用の具体例を示すフローチャートである。なお、図4~図6は、図2に示す例の詳細説明図である。
なお、図3~図6においては、図1に示した同一の自動分析装置上に供えられた2つの試薬ディスクを用いた運用について説明するが、第1試薬ディスク、第2試薬ディスクは、1つのシステムに別々のモジュールで構成されるように、必ずしも同一の一分析装置上になくともよい。また、試薬容器の認識にはRFIDを使用しているが、認識方法はバーコードやICチップなど別の手段でも可能である。
図3は、試薬容器の登録から、第1試薬ディスクへの搬入、分析、試薬容器の第2試薬ディスクへの搬出に関連する運用例を示している。ここでは、「試薬保管」、「準備1」、「準備2」、「分析中」の各段階があり、それぞれ、試薬容器がその時にどんな段階にあるかを示している。
まず、試薬容器が「試薬保管」の状態において、オペレータは、ステップS300において、第2試薬ディスク上に今後当該分析装置にて使用予定の試薬を設置し、表示部22に表示されるGUI(グラフィックユーザインターフェース)を用いて、試薬容器の登録を行う。登録する内容は、例えば、試薬容器に保持された試薬の名称、試薬が製造された時のロット番号、試薬の有効期限、分析パラメータ(例えば、1テスト辺りどのくらいの試薬量を使用するか)などである。
この段階で、試薬容器内の残量がなかったり、試薬の有効期限が切れていたり、RFID読み取りエラーである場合は、ステップS302において、判定部20Aは、試薬容器を廃棄状態とし、ステップS304において、判定部20Aは、試薬容器のステータスを「使用禁止」の状態とする。試薬容器内の残量がなかったり、試薬の有効期限が切れていたりする試薬とは、既に第1試薬ディスク7で使用しており、第1試薬ディスク7から第2試薬ディスク16に戻された試薬である。
一方、前述のように使用禁止状態でなくとも、ただ、試薬容器を設置しただけでは、キャリブレーションや精度管理が未実施のため、ステップS306において、判定部20Aは、その試薬容器のステータスを「使用不可」の状態とする。
次に、試薬容器が「準備1」の状態では、ステップS310において、試薬の攪拌や試薬容器の開封を行う。「準備1」は、オペレータが指定した時間(定時試薬準備指示))となった場合、もしくは装置上で、マニュアルによって指示した場合、分析を行っていない場合(プレオペ)に行われる。オペレータが指定した時間としては、例えば、「16時」である。一般に、日中の分析処理は、9時~16時に行われ、16時には終了する。また、夜間の分析処理は、17時以降翌朝に掛けて行われる。日中のオペレータとしてはベテランが配置され、夜間のオペレータとしては経験の少ない者が配置されることが多い。そこで、ベテランのオペレータは16時に日中の分析が終了すると、自動分析装置全体の試薬の残量を把握し、翌朝までに不足しそうな試薬については、「試薬保管」のステージにおいて、第2試薬ディスク16に新しい試薬容器を設置し、登録してあるので、その処理を受けて、16時から、「準備1」を実施する。
具体的には、ステップS311において、駆動制御部20Bは試薬容器搬送機構17を制御して、第2試薬ディスク16から試薬容器8を取り出す。そして、ステップS313において、駆動制御部20Bは攪拌機構34を駆動して、試薬容器8の撹拌を実施する。ここで、RFIDリーダ32からの情報で、試薬容器8に取り付けられたRFIDタグに記憶された情報から、判定部20Aが開栓が未実施と判定すると、ステップS315において、駆動制御部20Bは開栓機構30を制御して、試薬容器の開封(ピアッシング、またはキャップの開栓)を行う。その後、ステップS317において、駆動制御部20Bは試薬容器搬送機構17を制御して、試薬容器を第2試薬ディスク16から第1試薬ディスク7へ移動し、または、ステップS319において、駆動制御部20Bは試薬容器搬送機構17を制御して、試薬容器を第1試薬ディスクから第2試薬ディスクへ移動する。
この際、試薬容器の撹拌、試薬容器の開封は、第1試薬ディスクへ移動する段階ではなく、移動した後でも構わないし、開封後に第1試薬ディスクへ搬入せず、第2試薬ディスクへ搬出しても良い。
この段階では、その試薬容器はキャリブレーションや精度管理が未実施のため、ステップS320において、判定部20Aは、その試薬容器のステータスを「使用不可」の状態とする。
次に試薬容器が「準備2」の状態では、ステップS330において、第1試薬ディスク7若しくは第2試薬ディスク16に待機している試薬に対して、キャリブレーションや、精度管理(QC:Quality Control)試料を設定して分析を行う。なお、ここでは、すでに使用中(カレント)の試薬に対しても、キャリブレーション、精度管理試料測定は可能である。
具体的には、ステップS332において、駆動制御部20Bは試薬容器搬送機構17を制御して、第2試薬ディスク16から試薬容器8を取り出す。そして、ステップS334において、駆動制御部20Bは第1試薬ディスク7に試薬容器8を搬入する。
その後、ステップS336において、キャリブレーションと精度管理試料の測定が実施される。具体的には、キャリブレーションの際には、駆動制御部20Bは、試料分注機構6を制御して、搬入された試薬容器8に収納された試薬に対する第1の標準液を反応容器5に分注する。ここで、第1の標準液は、試料ディスク2に保持された試料容器3に収納されており、例えば低濃度の標準液である。次に、駆動制御部20Bは、試薬分注機構9を制御して、試薬容器8から所定量の試薬を分注し、第1の標準液が分注された反応容器内に分注する。駆動制御部20Bは、攪拌機構10を制御して、反応容器内の混合液を攪拌する。反応ディスク4に保持された反応容器中で、混合液が所定の反応時間(例えば、10分)を経過すると、駆動制御部20Bは、多波長光度計12を制御して、吸光度を測定する。測定結果は、A/Dコンバータ13を経て、記憶手段21に取り込まれる。次に、駆動制御部20Bは、試料分注機構6を制御して、搬入された試薬容器8に収納された試薬に対する第2の標準液を反応容器5に分注する。ここで、第2の標準液は、試料ディスク2に保持された試料容器3に収納されており、例えば高濃度の標準液である。次に、駆動制御部20Bは、試薬分注機構9を制御して、試薬容器8から所定量の試薬を分注し、第2の標準液が分注された反応容器内に分注する。駆動制御部20Bは、攪拌機構10を制御して、反応容器内の混合液を攪拌する。反応ディスク4に保持された反応容器中で、混合液が所定の反応時間を経過すると、駆動制御部20Bは、多波長光度計12を制御して、吸光度を測定する。測定結果は、A/Dコンバータ13を経て、記憶手段21に取り込まれる。次に、演算部20Cは、第1の標準液に対する吸光度と、第2の標準液に対する吸光度を記憶手段21から読み出し、両者を直線で結ぶことで、検量線を作成し、作成した検量線を記憶手段21に格納する。なお、以上の例は、濃度の異なる2種類の標準液を用いて検量線を作成する例であるが、濃度の異なる3種類以上の標準液を用いて、3種類以上の吸光度を曲線で近似して検量線を作成することもできる。なお、2種類の標準液を用いて、検量線のオフセット分を補正するようにして検量線を作成することもできる。
次に、精度管理試料の測定の場合には、駆動制御部20Bは、試料分注機構6を制御して、試料ディスク2に保持された試料容器3から精度管理試料を反応容器5に分注する。次に、駆動制御部20Bは、試薬分注機構9を制御して、試薬容器8から所定量の試薬を分注し、精度管理試料が分注された反応容器内に分注する。駆動制御部20Bは、攪拌機構10を制御して、反応容器内の混合液を攪拌する。反応ディスク4に保持された反応容器中で、混合液が所定の反応時間(例えば、10分)を経過すると、駆動制御部20Bは、多波長光度計12を制御して、吸光度を測定する。更に、演算部20Cは、前述のようにして予め求められている検量線を用いて、測定された吸光度に対する濃度を算出する。オペレータは、後ほど、この精度管理試料に対する測定濃度値と、精度管理試料の濃度として予め記憶手段21に記憶されている濃度値と比較することで、自動分析装置の精度が所定精度内に収まっているかどうかを確認することができる。
なお、以上の説明では、最初にキャリブレーションを行い,次に、このキャリブレーションで求めた検量線を用いて精度管理試料の測定を行っているが、最初に精度管理試料の測定を行い、この際、古い試薬に対して測定された検量線を用いるようにすることもできる。この場合、ステップS336の処理としては、精度管理試料の測定(QC測定)のみとなる。
次に、試薬容器8に保持された試薬が、待機試薬である場合には、駆動制御部20Bは試薬容器搬送機構17を制御して、第1試薬ディスク7に保持された試薬容器8を取り出して、第2試薬ディスク16に試薬容器8を搬出する。
このように、その試薬容器をすぐに使用しない場合は、第2試薬ディスクへ試薬容器を戻すことで、現在使用している試薬がなくなってしまった場合に、キャリブレーションや精度管理試料の測定が終了して第2試薬ディスクで待機している試薬容器を第1試薬ディスクに搬入すれば、分析を停止させることなく、迅速に試薬容器の切り替えを行うことができる。
ここで、キャリブレーションや精度管理測定が終了した試薬容器を第1試薬ディスク7から第2試薬ディスクに戻す条件について説明する。
基本的には、本実施形態では、判定部20Aは、現在使用している試薬容器(カレント状態の試薬容器)以外は、主たる試薬ディスクである第1試薬ディスク7には入れないようにしている。記憶手段21には、第1試薬ディスク7にどのような試薬容器が設置されているかの情報が記憶されているため、判定部20Aはこの情報に基づいて、第1試薬ディスク7の試薬設置位置が満杯と判定すると、測定依頼の入っていない分析項目に用いる試薬が収納された試薬容器は、従たる試薬ディスクである第2試薬ディスク16に一時的に戻すようにしている。測定依頼の有無は、記憶手段21に格納されている。また、使用頻度の少ない試薬容器も第2試薬ディスク16に一時的に戻すようにする。使用頻度の情報も、記憶手段21に格納されている。使用頻度が少なく第2試薬ディスク16に戻す試薬容器については、過去の履歴により使用頻度を自動判定するだけでなく、オペレータが表示部22のGUIを用いて設定することもできる。
第1試薬ディスク7の試薬容器設置位置に空きがある場合、判定部20Aは、これまでの使用実績に基づいて統計処理し、分析項目毎にどのくらいの残テスト数以上であれば、第2試薬ディスク16に戻すかを判定する。例えば、分析項目Aに使用する試薬aが1つの試薬容器に収納された試薬量で500テスト可能であるとする。第1試薬ディスク7に試薬aの第1の試薬容器が設置されており、その残量が20テスト分とする。一方で、自動分析装置が設置された施設において、過去の使用実績からすると、分析項目Aに対する1日のテスト依頼数が400テストとする。この場合、第1の試薬容器の残量(20テスト分)では、1日のテスト依頼数に対して不足するため、同じ試薬aに対する第2の試薬容器に対して、キャリブレーションや精度管理測定が終了した場合、この第2の試薬容器は、第1試薬ディスク7に残留させる。仮に、同じ試薬aに対する第3の試薬容器が第2試薬ディスク16に設置されており、この第3の試薬容器に対するキャリブレーションや精度管理測定が終了した場合、既に、第1試薬ディスク7には、第1と第2の試薬容器が設置されており、合計の残量は520テスト分であり、1日分のテスト数よりも多いため、第3の試薬容器は、第2試薬ディスクに戻す。
また、オペレータの指示により、キャリブレーションや精度管理測定の終了した試薬容器を、第1試薬ディスク7に残したり、第2試薬ディスク16に戻すこともできる。
更に、自動分析装置の残量管理機能を用いて、事前に分析項目毎に設定した情報により、第1試薬ディスク7に残したり、または、自動分析装置のキャリブレーションや精度管理測定を使用した事前の分析項目毎に設定した情報により、第2試薬ディスク16に戻すことができる。
ステップS330の処理が終了し、第2試薬ディスクから搬入された試薬(待機試薬)に対してキャリブレーション、精度管理試料測定が成功と判定された場合、ステップS340において、判定部20Aは、その試薬容器のステータスを「使用可能」の状態とする。
次に、試薬容器が「分析中」の状態では、ステップS350において、患者検体に対して分析を開始する。すなわち、駆動制御部20は、各部を制御して、試料の分注、試薬の分注、混合液の攪拌、多波長光度計による測定を行い、演算部20Cは測定した結果から試料の濃度を算出して、試料の分析を実施する。
そして、現在使用中の試薬容器の残量がなくなった場合、もしくは試薬の有効期限を超過した場合は、ステップS352において、判定部20Aは、その試薬容器のステータスを「使用禁止」の状態にし、試薬容器を第2試薬ディスクに搬出し、廃棄口から試薬容器を廃棄する。
次に、図4を用いて、図3における「準備1」の例の詳細について説明する。図4は、試薬容器を第2試薬ディスク16から第1試薬ディスク7へ搬入する際の運用例の1つを示している。
まず、ステップS400にて、駆動制御部20Bは試薬ローディング要求を待って待機している。図3のステップS310の前段に記載のように、「定時試薬準備指示/マニュアル指示/プレオペレーション」等の指示があると、試薬ローディングが開始される。
そして、駆動制御部20Bは、第2試薬ディスク16を制御して、第2試薬ディスク16の搬出口を開口する。第2試薬ディスク16は、試薬の品質を保持するため、保冷庫となっており、保冷庫の中に試薬容器を収納している。従って、通常は搬出口は蓋により閉じており、冷気が外部に逃げたり、暖気が保冷庫の内部に進入するのを防止している。搬出口は必要な時のみ、開口する。なお、このとき、第2試薬ディスクの搬出口は独立のものではなく、搬入出共通でもよいものである。
次に、ステップS410において、駆動制御部20Bの制御により試薬容器搬送機構17は、試薬容器を搬送機構17に設置する。そして、第2試薬ディスク16の搬出口を閉じる。
次に、ステップS420において、駆動制御部20Bの制御により試薬容器搬送機構17は、試薬容器の有無を確認する。試薬容器搬送機構17は、試薬容器を把持する把持機構を備えており、この把持機構の開閉位置等から試薬容器を把持が正しく行われ、そして、搬送機構に正確に試薬容器が設置されたか否かを確認する。また、判定部20Aは、RFIDリーダ32により試薬容器の情報を読取る。読み取る情報としては、試薬名、試薬の製造時のロット番号、製造日、試薬量などである。試薬の容器の把持が失敗したり、試薬容器情報の読み取りが失敗したりする場合もあるので、この場合には、これらの動作を繰り返す。ここでは、繰り返しの試薬容器の有無確認、および試薬容器の情報読取り確認を5回(Max 5)としているが、それ以外の回数でも良い。
試薬の有無、試薬容器の情報読取りが完了した場合、次に、ステップS430において、判定部20Aは、1項目あたり複数個の試薬容器の組み合わせ(たとえば、第1試薬、第2試薬など)(仮ペアリング)を行う。例えば、第1試薬ディスク7に残量のある第1試薬と第2試薬が設置されている状態で、新しい第1試薬が試薬容器搬送機構17に設置された場合、第1試薬ディスクに設置されている第1試薬と第2試薬を組み合わせる。第1試薬ディスクには残量のある第1試薬のみが設置され、第2試薬の残量が0である状態で、新しい第1試薬が試薬容器搬送機構17に設置された場合、新しい第1試薬と、第1試薬ディスク7に設置されている第2試薬を組み合わせる。ここで言う組み合わせは、「同一ロット>初回登録>有効期限>残量」などの条件を考慮して行うが、他の条件を用いてもよいものである。また、この例においては、繰り返しの組み合わせ作業を5回としているが、それ以外の回数でも良い。さらに、ステップ430では、判定部20Aは、仮ペアリングの結果に基づいて、試薬容器搬送機構17に設置された試薬容器を、第1試薬ディスク7に搬送するか、第2試薬ディスク16に戻すかを、すなわち、試薬容器のローディング先を決定する。
そして、ステップS440において、駆動制御部20Bは、ステップS430において判定部20Aが決定した試薬容器のローディング先に従って、ローディング動作を行う。すなわち、ステップS442では、駆動制御部20Bは、試薬容器を第1試薬ディスク7に搬送し、ステップS444では、駆動制御部20Bは、試薬容器を第2試薬ディスクに搬送する。なお、この例においては、繰り返しのローディング動作を5回としているが、それ以外の回数でも良い。
ローディング完了後、さらなる試薬容器の補充作業が必要であれば、以上の作業を繰り返す。
次に、図5を用いて、図3における「準備2」の例の詳細について説明する。図5は、試薬容器の第1試薬ディスクへのローディング動作を示している。
まず、ステップS500において、判定部20Aは、図4のステップS440で決定した試薬容器のローディングルールに従って、ローディングする試薬容器、項目(バッファ)を決定する。
次に、ステップS510において、駆動制御部20Bは試薬容器搬送機構17を制御して、ローディング対象の試薬容器を情報認識位置(RFIDリーダ32の位置)に移動させる。ステップS520において、判定部20Aは、RFIDリーダ32により読み出された試薬容器情報から、ローディング対象となる試薬容器情報を確認する。そして、その後、ステップS530において、駆動制御部20Bは試薬容器搬送機構17を制御して、対象試薬容器を第2試薬ディスク16から取り出す。
次に、ステップS540において、駆動制御部20Bは試薬容器搬送機構17を制御して、対象の試薬容器を開栓機構30による開栓位置へ移動し、ステップS550における開栓機構30による開栓動作後、ステップS560においてRFIDリーダ32を用いて、試薬容器に取り付けられたRFIDタグに記憶された試薬容器情報に、開栓済みのフラグ、及び開栓日時などを書き込む。なお、この一連の開栓作業は、すでに開栓済みの試薬が対象試薬容器である場合、省略する。
次に、ステップS570において、駆動制御部20Bは、対象の試薬容器について、第1試薬ディスク7への移動指示待ちをする。この指示待ちは、1回ではなく、定期的に複数回行われても構わない。
第1試薬ディスクへの試薬移動指示があった場合、ステップS580において、駆動制御部20Bは試薬容器搬送機構17を制御して第1試薬ディスク7の指定された位置に、対象試薬容器を設置して、ローディングが完了する。このとき、すでにキャリブレーションや精度管理を行っている試薬容器については、その情報もコンピュータ20に送信する。
次に、図6を用いて、図3における「分析中」の例の詳細について説明する。図6は、試薬容器の第2試薬ディスクなどへの搬出(アンローディング)運用例を示している。
ステップS600において、判定部20Aは、試薬容器のアンローディング要求を待って待機している。アンローディング要求は、例えば、第1試薬ディスク7に設置された試薬容器の中の試薬残量が0となった場合に発せられる。
判定部20Aが試薬アンローディング要求を受け取ると、ステップS610において、判定部20Aは、試薬容器の収納又は廃棄動作を実行する。具体的には、ステップS611において、判定部20Aは、アンローディング対象となる試薬容器の組み合わせ(たとえば、第1試薬、第2試薬など)を抽出する。例えば、第1試薬及び第2試薬の両方が有効期限切れとなれば、両方の試薬が抽出される。また、第1試薬と第2試薬を同時に使用開始しても、1テスト辺りに使用する量が異なれば、一方のみが残量0となるので、この場合は、残量0となった試薬容器がアンローディングの対象として抽出される。
次に、ステップs612において、駆動制御部20Bは、試薬容器搬送機構17を制御して、アンローディング対象試薬容器を試薬容器情報認識位置へ移動させ、RFIDリーダ32により試薬容器情報の読み出し、ステップS613において、判定部20Aは読み出した試薬容器情報を確認する。
次に、ステップS614において、駆動制御部20Bは、試薬容器搬送機構17を制御して、第1試薬ディスク7から、対象の試薬容器を取り出し、ステップS615において、判定部20Aは、RFIDリーダ32を用いて、試薬容器に取り付けられたRFIDタグに記憶された試薬容器情報に試薬残量、有効テスト数などの情報の書き込みを行う。
その後、ステップS616において、試薬容器の有無、オペレータのアンローディング指示に従い、駆動制御部20Bは、試薬容器搬送機構17を制御して、対象試薬容器を第2試薬ディスク16へ収納(ステップS616A)、または試薬容器廃棄位置へ廃棄する(ステップS616B)。
ステップS610における試薬アンローディング指示からのこの一連の流れは、アンローディング対象の試薬容器数分行われる。なお、試薬容器情報の書き込み/読み出しは第1試薬ディスク内で行わず、別の機構で行うことも可能である。
以上説明したように、本実施形態によれば、第2試薬ディスクに交換用の試薬を保管し、指定の時間、または装置が分析を行っていない時間に、次に使用する試薬容器のキャリブレーションや精度管理試料測定を行い、すぐに必要でなければ元の交換用試薬保管機構(第2試薬ディスク)へ戻し、必要な試薬のみを装置が分析に使用する場所(第1試薬ディスク)に残すことで、業務、及び測定を効率的に行えるようになる。
例えば、特に24時間運用のように、装置のメンテナンス等を熟知していない担当者が装置を使用し、現在使用している試薬がなくなった状況において、オペレータの手を介さず、さらには分析を止めることなく試薬の交換が可能になる。また、試薬交換にかかるオペレータ作業が軽減することによって作業効率の向上が図られる。
1…分析装置
2…試料ディスク
3…試料容器
4…反応ディスク
5…反応容器
6…試料分注機構
7…第1試薬ディスク
8…試薬容器
9…試薬分注機構
10…攪拌機構
11…光源
12…多波長光度計
13…A/Dコンバータ
14…反応容器洗浄機構
15…分注ノズル洗浄機構
16…第2試薬ディスク
17…試薬容器搬送機構
18…通信手段
19…インターフェイス
20…コンピュータ
21…記憶手段
22…表示部
30…開栓機構
32…RFIDリーダ
34…攪拌機構
2…試料ディスク
3…試料容器
4…反応ディスク
5…反応容器
6…試料分注機構
7…第1試薬ディスク
8…試薬容器
9…試薬分注機構
10…攪拌機構
11…光源
12…多波長光度計
13…A/Dコンバータ
14…反応容器洗浄機構
15…分注ノズル洗浄機構
16…第2試薬ディスク
17…試薬容器搬送機構
18…通信手段
19…インターフェイス
20…コンピュータ
21…記憶手段
22…表示部
30…開栓機構
32…RFIDリーダ
34…攪拌機構
Claims (5)
- 被分析試料,標準液,精度管理試料を収納した試料容器を載置する試料ディスクと、
反応に使用する試薬を収納した試薬容器を載置する第1試薬ディスクと、
前記試薬ディスクに載置された試薬容器から分注した試料と、前記第1試薬ディスクに載置された試薬容器から分注した試薬とを反応させる反応容器を載置する反応ディスクと、
前記反応容器を透過した光を検知する光度計と、
反応に使用する試薬を収納した試薬容器を載置するとともに、前記第1試薬ディスクとは別に設けられた第2試薬ディスクと、
前記第1試薬ディスクと前記第2試薬ディスクとの間で、試薬容器を搬送する試薬容器搬送機構とを有し、
前記第1試薬ディスクに搬送された試薬容器に保持された試薬と、前記標準液を用いて、キャリブレーションを実施し、
前記第1試薬ディスクに搬送された試薬容器に保持された試薬と、前記精度管理試料を用いて、精度管理測定を実施する自動分析装置であって、
前記試薬容器搬送機構により、前記第2試薬ディスクに設置された試薬容器を開栓後、前記第1試薬ディスクに搬送し、
前記第1試薬ディスクに搬送された試薬容器に保持された試薬を用いて、前記キャリブレーションと前記精度管理測定の内少なくとも前記精度管理測定を実行した後、前記試薬容器搬送機構を用いて、前記試薬容器を前記第2試薬ディスクに戻す演算制御部を備えることを特徴とする自動分析装置。 - 請求項1記載の自動分析装置において、
前記判定部が、前記第1試薬ディスクに設置された試薬容器に保持された試薬の残量が0になったと判定すると、
前記演算制御部は、前記第2試薬ディスクに設置され、既に前記精度管理測定が終了しており、残量が0になった試薬と同じ種類の試薬が保持された試薬容器を、前記試薬容器搬送機構を用いて、前記第2試薬ディスクから前記第1試薬ディスクに搬送することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
前記演算制御部は、前記第1試薬ディスクの試薬設置位置が満杯か否かを判定する判定部と、
該判定部が満杯と判定すると、前記試薬容器搬送機構を制御して、測定依頼の入っていない分析項目に用いる試薬が収納された試薬容器を、前記第2試薬ディスクに一時的に戻すように制御する駆動制御部とを備えることを特徴とする自動分析装置。 - 請求項3記載の自動分析装置において、
前記判定部が、過去の履歴により使用頻度が少ない試薬容器と判定すると、前記駆動制御部は、前記試薬容器搬送機構を制御して、測定依頼の入っていない分析項目に用いる試薬が収納された試薬容器を、前記第2試薬ディスクに一時的に戻すことを特徴とする自動分析装置。 - 請求項3記載の自動分析装置において、
前記判定部が、前記第1試薬ディスクの試薬容器設置位置に空きがあると判定すると、
前記判定部は、これまでの使用実績に基づいて統計処理し、分析項目毎にどのくらいの残テスト数以上であれば、前記第2試薬ディスクに戻すかを判定し、この判定に応じて、前記駆動制御部は、前記試薬容器搬送機構を制御して、測定依頼の入っていない分析項目に用いる試薬が収納された試薬容器を、前記第2試薬ディスクに一時的に戻すことを特徴とする自動分析装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13772285.6A EP2835649A4 (en) | 2012-04-06 | 2013-03-29 | AUTOMATIC ANALYSIS DEVICE |
CN201380018759.6A CN104246510B (zh) | 2012-04-06 | 2013-03-29 | 自动分析装置 |
US14/390,434 US20150044096A1 (en) | 2012-04-06 | 2013-03-29 | Automatic analyzer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012087789A JP2013217741A (ja) | 2012-04-06 | 2012-04-06 | 自動分析装置 |
JP2012-087789 | 2012-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150978A1 true WO2013150978A1 (ja) | 2013-10-10 |
Family
ID=49300463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059581 WO2013150978A1 (ja) | 2012-04-06 | 2013-03-29 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150044096A1 (ja) |
EP (1) | EP2835649A4 (ja) |
JP (1) | JP2013217741A (ja) |
CN (1) | CN104246510B (ja) |
WO (1) | WO2013150978A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200587A (ja) * | 2015-04-07 | 2016-12-01 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | 試薬管理システム |
JPWO2018155190A1 (ja) * | 2017-02-22 | 2020-02-13 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2020179317A1 (ja) * | 2019-03-05 | 2020-09-10 | 株式会社日立ハイテク | 自動分析装置および自動分析方法 |
WO2023090017A1 (ja) * | 2021-11-22 | 2023-05-25 | 株式会社島津製作所 | 分析装置、および方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6180721B2 (ja) * | 2012-10-25 | 2017-08-16 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP2015135282A (ja) * | 2014-01-17 | 2015-07-27 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP6164186B2 (ja) * | 2014-09-30 | 2017-07-19 | ブラザー工業株式会社 | 検査装置、検査プログラム、検査方法 |
WO2016130962A1 (en) | 2015-02-13 | 2016-08-18 | Abbott Laboratories | Automated storage modules for diagnostic analyzer liquids and related systems and methods |
JP6476022B2 (ja) * | 2015-03-13 | 2019-02-27 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP6439044B2 (ja) * | 2015-06-19 | 2018-12-19 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
DE212016000149U1 (de) * | 2015-08-27 | 2018-03-05 | Hitachi High-Technologies Corporation | Automatische Analysenvorrichtung |
JP6687834B2 (ja) * | 2016-02-03 | 2020-04-28 | 株式会社Jvcケンウッド | 分析装置及び分析方法 |
US10908174B2 (en) | 2016-09-16 | 2021-02-02 | Canon Medical Systems Corporation | Automatic analyzing apparatus |
WO2018150884A1 (ja) | 2017-02-15 | 2018-08-23 | 富士フイルム株式会社 | 生化学分析装置とその作動方法 |
JP6837362B2 (ja) * | 2017-03-17 | 2021-03-03 | 株式会社日立ハイテク | 自動分析装置 |
CN106950387B (zh) * | 2017-03-30 | 2018-10-16 | 迈克医疗电子有限公司 | 试剂更换控制方法、装置和分析仪器 |
EP3742169B1 (en) * | 2018-01-16 | 2022-06-22 | Hitachi High-Tech Corporation | Specimen processing system |
EP3851858B1 (en) * | 2018-09-12 | 2023-10-11 | Hitachi High-Tech Corporation | Automatic analysis device |
JP7224966B2 (ja) * | 2019-03-05 | 2023-02-20 | 株式会社日立ハイテク | 自動分析装置 |
JP7142155B2 (ja) | 2019-04-26 | 2022-09-26 | 株式会社日立ハイテク | 自動分析装置 |
CN113950626A (zh) * | 2019-06-11 | 2022-01-18 | 株式会社日立高新技术 | 自动分析装置以及异常检测方法 |
JP7306948B2 (ja) * | 2019-10-09 | 2023-07-11 | 株式会社日立ハイテク | 自動分析装置 |
JP7292185B2 (ja) * | 2019-11-12 | 2023-06-16 | 株式会社日立ハイテク | 自動分析装置 |
WO2021161723A1 (ja) * | 2020-02-14 | 2021-08-19 | 株式会社日立ハイテク | 自動分析装置 |
CN111812337A (zh) * | 2020-08-24 | 2020-10-23 | 桂林优利特医疗电子有限公司 | 使用单值校准物实现特定蛋白全线性范围标定系统及方法 |
WO2022070460A1 (ja) * | 2020-09-29 | 2022-04-07 | 株式会社日立ハイテク | 自動分析装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633265A (ja) * | 1986-06-24 | 1988-01-08 | Toshiba Corp | 自動化学分析装置 |
JP2001004637A (ja) * | 1999-06-23 | 2001-01-12 | Toshiba Corp | 自動分析システム |
JP2004271265A (ja) * | 2003-03-06 | 2004-09-30 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2005214683A (ja) * | 2004-01-28 | 2005-08-11 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2008209338A (ja) * | 2007-02-28 | 2008-09-11 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2009068993A (ja) * | 2007-09-13 | 2009-04-02 | Olympus Corp | 分析装置 |
JP2009168730A (ja) * | 2008-01-18 | 2009-07-30 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2010085249A (ja) | 2008-09-30 | 2010-04-15 | Olympus Corp | 自動分析装置、試薬補充装置および試薬オートローディング方法 |
JP2010085250A (ja) * | 2008-09-30 | 2010-04-15 | Olympus Corp | 自動分析装置、自動分析装置の暫定検量方法および自動分析装置の試薬オートローディング暫定検量方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068992A (ja) * | 2007-09-13 | 2009-04-02 | Olympus Corp | 分析装置 |
-
2012
- 2012-04-06 JP JP2012087789A patent/JP2013217741A/ja active Pending
-
2013
- 2013-03-29 WO PCT/JP2013/059581 patent/WO2013150978A1/ja active Application Filing
- 2013-03-29 EP EP13772285.6A patent/EP2835649A4/en not_active Withdrawn
- 2013-03-29 CN CN201380018759.6A patent/CN104246510B/zh active Active
- 2013-03-29 US US14/390,434 patent/US20150044096A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633265A (ja) * | 1986-06-24 | 1988-01-08 | Toshiba Corp | 自動化学分析装置 |
JP2001004637A (ja) * | 1999-06-23 | 2001-01-12 | Toshiba Corp | 自動分析システム |
JP2004271265A (ja) * | 2003-03-06 | 2004-09-30 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2005214683A (ja) * | 2004-01-28 | 2005-08-11 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2008209338A (ja) * | 2007-02-28 | 2008-09-11 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2009068993A (ja) * | 2007-09-13 | 2009-04-02 | Olympus Corp | 分析装置 |
JP2009168730A (ja) * | 2008-01-18 | 2009-07-30 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2010085249A (ja) | 2008-09-30 | 2010-04-15 | Olympus Corp | 自動分析装置、試薬補充装置および試薬オートローディング方法 |
JP2010085250A (ja) * | 2008-09-30 | 2010-04-15 | Olympus Corp | 自動分析装置、自動分析装置の暫定検量方法および自動分析装置の試薬オートローディング暫定検量方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2835649A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200587A (ja) * | 2015-04-07 | 2016-12-01 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | 試薬管理システム |
US11150256B2 (en) | 2015-04-07 | 2021-10-19 | Roche Diagnostics Operations, Inc. | Reagent management system |
JPWO2018155190A1 (ja) * | 2017-02-22 | 2020-02-13 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP7075923B2 (ja) | 2017-02-22 | 2022-05-26 | 株式会社日立ハイテク | 自動分析装置 |
WO2020179317A1 (ja) * | 2019-03-05 | 2020-09-10 | 株式会社日立ハイテク | 自動分析装置および自動分析方法 |
JPWO2020179317A1 (ja) * | 2019-03-05 | 2021-12-09 | 株式会社日立ハイテク | 自動分析装置および自動分析方法 |
CN113795757A (zh) * | 2019-03-05 | 2021-12-14 | 株式会社日立高新技术 | 自动分析装置以及自动分析方法 |
JP7204878B2 (ja) | 2019-03-05 | 2023-01-16 | 株式会社日立ハイテク | 自動分析装置および自動分析方法 |
WO2023090017A1 (ja) * | 2021-11-22 | 2023-05-25 | 株式会社島津製作所 | 分析装置、および方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2835649A4 (en) | 2015-11-18 |
EP2835649A1 (en) | 2015-02-11 |
CN104246510A (zh) | 2014-12-24 |
JP2013217741A (ja) | 2013-10-24 |
CN104246510B (zh) | 2016-05-11 |
US20150044096A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013150978A1 (ja) | 自動分析装置 | |
US8916095B2 (en) | Automatic analyzer | |
JP3873039B2 (ja) | 自動分析装置 | |
JP4558017B2 (ja) | 自動分析装置および自動分析装置の使用方法 | |
US8758684B2 (en) | Automatic analyzer | |
US20100001854A1 (en) | Analyzer and analysis method | |
JP2008058123A (ja) | 自動分析装置 | |
JP5535047B2 (ja) | 自動分析装置 | |
US20090215183A1 (en) | Specimen analyzer, abnormality control method of the same and computer program product | |
JP2008209338A (ja) | 自動分析装置 | |
JP2005214683A (ja) | 自動分析装置 | |
CN110325864B (zh) | 自动分析装置 | |
WO2012073878A1 (ja) | 自動分析装置 | |
JP2007240222A (ja) | 自動分析装置 | |
JP5097466B2 (ja) | 自動分析装置 | |
EP3626652A1 (en) | Consumable management system for laboratories | |
JP2006337386A (ja) | 自動分析装置 | |
JP5178891B2 (ja) | 自動分析装置 | |
EP3896454A1 (en) | Automated analyzer | |
WO2022176295A1 (ja) | 自動分析装置および自動分析装置の制御方法 | |
JP6039940B2 (ja) | 自動分析装置 | |
JPH10282106A (ja) | 自動分析装置 | |
JP6918531B2 (ja) | 自動分析器における誤測定結果の可能性を警告するシステム | |
EP1965215A2 (en) | Automatic analyzer | |
JP2014009989A (ja) | 自動分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380018759.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13772285 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14390434 Country of ref document: US Ref document number: 2013772285 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |