WO2013147290A1 - サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ - Google Patents

サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ Download PDF

Info

Publication number
WO2013147290A1
WO2013147290A1 PCT/JP2013/059796 JP2013059796W WO2013147290A1 WO 2013147290 A1 WO2013147290 A1 WO 2013147290A1 JP 2013059796 W JP2013059796 W JP 2013059796W WO 2013147290 A1 WO2013147290 A1 WO 2013147290A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
film
metal nitride
axis orientation
nitride film
Prior art date
Application number
PCT/JP2013/059796
Other languages
English (en)
French (fr)
Inventor
寛 田中
利晃 藤田
長友 憲昭
藤原 和崇
均 稲葉
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201380013405.2A priority Critical patent/CN104170031A/zh
Priority to EP13767726.6A priority patent/EP2833373B1/en
Priority to KR1020147027353A priority patent/KR101965024B1/ko
Priority to US14/389,229 priority patent/US9978484B2/en
Publication of WO2013147290A1 publication Critical patent/WO2013147290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/226Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor using microstructures, e.g. silicon spreading resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • H01C17/12Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a metal nitride film for a thermistor that can be directly formed on a film or the like without firing, a manufacturing method thereof, and a film type thermistor sensor.
  • a thermistor material used for a temperature sensor or the like is required to have a high B constant for high accuracy and high sensitivity.
  • transition metal oxides such as Mn, Co, and Fe are generally used for such thermistor materials (see Patent Documents 1 and 2).
  • these thermistor materials require firing at 600 ° C. or higher in order to obtain stable thermistor characteristics.
  • This Ta—Al—N-based material is produced by performing sputtering in a nitrogen gas-containing atmosphere using a material containing the above elements as a target. Further, the obtained thin film is heat-treated at 350 to 600 ° C. as necessary.
  • a very thin thermistor sensor can be obtained by using a film.
  • a film made of a resin material generally has a heat resistant temperature as low as 150 ° C. or less, and polyimide known as a material having a relatively high heat resistant temperature has only a heat resistance of about 200 ° C.
  • a thermistor material forming process In the case where heat treatment is applied, application is difficult.
  • the conventional oxide thermistor material requires firing at 600 ° C. or higher in order to realize desired thermistor characteristics, and there is a problem that a film type thermistor sensor directly formed on a film cannot be realized.
  • the obtained thin film can be obtained as necessary in order to obtain desired thermistor characteristics. It was necessary to perform heat treatment at 350 to 600 ° C. Further, in this example of the thermistor material, a material having a B constant of about 500 to 3000 K is obtained in the example of the Ta-Al-N-based material, but there is no description regarding heat resistance, and the thermal reliability of the nitride-based material. Sex was unknown. Furthermore, when the thermistor material layer is formed on the film, when the film is bent, a crack may occur in the thermistor material layer, resulting in a disadvantage that reliability is lowered.
  • the present invention has been made in view of the above-described problems.
  • the metal nitride film for a thermistor which can be directly formed on a film or the like without firing, and has excellent bending resistance, a method for producing the same, and a film type thermistor.
  • An object is to provide a sensor.
  • the inventors of the present invention focused on the AlN system among the nitride materials and made extensive research. As a result, it is difficult for AlN as an insulator to obtain optimum thermistor characteristics (B constant: about 1000 to 6000 K). For this reason, it was found that by replacing the Al site with a specific metal element that improves electrical conduction and having a specific crystal structure, a good B constant and heat resistance can be obtained without firing. It has also been found that high bending resistance can be obtained by controlling the film stress by setting specific orientation characteristics. Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
  • a thermistor metal nitride film according to the first invention is a gold nitride film used in a thermistor, the general formula: Ti x Al y N z ( 0.70 ⁇ y / (x + y) ⁇ 0.
  • the peak ratio of the diffraction peak intensity of the a-axis orientation (100) to the diffraction peak intensity of the c-axis orientation (002) (diffraction peak intensity of the a-axis orientation (100) / diffraction of the c-axis orientation (002). Since the peak intensity is 0.1 or less, the film stress is controlled and the generation of cracks can be suppressed even when bending. The reason why the peak ratio is set to 0.1 or less is that when the ratio exceeds 0.1, a crack occurs in one bending test (curvature having a diameter of 6 mm).
  • a film-type thermistor sensor comprises an insulating film, a thin film thermistor portion formed of the metal nitride film for the thermistor of the first invention on the insulating film, and at least above the thin film thermistor portion. Or a pair of pattern electrodes formed underneath. That is, in this film type thermistor sensor, since the thin film thermistor portion is formed of the metal nitride film for thermistor of the first invention on the insulating film, the thin film is formed by non-firing and has a high B constant and high heat resistance.
  • an insulating film having low heat resistance such as a resin film can be used, and a thin and flexible thermistor sensor having excellent thermistor properties and good thermistor characteristics can be obtained.
  • substrate materials using ceramics such as alumina are often used in the past. For example, when the thickness is reduced to 0.1 mm, the substrate material is very brittle and easily broken. Therefore, for example, a very thin film type thermistor sensor having a thickness of 0.1 mm or less can be obtained.
  • a method for producing a metal nitride film for a thermistor according to a third invention is a method for producing a metal nitride film for a thermistor according to the first invention, wherein the thermistor metal nitride film is produced in a nitrogen-containing atmosphere using a Ti—Al alloy sputtering target.
  • the physical film can be formed without firing.
  • the sputtering gas pressure in the reactive sputtering is set to 0.41 Pa or less, the c-axis is oriented more strongly than the a-axis in the direction perpendicular to the film surface, and the peak ratio becomes 0.1 or less.
  • the metal nitride film for a thermistor according to the first aspect of the invention can be formed.
  • the peak ratio of the diffraction peak intensity of the a-axis orientation (100) to the diffraction peak intensity of the c-axis orientation (002) in X-ray diffraction is 0.1 or less, high bending resistance can be obtained.
  • reactive sputtering with a sputtering gas pressure set to 0.41 Pa or less in a nitrogen-containing atmosphere using a Ti—Al alloy sputtering target is performed. Therefore, the metal nitride film for the thermistor of the present invention made of TiAlN having a peak ratio of 0.1 or less can be formed without firing.
  • the thin film thermistor portion is formed of the metal nitride film for thermistor of the present invention on the insulating film, the insulating film having low heat resistance such as a resin film. Can be used to obtain a thin and flexible thermistor sensor having excellent thermistor properties and good thermistor characteristics.
  • the substrate material is not a ceramic material that is very brittle and fragile when thin, but a resin film, a very thin film type thermistor sensor having a thickness of 0.1 mm or less can be obtained.
  • FIG. 1 is a Ti—Al—N-based ternary phase diagram showing a composition range of a thermistor metal nitride film in an embodiment of a thermistor metal nitride film, a method of manufacturing the thermistor metal nitride film, and a film type thermistor sensor according to the present invention.
  • it is a top view which shows a film type thermistor sensor.
  • it is a top view which shows the manufacturing method of a film type thermistor sensor in order of a process.
  • membrane for the thermistors which concerns on this invention, its manufacturing method, and a film type thermistor sensor it is the front view and top view which show the film
  • XRD X-ray diffraction
  • FIGS. 1-10 an embodiment of a metal nitride film for a thermistor according to the present invention, a manufacturing method thereof, and a film type thermistor sensor will be described with reference to FIGS.
  • the scale is appropriately changed as necessary to make each part recognizable or easily recognizable.
  • each composition ratio (x, y, z) (atomic%) of the points A, B, C, and D is A (15, 35, 50), B (2.5, 47.5, 50), C (3, 57, 40), D (18, 42, 40).
  • the metal nitride film for the thermistor has a peak ratio of the diffraction peak intensity of the a-axis orientation (100) to the diffraction peak intensity of the c-axis orientation (002) in X-ray diffraction (a).
  • the diffraction peak intensity of the axial orientation (100) / the diffraction peak intensity of the c-axis orientation (002)) is 0.1 or less. That is, in this metal nitride film for the thermistor, the c-axis is oriented more strongly than the a-axis in the direction perpendicular to the film surface.
  • the metal nitride film for the thermistor is a columnar crystal extending in a direction perpendicular to the surface of the film.
  • the determination of whether the a-axis orientation (100) is strong or the c-axis orientation (002) is strong in the direction perpendicular to the film surface (film thickness direction) and the a-axis with respect to the diffraction peak intensity of the c-axis orientation (002) The peak ratio of the diffraction peak intensity of the orientation (100) can be determined by examining the orientation of the crystal axis using X-ray diffraction (XRD), and (002) (c) It is obtained from the peak intensity ratio with the Miller index indicating the axial orientation.
  • the film type thermistor sensor 1 of the present embodiment includes an insulating film 2, a thin film thermistor portion 3 formed of TiAlN thermistor material on the insulating film 2, and a pair of opposed thermistors.
  • a counter electrode portion 4 a is disposed on the thin film thermistor portion 3 and a pair of pattern electrodes 4 formed on the insulating film 2 are provided.
  • the pair of counter electrode portions 4a cover the entire surface of the thin film thermistor portion 3 except for the region between the opposing electrode portions 4a.
  • the insulating film 2 is formed in a strip shape with, for example, a polyimide resin sheet having a thickness of 7.5 to 125 ⁇ m.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate, or the like may be used as the insulating film 2
  • the pattern electrode 4 includes a Cr or NiCr bonding layer having a film thickness of 5 to 100 nm formed on the thin film thermistor portion 3, and an electrode layer formed with a noble metal such as Au on the bonding layer with a film thickness of 50 to 1000 nm. And have.
  • the pair of pattern electrodes 4 is a pair of comb-shaped electrode portions of a comb-shaped pattern arranged in opposition to each other, the counter electrode portion 4a being a pair of comb-shaped electrode portions, a distal end portion connected to the counter electrode portion 4a, and a base end portion of the insulating film 2 And a pair of linearly extending portions 4b extending at the ends.
  • a plating portion 4c such as Au plating is formed as a lead wire lead-out portion.
  • a lead wire is joined to the plating portion 4c with a solder material or the like.
  • the polyimide coverlay film 7 is pressure-bonded on the insulating film 2 except for the end of the insulating film 2 including the plated portion 4c.
  • polyimide or epoxy resin material may be formed on the insulating film 2 by printing.
  • the manufacturing method of the film type thermistor sensor 1 includes a thin film thermistor portion forming step of patterning the thin film thermistor portion 3 on the insulating film 2 and a pair of opposed electrode portions 4 a facing each other on the thin film thermistor portion 3. And an electrode forming step of patterning a pair of pattern electrodes 4 on the insulating film 2.
  • the sputtering conditions at that time were: ultimate vacuum 5 ⁇ 10 ⁇ 6 Pa, sputtering gas pressure 0.41 Pa or less, target input power (output) 300 W, and nitrogen gas fraction in an Ar gas + nitrogen gas mixed gas atmosphere. Made at 20%.
  • the square-shaped thin film thermistor part 3 whose side is 1.6 mm is formed.
  • a Cr film bonding layer having a thickness of 20 nm is formed on the thin film thermistor portion 3 and the insulating film 2 by sputtering.
  • an Au film electrode layer is formed to a thickness of 200 nm on this bonding layer by sputtering.
  • pre-baking is performed at 110 ° C. for 1 minute 30 seconds. After exposure with an exposure apparatus, unnecessary portions are removed with a developer, and a temperature of 150 ° C. Patterning is performed by post-baking for minutes. Thereafter, unnecessary electrode portions are wet-etched in the order of commercially available Au etchant and Cr etchant, and a desired pattern electrode 4 is formed by resist stripping as shown in FIG.
  • the pair of counter electrode parts 4a is formed in a substantially square shape with an outer side of 1.0 to 1.9 mm on both sides, and the thin film thermistor part 3 is arranged so that the thin film thermistor part 3 comes to the center. Covered and patterned.
  • a polyimide coverlay film 7 with an adhesive having a thickness of 20 ⁇ m is placed on the insulating film 2 and bonded by pressing with a press machine at 150 ° C. and 2 MPa for 10 minutes.
  • the end portion of the linearly extending portion 4b is formed with a 2 ⁇ m thick Au thin film by using, for example, an Au plating solution to form a plated portion 4c.
  • a thin film type thermistor sensor 1 having a size of 16 ⁇ 4.0 mm and a thickness of 0.08 mm is obtained.
  • the general formula: Ti x Al y N z (0.70 ⁇ y / (x + y) ⁇ 0.95, 0.4 ⁇ z ⁇ 0.5, x + y + z 1), and its crystal structure is a hexagonal crystal system and a wurtzite type single phase, so that a good B constant can be obtained without firing and a high heat resistance.
  • the peak ratio of the diffraction peak intensity of the a-axis orientation (100) to the diffraction peak intensity of the c-axis orientation (002) (diffraction peak intensity of the a-axis orientation (100) / diffraction of the c-axis orientation (002). Since the peak intensity is 0.1 or less, the film stress is controlled and the generation of cracks can be suppressed even when bending.
  • the metal nitride film for the thermistor is a columnar crystal extending in a direction perpendicular to the surface of the film, the crystallinity of the film is high and high heat resistance is obtained.
  • the c-axis is oriented more strongly than the a-axis in the direction perpendicular to the surface of the film, so that a higher B constant can be obtained than when the a-axis orientation is strong.
  • the film is formed by performing reactive sputtering in a nitrogen-containing atmosphere using a Ti—Al alloy sputtering target. Therefore, the metal nitride for thermistors made of TiAlN.
  • the film can be formed without firing. Further, by setting the sputtering gas pressure in the reactive sputtering to 0.41 Pa or less, the c axis is oriented more strongly than the a axis in the direction perpendicular to the surface of the film, and the peak ratio is 0.1 or less.
  • a thermistor metal nitride film can be formed.
  • the thin film thermistor portion 3 is formed on the insulating film 2 from the metal nitride film for the thermistor.
  • the high thin film thermistor portion 3 can use the insulating film 2 having a low heat resistance such as a resin film, and a thin and flexible thermistor sensor having excellent thermistor properties and good thermistor characteristics can be obtained.
  • substrate materials using ceramics such as alumina are often used in the past.
  • the substrate material is very brittle and easily broken. Therefore, for example, a very thin film type thermistor sensor having a thickness of 0.1 mm or less can be obtained.
  • the film type thermistor sensor of the bending example manufactured based on the above embodiment was subjected to a bending test 100 times alternately with concave and convex with a radius of 6 mm, and the thin film thermistor part after the test. was observed to confirm the presence or absence of cracks. That is, as shown in FIG. 4A, the produced film type thermistor sensor 1 is sandwiched between a pair of sandwiching bodies 20a erected on the base 20b of the bending test jig 20, and FIG. As shown in (b) and (c), the region of the thin film thermistor portion 3 is bent 100 times to the left once and to the right once.
  • the pair of sandwiching bodies 20a has a circular arc shape with a curvature having a radius of 6 mm at the tip. That is, the above test was performed by setting a film-type thermistor sensor so that the thin film thermistor portion is positioned at the tip of the sandwiching body 20a having a radius of curvature of 6 mm. For the presence or absence of the crack, the thin film thermistor portion was observed from the insulating film side. In addition, changes in electrical characteristics before and after the test were also evaluated. These evaluation results are shown in Table 1.
  • membrane stress was calculated
  • the results are also shown in Table 1.
  • substrate of a following formula is equivalent to an insulating film.
  • the curvature radius of the above formula is such that the warping sample 1A in which the thin film thermistor portion 3 is formed on the entire surface of the insulating film 2 is vertically aligned with the flat plate member 21 as shown in FIG.
  • the amount of warpage and the radius of curvature were calculated from the average of the deflection distances a and b on both sides of the flat plate member 21 before and after film formation.
  • the obtained film stress is expressed as minus when a force is applied in the direction of compression, and is expressed as plus when a force is applied in the direction of tension.
  • the warping sample 1A is a 4 inch (101.6 mm) size, 50 ⁇ m thick polyimide film on the entire surface of the insulating film 2 with a Ti—Al alloy sputtering target and a metal mask in a nitrogen-containing atmosphere.
  • sputtering conditions at that time are as follows: ultimate vacuum 5 ⁇ 10 ⁇ 6 Pa, sputtering gas pressure 0.13 to 0.41 Pa, target input power (output) 300 W, Ar gas + nitrogen gas mixed In a gas atmosphere, a nitrogen gas fraction was produced at 20%.
  • a comparative example for bending a film type thermistor sensor in which a sputtering gas pressure was adjusted to 0.45 to 0.67 Pa and a thin film thermistor part having a peak ratio of more than 0.1 was formed was prepared. Evaluated. Table 1 shows film formation conditions such as sputtering gas pressure during film formation of each thin film thermistor part and the peak ratio in XRD. As a result of this evaluation, in the bending comparative example in which the peak ratio exceeds 0.1, cracks have occurred, whereas in all the bending examples of the present invention, the film stress is 20 MPa or less, There are no cracks.
  • the resistance value change rate and the B constant change rate are large, whereas in each bending example without a crack, the resistance value change rate is 0.4% or less and the B constant change rate is low. It was confirmed that the electrical property change was as small as 0.2% or less and the bending property was excellent.
  • a film evaluation element 121 shown in FIG. 7 was produced as follows. First, by reactive sputtering, Ti—Al alloy targets with various composition ratios are used to form Si substrates S with thermal oxide films on Si wafers with various composition ratios shown in Table 2 having a thickness of 500 nm. The thin film thermistor portion 3 of the formed metal nitride film for thermistor was formed.
  • the sputtering conditions at that time were: ultimate vacuum: 5 ⁇ 10 ⁇ 6 Pa, sputtering gas pressure: 0.1 to 1 Pa, target input power (output): 100 to 500 W, and in a mixed gas atmosphere of Ar gas + nitrogen gas The nitrogen gas fraction was changed to 10 to 100%.
  • a 20 nm Cr film was formed on the thin film thermistor portion 3 by sputtering, and a 100 nm Au film was further formed. Furthermore, after applying a resist solution thereon with a spin coater, pre-baking is performed at 110 ° C. for 1 minute 30 seconds, and after exposure with an exposure apparatus, unnecessary portions are removed with a developing solution, and post baking is performed at 150 ° C. for 5 minutes. Patterning. Thereafter, unnecessary electrode portions were wet-etched with a commercially available Au etchant and Cr etchant, and a patterned electrode 124 having a desired comb-shaped electrode portion 124a was formed by resist stripping.
  • the X-ray source is MgK ⁇ (350 W)
  • the path energy is 58.5 eV
  • the measurement interval is 0.125 eV
  • the photoelectron extraction angle with respect to the sample surface is 45 deg
  • the analysis area is about Quantitative analysis was performed under the condition of 800 ⁇ m ⁇ .
  • the quantitative accuracy the quantitative accuracy of N / (Ti + Al + N) is ⁇ 2%
  • the quantitative accuracy of Al / (Ti + Al) is ⁇ 1%.
  • B constant (K) ln (R25 / R50) / (1 / T25-1 / T50)
  • R25 ( ⁇ ) resistance value at 25 ° C.
  • R50 ( ⁇ ) resistance value at 50 ° C.
  • the Ti x Al y N 3 ternary triangular diagram of the composition ratio shown in FIG. 1 of z, the points A, B, C, in a region surrounded by D, ie, "0.70 ⁇ y / (x + y) ⁇ 0.95, 0.4 ⁇ z ⁇ 0.5, x + y + z 1 ”, thermistor characteristics of resistivity: 100 ⁇ cm or more, B constant: 1500 K or more Has been achieved.
  • FIG. 8 shows a graph showing the relationship between the resistivity at 25 ° C. and the B constant based on the above results.
  • a high resistance and high B constant region having a specific resistance value at 25 ° C. of 100 ⁇ cm or more and a B constant of 1500 K or more can be realized.
  • the B constant varies for the same Al / (Ti + Al) ratio because the amount of nitrogen in the crystal is different.
  • Comparative Examples 3 to 12 shown in Table 2 are regions of Al / (Ti + Al) ⁇ 0.7, and the crystal system is a cubic NaCl type.
  • the NaCl type and the wurtzite type coexist.
  • the specific resistance value at 25 ° C. was less than 100 ⁇ cm
  • the B constant was less than 1500 K
  • the region was low resistance and low B constant.
  • Comparative Examples 1 and 2 shown in Table 2 are regions where N / (Ti + Al + N) is less than 40%, and the metal is in a crystalline state with insufficient nitriding.
  • Comparative Examples 1 and 2 neither the NaCl type nor the wurtzite type was in a state of very poor crystallinity. Further, in these comparative examples, it was found that both the B constant and the resistance value were very small and close to the metallic behavior.
  • Thin film X-ray diffraction (identification of crystal phase)
  • the crystal phase of the thin film thermistor part 3 obtained by reactive sputtering was identified by oblique incidence X-ray diffraction (Grazing Incidence X-ray Diffraction). .
  • the impurity phase is not confirmed, and is a wurtzite type single phase.
  • the crystal phase was neither the wurtzite type phase nor the NaCl type phase as described above, and could not be identified in this test. Further, these comparative examples were materials with very poor crystallinity because the peak width of XRD was very wide. This is considered to be a metal phase with insufficient nitriding because it is close to a metallic behavior due to electrical characteristics.
  • all the examples of the present invention are films of a wurtzite type phase, and the orientation is strong, so is the a-axis orientation strong in the crystal axis in the direction perpendicular to the Si substrate S (film thickness direction)? Whether the c-axis orientation is strong was investigated using XRD. At this time, in order to investigate the orientation of the crystal axis, the peak intensity ratio between (100) (Miller index indicating a-axis orientation) and (002) (Miller index indicating c-axis orientation) was measured.
  • the example in which the film was formed at a sputtering gas pressure of less than 0.67 Pa was a film having a (002) strength much stronger than (100) and a stronger c-axis orientation than a-axis orientation.
  • the example in which the film was formed at a sputtering gas pressure of 0.41 Pa or less has a peak ratio of the diffraction peak intensity of the a-axis orientation (100) to the diffraction peak intensity of the c-axis orientation (002) (a-axis orientation (100)).
  • Diffraction peak intensity / diffraction peak intensity of c-axis orientation (002)) was 0.1 or less.
  • the example in which the film was formed at a sputtering gas pressure of 0.67 Pa or higher was a material having a (100) strength much stronger than (002) and a a-axis orientation stronger than the c-axis orientation. It is confirmed that a single wurtzite-type phase is formed even if a polyimide film is formed under the same film formation conditions. Moreover, even if it forms into a film on a polyimide film on the same film-forming conditions, it has confirmed that orientation does not change.
  • FIG. 10 shows an example of an XRD profile in an example where the c-axis orientation is strong and the peak ratio is 0.1 or less.
  • Al / (Ti + Al) 0.84 (wurtzite type, hexagonal crystal), and the incident angle was 1 degree.
  • the intensity of (002) is much stronger than (100).
  • FIG. 11 shows an example of a reference XRD profile having a strong a-axis orientation.
  • Al / (Ti + Al) 0.83 (wurtzite type, hexagonal crystal), and the incident angle was measured as 1 degree.
  • the strength of (100) is much stronger than (002).
  • the symmetric reflection measurement was performed with the incident angle set to 0 degree.
  • (*) In the graph is a peak derived from the device, and it is confirmed that it is not the peak of the sample body or the peak of the impurity phase (in addition, the peak disappears in the symmetric reflection measurement) (It can be seen that the peak is derived from the device.)
  • FIG. 1 An example of the XRD profile of the comparative example is shown in FIG.
  • Al / (Ti + Al) 0.6 (NaCl type, cubic crystal), and the incident angle was 1 degree.
  • a peak that could be indexed as a wurtzite type (space group P6 3 mc (No. 186)) was not detected, and it was confirmed to be a NaCl type single phase.
  • FIG. 14 shows a cross-sectional SEM photograph of the thin film thermistor portion 3 (ore type, hexagonal crystal, strong c-axis orientation).
  • the samples of these examples and reference examples are obtained by cleaving and breaking the Si substrate S. Moreover, it is the photograph which observed the inclination at an angle of 45 degrees.
  • Reference Example 5 and Example 8 are materials with strong c-axis orientation
  • Reference Examples 21 and 24 are materials with strong a-axis orientation. When both are compared, the heat resistance of the example / reference example having a strong c-axis orientation is slightly improved compared to the reference example having a strong a-axis orientation.
  • the ionic radius of Ta is much larger than that of Ti or Al, and thus a wurtzite type phase cannot be produced in a high concentration Al region. Since the TaAlN system is not a wurtzite type phase, the wurtzite type phase Ti-Al-N system is considered to have better heat resistance.
  • the pattern electrode (counter electrode portion) is formed on the thin film thermistor portion, but the pattern electrode may be formed below the thin film thermistor portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermistors And Varistors (AREA)

Abstract

フィルム等に非焼成で直接成膜することできると共に、耐屈曲性にも優れたサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサを提供する。サーミスタに用いられる金属窒化物膜であって、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であり、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下である。

Description

サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ
本発明は、フィルム等に非焼成で直接成膜可能なサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサに関する。
温度センサ等に使用されるサーミスタ材料は、高精度、高感度のために、高いB定数が求められている。従来、このようなサーミスタ材料には、Mn,Co,Fe等の遷移金属酸化物が一般的である(特許文献1及び2参照)。また、これらのサーミスタ材料では、安定なサーミスタ特性を得るために、600℃以上の焼成が必要である。
また、上記のような金属酸化物からなるサーミスタ材料の他に、例えば特許文献3では、一般式:M(但し、MはTa,Nb,Cr,Ti及びZrの少なくとも1種、AはAl,Si及びBの少なくとも1種を示す。0.1≦x≦0.8、0<y≦0.6、0.1≦z≦0.8、x+y+z=1)で示される窒化物からなるサーミスタ用材料が提案されている。また、この特許文献3では、Ta−Al−N系材料で、0.5≦x≦0.8、0.1≦y≦0.5、0.2≦z≦0.7、x+y+z=1としたものだけが実施例として記載されている。このTa−Al−N系材料では、上記元素を含む材料をターゲットとして用い、窒素ガス含有雰囲気中でスパッタリングを行って作製されている。また、必要に応じて、得られた薄膜を350~600℃で熱処理を行っている。
特開2003−226573号公報 特開2006−324520号公報 特開2004−319737号公報
上記従来の技術には、以下の課題が残されている。 近年、樹脂フィルム上にサーミスタ材料を形成したフィルム型サーミスタセンサの開発が検討されており、フィルムに直接成膜できるサーミスタ材料の開発が望まれている。すなわち、フィルムを用いることで、フレキシブルなサーミスタセンサが得られることが期待される。さらに、0.1mm程度の厚さを持つ非常に薄いサーミスタセンサの開発が望まれているが、従来はアルミナ等のセラミックス材料を用いた基板材料がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、フィルムを用いることで非常に薄いサーミスタセンサが得られることが期待される。 しかしながら、樹脂材料で構成されるフィルムは、一般的に耐熱温度が150℃以下と低く、比較的耐熱温度の高い材料として知られるポリイミドでも200℃程度の耐熱性しかないため、サーミスタ材料の形成工程において熱処理が加わる場合は、適用が困難であった。上記従来の酸化物サーミスタ材料では、所望のサーミスタ特性を実現するために600℃以上の焼成が必要であり、フィルムに直接成膜したフィルム型サーミスタセンサを実現できないという問題点があった。そのため、非焼成で直接成膜できるサーミスタ材料の開発が望まれているが、上記特許文献3に記載のサーミスタ材料でも、所望のサーミスタ特性を得るために、必要に応じて、得られた薄膜を350~600℃で熱処理する必要があった。また、このサーミスタ材料では、Ta−Al−N系材料の実施例において、B定数:500~3000K程度の材料が得られているが、耐熱性に関する記述がなく、窒化物系材料の熱的信頼性が不明であった。 さらに、フィルムにサーミスタ材料層を成膜した場合、フィルムを曲げた際に、サーミスタ材料層にクラックが発生することがあり、信頼性が低下してしまう不都合があった。
本発明は、前述の課題に鑑みてなされたもので、フィルム等に非焼成で直接成膜することできると共に、耐屈曲性にも優れたサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサを提供することを目的とする。
本発明者らは、窒化物材料の中でもAlN系に着目し、鋭意、研究を進めたところ、絶縁体であるAlNは、最適なサーミスタ特性(B定数:1000~6000K程度)を得ることが難しいため、Alサイトを電気伝導を向上させる特定の金属元素で置換すると共に、特定の結晶構造とすることで、非焼成で良好なB定数と耐熱性とが得られることを見出した。また、特定の配向特性に設定して膜応力を制御することで、高い耐屈曲性が得られることも見出した。 したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
すなわち、第1の発明に係るサーミスタ用金属窒化物膜は、サーミスタに用いられる金窒化物膜であって、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であり、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下であることを特徴とする。 このサーミスタ用金属窒化物膜では、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるので、非焼成で良好なB定数が得られると共に高い耐熱性を有している。 また、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下であるので、膜応力が制御されて曲げに対してもクラックの発生を抑制することができる。 なお、上記ピーク比を0.1以下に設定した理由は、が0.1を超えると、折曲試験(直径6mmの曲率)1回でクラックが発生してしまうためである。
なお、上記「y/(x+y)」(すなわち、Al/(Ti+Al))が0.70未満であると、ウルツ鉱型の単相が得られず、NaCl型相との共存相又はNaCl型相のみの相となってしまい、十分な高抵抗と高B定数とが得られない。 また、上記「y/(x+y)」(すなわち、Al/(Ti+Al))が0.95をこえると、抵抗率が非常に高く、きわめて高い絶縁性を示すため、サーミスタ材料として適用できない。 また、上記「z」(すなわち、N/(Ti+Al+N))が0.4未満であると、金属の窒化量が少ないため、ウルツ鉱型の単相が得られず、十分な高抵抗と高B定数とが得られない。 さらに、上記「z」(すなわち、N/(Ti+Al+N))が0.5を超えると、ウルツ鉱型の単相を得ることができない。このことは、ウルツ鉱型の単相において、窒素サイトにおける欠陥がない場合の正しい化学量論比は、N/(Ti+Al+N)=0.5であることに起因する。
第2の発明に係るフィルム型サーミスタセンサは、絶縁性フィルムと、該絶縁性フィルム上に第1の発明のサーミスタ用金属窒化物膜で形成された薄膜サーミスタ部と、少なくとも前記薄膜サーミスタ部の上又は下に形成された一対のパターン電極とを備えていることを特徴とする。 すなわち、このフィルム型サーミスタセンサでは、絶縁性フィルム上に第1の発明のサーミスタ用金属窒化物膜で薄膜サーミスタ部が形成されているので、非焼成で形成され高B定数で耐熱性の高い薄膜サーミスタ部により、樹脂フィルム等の耐熱性の低い絶縁性フィルムを用いることができると共に、耐屈曲性に優れ良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。 また、従来アルミナ等のセラミックスを用いた基板材料がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、本発明においてはフィルムを用いることができるので、例えば、厚さ0.1mm以下の非常に薄いフィルム型サーミスタセンサを得ることができる。
第3の発明に係るサーミスタ用金属窒化物膜の製造方法は、第1の発明のサーミスタ用金属窒化物膜を製造する方法であって、Ti−Al合金スパッタリングターゲットを用いて窒素含有雰囲気中で反応性スパッタを行って成膜する成膜工程を有し、前記反応性スパッタにおけるスパッタガス圧を、0.41Pa以下に設定することを特徴とする。 すなわち、このサーミスタ用金属窒化物膜の製造方法では、Ti−Al合金スパッタリングターゲットを用いて窒素含有雰囲気中で反応性スパッタを行って成膜するので、上記TiAlNからなる本発明のサーミスタ用金属窒化物膜を非焼成で成膜することができる。 また、反応性スパッタにおけるスパッタガス圧を、0.41Pa以下に設定するので、膜の表面に対して垂直方向にa軸よりc軸が強く配向し、0.1以下の上記ピーク比となる第1の発明に係るサーミスタ用金属窒化物膜の膜を形成することができる。
本発明によれば、以下の効果を奏する。 すなわち、本発明に係るサーミスタ用金属窒化物膜によれば、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるので、非焼成で良好なB定数が得られると共に高い耐熱性を有している。また、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比が、0.1以下であるので、高い耐屈曲性を得ることができる。 また、本発明に係るサーミスタ用金属窒化物膜の製造方法によれば、Ti−Al合金スパッタリングターゲットを用いて、窒素含有雰囲気中でスパッタガス圧を、0.41Pa以下に設定した反応性スパッタを行って成膜するので、上記ピーク比が0.1以下のTiAlNからなる本発明のサーミスタ用金属窒化物膜を非焼成で成膜することができる。
 さらに、本発明に係るフィルム型サーミスタセンサによれば、絶縁性フィルム上に本発明のサーミスタ用金属窒化物膜で薄膜サーミスタ部が形成されているので、樹脂フィルム等の耐熱性の低い絶縁性フィルムを用いて、耐屈曲性に優れ良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。さらに、基板材料が、薄くすると非常に脆く壊れやすいセラミックス材料でなく、樹脂フィルムであることから、厚さ0.1mm以下の非常に薄いフィルム型サーミスタセンサが得られる。
本発明に係るサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサの一実施形態において、サーミスタ用金属窒化物膜の組成範囲を示すTi−Al−N系3元系相図である。 本実施形態において、フィルム型サーミスタセンサを示す平面図である。 本実施形態において、フィルム型サーミスタセンサの製造方法を工程順に示す平面図である。 本発明に係るサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサの実施例において、サーミスタ用金属窒化物膜の耐屈曲性試験を示す説明図である。 サーミスタ用金属窒化物膜の反り測定方法において、屈曲用実施例を立設させた状態で上方から視た際の反りを示す説明図である。 本発明に係る実施例において、材料学的な圧縮と引張とを示す説明図である。 本発明に係るサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサの実施例において、サーミスタ用金属窒化物膜の膜評価用素子を示す正面図及び平面図である。 本発明に係る実施例・参考例及び比較例において、25℃抵抗率とB定数との関係を示すグラフである。 本発明に係る実施例・参考例及び比較例において、Al/(Ti+Al)比とB定数との関係を示すグラフである。 本発明に係る実施例において、Al/(Ti+Al)=0.84としたc軸配向が強い場合におけるX線回折(XRD)の結果を示すグラフである。 本発明に係る参考例において、Al/(Ti+Al)=0.83としたa軸配向が強い場合におけるX線回折(XRD)の結果を示すグラフである。 本発明に係る比較例において、Al/(Ti+Al)=0.60とした場合におけるX線回折(XRD)の結果を示すグラフである。 a軸配向の強い参考例とc軸配向の強い実施例・参考例とを比較したAl/(Ti+Al)比とB定数との関係を示すグラフである。 本発明に係るc軸配向が強い実施例を示す断面SEM写真である。 本発明に係るa軸配向が強い参考例を示す断面SEM写真である。
以下、本発明に係るサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサにおける一実施形態を,図1から図3を参照しながら説明する。なお、以下の説明に用いる図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
本実施形態のサーミスタ用金属窒化物膜は、サーミスタに用いられる金属窒化物膜であって、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系の結晶系であってウルツ鉱型(空間群P6mc(No.186))の単相である。すなわち、このサーミスタ用金属窒化物膜は、図1に示すように、Ti−Al−N系3元系相図における点A,B,C,Dで囲まれる領域内の組成を有し、結晶相がウルツ鉱型である金属窒化物である。 なお、上記点A,B,C,Dの各組成比(x、y、z)(原子%)は、A(15、35、50),B(2.5、47.5、50),C(3、57、40),D(18、42、40)である。
また、このサーミスタ用金属窒化物膜は、例えば、図10に示すように、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下である。 すなわち、このサーミスタ用金属窒化物膜は、膜の表面に対して垂直方向にa軸よりc軸が強く配向している。さらに、このサーミスタ用金属窒化物膜は、膜の表面に対して垂直方向に延在している柱状結晶である。
なお、膜の表面に対して垂直方向(膜厚方向)にa軸配向(100)が強いかc軸配向(002)が強いかの判断及びc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比は、X線回折(XRD)を用いて結晶軸の配向性を調べることで、(100)(a軸配向を示すミラー指数)と(002)(c軸配向を示すミラー指数)とのピーク強度比から求める。
次に、本実施形態のサーミスタ用金属窒化物膜を用いたフィルム型サーミスタセンサについて説明する。 本実施形態のフィルム型サーミスタセンサ1は、図2に示すように、絶縁性フィルム2と、該絶縁性フィルム2上にTiAlNのサーミスタ材料で形成された薄膜サーミスタ部3と、互いに対向した一対の対向電極部4aを薄膜サーミスタ部3上に配して絶縁性フィルム2上に形成された一対のパターン電極4とを備えている。
上記一対の対向電極部4aは、互いが対向した間の領域を除く薄膜サーミスタ部3の表面を全て覆っている。 上記絶縁性フィルム2は、例えば厚さ7.5~125μmのポリイミド樹脂シートで帯状に形成されている。なお、絶縁性フィルム2としては、他にPET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも構わない。
上記パターン電極4は、薄膜サーミスタ部3上に形成された膜厚5~100nmのCr又はNiCrの接合層と、該接合層上にAu等の貴金属で膜厚50~1000nmで形成された電極層とを有している。 一対のパターン電極4は、互いに対向状態に配した櫛形パターンの一対の櫛形電極部である上記対向電極部4aと、これら対向電極部4aに先端部が接続され基端部が絶縁性フィルム2の端部に配されて延在した一対の直線延在部4bとを有している。
また、一対の直線延在部4bの基端部上には、リード線の引き出し部としてAuめっき等のめっき部4cが形成されている。このめっき部4cには、リード線の一端が半田材等で接合される。さらに、めっき部4cを含む絶縁性フィルム2の端部を除いて該絶縁性フィルム2上にポリイミドカバーレイフィルム7が加圧接着されている。なお、ポリイミドカバーレイフィルム7の代わりに、ポリイミドやエポキシ系の樹脂材料を印刷で絶縁性フィルム2上に形成しても構わない。
次に、このフィルム型サーミスタセンサ1の製造方法について、図3を参照して以下に説明する。 本実施形態のフィルム型サーミスタセンサ1の製造方法は、絶縁性フィルム2上に薄膜サーミスタ部3をパターン形成する薄膜サーミスタ部形成工程と、互いに対向した一対の対向電極部4aを薄膜サーミスタ部3上に配して絶縁性フィルム2上に一対のパターン電極4をパターン形成する電極形成工程とを有している。
より具体的な製造方法の例としては、厚さ50μmのポリイミドフィルムの絶縁性フィルム2上に、Ti−Al合金スパッタリングターゲットを用い、窒素含有雰囲気中でメタルマスクを用いた反応性スパッタ法にて、TiAl(x=8、y=44、z=48)の薄膜サーミスタ部3を膜厚200nmで成膜する。その時のスパッタ条件は、到達真空度5×10−6Pa、スパッタガス圧0.41Pa以下、ターゲット投入電力(出力)300Wで、Arガス+窒素ガスの混合ガス雰囲気下において、窒素ガス分率を20%で作製した。
これにより、図3の(a)に示すように、一辺1.6mmの正方形状の薄膜サーミスタ部3を形成する。 次に、薄膜サーミスタ部3及び絶縁性フィルム2上に、スパッタ法にて、Cr膜の接合層を膜厚20nm形成する。さらに、この接合層上に、スパッタ法にてAu膜の電極層を膜厚200nm形成する。
次に、成膜した電極層の上にレジスト液をスピンコーターで塗布した後、110℃で1分30秒プリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃5分のポストベークにてパターニングを行う。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントの順番でウェットエッチングを行い、図3の(b)に示すように、レジスト剥離にて所望のパターン電極4を形成する。この際、一対の対向電極部4aは、両者で外形が一辺1.0~1.9mmの略正方形状とされ、薄膜サーミスタ部3が中央にくるように配されて、薄膜サーミスタ部3全体を覆ってパターン形成される。
次に、図3の(c)に示すように、例えば厚さ20μmの接着剤付きのポリイミドカバーレイフィルム7を絶縁性フィルム2上に載せ、プレス機にて150℃,2MPaで10min加圧し接着させる。さらに、図2に示すように、直線延在部4bの端部を、例えばAuめっき液によりAu薄膜を2μm形成してめっき部4cを形成する。 なお、複数の温度センサ1を同時に作製する場合、絶縁性フィルム2の大判シートに複数の薄膜サーミスタ部3及びパターン電極4を上述のように形成した後に、大判シートから各フィルム型サーミスタセンサ1に切断する。 このようにして、例えばサイズを16×4.0mmとし、厚さを0.08mmとした薄いフィルム型サーミスタセンサ1が得られる。
このように本実施形態のサーミスタ用金属窒化物膜では、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系の結晶系であってウルツ鉱型の単相であるので、非焼成で良好なB定数が得られると共に高い耐熱性を有している。 また、X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下であるので、膜応力が制御されて曲げに対してもクラックの発生を抑制することができる。
さらに、このサーミスタ用金属窒化物膜では、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高く、高い耐熱性が得られる。 なお、このサーミスタ用金属窒化物膜では、膜の表面に対して垂直方向にa軸よりc軸を強く配向させているので、a軸配向が強い場合に比べて高いB定数が得られる。
本実施形態のサーミスタ用金属窒化物膜の製造方法では、Ti−Al合金スパッタリングターゲットを用いて窒素含有雰囲気中で反応性スパッタを行って成膜するので、上記TiAlNからなる上記サーミスタ用金属窒化物膜を非焼成で成膜することができる。 また、反応性スパッタにおけるスパッタガス圧を、0.41Pa以下に設定することで、膜の表面に対して垂直方向にa軸よりc軸が強く配向し、0.1以下の上記ピーク比となるサーミスタ用金属窒化物膜の膜を形成することができる。
したがって、本実施形態のフィルム型サーミスタセンサ1では、絶縁性フィルム2上に上記サーミスタ用金属窒化物膜で薄膜サーミスタ部3が形成されているので、非焼成で形成され高B定数で耐熱性の高い薄膜サーミスタ部3により、樹脂フィルム等の耐熱性の低い絶縁性フィルム2を用いることができると共に、耐屈曲性に優れ良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。
また、従来アルミナ等のセラミックスを用いた基板材料がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、本発明においてはフィルムを用いることができるので、例えば、厚さ0.1mm以下の非常に薄いフィルム型サーミスタセンサを得ることができる。
次に、本発明に係るサーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサについて、上記実施形態に基づいて作製した実施例により評価した結果を、図4から図15を参照して具体的に説明する。
<屈曲試験> 上記実施形態に基づいて作製した屈曲用実施例のフィルム型サーミスタセンサに対して、半径6mmの曲率で凹と凸とに交互に100回ずつ屈曲試験を行い、試験後に薄膜サーミスタ部を観察し、クラックの有無を確認した。すなわち、図4の(a)に示すように、作製したフィルム型サーミスタセンサ1を、屈曲試験用治具20の台部20b上に立設された一対の挟持体20aの間に挟み、図4の(b)(c)に示すように、薄膜サーミスタ部3の領域について左に1回、右に1回曲げることを100回ずつ行う。なお、一対の挟持体20aは、それぞれ先端が半径6mmの曲率の断面円弧形状とされている。すなわち、挟持体20aの半径6mmの曲率になる先端に薄膜サーミスタ部が位置するようにフィルム型サーミスタセンサをセットして上記試験を行った。 上記クラックの有無については、絶縁性フィルム側から薄膜サーミスタ部を観察した。また、併せて試験前後における電気特性変化も評価した。これらの評価結果を表1に示す。
また、屈曲用実施例について、膜応力を以下の計算式及び計算値に基づいて求めた。この結果も表1に示す。なお、下記式の基板は、絶縁性フィルムに相等する。
Figure JPOXMLDOC01-appb-M000001
上記式の曲率半径は、絶縁性フィルム2の表面全体に薄膜サーミスタ部3を成膜した
だけの反り用サンプル1Aを、図5に示すように、垂直に立設状態の平板部材21に沿って立設させ、成膜前後における平板部材21に対する両側部のたわみ距離a,bの平均から反り量及び曲率半径を算出した。 なお、求めた膜応力は、図6に示すように、圧縮の方向に力が加わる場合はマイナスで表記され、引張の方向に力が加わる場合はプラスで表記される。
上記反り用サンプル1Aは、4インチ(101.6mm)サイズで、厚さ50μmのポリイミドフィルムの絶縁性フィルム2上の全面に、Ti−Al合金スパッタリングターゲットを用い、窒素含有雰囲気中でメタルマスクを用いた反応性スパッタ法にて、TiAl(x=8、y=44、z=48)の薄膜サーミスタ部3を膜厚200nmで成膜した。その時のスパッタ条件は、表1に示すように、到達真空度5×10−6Pa、スパッタガス圧0.13~0.41Pa、ターゲット投入電力(出力)300Wで、Arガス+窒素ガスの混合ガス雰囲気下において、窒素ガス分率を20%で作製した。
また、比較として、スパッタガス圧を0.45~0.67Paに調整し、上記ピーク比が0.1を超える薄膜サーミスタ部を成膜したフィルム型サーミスタセンサの屈曲用比較例を作製し、同様に評価した。なお、各薄膜サーミスタ部の成膜時のスパッタガス圧等の成膜条件と、XRDにおける上記ピーク比とは、表1に示すとおりである。 この評価の結果、上記ピーク比が0.1を超える屈曲用比較例では、クラックが発生してしまっているのに対し、本発明の屈曲用実施例はいずれも膜応力が20MPa以下であり、クラックが生じていない。
また、各屈曲用比較例では、抵抗値変化率及びB定数変化率が大きいのに対し、クラックの無い各屈曲用実施例は、抵抗値変化率が0.4%以下、B定数変化率が0.2%以下と、電気特性変化が小さく、曲げ性に対して優れていることが確認された。
Figure JPOXMLDOC01-appb-T000002
<膜評価用素子の作製> 本発明の実施例及び比較例として、図7に示す膜評価用素子121を次のように作製した。 まず、反応性スパッタ法にて、様々な組成比のTi−Al合金ターゲットを用いて、Si基板Sとなる熱酸化膜付きSiウエハ上に、厚さ500nmの表2に示す様々な組成比で形成されたサーミスタ用金属窒化物膜の薄膜サーミスタ部3を形成した。その時のスパッタ条件は、到達真空度:5×10−6Pa、スパッタガス圧:0.1~1Pa、ターゲット投入電力(出力):100~500Wで、Arガス+窒素ガスの混合ガス雰囲気下において、窒素ガス分率を10~100%と変えて作製した。
次に、上記薄膜サーミスタ部3の上に、スパッタ法でCr膜を20nm形成し、さらにAu膜を100nm形成した。さらに、その上にレジスト液をスピンコーターで塗布した後、110℃で1分30秒プリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃で5分のポストベークにてパターニングを行った。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントによりウェットエッチングを行い、レジスト剥離にて所望の櫛形電極部124aを有するパターン電極124を形成した。そして、これをチップ状にダイシングして、B定数評価及び耐熱性試験用の膜評価用素子121とした。 なお、比較としてTiAlの組成比が本発明の範囲外であって結晶系が異なる比較例についても同様に作製して評価を行った。
<膜の評価>(1)組成分析 反応性スパッタ法にて得られた薄膜サーミスタ部3について、X線光電子分光法(XPS)にて元素分析を行った。このXPSでは、Arスパッタにより、最表面から深さ20nmのスパッタ面において、定量分析を実施した。その結果を表2に示す。なお、以下の表中の組成比は「原子%」で示している。
なお、上記X線光電子分光法(XPS)は、X線源をMgKα(350W)とし、パスエネルギー:58.5eV、測定間隔:0.125eV、試料面に対する光電子取り出し角:45deg、分析エリアを約800μmφの条件下で定量分析を実施した。なお、定量精度について、N/(Ti+Al+N)の定量精度は±2%、Al/(Ti+Al)の定量精度は±1%ある。
(2)比抵抗測定 反応性スパッタ法にて得られた薄膜サーミスタ部3について、4端子法にて25℃での比抵抗を測定した。その結果を表2に示す。
(3)B定数測定 膜評価用素子121の25℃及び50℃の抵抗値を恒温槽内で測定し、25℃と50℃との抵抗値よりB定数を算出した。その結果を表2に示す。
なお、本発明におけるB定数算出方法は、上述したように25℃と50℃とのそれぞれの抵抗値から以下の式によって求めている。 B定数(K)=ln(R25/R50)/(1/T25−1/T50)  R25(Ω):25℃における抵抗値  R50(Ω):50℃における抵抗値  T25(K):298.15K 25℃を絶対温度表示  T50(K):323.15K 50℃を絶対温度表示
これらの結果からわかるように、TiAlの組成比が図1に示す3元系の三角図において、点A,B,C,Dで囲まれる領域内、すなわち、「0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1」となる領域内の実施例全てで、抵抗率:100Ωcm以上、B定数:1500K以上のサーミスタ特性が達成されている。
上記結果から25℃での抵抗率とB定数との関係を示したグラフを、図8に示す。また、Al/(Ti+Al)比とB定数との関係を示したグラフを、図9に示す。これらのグラフから、Al/(Ti+Al)=0.7~0.95、かつ、N/(Ti+Al+N)=0.4~0.5の領域で、結晶系が六方晶のウルツ鉱型の単一相であるものは、25℃における比抵抗値が100Ωcm以上、B定数が1500K以上の高抵抗かつ高B定数の領域が実現できている。なお、図9のデータにおいて、同じAl/(Ti+Al)比に対して、B定数がばらついているのは、結晶中の窒素量が異なるためである。
表2に示す比較例3~12は、Al/(Ti+Al)<0.7の領域であり、結晶系は立方晶のNaCl型となっている。また、比較例12(Al/(Ti+Al)=0.67)では、NaCl型とウルツ鉱型とが共存している。このように、Al/(Ti+Al)<0.7の領域では、25℃における比抵抗値が100Ωcm未満、B定数が1500K未満であり、低抵抗かつ低B定数の領域であった。
表2に示す比較例1,2は、N/(Ti+Al+N)が40%に満たない領域であり、金属が窒化不足の結晶状態になっている。この比較例1,2は、NaCl型でも、ウルツ鉱型でもない、非常に結晶性の劣る状態であった。また、これら比較例では、B定数及び抵抗値が共に非常に小さく、金属的振舞いに近いことがわかった。
(4)薄膜X線回折(結晶相の同定) 反応性スパッタ法にて得られた薄膜サーミスタ部3を、視斜角入射X線回折(Grazing Incidence X−ray Diffraction)により、結晶相を同定した。この薄膜X線回折は、微小角X線回折実験であり、管球をCuとし、入射角を1度とすると共に2θ=20~130度の範囲で測定した。一部のサンプルについては、入射角を0度とし、2θ=20~100度の範囲で測定した。
その結果、Al/(Ti+Al)≧0.7の領域においては、ウルツ鉱型相(六方晶、AlNと同じ相)であり、Al/(Ti+Al)<0.65の領域においては、NaCl型相(立方晶、TiNと同じ相)であった。また、0.65< Al/(Ti+Al)<0.7においては、ウルツ鉱型相とNaCl型相との共存する結晶相であった。
このようにTiAlN系においては、高抵抗かつ高B定数の領域は、Al/(Ti+Al)≧0.7のウルツ鉱型相に存在している。なお、本発明の実施例では、不純物相は確認されておらず、ウルツ鉱型の単一相である。 なお、表2に示す比較例1,2は、上述したように結晶相がウルツ鉱型相でもNaCl型相でもなく、本試験においては同定できなかった。また、これらの比較例は、XRDのピーク幅が非常に広いことから、非常に結晶性の劣る材料であった。これは、電気特性により金属的振舞いに近いことから、窒化不足の金属相になっていると考えられる。
Figure JPOXMLDOC01-appb-T000003
次に、本発明の実施例は全てウルツ鉱型相の膜であり、配向性が強いことがら、Si基板S上に垂直な方向(膜厚方向)の結晶軸においてa軸配向性が強いか、c軸配向性が強いかであるかについて、XRDを用いて調査した。この際、結晶軸の配向性を調べるために、(100)(a軸配向を示すミラー指数)と(002)(c軸配向を示すミラー指数)とのピーク強度比を測定した。
その結果、スパッタガス圧が0.67Pa未満で成膜された実施例は、(100)よりも(002)の強度が非常に強く、a軸配向性よりc軸配向性が強い膜であった。特に、スパッタガス圧が0.41Pa以下で成膜された実施例は、c軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下であった。
一方、スパッタガス圧が0.67Pa以上で成膜された実施例は、(002)よりも(100)の強度が非常に強く、c軸配向よりa軸配向が強い材料であった。 なお、同じ成膜条件でポリイミドフィルムに成膜しても、同様にウルツ鉱型相の単一相が形成されていることを確認している。また、同じ成膜条件でポリイミドフィルムに成膜しても、配向性は変わらないことを確認している。
c軸配向が強く上記ピーク比が0.1以下の実施例におけるXRDプロファイルの一例を、図10に示す。この実施例は、Al/(Ti+Al)=0.84(ウルツ鉱型、六方晶)であり、入射角を1度として測定した。この結果からわかるように、この実施例では、(100)よりも(002)の強度が非常に強くなっている。 また、a軸配向が強い参考例のXRDプロファイルの一例を、図11に示す。この実施例は、Al/(Ti+Al)=0.83(ウルツ鉱型、六方晶)であり、入射角を1度として測定した。この結果からわかるように、この参考例では、(002)よりも(100)の強度が非常に強くなっている。
さらに、この参考例について、入射角を0度として、対称反射測定を実施した。グラフ中(*)は装置由来のピークであり、サンプル本体のピーク、もしくは、不純物相のピークではないことを確認している(なお、対称反射測定において、そのピークが消失していることからも装置由来のピークであることがわかる。)。
なお、比較例のXRDプロファイルの一例を、図12に示す。この比較例は、Al/(Ti+Al)=0.6(NaCl型、立方晶)であり、入射角を1度として測定した。ウルツ鉱型(空間群P6mc(No.186))として指数付けできるピークは検出されておらず、NaCl型単独相であることを確認した。
次に、ウルツ鉱型材料である本発明の実施例・参考例に関して、さらに結晶構造と電気特性との相関を詳細に比較した。 表3及び図13に示すように、Al/(Ti+Al)比がほぼ同じ比率のものに対し、基板面に垂直方向の配向度の強い結晶軸がc軸である材料(参考例5,実施例7,8,9)とa軸である材料(参考例19,20,21)とがある。
これら両者を比較すると、Al/(Ti+Al)比が同じであると、a軸配向が強い材料よりもc軸配向が強い材料の方が、B定数が100K程度大きいことがわかる。また、N量(N/(Ti+Al+N))に着目すると、a軸配向
が強い材料よりもc軸配向が強い材料の方が、窒素量がわずかに大きいことがわかる。理想的な化学量論比:N/(Ti+Al+N)=0.5であることから、c軸配向が強い材料のほうが、窒素欠陥量が少なく理想的な材料であることがわかる。
Figure JPOXMLDOC01-appb-T000004
<結晶形態の評価> 次に、薄膜サーミスタ部3の断面における結晶形態を示す一例として、熱酸化膜付きSi基板S上に成膜された実施例(Al/(Ti+Al)=0.84,ウルツ鉱型、六方晶、c軸配向性が強い)の薄膜サーミスタ部3における断面SEM写真を、図14に示す。また、参考例(Al/(Ti+Al)=0.83,ウルツ鉱型六方晶、a軸配向性が強い)の薄膜サーミスタ部3における断面SEM写真を、図15に示す。 これら実施例・参考例のサンプルは、Si基板Sをへき開破断したものを用いている。また、45°の角度で傾斜観察した写真である。
これらの写真からわかるように、いずれの実施例・参考例も高密度な柱状結晶で形成されている。すなわち、c軸配向が強い実施例及びa軸配向が強い参考例の共に基板面に垂直な方向に柱状の結晶が成長している様子が観測されている。なお、柱状結晶の破断は、Si基板Sをへき開破断した際に生じたものである。
<耐熱試験評価> 表4に示す実施例、参考例及び比較例において、大気中,125℃,1000hの耐熱試験前後における抵抗値及びB定数を評価した。その結果を表4に示す。なお、比較として従来のTa−Al−N系材料による比較例も同様に評価した。 これらの結果からわかるように、Al濃度及び窒素濃度は異なるものの、Ta−Al−N系である比較例と同じB定数で比較したとき、耐熱試験前後における電気特性変化でみたときの耐熱性は、Ti−Al−N系のほうが優れている。なお、参考例5,実施例8はc軸配向が強い材料であり、参考例21,24はa軸配向が強い材料である。両者を比較すると、c軸配向が強い実施例・参考例の方がa軸配向が強い参考例に比べて僅かに耐熱性が向上している。
なお、Ta−Al−N系材料では、Taのイオン半径がTiやAlに比べて非常に大きいため、高濃度Al領域でウルツ鉱型相を作製することができない。TaAlN系がウルツ鉱型相でないがゆえ、ウルツ鉱型相のTi−Al−N系の方が耐熱性が良好であると考えられる。
Figure JPOXMLDOC01-appb-T000005
なお、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 例えば、上記実施形態では、薄膜サーミスタ部の上にパターン電極(対向電極部)を形成しているが、薄膜サーミスタ部の下にパターン電極を形成しても構わない。
1…フィルム型サーミスタセンサ、2…絶縁性フィルム、3…薄膜サーミスタ部、4…パターン電極

Claims (3)

  1. サーミスタに用いられる金属窒化物膜であって、 一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、 その結晶構造が、六方晶系のウルツ鉱型の単相であり、 X線回折においてc軸配向(002)の回折ピーク強度に対するa軸配向(100)の回折ピーク強度のピーク比(a軸配向(100)の回折ピーク強度/c軸配向(002)の回折ピーク強度)が、0.1以下であることを特徴とするサーミスタ用金属窒化物膜。
  2. 絶縁性フィルムと、 該絶縁性フィルム上に請求項1に記載のサーミスタ用金属窒化物膜で形成された薄膜サーミスタ部と、 少なくとも前記薄膜サーミスタ部の上又は下に形成された一対のパターン電極とを備えていることを特徴とするフィルム型サーミスタセンサ。
  3. 請求項1に記載のサーミスタ用金属窒化物膜を製造する方法であって、 Ti−Al合金スパッタリングターゲットを用いて窒素含有雰囲気中で反応性スパッタを行って成膜する成膜工程を有し、 前記反応性スパッタにおけるスパッタガス圧を、0.41Pa以下に設定することを特徴とするサーミスタ用金属窒化物膜の製造方法。
PCT/JP2013/059796 2012-03-30 2013-03-25 サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ WO2013147290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380013405.2A CN104170031A (zh) 2012-03-30 2013-03-25 热敏电阻用金属氮化物膜及其制造方法以及薄膜型热敏电阻传感器
EP13767726.6A EP2833373B1 (en) 2012-03-30 2013-03-25 Metal nitride film for thermistor and thermistor sensor of film type
KR1020147027353A KR101965024B1 (ko) 2012-03-30 2013-03-25 서미스터용 금속 질화물막 및 그 제조 방법 그리고 필름형 서미스터 센서
US14/389,229 US9978484B2 (en) 2012-03-30 2013-03-25 Metal nitride film for thermistor, process for producing same, and thermistor sensor of film type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081107A JP5871190B2 (ja) 2012-03-30 2012-03-30 サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ
JP2012-081107 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147290A1 true WO2013147290A1 (ja) 2013-10-03

Family

ID=49260525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059796 WO2013147290A1 (ja) 2012-03-30 2013-03-25 サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ

Country Status (7)

Country Link
US (1) US9978484B2 (ja)
EP (1) EP2833373B1 (ja)
JP (1) JP5871190B2 (ja)
KR (1) KR101965024B1 (ja)
CN (1) CN104170031A (ja)
TW (1) TWI570251B (ja)
WO (1) WO2013147290A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148065A (ja) * 2015-02-10 2016-08-18 三菱マテリアル株式会社 サーミスタ用金属窒化物膜の製造装置及び製造方法
JP2016148066A (ja) * 2015-02-10 2016-08-18 三菱マテリアル株式会社 サーミスタ用金属窒化物膜の製造装置及び製造方法
WO2016129217A1 (ja) * 2015-02-10 2016-08-18 三菱マテリアル株式会社 サーミスタ用金属窒化物膜の製造装置及び製造方法
JP2017161446A (ja) * 2016-03-11 2017-09-14 三菱マテリアル株式会社 温度センサ
US11231331B2 (en) * 2017-09-05 2022-01-25 Littelfuse, Inc. Temperature sensing tape
US11300458B2 (en) 2017-09-05 2022-04-12 Littelfuse, Inc. Temperature sensing tape, assembly, and method of temperature control
CN114388208B (zh) * 2022-01-28 2023-12-15 株洲中车奇宏散热技术有限公司 一种蛇形电阻弯制方法及撬棒电阻

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590011A (ja) * 1991-09-26 1993-04-09 Anritsu Corp 感温抵抗体及びその製造方法
JP2003226573A (ja) 2002-02-01 2003-08-12 Mitsubishi Materials Corp 複合磁器材料およびlc複合部品
JP2004319737A (ja) 2003-04-16 2004-11-11 Osaka Prefecture サーミスタ用材料及びその製造方法
JP2006324520A (ja) 2005-05-19 2006-11-30 Mitsubishi Materials Corp サーミスタ薄膜及びその製造方法
JP2013004640A (ja) * 2011-06-15 2013-01-07 Mitsubishi Materials Corp サーミスタ材料、温度センサおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291001A (ja) * 1986-06-10 1987-12-17 日本鋼管株式会社 薄膜サ−ミスタとその製造方法
JP2579470B2 (ja) * 1986-10-14 1997-02-05 株式会社富士通ゼネラル 窒化物の薄膜抵抗体製造方法
JP2773416B2 (ja) * 1990-09-25 1998-07-09 住友電気工業株式会社 窒化アルミニウム焼結体およびその製造方法
JPH06158272A (ja) * 1992-11-17 1994-06-07 Ulvac Japan Ltd 抵抗膜および抵抗膜の製造方法
WO2002016679A1 (fr) * 2000-08-18 2002-02-28 Tohoku Techno Arch Co., Ltd. Matiere semi-conductrice polycristalline
US20030062984A1 (en) * 2001-09-28 2003-04-03 Ishizuka Electronics Corporation Thin film thermistor and method of adjusting reisistance of the same
JP5477670B2 (ja) 2012-02-28 2014-04-23 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5776941B2 (ja) 2012-03-29 2015-09-09 三菱マテリアル株式会社 温度センサ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590011A (ja) * 1991-09-26 1993-04-09 Anritsu Corp 感温抵抗体及びその製造方法
JP2003226573A (ja) 2002-02-01 2003-08-12 Mitsubishi Materials Corp 複合磁器材料およびlc複合部品
JP2004319737A (ja) 2003-04-16 2004-11-11 Osaka Prefecture サーミスタ用材料及びその製造方法
JP2006324520A (ja) 2005-05-19 2006-11-30 Mitsubishi Materials Corp サーミスタ薄膜及びその製造方法
JP2013004640A (ja) * 2011-06-15 2013-01-07 Mitsubishi Materials Corp サーミスタ材料、温度センサおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833373A4 *

Also Published As

Publication number Publication date
KR20140140567A (ko) 2014-12-09
EP2833373A4 (en) 2015-11-18
CN104170031A (zh) 2014-11-26
TWI570251B (zh) 2017-02-11
JP2013211434A (ja) 2013-10-10
US9978484B2 (en) 2018-05-22
KR101965024B1 (ko) 2019-04-02
TW201400628A (zh) 2014-01-01
EP2833373B1 (en) 2020-01-22
JP5871190B2 (ja) 2016-03-01
EP2833373A1 (en) 2015-02-04
EP2833373A9 (en) 2019-11-27
US20150092820A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5477670B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5776941B2 (ja) 温度センサ及びその製造方法
JP5871190B2 (ja) サーミスタ用金属窒化物膜及びその製造方法並びにフィルム型サーミスタセンサ
JP5776942B2 (ja) 温度センサ
JP5477671B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015423B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2013147291A1 (ja) フィルム型サーミスタセンサ
JP6015426B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5939396B2 (ja) 温度センサ
WO2014196486A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014196488A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097949A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5796718B2 (ja) 温度センサ及びその製造方法
JP5999315B2 (ja) フィルム型サーミスタセンサ及びその製造方法
JP5796720B2 (ja) 温度センサ及びその製造方法
WO2014196583A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015425B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5796719B2 (ja) 温度センサ及びその製造方法
JP2016136609A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5939397B2 (ja) 温度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013767726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027353

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE