WO2013147068A1 - 投射装置 - Google Patents

投射装置 Download PDF

Info

Publication number
WO2013147068A1
WO2013147068A1 PCT/JP2013/059351 JP2013059351W WO2013147068A1 WO 2013147068 A1 WO2013147068 A1 WO 2013147068A1 JP 2013059351 W JP2013059351 W JP 2013059351W WO 2013147068 A1 WO2013147068 A1 WO 2013147068A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
unit
image
angle
image data
Prior art date
Application number
PCT/JP2013/059351
Other languages
English (en)
French (fr)
Inventor
弘敦 福冨
克己 綿貫
菅原 隆幸
賢治 安井
西間 亮
俊一 七條
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012083317A external-priority patent/JP5838891B2/ja
Priority claimed from JP2012083318A external-priority patent/JP5849832B2/ja
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2013147068A1 publication Critical patent/WO2013147068A1/ja
Priority to US14/496,875 priority Critical patent/US9666109B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/37Details of the operation on graphic patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3188Scale or resolution adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/36Level of detail
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0492Change of orientation of the displayed image, e.g. upside-down, mirrored

Definitions

  • the present invention relates to a projection apparatus that projects an image onto a projection medium.
  • a projection device that drives a display element based on an input image signal and projects an image related to the image signal onto a screen or a wall surface.
  • the amount of information that can be projected has also been limited due to a limitation on the mechanism that defines the projection direction of the projection unit included in the projection apparatus or a limitation on the resolution of the display element.
  • Patent Document 1 discloses a projection device that reduces the resolution of an image related to an input image signal to a resolution that can be projected by a scaler based on the resolution of a display element, and then projects the reduced image. Has been.
  • Patent Document 2 discloses a projector system that cuts out a partial area from the entire image and projects only an image related to the cut-out area. This projector system can project the entire image signal by so-called scrolling or the like that continuously changes the area to be cut out and projected.
  • the above-described projection device of Patent Document 1 can project the entire image related to the input image data, but displays the image on the projection medium by the image size reduction process based on the resolution reduction.
  • the quality of the resulting image has been degraded.
  • the high resolution of the input image signal has been wasted.
  • the present invention has been made in view of the above, and provides a projection device that can easily grasp the position of a projected subject image in an image related to image data input by a user while maintaining the resolution of the image data.
  • the purpose is to provide.
  • a projection unit that converts image data into light and projects the light at a predetermined angle of view, and a projection direction of the projection unit from the first projection direction to the second projection direction.
  • a projection angle changing unit for changing, a projection angle deriving unit for deriving a projection angle between the first projection direction and the projection direction changed by the projection direction changing unit, and a storage unit for storing inputted input image data
  • the angle of view and the projection are used as the image data projected by the projection unit.
  • a projection apparatus comprising an image cutout unit that generates cutout image data obtained by cutting out a partial area of an image of input image data stored in a storage unit based on a corner.
  • the image cutout unit of the projection device may generate cutout image data based on at least the number of pixels corresponding to the unit angle of the view angle and the projection angle.
  • the image cutout unit of the projection device may be configured for each pixel of the cutout image data when the distance from the projection unit to the projection surface increases as the projection direction changes from the first projection direction to the second projection direction. A reduction process based on the projection angle may be performed.
  • the image cutout unit of the projection device may be provided for each pixel of the cutout image data when the distance from the projection unit to the projection surface becomes smaller as the projection direction changes from the first projection direction to the second projection direction.
  • the enlargement process based on the projection angle may be performed.
  • FIG. 1A is a schematic diagram illustrating an appearance of an example of a projector device applicable to the embodiment.
  • FIG. 1B is a schematic diagram illustrating an appearance of an example of a projector device applicable to the embodiment.
  • FIG. 2A is a schematic diagram illustrating an exemplary configuration for rotationally driving the drum unit according to the embodiment.
  • FIG. 2B is a schematic diagram illustrating an exemplary configuration for rotationally driving the drum unit according to the embodiment.
  • FIG. 3 is a schematic diagram for explaining each posture of the drum unit according to the embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of the circuit unit and the optical engine unit according to the embodiment.
  • FIG. 5 is a schematic diagram schematically illustrating a clipping process of image data stored in a memory according to the embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of clip region specification when the drum unit is in the initial position according to the embodiment.
  • FIG. 7 is a schematic diagram for explaining the setting of the cutout region with respect to the projection angle ⁇ according to the embodiment.
  • FIG. 8 is a schematic diagram for describing designation of a cutout region when optical zoom is performed according to the embodiment.
  • FIG. 9 is a schematic diagram for explaining a case where an offset is given to an image projection position according to the embodiment.
  • FIG. 10 is a schematic diagram for explaining an image projected onto a vertical plane.
  • FIG. 11 is a schematic diagram for explaining an image projected onto a vertical plane.
  • FIG. 12 is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 13 is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 14A is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 14B is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 14C is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 15A is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 15B is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 16A is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 16B is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 16C is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 17A is a schematic diagram for explaining access control of a memory according to the embodiment.
  • FIG. 17B is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 17C is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 17D is a schematic diagram for explaining access control of the memory according to the embodiment.
  • FIG. 18 is a flowchart illustrating an example of a process flow when an image based on image data is projected in the projector device according to the embodiment.
  • FIG. 19 is a cross-sectional view showing the internal structure of the projector device according to the first example of the heat dissipation structure applicable to the embodiment.
  • FIG. 20 is a view for explaining the posture of the drum portion according to the first example of the heat dissipation structure applicable to the embodiment.
  • FIG. 21 is a diagram for explaining the posture of the drum unit according to the first example of the heat dissipation structure applicable to the embodiment.
  • FIG. 22 is a block diagram illustrating a functional configuration of the projector device according to the first example of the heat dissipation structure applicable to the embodiment.
  • FIG. 23 is a flowchart illustrating a procedure of fan control processing according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 24 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 25 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 26 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 25 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 27 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 28 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 29 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 28 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 30 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 31 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 32 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 31 is a diagram for describing a flow of air related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 32 is a diagram for describing a flow of air related
  • FIG. 33 is a diagram for describing an air flow related to heat dissipation for each projection posture based on a change in drum angle, according to a first example of a heat dissipation structure applicable to the embodiment.
  • FIG. 34 is a block diagram illustrating a functional configuration of a projector device according to a second example of a heat dissipation structure applicable to the embodiment.
  • FIG. 35 is a flowchart illustrating a procedure of fan control processing according to a second example of a heat dissipation structure applicable to the embodiment.
  • FIG. 36 is a flowchart illustrating a procedure of fan control processing according to a second example of a heat dissipation structure applicable to the embodiment.
  • FIG. 34 is a block diagram illustrating a functional configuration of a projector device according to a second example of a heat dissipation structure applicable to the embodiment.
  • FIG. 35 is a flowchart illustrating a procedure of fan control processing according to a second example of a heat
  • FIG. 37 is a diagram illustrating a state inside the drum unit rotated by 180 ° from the reference position of the projection lens in the second example of the heat dissipation structure applicable to the embodiment.
  • FIG. 38 is a perspective view illustrating a configuration of a fan according to a third example of a heat dissipation structure applicable to the embodiment.
  • FIG. 39 is a diagram illustrating a state of the drum portion in the seventh posture in the third example of the heat dissipation structure applicable to the embodiment.
  • FIG. 40 is a diagram illustrating a state of the drum portion in the eighth posture in the third example of the heat dissipation structure applicable to the embodiment.
  • FIG. 41 is a diagram showing an example of a conventional heat sink.
  • FIGS. 1A and 1B are diagrams illustrating an example of an appearance of a projection apparatus (projector apparatus) 1 according to an embodiment.
  • 1A is a perspective view of the projector device 1 as viewed from the first surface side where the operation unit is provided
  • FIG. 1B is a perspective view of the projector device 1 as viewed from the second surface side facing the operation unit.
  • the projector device 1 includes a drum unit 10 and a base 20.
  • the drum unit 10 is a rotating body that can be rotationally driven with respect to the base 20.
  • the base 20 includes a support unit that rotatably supports the drum unit 10, and a circuit unit that performs various controls such as rotation drive control and image processing control of the drum unit 10.
  • the drum unit 10 is supported by a rotary shaft (not shown), which is provided inside the side plate units 21a and 21b, which are a part of the base 20, so as to be rotationally driven.
  • a light source Inside the drum unit 10, a light source, a display element that modulates light emitted from the light source according to image data, a drive circuit that drives the display element, and an optical system that projects the light modulated by the display element to the outside And an optical engine section including a cooling means using a fan or the like for cooling the light source or the like.
  • the drum unit 10 is provided with windows 11 and 13.
  • the window part 11 is provided so that the light projected from the projection lens 12 of the optical system described above is irradiated to the outside.
  • the window 13 is provided with a distance sensor that derives the distance to the projection medium using, for example, infrared rays or ultrasonic waves.
  • the drum unit 10 includes an intake / exhaust hole 23 for performing intake / exhaust for heat dissipation by the fan.
  • the projector device 1 uses an operation unit 14 for a user to input various operations to control the projector device 1 and a remote control commander (not shown). And a receiving unit 15 for receiving a signal transmitted from the remote control commander when the remote control is performed.
  • the operation unit 14 includes various operators that receive user operation inputs, a display unit for displaying the state of the projector device 1, and the like.
  • Suction and discharge holes 16a and 16b are provided on the first surface side and the second surface side of the base 20, respectively, and are driven to rotate so that the suction and discharge holes 23 of the drum portion 10 face the base 20 side. Even if it is, it is used for intake or exhaust so as not to lower the heat radiation efficiency in the drum unit 10.
  • the intake / exhaust hole 17 provided on the side surface of the housing performs intake / exhaust for heat dissipation of the circuit unit.
  • FIG. 2A and 2B are diagrams for explaining the rotational driving of the drum unit 10 by the driving unit 32 provided on the base 20.
  • FIG. 2A is a diagram illustrating a configuration of the drum 30 in a state where the cover of the drum unit 10 and the like are removed, and the driving unit 32 provided on the base 20.
  • the drum 30 is provided with a window portion 34 corresponding to the window portion 11, a window portion 33 corresponding to the window portion 13, and intake / exhaust holes 22 a corresponding to the intake / exhaust holes 23.
  • the drum 30 has a rotating shaft 36, and is attached to the bearing 37 using a bearing provided on the support portions 31 a and 31 b by the rotating shaft 36 so as to be rotationally driven.
  • a gear 35 is provided on one surface of the drum 30 on the circumference.
  • the drum 30 is rotationally driven through the gear 35 by the drive unit 32 provided in the support unit 31b.
  • the protrusions 46 a and 46 b on the inner peripheral portion of the gear 35 are provided for detecting the start point and the end point of the rotation operation of the drum 30.
  • FIG. 2B is an enlarged view for showing the configuration of the drive unit 32 provided on the drum 30 and the base 20 in more detail.
  • the drive unit 32 includes a motor 40, a worm gear 41 that is directly driven by the rotation shaft of the motor 40, gears 42 a and 42 b that transmit the rotation by the worm gear 41, and the rotation transmitted from the gear 42 b to the gear of the drum 30. And a gear group including a gear 43 that transmits to 35. By transmitting the rotation of the motor 40 to the gear 35 by this gear group, the drum 30 can be rotated according to the rotation of the motor 40.
  • the motor 40 for example, a stepping motor that performs rotation control for each predetermined angle by a drive pulse can be applied.
  • Photo interrupters 51a and 51b are provided for the support portion 31b.
  • the photo interrupters 51a and 51b detect protrusions 46b and 46a provided on the inner periphery of the gear 35, respectively. Output signals from the photo interrupters 51a and 51b are supplied to a rotation control unit 104 described later.
  • the rotation control unit 104 determines that the posture of the drum 30 has reached the end point of the rotation operation. Further, when the protrusion 46a is detected on the photo interrupter 51b, the rotation control unit 104 determines that the posture of the drum 30 is the posture that has reached the starting point of the rotation operation.
  • the direction in which the drum 30 rotates through the arc having the longer length on the circumference of the drum 30 Is the positive direction. That is, the rotation angle of the drum 30 increases in the positive direction.
  • the photointerrupter 51b has a photointerrupter 51b so that an angle between the rotation axis 36 between the detection position where the photointerrupter 51b detects the protrusion 46a and the detection position where the photointerrupter 51a detects the protrusion 46b is 270 °.
  • 51a and 51b and protrusions 46a and 46b are arranged, respectively.
  • the attitude of the drum 30 is specified based on the detection timing of the protrusion 46a by the photo interrupter 51b and the number of drive pulses for driving the motor 40, and the projection by the projection lens 12 is performed.
  • the angle can be determined.
  • the motor 40 is not limited to a stepping motor, and for example, a DC motor can be applied.
  • the code wheel 44 that rotates together with the gear 43 is provided on the same axis with respect to the gear 43, and the photo reflectors 50a and 50b are provided on the support portion 31b.
  • the code wheel 44 is provided with, for example, a transmission part 45a and a reflection part 45b whose phases are different in the radial direction.
  • the rotational speed and direction of the gear 43 can be detected.
  • the rotation speed and rotation direction of the drum 30 are derived.
  • the posture of the drum 30 can be specified and the projection angle by the projection lens 12 can be obtained.
  • the initial posture of the drum unit 10 is a posture in which the projection direction by the projection lens 12 is directed to the vertical direction. Therefore, in the initial state, the projection lens 12 is completely hidden by the base 20.
  • the upper left of FIG. 3 shows the state 500 of the drum unit 10 in the initial posture.
  • the protrusion 46a is detected on the photo interrupter 51b in this initial posture, and the rotation control unit 104 described later determines that the drum 30 has reached the starting point of the rotation operation.
  • the direction of the drum unit 10 and “the angle of the drum unit 10” are synonymous with “the projection direction by the projection lens 12” and “the projection angle by the projection lens 12”, respectively.
  • the drive unit 32 starts rotating the drum unit 10 so that the projection direction by the projection lens 12 faces the first surface side. Thereafter, the drum unit 10 is rotated to a position where the direction of the drum unit 10, that is, the projection direction by the projection lens 12 becomes horizontal on the first surface side, and the rotation is temporarily stopped.
  • the projection angle of the projection lens 12 when the projection direction by the projection lens 12 is horizontal on the first surface side is defined as a projection angle of 0 °.
  • a state 502 of the posture of the drum unit 10 (projection lens 12) when the projection angle is 0 ° is shown.
  • the posture of the drum unit 10 (projection lens 12) having the projection angle ⁇ is referred to as the ⁇ posture with reference to the posture of the projection angle 0 °.
  • image data is input in a 0 ° posture and the light source is turned on.
  • the light emitted from the light source is modulated in accordance with the image data by the display element driven by the drive circuit and is incident on the optical system. Then, the light modulated according to the image data is projected in the horizontal direction from the projection lens 12 and irradiated onto a non-projection medium such as a screen or a wall surface.
  • the user can rotate the drum unit 10 around the rotary shaft 36 while operating the operation unit 14 or the like while projecting from the projection lens 12 based on the image data.
  • the drum unit 10 is rotated in the positive direction from the 0 ° posture to set the rotation angle to 90 ° (90 ° posture), and the light from the projection lens 12 is projected vertically upward with respect to the bottom surface of the base 20. it can.
  • the lower left of FIG. 3 shows the posture when the projection angle ⁇ is 90 °, that is, the state 505 of the drum unit 10 in the 90 ° posture.
  • the drum unit 10 can be further rotated in the forward direction from the 90 ° posture.
  • the projection direction of the projection lens 12 changes from the upward direction perpendicular to the bottom surface of the base 20 to the second surface side.
  • the lower right of FIG. 3 shows a state 508 in which the drum unit 10 is further rotated in the positive direction from the 90 ° posture at the lower left of FIG. 3 and is in a posture when the projection angle ⁇ is 180 °, that is, a 180 ° posture.
  • the protrusion 46b is detected on the photo interrupter 51a in this 180 ° attitude, and the rotation control unit 104 described later determines that the end point of the rotation operation of the drum 30 has been reached.
  • the projector device 1 uses the projection lens 12 by rotating the drum unit 10 as shown in the upper right, lower left, and lower right of FIG.
  • the projection area in the image data can be changed (moved) according to the projection angle.
  • the content of the projected image, the change in the projection position of the projected image on the projection medium, and the content and position of the image area cut out as an image to be projected in the entire image area related to the input image data It is possible to correspond to the change of. Therefore, the user can intuitively grasp which area of all the image areas related to the input image data is projected based on the position of the projected image on the projection medium, and the projected image. It is possible to intuitively perform operations for changing the contents of the.
  • the optical system includes an optical zoom mechanism, and the size when the projected image is projected onto the projection medium can be enlarged or reduced by an operation on the operation unit 14.
  • the enlargement / reduction of the size when the projection image by the optical system is projected onto the projection medium may be simply referred to as “zoom”.
  • zoom the enlargement / reduction of the size when the projection image by the optical system is projected onto the projection medium.
  • the optical system performs zooming
  • the projected image is enlarged / reduced around the optical axis of the optical system at the time when the zooming is performed.
  • the projector device 1 When the user ends the projection of the projection image by the projector device 1 and performs an operation for instructing the operation unit 14 to stop the projector device 1, the projector device 1 is stopped. First, the drum unit 10 returns to the initial posture. The rotation is controlled. When it is detected that the drum unit 10 is directed in the vertical direction and returned to the initial posture, the light source is turned off, and the power is turned off after a predetermined time required for cooling the light source. By turning off the power after turning the drum unit 10 in the vertical direction, it is possible to prevent the surface of the projection lens 12 from becoming dirty when not in use.
  • FIG. 4 shows an exemplary configuration of the circuit unit provided in the base 20 and the optical engine unit 110 provided in the drum unit 10 in the projector device 1.
  • the optical engine unit 110 includes a light source 111, a display element 114, and a projection lens 12.
  • the light source 111 includes, for example, three LEDs (Light Emitting Diodes) that emit red (R), green (G), and blue (B), respectively.
  • the RGB light beams emitted from the light source 111 are irradiated to the display element 114 through optical systems (not shown).
  • the display element 114 is a transmissive liquid crystal display element, and has a size of, for example, horizontal 1280 pixels ⁇ vertical 800 pixels. Of course, the size of the display element 114 is not limited to this example.
  • the display element 114 is driven by a drive circuit (not shown), and modulates, reflects, and emits light beams of RGB colors according to image data.
  • the RGB light beams modulated in accordance with the image data emitted from the display element 114 are incident on the projection lens 12 via an optical system (not shown) and projected outside the projector apparatus 1.
  • the display element 114 may be configured by a reflective liquid crystal display element using, for example, LCOS (Liquid Crystal on Silicon), or a DMD (Digital Micromirror Device). In that case, the projector apparatus is configured by an optical system and a drive circuit corresponding to a display element to be applied.
  • the projection lens 12 has a plurality of combined lenses and a lens driving unit that drives the lens in accordance with a control signal.
  • the lens driving unit performs focus control by driving a lens included in the projection lens 12 according to a result of distance measurement based on an output signal from a distance sensor provided in the window unit 13.
  • the lens driving unit drives the lens in accordance with a zoom command supplied from an angle-of-view control unit 106 described later to change the angle of view, thereby controlling the optical zoom.
  • the optical engine unit 110 is provided in the drum unit 10 that can be rotated 360 ° by the rotation mechanism unit 115.
  • the rotation mechanism unit 115 includes the drive unit 32 described with reference to FIG. 2 and the gear 35 which is the configuration on the drum unit 10 side, and rotates the drum unit 10 using the rotation of the motor 40 in a predetermined manner. That is, the projection direction of the projection lens 12 is changed by the rotation mechanism unit 115.
  • the circuit unit of the projector device 1 includes an image cutout unit 100, a memory 101, an image processing unit 102, an image control unit 103, a rotation control unit 104, an angle of view control unit 106, and a CPU 120.
  • a CPU (Central Processing Unit) 120 is connected to a ROM (Read Only Memory) and a RAM (Random Access Memory), both of which are not shown, and a projected image using the RAM as a work memory according to a program stored in the ROM in advance.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 120 controls each unit of the projector device 1 according to a program based on a control signal supplied from the operation unit 14 in response to a user operation. Thereby, operation
  • the CPU 120 controls each unit of the projector device 1 according to a script input from a data input unit (not shown). Thereby, the automatic control of the operation of the projector device 1 can be performed.
  • Image data of a still image or a moving image is input to the projector device 1 and supplied to the image cutout unit 100.
  • the image cutout unit 100 stores the supplied image data in the memory 101.
  • the memory 101 stores image data in units of images. That is, corresponding data is stored for each still image when the image data is still image data, and for each frame image constituting the moving image data when the image data is moving image data.
  • the memory 101 corresponds to, for example, a digital high-definition broadcast standard, and can store one or more frame images of 1920 pixels ⁇ 1080 pixels.
  • the image cutout unit 100 cuts out (extracts) an image region designated by the image control unit 103 from all regions of the frame image related to the image data stored in the memory 101 and outputs the image region as image data.
  • the input image data is preliminarily shaped to a size corresponding to the image data storage unit in the memory 101 and input to the projector device 1.
  • the input image data is input to the projector apparatus 1 after the image size is shaped in advance to 1920 pixels ⁇ 1080 pixels.
  • an image shaping unit that shapes image data input in an arbitrary size into image data having a size of 1920 pixels ⁇ 1080 pixels may be provided in the preceding stage of the image clipping unit 100 of the projector device 1.
  • the image data output from the image cutout unit 100 is supplied to the image processing unit 102.
  • the image processing unit 102 performs image processing on the supplied image data using, for example, a memory (not shown).
  • the image processing unit 102 performs size conversion processing on the image data supplied from the image cutout unit 100 so that the size matches the size of the display element 114.
  • the image processing unit 102 can perform various image processing.
  • the size conversion process for the image data can be performed using a general linear conversion process.
  • interpolation with a constant aspect ratio of the image applies an interpolation filter with a predetermined characteristic to enlarge part or all of the image, and a low-pass filter according to the reduction ratio to eliminate aliasing distortion It is also possible to reduce a part or all of the image by thinning (subsampling) over time or to keep the size as it is without applying a filter.
  • an edge emphasis process by an operator such as Laplacian or a one-dimensional filter is applied to the horizontal direction in order to prevent the image from being out of focus due to being out of focus.
  • Edge enhancement processing by applying in the direction can be performed. By this edge enhancement processing, the edge of the projected blurred image portion can be enhanced.
  • adaptive brightness is maintained so as to keep the brightness uniform. Brightness adjustment can also be performed.
  • the image processing unit 102 mixes a local halftone so as not to make the edge jagged, or applies a local low-pass filter. It is possible to prevent the diagonal lines from being observed as jagged lines by blurring the edge jags.
  • the image data output from the image processing unit 102 is supplied to the display element 114.
  • this image data is supplied to a drive circuit that drives the display element 114.
  • the drive circuit drives the display element 114 according to the supplied image data.
  • the rotation control unit 104 issues an instruction to the rotation mechanism unit 115 in accordance with, for example, a command from the CPU 120 according to a user operation on the operation unit 14.
  • the rotation mechanism unit 115 includes the drive unit 32 and the photo interrupters 51a and 51b described above.
  • the rotation mechanism unit 115 controls the drive unit 32 according to the instruction supplied from the rotation control unit 104 to control the rotation operation of the drum unit 10 (drum 30).
  • the rotation mechanism unit 115 generates a drive pulse in accordance with an instruction supplied from the rotation control unit 104 and drives the motor 40 that is, for example, a stepping motor.
  • the rotation control unit 104 has a counter, for example, and counts the number of drive pulses.
  • the rotation control unit 104 acquires the detection timing of the protrusion 46a based on the output of the photo interrupter 51b, and resets the number of pulses counted by the counter at the detection timing of the protrusion 46a.
  • the rotation control unit 104 can sequentially obtain the angle of the drum unit 10 (drum 30) based on the number of pulses counted by the counter, and can acquire the attitude (angle) of the drum unit 10.
  • Information indicating the angle of the drum unit 10 is supplied to the image control unit 103. In this way, when the projection direction of the projection lens 12 is changed, the rotation control unit 104 can derive an angle between the projection direction before the change and the projection direction after the change.
  • the angle-of-view control unit 106 issues a zoom instruction, that is, an angle-of-view change instruction to the projection lens 12 in accordance with, for example, a command from the CPU 120 according to a user operation on the operation unit 14.
  • the lens driving unit of the projection lens 12 drives the lens according to the zoom instruction to perform zoom control.
  • the angle-of-view control unit 106 supplies information related to the angle of view derived from the zoom instruction and the zoom magnification associated with the zoom instruction to the image control unit 103.
  • the image control unit 103 designates an image cut-out region by the image cut-out unit 100 based on the information on the angle supplied from the rotation control unit 104 and the information on the angle of view supplied from the view angle control unit 106. At this time, the image control unit 103 designates a cutout region in the image data based on a line position corresponding to an angle between projection directions before and after the change of the projection lens 12.
  • the image cutout unit 100, the image processing unit 102, the image control unit 103, the rotation control unit 104, and the angle of view control unit 106 have been described as if they were separate hardware. It is not limited to.
  • each of these units may be realized by a program module operating on the CPU 120.
  • FIG. 5 is a conceptual diagram for explaining a process of extracting image data stored in the memory 101 according to the embodiment. With reference to the diagram on the left side of FIG. 5, an example in which the image data 141 of the specified cutout area is cut out from the image data 140 stored in the memory 101 will be described.
  • addresses are set in units of lines in the vertical direction and in units of pixels in the horizontal direction.
  • the addresses of the lines increase from the lower end to the upper end of the image (screen), and the addresses of the pixels are from the left end of the image. It shall increase toward the right end.
  • the image control unit 103 addresses the line q 0 and the line q 1 in the vertical direction as the cut-out region of the image data 140 of Q lines ⁇ P pixels stored in the memory 101 with respect to the image cut-out unit 100, and Address pixels p 0 and p 1 in the direction.
  • the image cutout unit 100 reads out each line in the range of the lines q 0 to q 1 from the memory 101 over the pixels p 0 to p 1 in accordance with this addressing. At this time, for example, each line is read from the upper end to the lower end of the image, and each pixel is read from the left end to the right end of the image. Details of access control to the memory 101 will be described later.
  • the image cutout unit 100 supplies the image processing unit 102 with the image data 141 in the range of the lines q 0 to q 1 and the pixels p 0 to p 1 read from the memory 101.
  • the image processing unit 102 performs a size conversion process that matches the size of the image based on the supplied image data 141 with the size of the display element 114.
  • the maximum magnification m that satisfies both the following expressions (1) and (2) is obtained.
  • the image processing unit 102 enlarges the image data 141 by this magnification m, and obtains image data 141 ′ having undergone size conversion as illustrated on the right side of FIG. m ⁇ (p 1 ⁇ p 0 ) ⁇ H (1) m ⁇ (q 1 ⁇ q 0 ) ⁇ V (2)
  • FIG. 6 shows an example of clip region designation when the drum unit 10 is in a 0 ° posture, that is, a projection angle of 0 °, according to the embodiment.
  • a projection lens 12 of the angle alpha, with respect to the projection plane 130 is a projection medium, such as a screen, the projection position in the case of projecting the image 131 0 a projection angle of 0 °, the projection A position Pos 0 corresponding to the light beam center of the light projected from the lens 12 is assumed.
  • the L-th line from the S-th line at the lower end of the area of the image data stored in the memory 101 which is designated in advance so as to project with the posture of the projection angle of 0 °. It is assumed that an image based on the image data up to is projected. It is assumed that the line number ln is included in the region from the S-th line to the L-th line.
  • the line number ln corresponds to, for example, the number of pixels in the vertical direction of the display element 114, that is, the number of lines.
  • the values indicating the line positions, such as the S-th line and the L-th line, are values that increase from the lower end of the display element 114 toward the upper end, for example, with the lower end line of the display element 114 being the 0th line.
  • the image control unit 103 instructs the image cutout unit 100 to cut out and read lines S to L of the image data 140 stored in the memory 101.
  • the image cutout unit 100 sets a region from the S-th line to the L-th line of the image data 140 as a cut-out region, and reads the image data 141 of the set cut-out region.
  • the image is supplied to the image processing unit 102.
  • the projection surface 130, from S line of the line image data 140 to L th line of the line image 131 0 is projected by the image data 141 0 line number ln. In this case, the image based on the image data 142 in the area from the L-th line to the uppermost line in the entire area of the image data 140 is not projected.
  • the setting of the cut-out area with respect to the projection angle ⁇ will be described more specifically with reference to FIG.
  • the projection position of the drum unit 10 is rotated in the positive direction from the 0 ° posture and the projection angle of the projection lens 12 becomes an angle ⁇ (> 0 °).
  • the projection position with respect to the projection surface 130 moves to the upper projection position Pos 1 with respect to the projection position Pos 0 with a projection angle of 0 °.
  • the image control unit 103 designates a cutout region for the image data 140 stored in the memory 101 to the image cutout unit 100 according to the following expressions (3) and (4).
  • Expression (3) indicates the line of the RS line at the lower end of the cutout area
  • Expression (4) indicates the line of the RL line at the upper end of the cutout area.
  • R S ⁇ ⁇ (ln / ⁇ ) + S (3)
  • R L ⁇ ⁇ (ln / ⁇ ) + S + ln (4)
  • the value ln indicates the number of lines included in the projection area (for example, the number of lines of the display element 114). Further, the value ⁇ indicates the angle of view of the projection lens 12, and the value S indicates the line position at the lower end of the cutout region in the 0 ° posture described with reference to FIG.
  • (ln / ⁇ ) indicates the number of lines included in the angle of view ⁇ .
  • an address for reading the image data 140 from the memory 101 is designated according to the projection angle ⁇ .
  • the image data 141 1 at the position corresponding to the projection angle ⁇ of the image data 140 is read from the memory 101, and the image 131 1 related to the read image data 141 1 is the projection angle of the projection plane 130.
  • Projection is performed at a projection position Pos 1 corresponding to ⁇ .
  • the projection angle ⁇ is obtained based on the drive pulse of the motor 40 for driving the drum 30 to rotate, the projection angle ⁇ can be obtained with substantially no delay with respect to the rotation of the drum unit 10. It is possible to obtain the projection angle ⁇ without being affected by the projected image and the surrounding environment.
  • optical zooming is performed by driving the lens driving unit and increasing or decreasing the angle of view ⁇ of the projection lens 12.
  • An increase in the angle of view due to the optical zoom is defined as an angle ⁇
  • an angle of view of the projection lens 12 after the optical zoom is defined as an angle of view ( ⁇ + ⁇ ).
  • the cutout area for the memory 101 does not change.
  • the number of lines included in the projected image with the angle of view ⁇ before the optical zoom and the number of lines included in the projected image with the angle of view ( ⁇ + ⁇ ) after the optical zoom are the same. Therefore, after the optical zoom, the number of lines included per unit angle changes before the optical zoom.
  • optical zoom is performed to increase the angle of view ⁇ by the angle of view ⁇ in the state of the projection angle ⁇ .
  • the projected image projected on the projection plane 130 for example as a common light beam center of the light projected to the projection lens 12 (projection position Pos 2), as shown as image 131 2, optical
  • the angle of view is enlarged by ⁇ relative to the case where zooming is not performed.
  • the number of lines included per unit angle changes compared to the case where the optical zoom is not performed, and the amount of change in the line with respect to the change in the projection angle ⁇ performs the optical zoom. It will be different compared to the case without it. This is a state where the gain corresponding to the angle of view ⁇ increased by the optical zoom is changed in the designation of the read address corresponding to the projection angle ⁇ with respect to the memory 101.
  • the address for reading the image data 140 from the memory 101 is specified according to the projection angle ⁇ and the angle of view ⁇ of the projection lens 12. Accordingly, even when subjected to optical zoom, the address of the image data 141 2 to be projected, can be appropriately specified for the memory 101. Accordingly, even when optical zoom is performed, when image data 140 having a size larger than the size of the display element 114 is projected, the correspondence between the position in the projected image and the position in the image data Is preserved.
  • the 0 ° attitude (projection angle 0 °) is not necessarily the lowest end of the projection position.
  • the projection position Pos 3 with a predetermined projection angle ⁇ ofst is set to the lowest projection position.
  • the projection angle ⁇ at the time of projecting an image having the lowermost line of the image data 140 as the lowermost end is set as an offset angle ⁇ ofst due to offset.
  • the offset angle ⁇ ofst is regarded as a projection angle of 0 °, and a cutout region for the memory 101 is designated.
  • the following equations (7) and (8) are obtained.
  • the meaning of each variable in Formula (7) and Formula (8) is the same as the above-mentioned Formula (3) and Formula (4).
  • vertical surface a vertical surface
  • FIG. 10 An image projected on a vertical plane will be described with reference to FIGS. In FIG. 10, consider a case where an image is projected from the projection lens 12 onto a projection surface 204 that is separated from the position 201 by a distance r, with the position 201 being the position of the rotation shaft 36 of the drum unit 10.
  • a projection image is projected with an arc 202 having a radius r centered on the position 201 as a projection plane.
  • Each point of the arc 202 is equidistant from the position 201, and the light flux center of the light projected from the projection lens 12 is a radius of a circle including the arc 202. Therefore, even if the projection angle ⁇ is increased from the angle ⁇ 0 of 0 ° to the angle ⁇ 1 , the angle ⁇ 2 ,..., The projected image is always projected on the projection surface with the same size.
  • the line interval 205 in the projected image on the projection surface 204 also increases as the projection angle ⁇ increases.
  • the line interval 205 is widened according to the above equation (9) according to the position on the projection surface 204 in one projection image.
  • the projector device 1 performs a reduction process on the image data of the image to be projected at a ratio of the reciprocal of the above-described equation (9) according to the projection angle ⁇ of the projection lens 12.
  • the image control unit 103 when the image control unit 103 stores the image data input to the projector device 1 in the memory 101 by the image cutout unit 100, the image control unit 103 sets the reciprocal ratio of the above equation (9) to the image data.
  • a reduction process is performed on the image data in advance for each line of the image when the image data is projected.
  • the line is thinned by applying a low-pass filter process to the line (vertical pixel) with a low-pass filter of several taps. Precisely, in the low-pass filter processing, it is preferable to change the limit value of the band of the low-pass filter depending on the projection angle ⁇ .
  • the filter characteristics are uniformly determined at a reduction ratio corresponding to the maximum projection angle ⁇ , or the filter characteristics are determined uniformly at a reduction ratio corresponding to approximately 1 ⁇ 2 of the maximum projection angle ⁇ . It is possible to use general linear interpolation such as. Also, after the filtering process, it is preferable to perform sub-sampling on the thinned-out line depending on the projection angle ⁇ in the screen. However, the present invention is not limited to this, and the thinning can be performed uniformly at a reduction rate corresponding to the maximum projection angle ⁇ , or the thinning can be performed uniformly at a reduction rate corresponding to approximately 1 ⁇ 2 of the maximum projection angle ⁇ . When performing the reduction process accurately even a little without uniformly performing the low-pass filter process and the thinning process, the image data is divided into several areas in the line direction, and the process is uniformly performed for each divided area. This method is also effective for obtaining better characteristics.
  • image processing using the equation (9) is not limited to being performed when image data is stored in the memory 101. This image processing may be performed by the image processing unit 102, for example.
  • the height of the projection surface 204 is limited, and it is considered that the surface 203 is often formed by folding back 90 ° at a position 200 at a certain height.
  • This surface 203 can also be used as the projection surface of the projector device 1.
  • the image is shrunk with characteristics opposite to those of the image projected on the surface 204.
  • the projector device 1 performs an enlargement process on the image data of the image to be projected, in accordance with the projection angle ⁇ of the projection lens 12, contrary to the above description.
  • the image cutout unit of the projector device 1 cuts out when the distance from the projection lens 12 to the projection surface becomes smaller as the projection direction changes from the first projection direction to the second projection direction. You may make it perform the expansion process based on a projection angle for every pixel of image data.
  • the memory 101 has a size of horizontal 1920 pixels ⁇ vertical 1080 pixels (lines), and each of the areas of the memories 101Y 1 and 101Y 2 used for writing / reading image data, and horizontal 1080 Each area of the memories 101T 1 and 101T 2 used for writing / reading image data with a size of pixel ⁇ vertical 1920 pixels (line) is provided.
  • the memories 101Y 1 , 101Y 2 , 101T 1 and 101T 2 will be described as the memory Y 1 , the memory Y 2 , the memory T 1 and the memory T 2 , respectively.
  • FIG. 13 is an example of a time chart for explaining access control to the memory 101 by the image cutout unit 100 according to the embodiment.
  • a chart 210 shows the projection angle ⁇ of the projection lens 12, and a chart 211 shows the vertical synchronization signal VD.
  • the chart 212 the image data D 1, D 2 that is inputted to the image clipping unit 100, ... input timing, chart 213 to chart 216 of each cut-out image to the memory Y 1, Y 2, T 1 and T 2
  • An example of access from the unit 100 is shown. Note that in the charts 213 to 216, the blocks to which “R” is attached indicate reading, and the blocks to which “W” is attached indicate writing.
  • the image data D 1 , D 2 ,... are input after the vertical synchronization signal VD in synchronization with the vertical synchronization signal VD.
  • the projection angles of the projection lens 12 corresponding to the vertical synchronizing signals VD are set as projection angles ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 ,.
  • the projection angle ⁇ is acquired for each vertical synchronization signal VD.
  • image data D 1 is input to the image cutout unit 100.
  • the projector device 1 changes the projection angle ⁇ by the projection lens 12 by rotating the drum unit 10 to move the projection position of the projection image, and also changes the image according to the projection angle ⁇ . Specify the read position for data. Therefore, it is convenient that the image data is longer in the vertical direction. In general, image data often has a horizontal size larger than a vertical size. Therefore, for example, it is conceivable that the user rotates the camera 90 ° to take an image, and the image data obtained by this imaging is input to the projector device 1.
  • an image based on the image data D 1 , D 2 ,... Input to the image cutout unit 100 is 90 ° from the image in the correct orientation as judged from the content of the image, like an image 160 shown as an image in FIG. It is a rotated, landscape image.
  • the image clipping unit 100 the image data D 1 inputted, first, the memory Y 1, written in the timing WD 1 corresponding to the input timing of the image data D 1 (timing WD 1 of the chart 213 in FIG. 13) .
  • the image cutout unit 100 writes the image data D 1 in the memory Y 1 in the line order in the horizontal direction as shown on the left side of FIG. 14B. On the right side of FIG. 14B, an image 161 by the image data D 1 thus written in the memory Y 1 is shown as an image.
  • the image data D 1 is written in the memory Y 1 as the image 161 having the same image as the image 160 at the time of input.
  • the image cutout unit 100 reads the image data D 1 written in the memory Y 1 at the same time as the start of the vertical synchronization signal VD next to the vertical synchronization signal VD in which the image data D 1 is written.
  • data is read from the memory Y 1 (timing RD 1 in chart 213 in FIG. 13).
  • the image clipping unit 100 the image data D 1, as the starting pixel readout in the lower left corner of the pixel of the image, will read for each pixel across lines sequentially in the vertical direction.
  • each pixel is read out in the vertical direction with the next pixel to the right of the pixel at the reading start position in the vertical direction as the read start pixel. This operation is repeated until the readout of the pixel at the upper right corner of the image is completed.
  • the image cutout unit 100 sets the line direction as the vertical direction from the lower end to the upper end of the image, and reads the image data D 1 from the memory Y 1 from the left end of the image for each line in the vertical direction. Read sequentially for each pixel toward the right end.
  • the image cutout unit 100 sequentially reads the pixels of the image data D 1 read out from the memory Y 1 in this way for each pixel in the line direction with respect to the memory T 1 as shown on the left side of FIG. 15A. Writing is performed (timing WD 1 in chart 214 of FIG. 13). That is, every time one pixel is read from the memory Y 1 , for example, the image cutout unit 100 writes the read one pixel into the memory T 1 .
  • FIG. 15A shows an image 162 of the image data D 1 thus written in the memory T 1 .
  • the image data D 1 is written in the memory T 1 as a size of horizontal 1080 pixels ⁇ vertical pixels 1920 (line), and the image 160 at the time of input is rotated 90 ° clockwise so that the horizontal direction and the vertical direction are switched.
  • the image 162 is displayed.
  • the image clipping unit 100 performs addressing of the clip region that is specified in the image control unit 103 to the memory T 1, reads the image data of the specified region as the cut-out area from the memory T 1.
  • the timing of reading is delayed by 2 vertical synchronization signals VD with respect to the timing at which the image data D 1 is input to the image cutout unit 100 as indicated by the timing RD 1 in the chart 214 of FIG. become.
  • the projector device 1 changes the projection angle ⁇ by the projection lens 12 by rotating the drum unit 10 to move the projection position of the projection image, and also changes the image according to the projection angle ⁇ .
  • the image data D 1 is input to the image cutout unit 100 at the timing of the projection angle ⁇ 1 .
  • Projection angle theta in the timing for projecting an image of the image data D 1 actually is, from the projection angle theta 1, it is likely that changes in the incident angle theta 1 is different from the projection angle theta 3.
  • cut-out area for reading image data D 1 from the memory T 1 is expected to change in the projection angle theta, to read out at a range greater than the area of the image data corresponding to an image to be projected.
  • FIG. 15B The left side of FIG. 15B shows an image 163 by the image data D 1 stored in the memory T 1 .
  • the image control unit 103 has a maximum projection angle ⁇ by the projection lens 12 in the period of the two vertical synchronization signals VD with respect to the memory T 1 , at least during the period of the two vertical synchronization signals VD, compared to the image data area corresponding to the image in the projection area 163.
  • a cutout area 170 that is as large as the number of lines corresponding to the change amount when the change is made is designated.
  • the image clipping unit 100 the image data D 1 at the timing of the next vertical synchronizing signal VD of the written vertical synchronizing signal VD to the memory T 1, reads the image data from the cutout region 170.
  • image data to be projected is read from the memory T 1 at the timing of the projection angle ⁇ 3 , supplied to the display element 114 via the image processing unit 102 at the subsequent stage, and projected from the projection lens 12.
  • Image data D 2 is input to the image cutout unit 100 at the timing of the vertical synchronization signal VD next to the vertical synchronization signal VD to which the image data D 1 is input. At this timing, the image data D 1 is written in the memory Y 1 . Therefore, the image cutout unit 100 writes the image data D 2 in the memory Y 2 (timing WD 2 in the chart 215 in FIG. 13). At this time, the order of writing the image data D 2 to the memory Y 2 is the same as the order of writing the image data D 1 to the memory Y 1 , and the image is also the same (see FIG. 14B).
  • the image clipping unit 100 the image data D 2, as the starting pixel readout in the lower left corner of the pixel of the image, across lines sequentially in the vertical direction read-out to the top of the pixels of the image for each pixel, then the vertical Each pixel is read out in the vertical direction with the pixel right next to the pixel at the read start position as the read start pixel (timing RD 2 in chart 215 in FIG. 13). This operation is repeated until the readout of the pixel at the upper right corner of the image is completed.
  • the image cutout unit 100 sequentially writes the pixels of the image data D 2 read out from the memory Y 2 in this way into the memory T 2 for each pixel in the line direction (the timing of the chart 216 in FIG. 13). WD 2 ) (see left side of FIG. 15A).
  • the image clipping unit 100 performs addressing of the clip region that is specified in the image control unit 103 to the memory T 2, the image data of the area is with the cutout region, at the timing RD 2 chart 216 of FIG. 13 read from the memory T 2.
  • the image control unit 103 cuts out an area larger than the area of the image data corresponding to the projected image with respect to the memory T 2 in consideration of the change in the projection angle ⁇ . Specify as.
  • the image clipping unit 100 the image data D 2 at the timing of the next vertical synchronizing signal VD of the written vertical synchronizing signal VD to the memory T 2, to read the image data from the cutout region 170.
  • the image data of the clip region 170 in the image data D 2 input to the image cutout section 100 at the timing of the projection angle theta 2 is read from the memory T 2 at the timing of the projection angle theta 4, the following image processing unit
  • the light is supplied to the display element 114 through 102 and projected from the projection lens 12.
  • the image data D 3 , D 4 , D 5 ,... are sequentially processed by alternately using the set of memories Y 1 and T 1 and the set of memories Y 2 and T 2. Go.
  • the areas of the memories T 1 and T 2 used for writing / reading image data with a size of vertical 1920 pixels (lines) are provided.
  • DRAM dynamic random access memory
  • a configuration in which two memories having a capacity corresponding to image data may be used.
  • the image control unit 103 designates a plurality of lines of image data as a cutout area 171 as shown in FIG. 16B. You can also. In this case, an image based on the image data read from the cutout area 171 by the image cutout unit 100 is projected from the projection lens 12.
  • the image control unit 103 the image data written in the memory 101Y 1, as shown in FIG. 16C, it is also possible to specify an arbitrary rectangular area 172 as the cutout region.
  • the image data read out from the memory 101Y 1 by using the rectangular area 172 as a cut-out area by the image cut-out section 100 is supplied to the image processing section 102.
  • the image processing unit 102 performs image processing on the supplied image data, and the image data of the clipped area is projected from the projection lens 12.
  • the memories 101Y 1 and 101Y 2 used for writing and reading image data are sequentially switched and used in a size of horizontal 1920 pixels ⁇ vertical 1080 pixels (lines).
  • the image cutout unit 100 stores image data obtained by adding image data including a line corresponding to the projection angle ⁇ delayed by the above-described access control to the image data in the region corresponding to the projected image, for example, a memory so as to write to the 101Y 1.
  • the horizontal direction and the vertical direction of image data having a size of horizontal 1920 pixels ⁇ vertical 1080 pixels (lines) input to the image cutout unit 100 are replaced by the method described with reference to FIGS. 14A to 14C.
  • the image control unit 103 can also designate an arbitrary rectangular area 174 as a cutout area for the memory T 1 as shown in FIG. 17D.
  • the image data read out from the memory 101T 1 by using the rectangular region 174 as a cut-out region by the image cut-out unit 100 is supplied to the image processing unit 102.
  • the image processing unit 102 performs image processing on the supplied image data, and the image data of the clipped area is projected from the projection lens 12.
  • step S100 along with the input of the image data, various setting values relating to the projection of the image based on the image data are input to the projector apparatus 1.
  • the CPU 120 acquires the various set values that have been input.
  • the various setting values acquired here include, for example, a value indicating whether or not to rotate the image based on the image data, that is, whether or not the horizontal direction and the vertical direction of the image are switched, the image enlargement ratio, and the projection Including the offset angle ⁇ ofst .
  • Various setting values may be input to the projector apparatus 1 as data in accordance with the input of image data to the projector apparatus 1 or may be input by operating the operation unit 14.
  • image data for one frame is input to the projector apparatus 1, and the input image data is acquired by the image cutout unit 100.
  • the acquired image data is written into the memory 101.
  • the image control unit 103 acquires the offset angle ⁇ ofst .
  • the image control unit 103 acquires the cutout size, that is, the size of the cutout area in the input image data.
  • the image processing unit 103 may acquire the size of the cutout area from the setting value acquired in step S ⁇ b> 100 or according to an operation on the operation unit 14.
  • the image control unit 103 acquires the angle of view ⁇ of the projection lens 12.
  • the image control unit 103 acquires the angle of view ⁇ of the projection lens 12 from, for example, the angle of view control unit 104.
  • the image control unit 103 acquires the projection angle ⁇ of the projection lens 12 from, for example, the rotation control unit 104.
  • the image control unit 103 performs the above-described equation (3) based on the offset angle ⁇ ofst , the size of the cutout region, the field angle ⁇ , and the projection angle ⁇ acquired in steps S102 to S105. ) To (8) to obtain a cutout region for the input image data.
  • the image control unit 103 instructs the image cutout unit 100 to read out image data from the obtained cutout region.
  • the image cutout unit 100 reads image data in the cutout region from the image data stored in the memory 101 in accordance with an instruction from the image control unit 103.
  • the image clipping unit 100 supplies the image data of the clipping region read from the memory 101 to the image processing unit 102.
  • step S107 the image processing unit 102 performs a size conversion process on the image data supplied from the image cutout unit 100, for example, according to the above-described equations (1) and (2).
  • the image data subjected to the size conversion process by the image processing unit 102 is supplied to the display element 114.
  • the display element 114 modulates the light from the light source 111 according to the image data and emits it. The emitted light is projected from the projection lens 12.
  • next step S108 the CPU 120 determines whether there is input of image data of the next frame of the image data input in step S101 described above. If it is determined that there is input of image data of the next frame, the CPU 120 returns the process to step S101, and performs the processes of steps S101 to S107 described above on the image data of the next frame. . That is, the processing in steps S101 to S107 is repeated for each frame of image data, for example, according to the vertical synchronization signal VD of the image data. Therefore, the projector device 1 can follow each process for each frame with respect to the change in the projection angle ⁇ .
  • step S108 if it is determined in step S108 that the image data of the next frame is not input, the CPU 120 stops the image projection operation in the projector device 1. For example, the CPU 120 controls to turn off the light source 111 and issues a command to the rotation mechanism unit 115 to return the posture of the drum unit 10 to the initial posture. Then, after the posture of the drum unit 10 returns to the initial posture, the CPU 120 stops the fan that cools the light source 111 and the like.
  • the projector device 1 it is possible to perform image projection that allows the user to easily grasp the position of the projected subject image in the image related to the input image data while maintaining the resolution of the image data. it can.
  • the drum unit 10 included in the projector device 1 is rotated only in the vertical direction with respect to the base 20, and the projection direction of the projection lens 12 is changed only in the vertical direction.
  • this rotation or change is not limited to the vertical direction.
  • the present invention can be applied to a projection apparatus having a configuration capable of panning and tilting and capable of changing the projection direction of the projection unit in a horizontal or vertical direction, and the effects thereof can be obtained.
  • the drum unit 10 is provided with a cooling unit such as a fan for cooling the optical engine unit 110 and the like.
  • a cooling unit such as a fan for cooling the optical engine unit 110 and the like.
  • the rotation amount of the fan is made uniform and the fan is blown regardless of the change in the projection posture, depending on the projection posture, depending on the position of the suction / exhaust hole 23 provided in the drum unit 10, etc.
  • the heat radiation efficiency may decrease.
  • the rotation direction of the fan is uniform, the exhaust air discharge direction with respect to the projector device 1 body changes every time the drum unit 10 rotates, and depending on the posture, the hot air hits the user as it is. There is also a fear.
  • heat dissipation is considered with respect to the projector device 1 according to the above-described embodiment.
  • the above-described configuration is added to solve the above-described problem.
  • FIG. 19 is a cross-sectional view for explaining the internal structure of the projector apparatus 1000 according to the first example of the heat dissipation structure.
  • parts common to those in FIGS. 1A and 1B, 2A and 2B, and FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light source 111, the projection lens 12, the display element 114, the mirror 113, the light source 111, and the heat pipe 61 as a heat dissipation member are provided inside the drum unit 10.
  • a heat sink composed of the fins 62 and a fan 60 are provided.
  • the projection lens 12, the display element 114, and the mirror 113 are optical as an optical mechanism that modulates the light emitted from the light source 111 based on image data to be projected and projects the light outside the projector apparatus 1000.
  • the engine unit 110 is configured.
  • the suction / discharge holes 22 a are provided on the peripheral surface of the drum portion 10 at an angle of 90 ° upward from the light projection direction by the projection lens 12.
  • the suction / discharge holes 22b are provided on the peripheral surface of the drum portion 10 symmetrically with the suction / discharge holes 22a at an angle of 90 ° downward from the light projection direction by the projection lens 12.
  • the intake / exhaust hole 22a and the intake / exhaust hole 22b are provided so as to be symmetric with respect to the rotation axis at the center of the drum portion 10, and an efficient intake / exhaust airflow at an angle different from the light projection direction. Is not limited to an angle of 90 ° up and down from the projection direction.
  • the projection lens 12 is arranged so that its optical axis passes through the rotation axis at the center position of the drum portion 10 and is perpendicular to a line segment connecting the centers of the two suction holes 22a and 22b on the outer periphery of the drum portion 10. It is arranged toward the outer periphery of the part 10.
  • the display element 114 and the mirror 113 are arranged in the radial direction of the drum unit 10 from the center position of the drum unit 10 along the optical axis of the projection lens 12.
  • the light source 111 is connected to a heat pipe 61 having a substantially linear shape, and is mounted on the end located on the side opposite to the projection lens 12 so as to emit light toward the mirror 113.
  • the heat sink composed of the heat pipe 61 and the fins 62 is disposed between the optical axis and the intake / exhaust hole 22a.
  • the heat pipe 61 is provided with a plurality of fins 62 for improving the heat dissipation efficiency.
  • the fan 60 is disposed between the heat pipe 61 and the suction / exhaust hole 22a on the outer periphery of the drum unit 10, and the blade part of the fan 60 faces the intake / exhaust hole 22a. Therefore, the fan 60 can suck air from the suction / discharge hole 22a and exhaust it to the suction / discharge hole 22b, or suck air from the suction / discharge hole 22b and exhaust it to the suction / discharge hole 22a.
  • a plurality of substrates 301 on which circuit units for performing various controls, image processing, and the like are mounted are provided inside the base 20.
  • the base 20 is supporting the drum part 10 rotatably, in the state which provided the space
  • the gap 70 plays a role of a duct in the heat dissipation control process of the projector device 1000 to be described later. That is, the hot air exhausted from the intake / exhaust holes 22 a and 22 b of the drum portion 10 flows through the gap 70 and is exhausted from the intake / exhaust holes 16 a to 16 b of the base 20. At this time, the hot air exhausted from the intake / exhaust holes 22a and 22b of the drum unit 10 due to the heat dissipation control process flows into the base 20 due to the upper wall surface of the base 20 and affects the substrate 301 inside. Can be prevented.
  • the gap 70 also serves as a passage for supplying external air taken in through the suction / discharge holes 16a and 16b to the inside of the drum portion 10 through the suction / discharge holes 22a and 22b.
  • the gap 70 may be referred to as a duct 70.
  • the drum unit 10 is rotatably provided on the base 20 having the operation unit 14 in order to improve the operability for the user.
  • a gap 70 is provided between 10 and the base 20. And, by this gap 70, the heat radiation of the drum portion 10 and the heat radiation from the base 20 are performed independently. That is, in the drum unit 10, independent of the base 20, it is possible to improve the heat radiation efficiency by controlling the rotational speed of the fan 60 according to the overlapping ratio of the suction / discharge holes 22 a or 22 b and the gap 70.
  • the base 20 can improve the heat dissipation efficiency separately from the heat dissipation processing of the drum unit 10.
  • this gap 70 is surrounded by the wall surface which has the upper-wall surface of the drum part 10 and the base 20, and the suction-and-discharge holes 16a and 16b which consist of many small diameter holes. For this reason, it is possible to prevent a user from mistakenly inserting a finger between the drum unit 10 and the base 20 while the drum unit 10 is rotationally driven.
  • the initial posture of the drum unit 10 is a posture in which the projection direction by the projection lens 12 is directed in the vertical direction.
  • the position of the projection lens 12 in this initial posture is called a reference position. Therefore, in the initial posture, the projection lens 12 is completely hidden by the base 20.
  • the state of the drum unit 10 in the initial posture is shown as a state 500.
  • the protrusion 46a is detected on the photo interrupter 51b in this initial posture, and the angle deriving unit 116 described later determines that the drum 30 has reached the starting point of the rotation operation.
  • the drum angle refers to the rotation angle from the reference position of the projection lens 12 in the above-described initial posture.
  • the drive unit 32 starts rotating the drum unit 10 so that the drum unit 10 faces the first surface. Thereafter, in the drum portion 10, the intake / exhaust hole 22 b starts overlapping with the duct 70, and the area of the intake / exhaust hole 22 b overlapping with the duct 70 gradually increases.
  • the posture of the drum unit 10 at this time is referred to as a first posture and is shown as a state 501 in FIG.
  • the direction of the drum unit 10 that is, the projection direction by the projection lens 12
  • the drum angle from the reference position of the projection lens 12 when the projection direction by the projection lens 12 is horizontal on the first surface side is 90 °.
  • the posture of the drum unit 10 at this time is called a second posture, and is shown as a state 502 in FIG. As shown in a state 502, in the second posture, the suction / exhaust hole 22b completely overlaps the duct 70.
  • the light source 111 is turned on by the operation of the operation unit 14 by the user, and the light emitted from the light source 111 in the drum unit 10 is modulated by the display element 114 driven by the drive circuit according to the image data input to the projector device 1000. Is incident on the optical system.
  • the light modulated in accordance with the image data is projected from the projection lens 12 in the horizontal direction, and irradiated onto a projection medium such as a screen or a wall surface.
  • the drum unit 10 can be further rotated around the rotation shaft 36 while projecting from the projection lens 12 using image data.
  • the suction / exhaust hole 22b does not overlap the duct 70 and the intake / exhaust hole 22b overlaps the duct 70 when the drum angle from the reference position becomes approximately 135 °.
  • the area is gradually reduced.
  • the posture of the drum unit 10 at this time is called a third posture and is shown as a state 503 in FIG.
  • the posture of the drum unit 10 at this time is called a fourth posture and is shown as a state 504 in FIG.
  • the posture of the drum unit 10 at this time is called a fifth posture, and is shown as a state 505 in FIG.
  • the suction / exhaust hole 22 b does not completely overlap with the duct 70.
  • the posture of the drum unit 10 at this time is called a sixth posture and is shown as a state 506 in FIG.
  • the posture of the drum unit 10 at this time is referred to as a seventh posture and is shown as a state 507 in FIG.
  • the drum angle from the reference position becomes 270 °.
  • the projection lens 12 faces the second surface side facing the first surface side on which the operation unit 14 is provided.
  • the posture of the drum unit 10 at this time is called an eighth posture, and is shown as a state 508 in FIG.
  • the protrusion 46b is detected on the photo interrupter 51a, and it is determined by the angle deriving unit 116 described later that the end point of the rotating operation of the drum 30 has been reached.
  • the projector apparatus 1000 rotates the drum unit 10 as shown in the state 500 to the state 508, for example, while projecting, according to the drum angle by the projection lens 12.
  • the projection area of the image data can be moved.
  • the rotation control is performed so that the drum unit 10 returns to the initial posture. Is done.
  • the light source is turned off, and the power is turned off after a predetermined time required for cooling the light source.
  • FIG. 22 is a block diagram showing a functional configuration of projector apparatus 1000.
  • the same reference numerals are given to the same parts as those in FIG. 4 described above, and detailed description thereof is omitted.
  • the projector device 1000 As shown in FIG. 22, the projector device 1000 according to the first example of the heat dissipation structure has an angle deriving unit 116 and a fan control unit 1300 added to the projector device 1 according to the embodiment shown in FIG. 4. Yes.
  • the image processing / control unit 1030, the rotation control unit 104, the fan control unit 130, and the angle deriving unit 116 are mounted on the substrate 301 of the base 20 as circuit units.
  • the image processing / control unit 103 includes the image cutout unit 100, the memory 101, the image processing unit 102, and the image control unit 103 shown in FIG.
  • the optical engine unit 110 includes the light source 111, the mirror 113, the display element 114, and the projection lens 12.
  • the optical engine unit 110 is provided in the drum unit 10 that can be rotated by the rotation mechanism unit 115 at a drum angle of 0 ° to 270 ° from the reference position.
  • the rotation mechanism unit 115 includes the drive unit 32 described with reference to FIGS. 2A and 2B and the gear 35 which is the configuration on the drum unit 10 side, and rotates the drum unit 10 by using the rotation of the motor 40. .
  • the rotation control unit 104 receives the output signals of the photo interrupters 51a and 51b from the rotation mechanism unit 115. Then, the rotation control unit 104 determines that the posture of the drum unit 10 has reached the end point of the rotation operation based on the output signal indicating that the protrusion 46b is detected on the photo interrupter 51a. Further, the rotation control unit 104 determines that the attitude of the drum unit 10 has reached the starting point of the rotation operation, that is, the initial attitude, based on the output signal indicating that the protrusion 46a is detected on the photo interrupter 51b. In this case, the rotation control unit 104 sends a detection signal indicating that the posture is the initial posture to the angle deriving unit 116. The rotation control unit 104 supplies rotation instruction information indicating that the drum unit 10 is rotating to the image processing / control unit 1030.
  • the image processing / control unit 1030 performs image processing such as distortion correction of the input image data to be projected based on the supplied rotation instruction information, and outputs image data for projection onto the display element 114.
  • the angle deriving unit 116 receives a detection signal indicating the initial posture from the rotation control unit 104 and the number of drive pulses sequentially transmitted from the motor 40. Then, the angle deriving unit 116 counts the number of driving pulses from the time when the detection signal indicating the initial posture is received, and the rotation angle of the drum unit 10 from the initial posture, that is, the projection lens, from the counted number of driving pulses.
  • the drum angle from 12 reference positions is derived.
  • the angle deriving unit 116 stores the number of drive pulses and the drum angle from the reference position in association with each other, and the drum angle corresponding to the counted number of drive pulses is determined from the initial posture. Derived as the drum angle.
  • the fan control unit 130 controls driving of the fan 60.
  • the fan control unit 130 includes an air volume control unit 1310.
  • the air volume control unit 1310 determines the positional relationship of the intake / exhaust hole 22a or 22b with respect to the duct 70 from the drum angle from the reference position of the projection lens 12 detected by the angle deriving unit 116, and the duct 70 of the intake / exhaust hole 22a or 22b.
  • the air flow rate of the fan 60 is controlled from the positional relationship with respect to.
  • the air volume control unit 1310 changes the rotational speed of the fan 60 by changing the drive voltage for the fan 60, thereby controlling the air volume of the air blow. That is, the air volume control unit 1310 increases the rotational speed of the fan 60 by increasing the voltage, thereby increasing the air volume.
  • the air volume control unit 1310 reduces the rotational speed of the fan 60 by reducing the voltage, thereby reducing the air volume.
  • the air volume control unit 1310 determines from the drum angle derived by the angle deriving unit 116 that the drum unit 10 is in the position where the intake / exhaust hole 22a or 22b overlaps the duct 70.
  • the drive voltage of the fan 60 is set to a high voltage so as to increase the air volume by increasing the rotational speed of the fan 60 in proportion to the area of the intake / exhaust holes 22a and 22b overlapping the duct 70.
  • the air volume control unit 1310 has a posture in a position where the suction / exhaust hole 22a or 22b overlaps the duct 70 in the entire range from the drum angle, that is, the intake / exhaust hole 22a or 22b is completely accommodated with the duct 70. Is determined, the drive voltage of the fan 60 is set to the maximum voltage so that the rotation speed of the fan 60 is set to the maximum speed and the air volume is maximized.
  • the air volume control unit 1310 determines that the area of the suction / exhaust holes 22a and 22b overlapping the duct 70 is gradually reduced from the drum angle, the fan 60 is gradually decreased in speed to reduce the air volume.
  • the driving voltage of the fan 60 is gradually set to a low voltage so as to decrease.
  • the air volume control unit 1310 may be configured to gradually decrease the drive voltage of the fan 60 gradually in addition to continuously decreasing gradually.
  • the fan volume control unit 1310 is configured to minimize the air volume by setting the rotation speed of the fan 60 to the lowest speed. 60 drive voltage is set to the lowest voltage.
  • the air volume control unit 1310 determines from the drum angle that the areas of the suction / exhaust holes 22a and 22b overlapping the duct 70 are gradually increased, the rotational speed of the fan 60 is gradually increased to increase the air volume.
  • the driving voltage of the fan 60 is gradually set to a high voltage so as to increase.
  • the air volume control unit 1310 may be configured to gradually increase the driving voltage of the fan 60 gradually in addition to continuously increasing gradually.
  • the correspondence between the drum angle and the overlapping state (positional relationship) between the intake / exhaust holes 22a and 22b and the duct 70 is preset in the air volume control unit 1310 as angle / overlapping state correspondence table data.
  • the case where the intake / exhaust holes 22a, 22b and the duct 70 do not overlap is “no overlap”, and the case where the intake / exhaust holes 22a, 22b and the duct 70 overlap in a certain range is “partially overlap”, the entire intake / exhaust holes 22a, 22b
  • the drum angle and the overlap range are represented by the following angle / overlap state correspondence table data. The correspondence is as shown.
  • the air volume control unit 1310 determines, based on the drum angle sent from the angle deriving unit 116, the overlapping state of the intake / exhaust holes 22a and 22b of the drum unit 10 and the duct 70 with reference to the following angle / overlap state correspondence table data. And the said air volume control is performed.
  • Drum angle range Overlapping state Drum angle 0 ° (initial posture) to about 10 ° (first posture): No overlap About 10 ° (first posture) to about 20 °: Partial overlap About 20 ° to about 135 ° (3rd posture): Complete overlap About 135 ° (3rd posture) to about 160 ° (4th posture): Partial overlap About 160 ° (4th posture) to about 200 ° (6th posture): No overlap About 200 ° (sixth posture) to about 225 ° (seventh posture): Partial overlap About 225 ° (seventh posture) to 270 ° (seventh posture): Complete overlap
  • FIG. 23 is a flowchart showing the procedure of the heat dissipation control process by the projector apparatus 1000.
  • the angle deriving unit 116 derives the amount of change in the angle of the projection lens 12 from the initial posture due to the rotation of the drum unit 10 as the drum angle from the reference position, and performs fan control on the detected drum angle. It inputs into the air volume control part 1310 of the part 130 (step S11).
  • the air volume control unit 1310 determines whether or not the drum angle is a range included in an angle range in which the intake / exhaust hole 22a or 22b and the duct 70 do not overlap with reference to the angle / overlap state correspondence table data (Ste S12).
  • the air volume control unit 1310 can set the drive voltage of the fan 60.
  • the minimum voltage is set (step S13), the rotational speed of the fan 60 is decreased to the minimum speed, and the air volume is minimized.
  • the fan 60 directly removes all external air directly from the intake / exhaust hole 22a or 22b without passing through the duct 70.
  • the air is sucked into the interior and exhausted from the other suction / discharge hole 22b or 22a. For this reason, the air volume by the fan 60 is set to the minimum air volume.
  • step S22 determines whether there is a projection stop instruction (step S22), and if there is no projection stop instruction (step S22: No), the process returns to step S11.
  • step S12 When it is determined in step S12 that the drum angle is not included in the angle range where the intake / exhaust hole 22a or 22b and the duct 70 do not overlap, that is, included in the angle range where the intake / exhaust hole 22a or 22b and the duct 70 overlap.
  • Step S12: No the air volume control unit 1310 is configured such that the drum angle is an angle range where the intake / exhaust hole 22a or 22b completely overlaps with the duct 70, that is, the entire range of the intake / exhaust hole 22a or 22b is accommodated in the duct 70. It is determined by referring to the angle / overlap state correspondence table data (step S14).
  • step S14 When it is determined that the drum angle is included in an angle range in which the intake / exhaust hole 22a or 22b and the duct 70 are completely overlapped (step S14: Yes), the air volume control unit 1310 can set the drive voltage of the fan 60. The maximum voltage is set (step S15), the rotational speed of the fan 60 is increased to the maximum speed, and the air volume is maximized. Then, the fan control unit 130 determines whether or not there is a projection stop instruction (step S22). If there is no projection stop instruction (step S22: No), the fan control unit 130 returns to step S11.
  • step S14 If it is determined in step S14 that the drum angle is not included in the angle range in which the suction / exhaust hole 22a or 22b and the duct 70 overlap completely (step S14: No), a partial range of the intake / exhaust hole 22a or 22b. Indicates that it overlaps the duct 70. For this reason, the air volume control unit 1310 determines whether or not the area overlapping the duct 70 of the intake / exhaust hole 22a or 22b has increased from the previous determination, based on the drum angle at the previous determination. Judgment is made by referring to the angle / overlap state correspondence table data from the drum angle (step S16).
  • step S16 If it is determined from the drum angle at the previous determination that the area overlapping with the duct 70 of the intake / exhaust hole 22a or 22b has increased since the previous determination (step S16: Yes), the air volume control unit 1310 The drive voltage of the fan 60 is increased to increase the air volume (step S17). Then, the fan control unit 130 determines whether or not there is a projection stop instruction (step S22). If there is no projection stop instruction (step S22: No), the fan control unit 130 returns to step S11.
  • the air volume control unit 1310 gradually increases the drive voltage of the fan 60 and gradually increases the air volume.
  • step S16 If it is determined in step S16 that the area overlapping with the duct 70 of the suction / exhaust hole 22a or 22b has not increased from the previous determination from the drum angle at the previous determination (step S16: No), the air volume control unit 1310, whether or not the area overlapping the duct 70 of the intake / exhaust hole 22a or 22b has decreased from the previous determination, based on the drum angle at the previous determination and the drum angle at the time of the determination. The determination is made with reference to the angle / overlap state correspondence table data (step S18).
  • step S18 If it is determined from the drum angle at the previous determination that the area overlapping with the duct 70 of the intake / exhaust hole 22a or 22b has decreased from the previous determination (step S18: Yes), the air volume control unit 1310 The drive voltage of the fan 60 is reduced to reduce the air volume (step S19). Then, the fan control unit 130 determines whether or not there is a projection stop instruction (step S22). If there is no projection stop instruction (step S22: No), the fan control unit 130 returns to step S11.
  • the air volume control unit 1310 gradually decreases the drive voltage of the fan 60 and gradually reduces the air volume.
  • step S18 If it is determined in step S18 that the area overlapping the duct 70 of the intake / exhaust hole 22a or 22b has not decreased since the previous determination from the drum angle at the previous determination (step S18: No), the fan control unit 130 determines whether there is an instruction to stop projection (step S22), and if there is no instruction to stop projection (step S22: No), the process returns to step S11.
  • step S22 if there is a projection stop instruction in step S22 (step S22: Yes), the air volume control unit 1310 ends the air volume control process.
  • FIGS. 24 to 33 are diagrams for explaining the flow of air related to heat radiation for each projection posture based on the change of the drum angle of the projection lens 12 from 0 ° to 270 °.
  • FIG. 24 is a diagram illustrating a projection posture when the power of the projector apparatus 1000 is turned off or when the projector apparatus 1000 is in a so-called standby state. Strictly speaking, the projector apparatus 1000 does not perform projection at this time, but for convenience, this state 500 is also referred to as a projection posture. In this state 500, the drum angle from the reference position of the projection lens 12 is set to 0 ° and the following. explain. As described above, the posture of the drum unit 10 in this state 500 is referred to as an initial posture.
  • the power of the projector apparatus 1000 is off or in a so-called standby state, and the fan 60 is stopped. Then, when the power of the projector apparatus 1000 is turned on, projection is started and the drum unit 10 is rotated, whereby the processing by the fan control unit 130 is started.
  • the air volume control unit 1310 controls the air volume of the fan 60 to a minimum (step S13).
  • the air is exhausted from the suction / discharge hole 22b toward the suction / discharge hole 22a.
  • the suction / exhaust hole 22b begins to overlap with the duct 70, and further, the drum unit 10 is rotated in the forward direction.
  • the area of the intake / exhaust hole 22b overlapping the duct 70 gradually increases.
  • the air volume control unit 1310 controls the air volume of the fan 60 so as to gradually increase from the minimum air volume (step S17).
  • the air volume control unit 1310 controls the air volume of the fan 60 to the maximum air volume (step S15).
  • the air volume control unit 1310 controls the air volume of the fan 60 so as to gradually decrease from the maximum air volume (step S19).
  • the air volume control unit 1310 controls the air volume of the fan 60 to the minimum (step S13).
  • the suction / exhaust hole 22a begins to overlap the duct 70, and further, the drum unit 10 is rotated in the forward direction.
  • the area of the intake / exhaust holes 22a overlapping with the duct 70 gradually increases.
  • the air volume control unit 1310 controls the air volume of the fan 60 so as to gradually increase from the minimum air volume (step S17).
  • the air volume control unit 1310 controls the air volume of the fan 60 to the maximum air volume (step S15).
  • the posture of the drum unit 10 is determined from the drum angle of the projection lens 12, and according to the area of the overlapping range of the suction / discharge holes 22a or 22b and the duct 70 in the posture, Since control for changing the air volume of the fan 60 is performed, the power consumption can be reduced as compared with the case where the fan 60 is always driven with a constant air volume. In the present embodiment, since the fan 60 is not always driven, the noise caused by the fan 60 can be minimized.
  • the heat pipe 61 has a substantially linear shape, and is disposed between the optical engine and the fan 60 so as to be substantially parallel to the optical axis of the projection lens 12. Since the light source 111 is connected on the back side, the light source 111 is disposed near the intake / exhaust hole 22a. For this reason, in the present embodiment, the drum angle from the reference position of the projection lens 12 is changed from 90 ° to 270 °, unlike the conventional technique using the L-shaped heat pipe 2461 and the fin 2462 as shown in FIG. 24 to 33, the fins 62 are positioned above the light source 111.
  • air from the fan 60 flows from the suction / discharge hole 22b to the suction / discharge hole 22a near the light source 111 so that the hot air from the light source 111 does not hit the optical engine such as the projection lens 12. It can be avoided.
  • the air volume control unit 1310 maximizes the air volume of the fan 60 when there is no overlap between the intake / exhaust hole 22a or 22b and the duct 70 or when there is overlap in a certain range.
  • the air volume is controlled to be less than the air volume, the present invention is not limited to this.
  • the air volume control unit 1310 may be configured to change the air volume of the fan 60 to the maximum air volume in accordance with the projection time, such as when the projection time in the projection attitude has exceeded a certain time.
  • the air volume control unit 1310 controls the air volume of the fan 60 to the maximum air volume when the entire range of the intake / exhaust holes 22a or 22b is accommodated in the duct 70.
  • the air volume control unit 1310 may be configured to change the air volume of the fan 60 to less than the maximum air volume according to the image data of the content to be projected and the audio data of the content being projected.
  • the air volume control unit 1310 can be configured by reducing the rotational speed of the fan 60 so as to reduce the air volume of the fan 60 from the maximum air volume. In this case, air volume control according to the content can be realized.
  • the rotational speed of the fan 60 is set to the minimum speed and the air volume of the fan 60 is set to the minimum. Even if it is not the minimum air volume, the fan 60 may be rotated at a rotational speed equal to or lower than a constant speed so as to make the air volume equal to or lower than the constant air volume.
  • the rotation speed of the fan 60 is set to the minimum speed and the air volume of the fan 60 is set to the minimum, but the fan 60 is rotated at a predetermined rotation speed below a certain speed.
  • the air volume control unit 1310 can be configured so that the air volume is a predetermined air volume equal to or less than a certain air volume.
  • the projector apparatus 1000 is further provided with a sound collection unit such as a microphone, a volume measurement unit that measures the volume of the collected sound, and an illuminance sensor that detects ambient illuminance.
  • the air volume control unit 1310 can be configured to further control the air volume of the fan 60.
  • the rotation speed is equal to or less than the predetermined rotation speed.
  • the air volume control unit 1310 can be configured to rotate the fan 60 so that the air volume is equal to or less than the predetermined air volume. In this case, when the environment around the projector device 1000 that is projecting is quiet, it is possible to perform viewing with priority given to quietness.
  • the rotational speed of the fan 60 is set to the maximum speed and the air volume of the fan 60 is set to the maximum. Even if it is not the maximum speed and the maximum air volume, the fan 60 may be rotated at a rotational speed equal to or higher than a constant speed so as to make the air volume equal to or higher than the constant air volume.
  • the suction / discharge holes Since the entire range of 22a and 22b is accommodated in the range of the duct 70 and completely overlaps, the rotational speed of the fan 60 is set to the maximum speed, and the air volume of the fan 60 is set to the maximum.
  • the air volume control unit 1310 may be configured to rotate the fan 60 so that the air volume becomes a predetermined air volume equal to or greater than a certain air volume.
  • the projector apparatus 1000 is further provided with a sound collection unit such as a microphone, a volume measurement unit that measures the volume of the collected sound, and an illuminance sensor that detects the ambient illuminance.
  • the air volume control unit 1310 may be configured to control the air volume of the fan 60 according to the illuminance.
  • the rotation speed is equal to or higher than the predetermined rotation speed.
  • the air volume control unit 1310 can be configured to rotate the fan 60 so that the air volume is equal to or higher than the predetermined air volume.
  • the environment around the projector device 1000 is assumed to be an environment where the viewer is discussing while viewing the content projected on the front during the conference, so it is necessary to make it quiet.
  • the cooling inside the drum unit 10 can be promoted.
  • FIG. 34 is a block diagram showing a functional configuration of a projector apparatus 1500 according to the second example of the heat dissipation structure.
  • a projector device 1500 according to the second example of the heat dissipation structure includes an optical engine unit 110, a fan 60, a rotation mechanism unit 115, an angle deriving unit 116, and an image processing / control unit 1030.
  • a fan control unit 1530 and a rotation control unit 104 are mainly provided.
  • the configuration other than the fan control unit 1530 is the same as that of the first example of the heat dissipation structure described above.
  • the fan control unit 1530 includes an air volume control unit 1531 and a direction control unit 1532 as shown in FIG.
  • the air volume control unit 1531 controls the air volume of the fan 60 in accordance with the positional relationship between the intake / exhaust holes 22a and 22b and the duct 70, as in the first example of the heat dissipation structure described above.
  • the details of the air volume control by the air volume controller 1531 are the same as those in the first example of the heat dissipation structure described above.
  • the direction control unit 1532 switches the air exhausted from the suction and exhaust holes 22a and 22b by the fan 60 in a direction that avoids the viewer. Specifically, in the configuration in which the hot air is exhausted from the suction / exhaust hole 22a, the direction control unit 1532 has a drum corresponding to a posture in which the hot air from the fan 60 is exhausted to the second surface side where the user exists. In the case of an angle, the blowing direction by the fan 60 is switched from the second surface side of the projector device 1500 to the first surface side.
  • the drum angle range corresponding to the posture in which the drum unit 10 exhausts the hot air from the fan 60 to the second surface side is a range larger than 90 ° from the reference position. It is.
  • the direction control part 1532 should just switch the rotation direction of the fan 60 to a reverse direction, and the switching of the ventilation direction by the fan 60 is sufficient.
  • FIG. 35 and FIG. 36 are flowcharts showing the procedure of the fan control process of the second embodiment.
  • the angle deriving unit 116 derives the amount of change in the angle of the projection lens 12 from the initial posture due to the rotation of the drum unit 10 as the drum angle from the reference position. Then, the detected drum angle is input to the air volume control unit 1531 and the direction control unit 1532 of the fan control unit 1530 (step S11).
  • the direction control unit 1532 determines whether or not the input drum angle is greater than 90 ° (step S41).
  • the drum angle is larger than 90 ° (step S41: Yes)
  • the exhaust direction by the fan 60 is set to the suction / exhaust hole 22a (first) so that hot air from the fan 60 is not exhausted to the second surface side where the user exists. It sets to the direction which exhausts from the 2nd surface side to the intake / exhaust hole 22b (1st surface side) (step S42).
  • step S41: No when the drum angle is 90 ° or less (step S41: No), the exhaust direction by the fan 60 is set to the suction / exhaust hole 22b (first) so that hot air from the fan 60 is not exhausted to the second surface side where the user exists. It sets to the direction which exhausts to the suction / exhaust hole 22a (1st surface side) from 2nd surface side (step S43).
  • steps S12 to S20 the air volume control by the air volume control unit 1531 is performed as in the first example of the heat dissipation structure described above.
  • the hot air is exhausted from the intake / exhaust hole 22a (see FIG. 30). It hits the user.
  • the direction control unit 1532 rotates the rotation direction of the fan 60 in the reverse direction, switches the air direction, and heats the air from the intake / exhaust hole 22b. Is controlled to exhaust.
  • FIG. 37 is a diagram showing a blowing state by the fan 60 in the fifth posture in the second example of the heat dissipation structure.
  • the direction control unit 1532 switches the rotation direction of the fan 60, so that the air that has been flowing from the intake / exhaust hole 22b to the intake / exhaust hole 22a until now is changed from the intake / exhaust hole 22a to the intake / exhaust hole 22b.
  • the direction is switched. That is, the cooling air is sucked by the fan 60 from the suction / exhaust hole 22a on the second surface side of the projector apparatus 1000 and exhausted from the intake / exhaust hole 22b on the first surface side.
  • the direction of the air blown by the fan 60 is switched in accordance with the drum angle from the reference position of the projection lens 12, so that the effect of the first example of the heat dissipation structure described above is achieved.
  • the exhaust from the fan 60 can be avoided from hitting the viewer.
  • FIG. 19 respectively show the external configuration of the projector apparatus 1000 according to the third example of the heat dissipation structure applicable to the embodiment, and the structures of the rotation mechanism unit 115 and the angle deriving unit 116. It is the same as that of the 1st example of the thermal radiation structure demonstrated using FIG. Further, the functional configuration of the projector apparatus 1000 is the same as that of the first example of the heat dissipation structure described with reference to FIG.
  • the configuration of the fan 60 in the internal structure of the drum unit 10 is different from the first example of the heat dissipation structure described above.
  • the fan 60 itself is tilted by providing a weight to the fan housing that houses the fan 60. That is, when the drum unit 10 rotates and the fan 60 is positioned on the duct 70 side and the exhaust direction from the fan 60 is directed to the duct 70, the center of gravity of the fan 60 is moved upward.
  • the fan 60 is tilted by its own weight, and the fan 60 is configured so that the exhaust from the fan 60 is directed to the intake / exhaust holes 16 a or 16 b of the duct 60.
  • FIG. 38 is a perspective view showing a configuration of a fan 60 according to a third example of the heat dissipation structure.
  • the weight 60c is provided on the side surface of the fan housing 60b that houses the blade portion 60a of the fan 60, thereby moving the center of gravity of the fan 60 below the fan 60 in FIG.
  • the fan 60 is disposed inside the drum unit 10 so as to be rotatable about a rotation axis 2201 perpendicular to the rotation axis of the blade part 60a.
  • the position of the center of gravity is the fan 60.
  • the fan 60 rotates around the rotation shaft 2201 by its own weight.
  • the direction of the fan 60 is inclined so that the blade portion 60a faces the intake / exhaust hole 22a or 22b of the duct 70. For this reason, the hot air flowing from the blade portion 60a strikes the duct 70 at an angle, and the resistance caused by the exhausted hot air hitting the duct 70 is reduced and exhausted from the intake / exhaust holes 16a or 16b.
  • FIG. 39 is a diagram showing a state 507 ′ of the drum portion 10 in the seventh posture in the third example of the heat dissipation structure.
  • FIG. 40 is a diagram illustrating a state 508 ′ of the drum portion 10 in the eighth posture in the third example of the heat dissipation structure.
  • the center of gravity of the fan 60 is set to the left in FIG. Since the fan 60 is positioned obliquely above, the fan 60 rotates to the left about the axis perpendicular to the rotation axis, and the direction of the blade portion 60a is directed to the intake / exhaust hole 16b side of the exhaust duct 70.
  • the hot air exhausted from the fan 60 strikes the duct 70 obliquely, and can be exhausted from the intake / exhaust hole 16b with reduced resistance.
  • the fan 60 is tilted by providing the weight 60c to the fan 60.
  • the method of tilting the fan 60 is not limited to this.
  • an actuator for rotating the fan 60 around a rotation axis 2201 perpendicular to the rotation axis of the blade part 60a is provided inside the drum part 10, and the drum angle derived by the angle deriving part 116 corresponds to the intake / exhaust hole 22a.
  • the fan control unit drives the actuator to rotate the fan 60 to the left about the axis perpendicular to the rotation axis as shown in FIGS. 130 can be configured.
  • the fan control unit 1300 can be configured to control the rotation angle of the fan 60 to be reduced as the area overlapping the duct 70 of the intake / exhaust hole 22a increases.
  • the fan 60 is rotated.
  • the resistance in the exhaust is reduced, the cooling efficiency is reduced, and the noise is reduced. can do.
  • the image processing / control unit 1030, the fan control units 130 and 1530, and the rotation control unit 104 are mounted on the substrate 301 of the base 20 as circuit units that are hardware. Besides the configuration, it can also be realized by software.
  • control program executed by the projector apparatus 1000 or 1500 of the first to third examples of the heat dissipation structure is provided by being incorporated in advance in a ROM or the like, for example.
  • the control program executed by the projector apparatus 1000 or 1500 of the first to third examples of the heat dissipation structure is an installable or executable file, such as a CD-ROM, a flexible disk (FD), a CD-R, You may comprise so that it may record and provide on computer-readable recording media, such as DVD (Digital Versatile Disk).
  • control program executed by the projector apparatus 1000 or 1500 of the first to third examples of the heat dissipation structure is provided by being stored on a computer connected to a network such as the Internet and downloaded via the network. You may comprise.
  • the control program executed by the projector apparatuses 1000 and 1500 of the first to third examples of the heat dissipation structure may be provided or distributed via a network such as the Internet.
  • a control program executed by the projector device 1000 or 1500 of the first to third examples of the heat dissipation structure is a module including the above-described units (image processing / control unit 1030, fan control units 1300 and 1530, and rotation control unit 104).
  • a CPU processor
  • a projection apparatus includes a light source, an optical mechanism that projects an image to be projected to the outside by light emitted from the light source, a heat radiating member connected to the light source, and a heat radiating member.
  • a fan part for cooling, a rotary housing having a suction / exhaust hole on the peripheral surface, and housing the light source, the optical mechanism, and the fan part, and the suction / exhaust hole are symmetrically arranged at an angle different from the light projection direction.
  • Including a first suction hole and a second suction hole, and a fan part is provided in the vicinity of the peripheral surface corresponding to the first suction hole, and the optical mechanism is disposed in a central part inside the rotary housing.
  • a heat dissipating member configured to be disposed between the fan unit and the optical mechanism or between the fan unit and the first intake / exhaust hole, and a base that rotatably supports the rotating housing; Provides a predetermined air gap to support the rotating housing, and the fan part allows air to pass through the air intake and exhaust holes. The air is sucked into the rotating casing, or the fan unit is configured so that air is discharged from the rotating casing to the air gap through the suction and exhaust holes, and the rotating casing is rotated to project light.
  • a rotation mechanism that moves the direction, an angle derivation unit that detects a rotation angle from the reference position of the rotary housing, and an air volume control unit that controls the air volume of the air blown from the fan unit based on the detected rotation angle, or At least one of a direction control part which switches the air blowing direction by a fan part is provided.
  • the air volume control unit is configured such that the rotating housing has a rotation angle at which air sucked from the second suction / exhaust hole by the fan unit is sucked into the rotating housing through the gap. Rotation in which the air volume is controlled to be higher than a predetermined volume, or the rotating casing is sucked into the rotating casing without passing through the air gap, as the air sucked from the second suction / exhaust hole by the fan unit.
  • the air volume is controlled to be lower than a predetermined air volume, or the rotational angle at which the rotary casing discharges air from the first intake / exhaust hole by the fan unit to the outside through the air gap
  • the air volume is controlled to be higher than a predetermined air volume, or the rotation of the rotating housing is exhausted to the outside without passing through the air gap. If it is an angle, the air volume is controlled to be lower than the predetermined air volume. It is at least one control.
  • the projection device is provided with a sound collection unit such as a microphone and a volume measurement unit that measures the volume of the collected sound, or an illuminance sensor that detects ambient illuminance, and the air volume control unit is set according to the surrounding volume or illuminance. And it was comprised so that the air volume of the ventilation from a fan part might be controlled.
  • the projection device arranges the fan unit so as to be rotatable about a rotation axis perpendicular to the rotation axis of the blade unit, and the direction control unit is configured based on the rotation angle derived by the angle deriving unit. It was comprised so that a rotation angle might be controlled.
  • the projection device cools the light source, the optical mechanism that projects an image to be projected to the outside by the light emitted from the light source, the heat dissipation member connected to the light source, the light source, the optical mechanism, and the heat dissipation member.
  • Fan section a rotating housing having a suction / exhaust hole on the peripheral surface and containing the light source, the optical mechanism, and the fan section, a base for rotatably supporting the rotating housing, and the rotating housing rotating
  • a rotation mechanism that moves the light projection direction, and the cooling control method for the projection device detects the rotation angle from the reference position of the rotating housing, and based on the detected rotation angle Controlling the amount of air blown from the fan unit.

Abstract

 画像データの有する解像度を保持しながら、ユーザが入力された画像データに係る画像における投射された被写体画像の位置を把握しやすい投射装置を提供する。投射装置の投射部は、画像データを光に変換して所定の画角で投射する。投射方向変更部は、投射部の投射方向を第1の投射方向から第2の投射方向まで変更する。投射角導出部が、第1の投射方向と変更後の投射方向との間の投射角を導出する。記憶部に記憶された入力画像データの画像を、投射部が第1の投射方向から第2の投射方向に亘って投射する場合に、投射される画像データとして、画像切り出し部が、画角及び投射角に基づいて入力画像データの画像の一部の領域を切り出した切り出し画像データを生成する。

Description

投射装置
 本発明は、画像を被投射媒体に投射する投射装置に関する。
 従来から、入力された画像信号に基づき表示素子を駆動して、その画像信号に係る画像をスクリーンや壁面などに投射する投射装置が知られている。従来の投射装置では、その投射装置の備える投射手段の投射方向を規定する機構上の制限や、表示素子の解像度の制限などにより、投射可能な情報量にも制限が生じていた。
 そこで、従来の投射装置では、入力された画像信号に係る画像の解像度が、投射装置が備える表示素子の解像度よりも大きい場合は、投射される画像の情報量を減らして、画像の投射を行っていた。例えば、特許文献1には、入力された画像信号に係る画像の解像度をスケーラーにより表示素子の解像度に基づき投射可能な解像度まで縮小してから、その縮小された画像の投射を行う投射装置が開示されている。
 また、他の投射装置では、入力された画像信号に係る画像から一部の領域を切り出し、その切り出された領域に係る画像のみを投射していた。例えば、特許文献2には、画像全体から一部の領域を切り出し、その切り出された領域に係る画像のみを投射するプロジェクタシステムが開示されている。このプロジェクタシステムは、切り出され投射される領域を連続的に変更していく、所謂スクロールなどによって、画像信号全体を投射可能とすることが可能である。
特開2007-214701号公報 特開2004-086277号公報
 ところで、上述した特許文献1の投射装置は、入力された画像データに係る画像全体を投射することができる一方で、解像度の低減に基づく画像の大きさの縮小処理により、被投射媒体上に表示される画像の品質が低下してしまっていた。別の側面から述べると、画像の大きさの縮小処理により、入力された画像信号が有している高い解像度が無駄になってしまっていた。
 また、上述した特許文献2のプロジェクションシステムでは、切り出された領域に係る画像が投射される被投射媒体上の領域が不動で固定であるため、鑑賞者はその画像中の被写体の画像全体における位置を把握することが難しかった。
 本発明は、上記に鑑みてなされたものであって、画像データの有する解像度を保持しながら、ユーザが入力された画像データに係る画像における投射された被写体画像の位置を把握しやすい投射装置を提供することを目的とする。
 上述した課題を解決するために、実施形態は、画像データを光に変換して所定の画角で投射する投射部と、投射部の投射方向を第1の投射方向から第2の投射方向まで変更する投射方向変更部と、第1の投射方向と、投射方向変更部が変更した投射方向との間の投射角を導出する投射角導出部と、入力された入力画像データを記憶する記憶部と、記憶部に記憶された入力画像データの画像を、投射部が第1の投射方向から第2の投射方向に亘って投射する場合に、投射部が投射する画像データとして、画角及び投射角に基づいて記憶部に記憶された入力画像データの画像の一部の領域を切り出した切り出し画像データを生成する画像切り出し部を備えることを特徴とする投射装置を提供する。
 また、投射装置の画像切り出し部は、少なくとも画角の単位角度に対応する画素数と上記投射角とに基づいて切り出し画像データを生成するようにしても良い。
 また、投射装置の画像切り出し部は、投射方向が第1の投射方向から第2の投射方向に変化するにつれて、投射部から投射面までの距離が大きくなる場合に、切り出し画像データの画素毎に、投射角に基づいた縮小処理を施すようにしてもよい。
 また、投射装置の画像切り出し部は、投射方向が第1の投射方向から第2の投射方向に変化するにつれて、投射部から投射面までの距離が小さくなる場合に、切り出し画像データの画素毎に、投射角に基づいた拡大処理を施すようにしてもよい。
図1Aは、実施形態に適用可能なプロジェクタ装置の一例の外観を示す略線図である。 図1Bは、実施形態に適用可能なプロジェクタ装置の一例の外観を示す略線図である。 図2Aは、実施形態に係るドラム部を回転駆動するための一例の構成を示す略線図である。 図2Bは、実施形態に係るドラム部を回転駆動するための一例の構成を示す略線図である。 図3は、実施形態に係る、ドラム部の各姿勢を説明するための略線図である。 図4は、実施形態に係る、回路部および光学エンジン部の一例の構成を示すブロック図である。 図5は、実施形態に係る、メモリに格納される画像データの切り出し処理を概略的に示す略線図である。 図6は、実施形態に係る、ドラム部が初期位置の場合の切り出し領域指定の例を示す略線図である。 図7は、実施形態に係る、投射角θに対する切り出し領域の設定について説明するための略線図である。 図8は、実施形態に係る、光学ズームを行った場合の切り出し領域の指定について説明するための略線図である。 図9は、実施形態に係る、画像の投射位置に対してオフセットが与えられた場合について説明するための略線図である。 図10は、垂直な面に対して投射される画像について説明するための略線図である。 図11は、垂直な面に対して投射される画像について説明するための略線図である。 図12は、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図13は、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図14Aは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図14Bは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図14Cは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図15Aは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図15Bは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図16Aは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図16Bは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図16Cは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図17Aは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図17Bは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図17Cは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図17Dは、実施形態に係るメモリのアクセス制御について説明するための略線図である。 図18は、実施形態に係るプロジェクタ装置において画像データによる画像を投射する際の処理の流れを示す一例のフローチャートである。 図19は、実施形態に適用可能な放熱構造の第1の例に係るプロジェクタ装置の内部構造を示す断面図である。 図20は、実施形態に適用可能な放熱構造の第1の例に係るドラム部の姿勢を説明するための図である。 図21は、実施形態に適用可能な放熱構造の第1の例に係るドラム部の姿勢を説明するための図である。 図22は、実施形態に適用可能な放熱構造の第1の例に係るプロジェクタ装置の機能的構成を示すブロック図である。 図23は、実施形態に適用可能な放熱構造の第1の例に係るファン制御処理の手順を示すフローチャートである。 図24は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図25は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図26は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図27は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図28は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図29は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図30は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図31は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図32は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図33は、実施形態に適用可能な放熱構造の第1の例に係る、ドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。 図34は、実施形態に適用可能な放熱構造の第2の例に係るプロジェクタ装置の機能的構成を示すブロック図である。 図35は、実施形態に適用可能な放熱構造の第2の例によるファン制御処理の手順を示すフローチャートである。 図36は、実施形態に適用可能な放熱構造の第2の例によるファン制御処理の手順を示すフローチャートである。 図37は、実施形態に適用可能な放熱構造の第2の例において投射レンズの基準位置から180°だけ回転したドラム部内部の状態を示す図である。 図38は、実施形態に適用可能な放熱構造の第3の例に係るファンの構成を示す斜視図である。 図39は、実施形態に適用可能な放熱構造の第3の例における第7姿勢のドラム部の状態を示す図である。 図40は、実施形態に適用可能な放熱構造の第3の例における第8姿勢のドラム部の状態を示す図である。 図41は、従来のヒートシンクの例を示す図である。
<実施形態>
 以下に図面を参照しながら、実施形態に係る投射装置について説明する。かかる実施形態に示す具体的な数値および外観構成などは、本発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本発明に直接関係のない要素は詳細な説明および図示を省略している。
<投射装置の外観>
 図1Aおよび図1Bは、実施形態に係る投射装置(プロジェクタ装置)1の外観の例を示す図である。図1Aはプロジェクタ装置1を操作部が設けられる第1面側から見た斜視図、図1Bはプロジェクタ装置1を操作部と対向する側の第2面側から見た斜視図である。プロジェクタ装置1は、ドラム部10と基台20とを備える。ドラム部10は基台20に対して回転駆動が可能な回転体である。そして、基台20がそのドラム部10を回転可能に支持する支持部や、ドラム部10の回転駆動制御や画像処理制御等の各種制御を行う回路部を有する。
 ドラム部10は、基台20の一部である側板部21aおよび21bの内側に設けられた、ベアリングなどからなる、図示しない回転軸によって回転駆動可能に支持される。ドラム部10の内部には、光源と、光源から射出された光を画像データに従い変調する表示素子と、表示素子を駆動する駆動回路と、表示素子で変調された光を外部に投射する光学系を含む光学エンジン部と、光源などを冷却するためのファンなどによる冷却手段とが設けられている。
 ドラム部10には、窓部11および13が設けられる。窓部11は、上述した光学系の投射レンズ12から投射された光が外部に照射されるように設けられる。窓部13は、例えば赤外線や超音波などを利用して被投射媒体までの距離を導出する距離センサが設けられる。また、ドラム部10には、ファンによる放熱のための吸排気を行う吸排孔23を備えている。
 基台20の内部には、回路部の各種基板や電源部、ドラム部10を回転駆動するための駆動部などが設けられている。なお、この駆動部によるドラム部10の回転駆動については、後述する。基台20の上記第1面側には、ユーザがこのプロジェクタ装置1を制御するために各種操作を入力するための操作部14と、ユーザが図示しないリモートコントロールコマンダを使用してこのプロジェクタ装置1を遠隔制御する際の、リモートコントロールコマンダから送信された信号を受信する受信部15とが設けられている。操作部14は、ユーザの操作入力を受け付ける各種操作子や、このプロジェクタ装置1の状態を表示するための表示部などを有している。
 基台20の上記第1面側および上記第2面側には、それぞれ吸排孔16aおよび16bが設けられ、回転駆動されてドラム部10の吸排孔23が基台20側を向いた姿勢をとっている場合でも、ドラム部10内の放熱効率を低下させないよう、吸気又は排気に用いられる。また、筐体の側面に設けられる吸排孔17は、回路部の放熱のための吸排気を行う。
<ドラム部の回転駆動>
 図2Aおよび図2Bは、基台20に設けられた駆動部32によるドラム部10の回転駆動について説明するための図である。図2Aは、ドラム部10のカバーなどを取り去った状態のドラム30と、基台20に設けられた駆動部32の構成を示す図である。ドラム30には、上述の窓部11に対応する窓部34と、窓部13に対応する窓部33と、吸排孔23に対応する吸排孔22aとが設けられている。ドラム30は回転軸36を有し、この回転軸36により、支持部31aおよび31bに設けられた、ベアリングを用いた軸受け37に対して回転駆動可能に取り付けられる。
 ドラム30の一方の面には、円周上にギア35が設けられている。支持部31bに設けられた駆動部32により、ギア35を介してドラム30が回転駆動される。ギア35の内周部の突起46aおよび46bは、ドラム30の回転動作の始点ならびに終点を検出するために設けられる。
 図2Bは、ドラム30および基台20に設けられた駆動部32の構成をより詳細に示すための拡大図である。駆動部32は、モータ40を有すると共に、モータ40の回転軸により直接駆動されるウォームギア41、ウォームギア41による回転を伝達するギア42aおよび42b、ならびに、ギア42bから伝達された回転をドラム30のギア35に伝達するギア43を含むギア群を有する。このギア群によりモータ40の回転をギア35に伝達することで、ドラム30をモータ40の回転に応じて回転させることができる。モータ40としては、例えば駆動パルスにより所定角度毎の回転制御を行うステッピングモータを適用することができる。
 支持部31bに対して、フォトインタラプタ51aおよび51bが設けられる。フォトインタラプタ51aおよび51bは、それぞれ、ギア35の内周部に設けられる突起46bおよび46aを検出する。フォトインタラプタ51aおよび51bの出力信号は、後述する回転制御部104に供給される。実施形態では、フォトインタラプタ51aに突起46bが検出されることで、回転制御部104は、ドラム30の姿勢が回転動作の終点に達した姿勢であると判断する。また、フォトインタラプタ51bに突起46aが検出されることで、回転制御部104は、ドラム30の姿勢が回転動作の始点に達した姿勢であると判断する。
 以下、フォトインタラプタ51bに突起46aが検出される位置から、フォトインタラプタ51aに突起46bが検出される位置まで、ドラム30の円周における長さが大きい方の弧を介してドラム30が回転する方向を、正方向とする。すなわち、ドラム30の回転角は、正方向に向けて増加する。
 なお、実施形態では、フォトインタラプタ51bが突起46aを検出する検出位置と、フォトインタラプタ51aが突起46bを検出する検出位置との間の回転軸36を挟む角度が270°になるように、フォトインタラプタ51aおよび51b、ならびに、突起46aおよび46bがそれぞれ配される。
 例えば、モータ40としてステッピングモータを適用した場合、フォトインタラプタ51bによる突起46aの検出タイミングと、モータ40を駆動するための駆動パルス数とに基づき、ドラム30の姿勢を特定し、投射レンズ12による投射角を求めることができる。
 なお、モータ40は、ステッピングモータに限らず、例えばDCモータを適用することもできる。この場合、例えば、図2Bに示されるように、ギア43に対して同一軸上にギア43と共に回転するコードホイール44を設けると共に、支持部31bに対してフォトリフレクタ50aおよび50bを設け、ロータリエンコーダを構成する。
 コードホイール44は、例えば、半径方向に位相が異ならされる透過部45aおよび反射部45bが設けられる。フォトリフレクタ50aおよび50bにより、コードホイール44からのそれぞれの位相の反射光を受光することで、ギア43の回転速度と回転方向とを検出できる。そして、これら検出されたギア43の回転速度および回転方向に基づいてドラム30の回転速度および回動方向が導出される。導出されたドラム30の回転速度および回動方向と、フォトインタラプタ51aによる突起46bの検出結果とに基づき、ドラム30の姿勢を特定し、投射レンズ12による投射角を求めることができる。
 上述のような構成において、ドラム部10の初期姿勢を、投射レンズ12による投射方向が鉛直方向を向いている姿勢とする。したがって、初期状態では、投射レンズ12が完全に基台20に隠れている。図3の左上は、初期姿勢のドラム部10の状態500を示す。実施形態では、この初期姿勢においてフォトインタラプタ51bに突起46aが検出され、後述する回転制御部104により、ドラム30が回転動作の始点に達していると判断される。
 なお、以下では、特に記載のない限り、「ドラム部10の方向」および「ドラム部10の角度」がそれぞれ「投射レンズ12による投射方向」および「投射レンズ12による投射角」と同義であるものとする。
 プロジェクタ装置1が例えば起動されると、投射レンズ12による投射方向が上記第1面側を向くように、駆動部32がドラム部10の回転を開始する。その後、ドラム部10は、例えば、ドラム部10の方向すなわち投射レンズ12による投射方向が第1面側において水平になる位置まで回転し、回転を一旦停止したとする。この、投射レンズ12による投射方向が第1面側において水平になった場合の投射レンズ12の投射角を、投射角0°と定義する。図3の右上に、投射角0°のときの、ドラム部10(投射レンズ12)の姿勢の状態502を示す。以下、この投射角0°の姿勢のときを基準として、投射角θとなるドラム部10(投射レンズ12)の姿勢を、θ姿勢と呼ぶ。
 例えば、0°姿勢において画像データが入力され、光源が点灯されたとする。ドラム部10において、光源から射出された光が、駆動回路により駆動された表示素子により画像データに従い変調されて光学系に入射される。そして、画像データに従い変調された光が、投射レンズ12から水平方向に投射され、スクリーンや壁面などの非投射媒体に照射される。
 ユーザは、操作部14などを操作することで、画像データによる投射レンズ12からの投射を行ったまま、回転軸36を中心に、ドラム部10を回転させることができる。例えば、0°姿勢から正方向にドラム部10を回転させて回転角を90°として(90°姿勢)、投射レンズ12からの光を基台20の底面に対して垂直上向きに投射させることができる。図3の左下は、投射角θが90°のときの姿勢、つまり90°姿勢のドラム部10の状態505を示す。
 ドラム部10は、90°姿勢からさらに正方向に回転させることができる。この場合、投射レンズ12の投射方向は、基台20の底面に対して垂直上向きの方向から、上記第2面側の方向に変化していく。図3の右下は、ドラム部10が図3の左下の90°姿勢からさらに正方向に回転され、投射角θが180°のときの姿勢、つまり180°姿勢となった状態508を示す。実施形態に係るプロジェクタ装置1では、この180°姿勢においてフォトインタラプタ51aに突起46bが検出され、後述する回転制御部104により、ドラム30の回転動作の終点に達したと判断される。
 詳細は後述するが、本実施形態によるプロジェクタ装置1は、投射を行ったまま、例えば図3の右上、左下および右下に示されるようにしてドラム部10を回転させることで、投射レンズ12による投射角に応じて、画像データにおける投射領域を変化(移動)させることができる。これにより、投射された画像の内容および当該投射された画像の被投射媒体における投射位置の変化と、入力された画像データに係る全画像領域における投射する画像として切り出された画像領域の内容および位置の変化とを対応させることができる。したがって、ユーザは、入力画像データに係る全画像領域中のどの領域が投射されているかを、投射された画像の被投影媒体における位置に基づき直感的に把握することができると共に、投射された画像の内容を変更する操作を直感的に行うことができる。
 また、光学系は、光学ズーム機構を備えており、操作部14に対する操作により、投射画像が被投射媒体に投射される際の大きさを拡大・縮小することができる。なお、以下では、この光学系による投射画像が被投射媒体に投射される際の大きさの拡大・縮小を、単に「ズーム」ということもある。例えば、光学系がズームを行った場合、投射画像は、そのズームが行われた時点の光学系の光軸を中心に拡大・縮小されることになる。
 ユーザがプロジェクタ装置1による投射画像の投射を終了し、操作部14に対してプロジェクタ装置1の停止を指示する操作を行いプロジェクタ装置1を停止させると、先ず、ドラム部10が初期姿勢に戻るように回転制御される。ドラム部10が鉛直方向を向き、初期姿勢に戻ったことが検出されると、光源が消灯され、光源の冷却に要する所定時間の後、電源がOFFとされる。ドラム部10を鉛直方向に向けてから電源をOFFとすることで、非使用時に投射レンズ12面が汚れるのを防ぐことができる。
<プロジェクタ装置1の内部構成>
 次に、上述したような、実施形態に係るプロジェクタ装置1の動作を実現するための構成について説明する。図4は、プロジェクタ装置1において、基台20内に設けられる回路部、ならびに、ドラム部10内に設けられる光学エンジン部110の一例の構成を示す。
 光学エンジン部110は、光源111、表示素子114および投射レンズ12を含む。光源111は、例えばそれぞれ赤色(R)、緑色(G)および青色(B)を発光する3のLED(Light Emitting Diode)を含む。光源111から射出されたRGB各色の光束は、それぞれ図示されない光学系を介して表示素子114に照射される。
 以下の説明において、表示素子114は、透過型液晶表示素子であり、例えば水平1280画素×垂直800画素のサイズを有するものとする。勿論、表示素子114のサイズはこの例に限定されるものではない。表示素子114は、図示されない駆動回路によって駆動され、RGB各色の光束を画像データに従いそれぞれ変調して反射させ、射出する。表示素子114から射出された、画像データに従い変調されたRGB各色の光束は、図示されない光学系を介して投射レンズ12に入射され、プロジェクタ装置1の外部に投射される。
 なお、表示素子114は、例えばLCOS(Liquid Crystal on Silicon)を用いた反射型液晶表示素子、あるいは、DMD(Digital Micromirror Device)で構成してもよい。その場合、適用する表示素子に応じた光学系及び駆動回路でプロジェクタ装置を構成するものとする。
 投射レンズ12は、組み合わされた複数のレンズと、制御信号に応じてレンズを駆動するレンズ駆動部とを有する。例えば、レンズ駆動部は、窓部13に設けられた距離センサからの出力信号に基づき測距された結果に従い投射レンズ12に含まれるレンズを駆動して、フォーカス制御を行う。また、レンズ駆動部は、後述する画角制御部106から供給されるズーム命令に従いレンズを駆動して画角を変化させ、光学ズームの制御を行う。
 上述したように、光学エンジン部110は、回転機構部115により360°の回動を可能とされたドラム部10内に設けられる。回転機構部115は、図2を用いて説明した駆動部32と、ドラム部10側の構成であるギア35とを含み、モータ40の回転を利用してドラム部10を所定に回転させる。すなわち、この回転機構部115によって、投射レンズ12の投射方向が変更されることになる。
 プロジェクタ装置1の回路部は、画像切り出し部100と、メモリ101と、画像処理部102と、画像制御部103と、回転制御部104と、画角制御部106と、CPU120とを含む。CPU(Central Processing Unit)120は、それぞれ図示を省略するROM(Read Only Memory)およびRAM(Random Access Memory)が接続され、ROMに予め記憶されたプログラムに従い、RAMをワークメモリとして用いて、投射画像の投射、投射角の変更、画像の切り出しといった、プロジェクタ装置1の各種処理を統括的に制御する。
 例えば、CPU120は、ユーザ操作に応じて操作部14から供給された制御信号に基づき、プログラムに従いこのプロジェクタ装置1の各部を制御する。これにより、ユーザ操作に従ったプロジェクタ装置1の動作が可能となる。これに限らず、CPU120は、例えば図示されないデータ入力部から入力されたスクリプトに従いプロジェクタ装置1の各部を制御する。これにより、プロジェクタ装置1の動作の自動制御が可能となる。
 静止画像または動画像の画像データがプロジェクタ装置1に入力され、画像切り出し部100に供給される。画像切り出し部100は、供給された画像データをメモリ101に格納する。メモリ101は、画像データを画像単位で格納する。すなわち、画像データが静止画像データの場合は1枚の静止画像毎に、動画像データの場合は当該動画像データを構成するフレーム画像毎に、対応するデータを格納する。メモリ101は、例えば、デジタルハイビジョン放送の規格に対応し、1920画素×1080画素のフレーム画像を1または複数枚格納可能とされている。画像切り出し部100は、メモリ101に格納された画像データに係るフレーム画像の全領域から、画像制御部103が指定した画像領域を切り出して(抽出して)画像データとして出力する。
 なお、入力画像データは、予めサイズがメモリ101における画像データの格納単位に対応したサイズに整形されて、プロジェクタ装置1に入力されると好ましい。この例では、入力画像データは、予め1920画素×1080画素に画像サイズを整形されてプロジェクタ装置1に入力される。これに限らず、任意のサイズで入力された画像データを1920画素×1080画素のサイズの画像データに整形する画像整形部を、プロジェクタ装置1の画像切り出し部100の前段に設けてもよい。
 画像切り出し部100から出力された画像データは、画像処理部102に供給される。画像処理部102は、例えば図示されないメモリを用いて、供給された画像データに対して画像処理を施す。例えば、画像処理部102は、画像切り出し部100から供給された画像データに対して、サイズが表示素子114のサイズに合致するようにサイズ変換処理を施す。それ以外にも画像処理部102では、様々な画像の処理を施すことが出来る。例えば、画像データに対するサイズ変換処理を、一般的な線形変換処理を用いて行うことができる。なお、画像切り出し部100から供給された画像データのサイズが表示素子114のサイズと合致している場合は、当該画像データをそのまま出力してもよい。
 さらには、投射される画像に対し、いわゆるキーストン補正に関する処理を施すこともできる。
 また、画像のアスペクト比を一定にして補間(オーバーサンプリング)することにより所定の特性の補間フィルタをかけて画像の一部または全部を大きくする、折り返し歪みをとるために縮小率に応じたローパスフィルタをかけて間引き(サブサンプリング)することにより画像の一部または全部を小さくする、又はフィルタをかけずにそのままの大きさとすることもできる。
 また、画像が斜め方向に投射されたときに、周辺部でフォーカスがずれて画像がぼけてしまうのを防止するために、ラプラシアンなどのオペレータによるエッジ強調処理、もしくは一次元フィルタを水平方向と垂直方向にかけることによるエッジ強調処理を行うことができる。このエッジ強調処理により、投射された、ぼけた画像部分のエッジを強調することができる。
 さらには、上述のキーストン補正などにより投射サイズ(面積)が変更されることで、画面全体の明るさが変化してしまうことを防止するために、明るさを均一に保つように、適応的な輝度調整を行うこともできる。そして、画像処理部102は、投射される画像テクスチャーの周辺部が斜め線を含むような場合には、エッジジャギが目立たないように、局所的なハーフトーンを混入したり、局所的なローパスフィルタを施したりして、エッジジャギをぼかすことで、斜め線がギザギザな線として観察されるのを防止することもできる。
 画像処理部102から出力された画像データは、表示素子114に供給される。実際には、この画像データは、表示素子114を駆動する駆動回路に供給される。駆動回路は、供給された画像データに従い表示素子114を駆動する。
 回転制御部104は、例えば操作部14に対するユーザ操作に応じたCPU120からの命令に従い、回転機構部115に対して指示を出す。回転機構部115は、上述した駆動部32と、フォトインタラプタ51aおよび51bとを含む。回転機構部115は、回転制御部104から供給される指示に従い駆動部32を制御して、ドラム部10(ドラム30)の回転動作を制御する。例えば、回転機構部115は、回転制御部104から供給される指示に従い駆動パルスを生成して、例えばステッピングモータであるモータ40を駆動する。
 一方、回転制御部104に対して、回転機構部115から上述したフォトインタラプタ51aおよび51bの出力と、モータ40を駆動する駆動パルスとが供給される。回転制御部104は、例えばカウンタを有し、駆動パルスのパルス数を計数する。回転制御部104は、フォトインタラプタ51bの出力に基づき突起46aの検出タイミングを取得し、カウンタに計数されたパルス数を、この突起46aの検出タイミングでリセットする。回転制御部104は、カウンタに計数されたパルス数に基づき、ドラム部10(ドラム30)の角度を逐次的に求めることができ、ドラム部10の姿勢(角度)を取得できる。ドラム部10の角度を示す情報は、画像制御部103に供給される。このようにして、回転制御部104は、投射レンズ12の投射方向が変更された場合に、変更前の投射方向と変更後の投射方向との間の角度を導出することができる。
 画角制御部106は、例えば操作部14に対するユーザ操作に応じたCPU120からの命令に従い、投射レンズ12に対してズーム指示、つまり画角の変更指示を出す。投射レンズ12のレンズ駆動部は、このズーム指示に従いレンズを駆動し、ズーム制御を行う。画角制御部106は、ズーム指示、及びそのズーム指示に係るズーム倍率等から導出された画角に関する情報を画像制御部103に供給する。
 画像制御部103は、回転制御部104から供給される角度に関する情報と、画角制御部106から供給される画角に関する情報とに基づき、画像切り出し部100による画像切り出し領域を指定する。このとき、画像制御部103は、画像データにおける切り出し領域を、投射レンズ12の変更の前後の投射方向間の角度に応じたライン位置に基づき指定する。
 なお、上述では、画像切り出し部100、画像処理部102、画像制御部103、回転制御部104および画角制御部106がそれぞれ別個のハードウェアであるかのように説明したが、これはこの例に限定されない。例えば、これら各部は、CPU120上で動作するプログラムのモジュールにより実現されてもよい。
<画像データの切り出し処理>
 次に、本実施形態に係る、画像制御部103および画像切り出し部100による、メモリ101に格納される画像データの切り出し処理について説明する。図5は、実施形態に係る、メモリ101に格納される画像データの切り出し処理を説明するための概念図である。図5の左側の図を参照し、メモリ101に格納される画像データ140から指定された切り出し領域の画像データ141を切り出す例について説明する。
 メモリ101は、例えば垂直方向にライン単位、水平方向に画素単位でアドレスが設定され、ラインのアドレスは、画像(画面)の下端から上端に向けて増加し、画素のアドレスは、画像の左端から右端に向けて増加するものとする。
 画像制御部103は、画像切り出し部100に対して、メモリ101に格納されるQライン×P画素の画像データ140の切り出し領域として、垂直方向にラインq0およびラインq1をアドレス指定し、水平方向に画素p0およびp1をアドレス指定する。画像切り出し部100は、このアドレス指定に従い、メモリ101から、ラインq0~q1の範囲内の各ラインを、画素p0~p1にわたって読み出す。このとき、読み出し順は、例えば各ラインは画像の上端から下端に向けて読み出され、各画素は画像の左端から右端に向けて読み出されるものとする。メモリ101に対するアクセス制御の詳細については、後述する。
 画像切り出し部100は、メモリ101から読み出した、ラインq0~q1、ならびに、画素p0~p1の範囲の画像データ141を画像処理部102に供給する。画像処理部102では、供給された画像データ141による画像のサイズを表示素子114のサイズに合わせる、サイズ変換処理を行う。一例として、表示素子114のサイズがVライン×H画素である場合、下記の式(1)および式(2)を共に満たす、最大の倍率mを求める。そして、画像処理部102は、画像データ141をこの倍率mで拡大し、図5の右側に例示されるように、サイズ変換された画像データ141’を得る。
m×(p1-p0)≦H  …(1)
m×(q1-q0)≦V  …(2)
 次に、本実施形態による、投射角に応じた切り出し領域の指定(更新)について説明する。図6は、実施形態に係る、ドラム部10が0°姿勢、すなわち、投射角0°の場合の切り出し領域指定の例を示す。プロジェクタ装置(PJ)1において、画角αの投射レンズ12で、スクリーンなどの被投射媒体である投射面130に対して、投射角0°で画像1310を投射した場合の投射位置を、投射レンズ12から投射される光の光束中心に対応する位置Pos0とする。また、投射角0°では、メモリ101に格納される画像データの、投射角0°の姿勢で投射を行うように予め指定された領域の下端のSライン目のラインから、Lライン目のラインまでの画像データによる画像が投射されるものとする。Sライン目のラインからLライン目のラインの領域には、ライン数lnのラインが含まれるものとする。ライン数lnは、例えば表示素子114の垂直方向の画素数すなわちライン数に対応する。また、Sライン目やLライン目といったライン位置を示す値は、例えば表示素子114の下端のラインを0ライン目として、表示素子114の下端から上端に向けて増加する値とする。
 画像制御部103は、画像切り出し部100に対して、メモリ101に格納される画像データ140のラインSからラインLまでを切り出して読み出すように指示する。なお、ここでは、水平方向には、画像データ140の左端から右端までを全て読み出すものとする。画像切り出し部100は、画像制御部103の指示に従い、画像データ140のSライン目のラインからLライン目のラインの領域を切り出し領域に設定し、設定された切り出し領域の画像データ141を読み出して画像処理部102に供給する。投射面130には、画像データ140のSライン目のラインからLライン目のラインまでの、ライン数lnの画像データ1410による画像1310が投射される。この場合、画像データ140の全領域のうち、Lライン目のラインから上端のラインまでに係る領域の画像データ142による画像は、投射されないことになる。
 次に、例えば操作部14に対するユーザ操作によりドラム部10が回転され、投射レンズ12の投射角が角度θとなった場合について説明する。本実施形態では、ドラム部10が回転され投射レンズ12による投射角が変化した場合に、投射角θに応じて画像データ140をメモリ101から切り出す切り出し領域を変える。
 投射角θに対する切り出し領域の設定について、図7を用いてより具体的に説明する。例えばドラム部10を、投射レンズ12による投射位置が0°姿勢から正方向に回転させ、投射レンズ12の投射角が角度θ(>0°)になった場合について考える。この場合、投射面130に対する投射位置が、投射角0°の投射位置Pos0に対して上方の投射位置Pos1に移動する。このとき、画像制御部103は、画像切り出し部100に対して、メモリ101に格納される画像データ140に対する切り出し領域を、次の式(3)および式(4)に従い指定する。式(3)は、切り出し領域の下端のRSライン目のラインを示し、式(4)は、切り出し領域の上端のRLライン目のラインを示す。
S=θ×(ln/α)+S  …(3)
L=θ×(ln/α)+S+ln  …(4)
 なお、式(3)および式(4)において、値lnは、投射領域内に含まれるライン数(例えば表示素子114のライン数)を示す。また、値αは投射レンズ12の画角、値Sは、図6を用いて説明した、0°姿勢における切り出し領域の下端のライン位置を示す値をそれぞれ示す。
 式(3)および式(4)において、(ln/α)は、画角αに含まれるライン数を示す。換言すれば、(ln/α)は、プロジェクタ装置1における単位角度当たりのライン数を示すことになる。したがって、θ×(ln/α)は、プロジェクタ装置1における、角度θに対応するライン数を表す。すなわち、式(3)および式(4)は、0°姿勢(角度θ=0°)に対して投射角が角度θだけ変化した場合の、メモリ101に対する読み出しアドレス(ライン)の変化に対応する。
 このように、本実施形態においては、メモリ101から画像データ140を読み出す際のアドレスが、投射角θに応じて指定される。これにより、メモリ101から、画像データ140の、投射角θに応じた位置の画像データ1411が読み出され、読み出された画像データ1411に係る画像1311が、投射面130の投射角θに対応する投射位置Pos1に投射される。
 そのため、本実施形態によれば、表示素子114のサイズよりも大きいサイズの画像データ140を投射する場合に、投射される画像内の位置と、画像データ内の位置との対応関係が保たれる。また、ドラム30を回転駆動するためのモータ40の駆動パルスに基づき投射角θを求めているため、ドラム部10の回転に対して略遅延の無い状態で投射角θを得ることができると共に、投射画像や周囲の環境に影響されずに投射角θを得ることが可能である。
 次に、投射レンズ12による光学ズームを行った場合の切り出し領域の設定について説明する。既に説明したように、プロジェクタ装置1の場合、レンズ駆動部が駆動され投射レンズ12の画角αが増加または減少されることで、光学ズームが行われる。光学ズームによる画角の増加分を角度Δとし、光学ズーム後の投射レンズ12の画角を画角(α+Δ)とする。
 この場合、光学ズームにより画角が増加しても、メモリ101に対する切り出し領域は変化しない。換言すれば、光学ズーム前の画角αによる投射画像に含まれるライン数と、光学ズーム後の画角(α+Δ)による投射画像に含まれるライン数は、同一である。したがって、光学ズーム後は、光学ズーム前に対して単位角度当たりに含まれるライン数が変化することになる。
 光学ズームを行った場合の切り出し領域の指定について、図8を用いてより具体的に説明する。図8の例では、投射角θの状態で、画角αに対して画角Δ分を増加させる光学ズームを行っている。光学ズームを行うことで、投射面130に投射される投射画像は、例えば投射レンズ12に投射される光の光束中心(投射位置Pos2)を共通として、画像131として示されるように、光学ズームを行わない場合に対して画角Δ分拡大される。
 画角Δ分の光学ズームを行った場合、画像データ140に対して切り出し領域として指定されるライン数をlnラインとすると、単位角度当たりに含まれるライン数は、{ln/(α+Δ)}で表される。したがって、画像データ140に対する切り出し領域は、次の式(5)および式(6)により指定される。なお、式(5)および式(6)における各変数の意味は、上述の式(3)および式(4)と共通である。
S=θ×{ln/(α+Δ)}+S  …(5)
L=θ×{ln/(α+Δ)}+S+ln  …(6)
 画像データ140から、この式(5)および式(6)に示される領域の画像データ1412が読み出され、読み出された画像データ1412に係る画像1312が、投射レンズ12により、投射面130の投射位置Pos2に対して投射される。
 このように、光学ズームを行った場合には、単位角度当たりに含まれるライン数が光学ズームを行わない場合に対して変化し、投射角θの変化に対するラインの変化量が、光学ズームを行わない場合に比べて異なったものとなる。これは、メモリ101に対する投射角θに応じた読み出しアドレスの指定において、光学ズームにより増加した画角Δ分のゲインが変更された状態である。
 本実施形態においては、メモリ101から画像データ140を読み出す際のアドレスは、投射角θと投射レンズ12の画角αに応じて指定される。これにより、光学ズームを行った場合であっても、投射すべき画像データ1412のアドレスを、メモリ101に対して適切に指定することができる。したがって、光学ズームを行った場合であっても、表示素子114のサイズよりも大きいサイズの画像データ140を投射する場合に、投射される画像内の位置と、画像データ内の位置との対応関係が保たれる。
 次に、画像の投射位置に対してオフセットが与えられた場合について、図9を用いて説明する。プロジェクタ装置1の使用に際して、必ずしも0°姿勢(投射角0°)が投射位置の最下端になるとは限らない。例えば図9に例示されるように、所定の投射角θofstによる投射位置Pos3を、最下端の投射位置にする場合も考えられる。この、画像データ140の最下端のラインを最下端とする画像を投射する際の投射角θを、オフセットによるオフセット角θofstとする。
 この場合、例えば、このオフセット角θofstを投射角0°と見做して、メモリ101に対する切り出し領域を指定することが考えられる。上述した式(3)および式(4)に当て嵌めると、下記の式(7)および式(8)のようになる。なお、式(7)および式(8)における各変数の意味は、上述の式(3)および式(4)と共通である。
S=(θ-θofst)×(ln/α)+S  …(7)
L=(θ-θofst)×(ln/α)+S+ln  …(8)
 画像データ140から、この式(7)および式(8)に示される領域の画像データ1413が読み出され、読み出された画像データ1413に係る画像1313が、投射レンズ12により、投射面130の投射位置Pos3に対して投射される。
 ところで、上述した式(3)および式(4)による切り出し領域の指定方法は、投射レンズ12による投射を行う投射面130が、ドラム部10の回転軸36を中心とした円筒であると仮定した、円筒モデルに基づくものである。しかしながら、実際には、投射面130は、投射角θ=0°に対して90°の角をなす垂直な面(以下、単に「垂直な面」と呼ぶ)であることが多いと考えられる。画像データ140から同一のライン数の画像データを切り出して垂直な面に投射した場合、投射角θが大きくなるに連れ、垂直な面に投射される画像が縦方向に伸びることになる。そこで切り出し部の後に画像処理部において次のような画像処理を施す。
 図10および図11を用いて、垂直な面に対して投射される画像について説明する。図10において、位置201をドラム部10の回転軸36の位置として、位置201から距離rだけ離れた投射面204に、投射レンズ12から画像を投射する場合について考える。
 上述の円筒モデルでは、位置201を中心とする半径rの弧202を投射面として投射画像が投射される。弧202の各点は、位置201から等距離であり、投射レンズ12から投射される光の光束中心は、弧202を含む円の半径となる。したがって、投射角θを0°の角度θ0から角度θ1、角度θ2、…と増加させても、投射画像は常に同じサイズで投射面に対して投射される。
 一方、垂直な面である投射面204に対して投射レンズ12から画像を投射する場合、投射角θを角度θ0から角度θ1、角度θ2、…と増加させると、投射レンズ12から投射された光の光束中心が投射面204に照射される位置が、正接関数の特性に従い角度θの関数にて変化する。したがって、投射画像は、投射角θが大きくなるに連れ、下記の式(9)に示される比率Mに従い、上方向に伸びる。
M=(180×tanθ)/(θ×π)  …(9)
 式(9)によれば、例えば投射角θ=45°の場合、約1.27倍の比率で投射画像が伸びることになる。また、投射面Wが半径rの長さに対してさらに高く、投射角θ=60°での投射が可能である場合、投射角θ=60°においては、約1.65倍の比率で投射画像が伸びることになる。
 また、図11に例示されるように、投射面204上の投射画像におけるライン間隔205も、投射角θが大きくなるに連れ広くなる。この場合、1つの投射画像内における投射面204上の位置に応じて、上述の式(9)に従いライン間隔205が広くなることになる。
 そこで、プロジェクタ装置1は、投射レンズ12の投射角θに従って、上述の式(9)の逆数の比率で、投射を行う画像の画像データに対して縮小処理を行う。この縮小処理は、円筒モデルに基づいて切り取る画像データよりも大き目が望ましい。即ち、垂直な面である投射面204の高さに依存するが、投射角θ=45°の場合、約1.27倍の比率で投射画像が伸びるので、その逆数の約78%程度に縮めることになる。そこで画像メモリを一杯に使い切るには、予め、22%程度以上、ライン数を多めに切り取っておき、投射される画像に対応する画像データの領域よりも大きい領域を切り出し領域の画像を読み込んでおいて画像処理部に入力することが望ましい。
 一例として、画像制御部103は、プロジェクタ装置1に入力された画像データを画像切り出し部100によりメモリ101に格納する際に、当該画像データに対して、上述の式(9)の逆数の比率を用いて、画像データが投射される際の画像のライン毎に、当該画像データに対して予め縮小処理を施す。縮小処理は、投射角θに依存して縮小率がライン(垂直方向の画素)に、数タップのローパスフィルタによりローパスフィルタ処理を施して、ラインを間引く。正確には、ローパスフィルタ処理は、ローパスフィルタの帯域の制限値も投射角θに依存して変更することが好ましい。これに限らず、最大の投射角θに対応する縮小率で均一にフィルタの特性を決定する、あるいは最大の投射角θの、ほぼ1/2に対応する縮小率で均一にフィルタの特性を決定するといった、一般的な線形補間を利用することができる。また、そのフィルタ処理の後、間引くラインにおいても、画面内の投射角θに依存してサブサンプリングすることが好ましい。これに限らず、最大の投射角θに対応する縮小率で均一に間引きをしたり、あるいは最大の投射角θの、ほぼ1/2に対応する縮小率で均一に間引きを行うこともできる。ローパスフィルタ処理および間引き処理を均一に行わないで少しでも正確に縮小処理を行う場合には、画像データをライン方向に幾つかのエリアに分割して、分割されたエリア毎に均一に処理を施すという方法によっても、よりよい特性を出すのに有効である。
 なお、この式(9)を利用した画像処理は、メモリ101に画像データを格納する際に行うのに限られない。この画像処理は、例えば画像処理部102で行ってもよい。
 なお、実際にプロジェクタ装置1が使用される環境では、投射面204の高さに制限があり、ある高さの位置200で90°折り返して面203が形成される場合が多いと考えられる。この面203も、プロジェクタ装置1の投射面として用いることができる。この場合、面203に投射される画像は、投射角θをさらに大きくして、投射位置が位置200を越えて真上方向(投射角θ=90°)に向かうのに連れて、上述した投射面204に投射される画像とは逆の特性で縮むことになる。
 そのため、画像データによる画像を投射角0°および90°で投射する場合は、投射する画像データに対する式(9)を用いた縮小処理を行わないようにする。また、投射面204の長さ(高さ)と、面203の長さとが略等しい場合には、投射する画像データに対する式(9)を用いた縮小処理を、投射角0°から投射面204の最上部の位置200までの縮小処理と、位置200から投射角90°までの縮小処理とで対称の処理として実行する。これにより、画像制御部103におけるこの縮小処理に対する負荷を低減することができる。
 上述の例では、投射角θ=0°に対して90°の角をなす垂直な面を想定して説明を行った。ドラム部10の回転角によっては、投射角θ=0°に対して180°の角をなす平面に投射することも考えられる。画像データ140から同一のライン数の画像データを切り出してこの面に投射した場合、投射角θが大きくなるに連れ、投射される画像が縦方向に縮むことになる。そこで切り出し部のあとに画像処理部においては上述の説明とは逆の画像処理を施す。
 すなわち、投射角θを角度θ0から角度θ1、角度θ2、…と増加させると、投射部から投射面までの距離が小さくなるよう変化する。そこで、プロジェクタ装置1は、投射レンズ12の投射角θに従って、上述説明とは逆に、投射を行う画像の画像データに対して拡大処理を行うようにする。
 以上のように、プロジェクタ装置1の画像切り出し部は、投射方向が第1の投射方向から第2の投射方向に変化するにつれて、投射レンズ12から投射面までの距離が小さくなる場合には、切り出し画像データの画素毎に、投射角に基づいた拡大処理を施すようにしてもよい。
<メモリ制御について>
 次に、図12~図17を用いて、メモリ101のアクセス制御について説明する。画像データは、垂直同期信号VD毎に、画面上水平方向に各ライン毎に画像の左端から右端に向けて各画素が順次伝送され、各ラインは、画像の上端から下端に向けて順次伝送される。なお、以下では、画像データは、デジタルハイビジョン規格に対応した、水平1920画素×垂直1080画素(ライン)のサイズをもつ場合を例として説明する。
 以下では、メモリ101が、それぞれ独立してアクセス制御が可能な、4つのメモリ領域を含む場合のアクセス制御の例について説明する。すなわち、図12に示されるように、メモリ101は、それぞれ水平1920画素×垂直1080画素(ライン)のサイズで画像データの書き込み読み出しに用いられるメモリ101Y1および101Y2の各領域と、それぞれ水平1080画素×垂直1920画素(ライン)のサイズで画像データの書き込み読み出しに用いられるメモリ101T1および101T2の各領域がそれぞれ設けられている。以下、各メモリ101Y1、101Y2、101T1および101T2を、それぞれメモリY1、メモリY2、メモリT1およびメモリT2として説明する。
 図13は、実施形態に係る、画像切り出し部100によるメモリ101に対するアクセス制御を説明するためのタイムチャートの一例である。チャート210は、投射レンズ12の投射角θ、チャート211は、垂直同期信号VDを示す。また、チャート212は、画像切り出し部100に入力される画像データD1、D2、…の入力タイミング、チャート213~チャート216は、それぞれメモリY1、Y2、T1およびT2に対する画像切り出し部100からのアクセスの例を示す。なお、チャート213~チャート216において、「R」が付されているブロックは、読み出しを示し、「W」が付されているブロックは、書き込みを示す。
 画像切り出し部100に対して、垂直同期信号VD毎に、それぞれ1920画素×1080ラインの画像サイズを持つ画像データD1、D2、D3、D4、D5、D6、…が入力される。各画像データD1、D2、…は、垂直同期信号VDに同期して、垂直同期信号VDの後から入力される。また、各垂直同期信号VDに対応する投射レンズ12の投射角を、それぞれ投射角θ1、θ2、θ3、θ4、θ5、θ6、…とする。投射角θは、このように垂直同期信号VD毎に取得される。
 先ず、画像切り出し部100に対して、画像データD1が入力される。本実施形態によるプロジェクタ装置1は、上述したように、ドラム部10を回転させることで投射レンズ12による投射角θを変化させて投射画像の投射位置を移動させると共に、投射角θに応じて画像データに対する読み出し位置を指定する。そのため、画像データは、垂直方向についてより長いと都合がよい。一般的には、画像データは、水平方向のサイズが垂直方向のサイズよりも大きいことが多い。そこで例えば、ユーザがカメラを90°回転させて撮像を行い、この撮像で得られた画像データをプロジェクタ装置1に入力することが考えられる。
 すなわち、画像切り出し部100に入力される画像データD1、D2、…による画像は、図14Aにイメージとして示される画像160のように、画像の内容から判断して正しい向きの画像から90°回転された、横向きの画像とされている。
 画像切り出し部100は、入力された画像データD1を、先ず、メモリY1に対して、画像データD1の入力タイミングに対応したタイミングWD1で書き込む(図13のチャート213のタイミングWD1)。画像切り出し部100は、画像データD1を、図14Bの左側に示されるように、水平方向に向けてライン順にメモリY1に対して書き込む。図14Bの右側に、こうしてメモリY1に書き込まれた画像データD1による画像161をイメージとして示す。画像データD1は、入力時の画像160と同じイメージの画像161として、メモリY1に書き込まれる。
 画像切り出し部100は、図14Cに示されるように、メモリY1に書き込んだ画像データD1を、当該画像データD1を書き込んだ垂直同期信号VDの次の垂直同期信号VDの開始と同時のタイミングRD1で、メモリY1から読み出す(図13のチャート213のタイミングRD1)。
 このとき、画像切り出し部100は、画像データD1を、画像の左下隅の画素を読み出し開始画素として、垂直方向に順次ラインを跨いで画素毎に読み出していく。画像の上端の画素を読み出すと、次は、垂直方向の読み出し開始位置の画素の右隣の画素を読み出し開始画素として、垂直方向に各画素を読み出す。この動作を、画像の右上隅の画素の読み出しが終了するまで、繰り返す。
 換言すれば、画像切り出し部100は、ライン方向を画像の下端から上端に向けた垂直方向として、メモリY1からの画像データD1の読み出しを、当該垂直方向のライン毎に、画像の左端から右端に向けて画素毎に順次読み出す。
 画像切り出し部100は、このようにしてメモリY1から読み出した画像データD1の画素を、図15Aの左側に示されるように、メモリT1に対して、ライン方向に向けて画素毎に順次書き込んでいく(図13のチャート214のタイミングWD1)。すなわち、画像切り出し部100は、メモリY1から例えば1画素を読み出す毎に、読み出したこの1画素をメモリT1に書き込む。
 図15Aの右側は、こうしてメモリT1に書き込まれた画像データD1による画像162のイメージを示す。画像データD1は、水平1080画素×垂直画素1920(ライン)のサイズとしてメモリT1に書き込まれ、入力時の画像160が時計回りに90°回転されて水平方向と垂直方向とが入れ替えられた画像162とされる。
 画像切り出し部100は、メモリT1に対して画像制御部103に指定された切り出し領域のアドレス指定を行い、当該切り出し領域として指定された領域の画像データをメモリT1から読み出す。この読み出しのタイミングは、図13のチャート214にタイミングRD1として示されるように、画像データD1が画像切り出し部100に入力されたタイミングに対して、2垂直同期信号VDの分だけ遅延することになる。
 本実施形態によるプロジェクタ装置1は、上述したように、ドラム部10を回転させることで投射レンズ12による投射角θを変化させて投射画像の投射位置を移動させると共に、投射角θに応じて画像データに対する読み出し位置を指定する。例えば、画像データD1が、投射角θ1のタイミングで画像切り出し部100に入力される。この画像データD1による画像を実際に投射するタイミングにおける投射角θは、投射角θ1から、投射角θ1と異なる投射角θ3に変化していることが有り得る。
 そのため、メモリT1から画像データD1を読み出す際の切り出し領域は、この投射角θの変化分を見込んで、投射される画像に対応する画像データの領域よりも大きい範囲で読み出すようにする。
 図15Bを用いてより具体的に説明する。図15Bの左側は、メモリT1に格納される画像データD1による画像163のイメージを示す。この画像163において、実際に投射される領域を投射領域163aとし、他の領域163bは、非投射領域であるとする。この場合、画像制御部103は、メモリT1に対して、投射領域163の画像に対応する画像データの領域よりも、少なくとも、2垂直同期信号VDの期間で投射レンズ12による投射角θが最大に変化した場合の変化分に相当するライン数分大きい切り出し領域170を指定する。
 画像切り出し部100は、画像データD1をメモリT1に書き込んだ垂直同期信号VDの次の垂直同期信号VDのタイミングで、この切り出し領域170からの画像データの読み出しを行う。こうして、投射角θ3のタイミングで、投射を行う画像データがメモリT1から読み出され、後段の画像処理部102を経て表示素子114に供給され、投射レンズ12から投射される。
 画像切り出し部100に対し、画像データD1が入力された垂直同期信号VDの次の垂直同期信号VDのタイミングで、画像データD2が入力される。このタイミングでは、メモリY1は画像データD1が書き込まれている。そのため、画像切り出し部100は、画像データD2をメモリY2に書き込む(図13のチャート215のタイミングWD2)。このときの、画像データD2のメモリY2への書き込み順は、上述の画像データD1のメモリY1への書き込み順と同様であり、イメージも同様である(図14B参照)。
 すなわち、画像切り出し部100は、画像データD2を、画像の左下隅の画素を読み出し開始画素として、垂直方向に順次ラインを跨いで画素毎に画像の上端の画素まで読み出し、次に垂直方向の読み出し開始位置の画素の右隣の画素を読み出し開始画素として、垂直方向に各画素を読み出す(図13のチャート215のタイミングRD2)。この動作を、画像の右上隅の画素の読み出しが終了するまで、繰り返す。画像切り出し部100は、このようにしてメモリY2から読み出した画像データD2の画素を、メモリT2に対して、ライン方向に向けて画素毎に順次書き込んで(図13のチャート216のタイミングWD2)いく(図15A左側参照)。
 画像切り出し部100は、メモリT2に対して画像制御部103に指定された切り出し領域のアドレス指定を行い、当該切り出し領域とされた領域の画像データを、図13のチャート216のタイミングRD2でメモリT2から読み出す。このとき、上述したように、画像制御部103は、メモリT2に対して、投射角θの変化分を見込んだ、投射される画像に対応する画像データの領域よりも大きい領域を切り出し領域170として指定する。
 画像切り出し部100は、画像データD2をメモリT2に書き込んだ垂直同期信号VDの次の垂直同期信号VDのタイミングで、この切り出し領域170からの画像データの読み出しを行う。こうして、投射角θ2のタイミングで画像切り出し部100に入力された画像データD2における切り出し領域170の画像データが、投射角θ4のタイミングでメモリT2から読み出され、後段の画像処理部102を経て表示素子114に供給され、投射レンズ12から投射される。
 以降、同様にして、画像データD3、D4、D5、…に対して、メモリY1およびT1の組と、メモリY2およびT2の組とを交互に用いて順次処理していく。
 上述のように、本実施形態では、メモリ101に対して、水平1920画素×垂直1080画素(ライン)のサイズで画像データの書き込み読み出しに用いられるメモリY1、Y2の領域と、水平1080画素×垂直1920画素(ライン)のサイズで画像データの書き込み読み出しに用いられるメモリT1、T2の領域とをそれぞれ設けている。これは、一般に、画像メモリに用いられるDRAM(Dynamic Random Access Memory)は、水平方向のアクセスに対して、垂直方向のアクセスの方がアクセス速度が遅いためである。他の、水平方向と垂直方向とで同等のアクセス速度を得られる、ランダムアクセス容易なメモリを用いる場合、画像データに応じた容量のメモリを2面用いる構成としてもよい。
 上述に限らず、画像切り出し部100に入力される画像データが水平1920画素×垂直1080画素(ライン)のサイズの場合に、図16Aに示されるように、画像切り出し部100が当該画像データを、水平方向と垂直方向とを入れ替えずにメモリ101Y1(またはメモリ101Y2)に書き込み、画像制御部103が、図16Bに示されるように、画像データの複数ラインの領域を切り出し領域171として指定することもできる。この場合、画像切り出し部100により切り出し領域171から読み出された画像データによる画像が、投射レンズ12から投射される。
 また、画像制御部103は、メモリ101Y1に書き込まれた画像データに対して、図16Cに示されるように、切り出し領域として任意の矩形領域172を指定することもできる。この場合、画像切り出し部100によりこの矩形領域172を切り出し領域としてメモリ101Y1から読み出された画像データが、画像処理部102に供給される。画像処理部102は、上述の説明のように、供給された画像データに対して画像処理を施し、切り出された領域の画像データが投射レンズ12から投射される。この図16Bおよび図16Cの場合、水平1920画素×垂直1080画素(ライン)のサイズで画像データの書き込み読み出しに用いられるメモリ101Y1および101Y2を順次切り替えて用いる。
 さらにこの場合、画像切り出し部100に入力された画像データを切り出す領域が予め設定されている場合、入力された画像データの全ての領域を例えばメモリ101Y1に書き込む必要は無い。すなわち、画像切り出し部100は、投射される画像に対応する領域内の画像データに対し、上述したアクセス制御により遅延する投射角θ分のラインを含めた画像データを加えた画像データを、例えばメモリ101Y1に書き込むようにする。
 メモリ101T1および101T2に対する書き込みおよび読み出しも、同様である。すなわち、画像切り出し部100に入力された画像データを切り出す領域が予め設定されている場合、入力された画像データの全ての領域を例えばメモリ101T1に書き込む必要は無い。すなわち、画像切り出し部100は、図17Aに示されるように、投射される画像に対応する領域内の画像データに対し、上述したアクセス制御により遅延する投射角θ分のラインを加えた画像データ173を、例えばメモリ101T1に対して書き込むようにする。読み出しの場合も同様に、画像切り出し部100は、例えばメモリ101T1に書き込まれた画像データ173のみを読み出す(図17B)。
 また、画像切り出し部100に入力された、水平1920画素×垂直1080画素(ライン)のサイズの画像データの水平方向と垂直方向とを、図14A~図14Cを用いて説明した方法により入れ替えてメモリT1に書き込んだ場合(図17C参照)に、画像制御部103は、メモリT1に対して、図17Dに示されるように、切り出し領域として任意の矩形領域174を指定することもできる。この場合、画像切り出し部100によりこの矩形領域174を切り出し領域としてメモリ101T1から読み出された画像データが、画像処理部102に供給される。画像処理部102は、上述の説明のように、供給された画像データに対して画像処理を施し、切り出された領域の画像データが投射レンズ12から投射される。
<画像データの投射を行う処理の流れ>
 次に、図18のフローチャートを用いてプロジェクタ装置1において画像データによる画像を投射する際の処理の流れについて説明する。
 ステップS100で、画像データの入力に伴い、当該画像データによる画像の投射に係る各種設定値がプロジェクタ装置1に入力される。入力された各種設定値は、例えばCPU120に取得される。ここで取得される各種設定値は、例えば、画像データによる画像を回転させるか否か、すなわち、当該画像の水平方向と垂直方向とを入れ替えるか否かを示す値、画像の拡大率、投射の際のオフセット角θofstを含む。各種設定値は、プロジェクタ装置1に対する画像データの入力に伴い、データとしてプロジェクタ装置1に入力してもよいし、操作部14を操作することで入力してもよい。
 次のステップS101で、プロジェクタ装置1に対して、1フレーム分の画像データが入力され、画像切り出し部100により、入力された画像データが取得される。取得された画像データは、メモリ101に書き込まれる。
 次のステップS102で、画像制御部103は、オフセット角θofstを取得する。次のステップS103で、画像制御部103は、切り出しサイズすなわち入力された画像データにおける切り出し領域のサイズを取得する。画像処理部103は、切り出し領域のサイズを、ステップS100で取得された設定値から取得してもよいし、操作部14に対する操作に応じて取得してもよい。次のステップS104で、画像制御部103は、投射レンズ12の画角αを取得する。画像制御部103は、投射レンズ12の画角αを、例えば画角制御部104から取得する。さらに、次のステップS105で、画像制御部103は、投射レンズ12の投射角θを、例えば回転制御部104から取得する。
 次のステップS106で、画像制御部103は、ステップS102~ステップS105で取得されたオフセット角θofstと、切り出し領域のサイズと、画角αと、投射角θとに基づき、上述した式(3)~式(8)を用いて、入力された画像データに対する切り出し領域を求める。画像制御部103は、画像切り出し部100に対して、求めた切り出し領域からの画像データの読み出しを指示する。画像切り出し部100は、画像制御部103からの指示に従い、メモリ101に記憶される画像データから切り出し領域内の画像データを読み出す。画像切り出し部100は、メモリ101から読み出した切り出し領域の画像データを画像処理部102に供給する。
 ステップS107で、画像処理部102は、画像切り出し部100から供給された画像データに対して、例えば上述した式(1)および式(2)に従いサイズ変換処理を施す。画像処理部102でサイズ変換処理を施された画像データは、表示素子114に供給される。表示素子114は、光源111からの光を画像データに従い変調して射出する。射出されたこの光は、投射レンズ12から投射される。
 次のステップS108で、CPU120は、上述のステップS101で入力された画像データの次のフレームの画像データの入力があるか否かを判定する。若し、次のフレームの画像データの入力があると判定された場合、CPU120は、処理をステップS101に戻し、当該次のフレームの画像データに対して上述したステップS101~ステップS107の処理を行う。すなわち、このステップS101~ステップS107の処理は、例えば画像データの垂直同期信号VDに従い、画像データのフレーム単位で繰り返される。したがって、プロジェクタ装置1は、投射角θの変化に対して、フレーム単位で各処理を追随させることができる。
 一方、ステップS108で、次のフレームの画像データが入力されないと判定した場合、CPU120は、プロジェクタ装置1における画像の投射動作を停止させる。例えば、CPU120は、光源111をオフにするように制御すると共に、回転機構部115に対してドラム部10の姿勢を初期姿勢に戻すように命令を出す。そして、CPU120は、ドラム部10の姿勢が初期姿勢に戻った後、光源111などを冷却するファンを停止させる。
 以上の通り、プロジェクタ装置1によれば、画像データの有する解像度を保持しながら、ユーザが、入力された画像データに係る画像における投射された被写体画像の位置を把握しやすい画像投射を行うことができる。
 なお、上述の実施形態では、プロジェクタ装置1の備えるドラム部10は基台20に対して垂直方向にのみ回動され、投射レンズ12の投射方向が垂直方向にのみ変更されていく例を示したが、この回動ないし変更は垂直方向には限定されない。例えば、パン及びチルトが可能な構成を有し、水平ないし垂直方向に投射部の投射方向を変更可能な投射装置においても本発明を適用し、その効果を得ることができる。
<実施形態に適用可能な放熱構造>
 次に、実施形態に適用可能な放熱構造について説明する。実施形態によるプロジェクタ装置1では、既に説明したように、ドラム部10の内部に、光学エンジン部110などを冷却するための、ファンなどによる冷却手段が設けられている。ここで、例えば、ファンの回転量を一律とし、投射姿勢の変化とは無関係にファンの送風などを行うと、ドラム部10に設けられた吸排孔23の位置などの関係から、投射姿勢によっては放熱効率が低下するおそれがある。また、ファンの回転方向を一律としてしまうと、ドラム部10の回転に伴ない、プロジェクタ装置1本体に対する排気風の排出方向が、都度変化してしまい、姿勢によってはユーザに熱風がそのまま当たってしまうおそれもある。
 実施形態に適用可能な放熱構造の第1の例、ならびに、後述する実施形態に適用可能な放熱構造の第2および第3の例では、上述した実施形態によるプロジェクタ装置1に対して放熱を考慮した構成を追加し、上述の問題を解決するものである。
<実施形態に適用可能な放熱構造の第1の例に係るプロジェクタ装置の内部構成>
 実施形態に適用可能な放熱構造の第1の例に係るプロジェクタ装置の内部構造について説明する。図19は、本放熱構造の第1の例に係るプロジェクタ装置1000の内部構造を説明するための断面図である。なお、図19において、図1Aおよび図1B、図2Aおよび図2B、ならびに、図4などと共通する部分には同一の符号を付して、詳細な説明を省略する。
 本放熱構造の第1の例に係るプロジェクタ装置1000では、ドラム部10内部に、光源111と、投射レンズ12と、表示素子114と、ミラー113と、光源111と、放熱部材としてのヒートパイプ61およびフィン62からなるヒートシンクと、ファン60とが設けられている。
 ここで、投射レンズ12と、表示素子114と、ミラー113とは、光源111から射出された光を投影対象の画像データに基づいて変調してプロジェクタ装置1000の外部に投射する光学機構としての光学エンジン部110を構成する。
 図19に示すように、吸排孔22aは、投射レンズ12による光の投射方向から上方へ90°の角度でドラム部10の周面に設けられている。吸排孔22bは、投射レンズ12による光の投射方向から下方へ90°の角度で吸排孔22aと対称に、ドラム部10の周面に設けられている。なお、吸排孔22a、吸排孔22bの位置は、ドラム部10の中心位置の回転軸に対して対称となるように設け、光の投射方向とは異なる角度で、効率的な吸排気のエアーフローが得られる配置であれば上記投射方向から上下へ90°の角度に限定されるものではない。
 投射レンズ12は、その光軸が、ドラム部10の中心位置の回転軸を通り、かつドラム部10外周の2つの吸排孔22a,22bの各中心を結ぶ線分と垂直となるように、ドラム部10の外周に向けて配置されている。表示素子114、ミラー113は、投射レンズ12の光軸に沿ってドラム部10の中心位置よりドラム部10の径方向に配置されている。
 光源111は、略直線形状のヒートパイプ61に接続され、投射レンズ12と反対側に位置する端部に、ミラー113に向けて光を射出する向きに装着されている。
 ヒートパイプ61およびフィン62からなるヒートシンクは、光軸と吸排孔22aの間に配置されている。ヒートパイプ61には、放熱効率を向上させるための複数のフィン62が設けられている。
 ヒートパイプ61とドラム部10外周の吸排孔22aの間には、ファン60が配置されており、ファン60の羽根部が吸排孔22aに向いた状態となっている。このため、ファン60は、吸排孔22aから空気を吸引して吸排孔22bに排気し、あるいは、吸排孔22bから空気を吸引して吸排孔22aへ排気することが可能となっている。
 図19に示すように、基台20の内部には、各種制御や画像処理等を行う回路部が搭載された複数の基板301が設けられている。そして、基台20は、基台20の上壁面とドラム部10の外周面とで形成される空隙70を設けた状態で、ドラム部10を回転可能に支持している。
 この空隙70は、後述するプロジェクタ装置1000の放熱制御処理において、ダクトの役割を果たす。すなわち、ドラム部10の吸排孔22a及び22bから排気された熱風が、この空隙70内を流れて基台20の吸排孔16aないし16bから排気される。このとき、基台20の上壁面により、この放熱制御処理に伴なうドラム部10の吸排孔22a及び22bから排気された熱風が、基台20の内部に流入し、内部の基板301に影響を及ぼすことを防止することができる。また、空隙70は、吸排孔16a、16bから取り込んだ外部の空気を、吸排孔22a,22bを通じてドラム部10の内部へ供給する際の通路ともなる。以下では、この空隙70をダクト70という場合もある。
 上述したとおり、本放熱構造の第1の例では、ユーザの操作性の向上のため、操作部14を有する基台20の上にドラム部10を回転可能に設けており、このため、ドラム部10と基台20との間に空隙70を設けている。そして、この空隙70によって、ドラム部10の放熱と基台20との放熱を独立に行っている。すなわち、ドラム部10では、基台20とは独立に、吸排孔22aもしくは22bと空隙70との重複の割合に応じてファン60の回転数を制御して放熱効率を向上させることが可能となる一方、基台20では、ドラム部10の放熱処理とは別個に放熱効率を向上させることが可能となる。
 ドラム部10の外壁と基台20の上壁面との間隔、つまりこの空隙は3mm以下となっている。そして、この空隙70は、ドラム部10及び基台20の上壁面、そして多数の小径の孔からなる吸排孔16a及び16bを有する壁面に囲まれている。このため、ドラム部10の回転駆動中にユーザが誤ってドラム部10と基台20との間に指を挿入してしまうことを防止することができる。
<ドラム部10の姿勢>
 上述のような構成において、ドラム部10を回転させることによるドラム部10の姿勢について説明する。図20、図21は、ドラム部10の姿勢を説明するための図である。
 本放熱構造の第1の例では、ドラム部10の初期姿勢を、投射レンズ12による投射方向が鉛直方向を向いている姿勢とする。そして、この初期姿勢での投射レンズ12の位置を基準位置と呼ぶ。したがって、初期姿勢では、投射レンズ12が完全に基台20に隠れている。図20において、初期姿勢のドラム部10の状態を状態500として示している。本放熱構造の第1の例では、この初期姿勢においてフォトインタラプタ51bに突起46aが検出され、後述する角度導出部116により、ドラム30が回転動作の始点に達していると判断される。
 なお、以下では、ドラム角度は、上述の初期姿勢での投射レンズ12の基準位置からの回転角度をいう。
 プロジェクタ装置1000が起動されると、ドラム部10が第1面側を向くように、駆動部32がドラム部10の回転を開始する。その後、ドラム部10は、吸排孔22bがダクト70との重複を開始し、ダクト70と重複する吸排孔22bの面積が徐々に増加していく状態となる。このときのドラム部10の姿勢を第1姿勢といい、図20に状態501として示す。
 さらに、ドラム部10が回転すると、ドラム部10の方向すなわち投射レンズ12による投射方向が第1面側において水平になる位置となる。投射レンズ12による投射方向が第1面側において水平になった場合の投射レンズ12の基準位置からのドラム角度は90°である。このときのドラム部10の姿勢を第2姿勢と呼び、図20に状態502として示す。状態502に示すように、第2姿勢では、吸排孔22bは完全にダクト70と重複した状態となる。
 ドラム部10は回転して第2姿勢となったときに一旦回転を停止する。ユーザによる操作部14の操作によって光源111を点灯させ、ドラム部10において、光源111から射出された光が、駆動回路により駆動された表示素子114により、プロジェクタ装置1000に入力された画像データに従い変調されて光学系に入射される。そして、画像データに従い変調された光が、投射レンズ12から水平方向に投射され、スクリーンや壁面などの被投射媒体に照射される。
 ユーザが操作部14を操作することで、画像データによる投射レンズ12からの投射を行ったまま、回転軸36を中心に、ドラム部10をさらに回転させることができる。ドラム部10が第2姿勢から正方向にさらに回転すると、基準位置からのドラム角度が約135°となったときに、吸排孔22bがダクト70と重複しなくなり、ダクト70と重複する吸排孔22bの面積が徐々に減少していく状態となる。このときのドラム部10の姿勢を第3姿勢とよび、図20に状態503として示す。
 ドラム部10が第3姿勢から正方向にさらに回転すると、基準位置からのドラム角度が約160°となったときに、吸排孔22bがダクト70と完全に重複しなくなった状態となる。このときのドラム部10の姿勢を第4姿勢とよび、図20に状態504として示す。
 ドラム部10が第4姿勢から正方向にさらに回転すると、基準位置からのドラム角度が180°となり、投射レンズ12からの光を垂直上向きに投射させることができる。このときのドラム部10の姿勢を第5姿勢と呼び、図20に状態505として示す。第5姿勢では、状態505として示すように、吸排孔22bがダクト70と完全に重複しない状態となっている。
 ドラム部10が第5姿勢から正方向にさらに回転すると、基準位置からのドラム角度が約200°となったときに、吸排孔22aの端部がダクト70との重複を開始し、ダクト70と重複する吸排孔22aの面積が徐々に増加していく状態となる。このときのドラム部10の姿勢を第6姿勢とよび、図21に状態506として示す。
 ドラム部10が第6姿勢から正方向にさらに回転すると、基準位置からのドラム角度が約225°となったときに、吸排孔22aがダクト70と重複しなくなり、ダクト70と重複する吸排孔22aの面積が徐々に減少していく状態となる。このときのドラム部10の姿勢を第7姿勢とよび、図21に状態507として示す。
 ドラム部10が第7姿勢から正方向にさらに回転すると、基準位置からのドラム角度が270°となる。この場合、投射レンズ12は、操作部14が設けられる第1面側に対向する、第2面側を向くことになる。このときのドラム部10の姿勢を第8姿勢と呼び、図21に状態508として示す。第8姿勢では、フォトインタラプタ51aに突起46bが検出され、後述する角度導出部116により、ドラム30の回転動作の終点に達したと判断される。
 本放熱構造の第1の例によるプロジェクタ装置1000は、投射を行ったまま、例えば状態500~状態508に示されるようにしてドラム部10を回転させることで、投射レンズ12によるドラム角度に応じて、画像データの投射領域を移動させることができる。また、投射された画像の内容および当該投射された画像の被投射媒体における投射位置の変化と、入力された画像データに係る全画像領域における投射する画像として切り出された画像領域の内容および位置の変化とを対応させるようにしてもよい。
 ユーザがプロジェクタ装置1000による投射画像の投射を終了し、操作部14の「終了ボタン」を操作する等してプロジェクタ装置1000を停止させると、先ず、ドラム部10が初期姿勢に戻るように回転制御される。ドラム部10が鉛直方向を向き、初期姿勢に戻ったことが検出されると、光源が消灯され、光源の冷却に要する所定時間経過の後、電源がOFFとされる。
<プロジェクタ装置1000の機能的構成>
 次に、上述したような、本放熱構造の第1の例に係るプロジェクタ装置1000の各機能ないし動作を実現するための構成について説明する。図22は、プロジェクタ装置1000の機能的構成を示すブロック図である。なお、図22において、上述の図4と共通する部分には同一の符号を付して、詳細な説明を省略する。
 図22に示されるように、本放熱構造の第1の例によるプロジェクタ装置1000は、図4に示した実施形態によるプロジェクタ装置1に対して、角度導出部116およびファン制御部1300が追加されている。ここで、画像処理・制御部1030、回転制御部104、ファン制御部130、角度導出部116は、回路部として基台20の基板301に搭載される。
 なお、画像処理・制御部103は、上述した図4に示す、画像切り出し部100、メモリ101、画像処理部102および画像制御部103を含む。光学エンジン部110は、上述したとおり、光源111、ミラー113、表示素子114および投射レンズ12を含む。
 上述したように、光学エンジン部110は、回転機構部115により基準位置からのドラム角度0°~270°の回転を可能とされたドラム部10内に設けられる。回転機構部115は、図2A,2Bを用いて説明した駆動部32と、ドラム部10側の構成であるギア35とを含み、モータ40の回転を利用してドラム部10を所定に回転させる。
 回転制御部104は、回転機構部115から、フォトインタラプタ51aおよび51bの出力信号を受信する。そして、回転制御部104は、フォトインタラプタ51aに突起46bが検出された旨の出力信号により、ドラム部10の姿勢が回転動作の終点に達した姿勢であると判断する。また、回転制御部104は、フォトインタラプタ51bに突起46aが検出された旨の出力信号により、ドラム部10の姿勢が回転動作の始点に達した姿勢、すなわち初期姿勢であると判断する。この場合、回転制御部104は、初期姿勢である旨を示す検知信号を、角度導出部116に送出する。また、回転制御部104は、ドラム部10が回転している旨の回転指示情報を画像処理・制御部1030に供給する。
 画像処理・制御部1030は、供給された回転指示情報に基づき、入力された投射対象の画像データの歪補正等の画像処理を行い、表示素子114へ投射するための画像データを出力する。
 角度導出部116は、回転制御部104からの初期姿勢である旨の検知信号と、モータ40から逐次送出される駆動パルス数とを受信する。そして、角度導出部116は、初期姿勢の旨の検知信号を受信した時点からの駆動パルス数をカウントして、カウントした駆動パルス数から、初期姿勢からのドラム部10の回転角度、すなわち投射レンズ12の基準位置からのドラム角度を導出する。
 より具体的には、角度導出部116は、駆動パルス数と基準位置からのドラム角度とを予め対応付けて記憶しており、カウントした駆動パルス数に対応するドラム角度を、初期姿勢からの現在のドラム角度として導出する。
 ファン制御部130は、ファン60の駆動を制御する。ファン制御部130は、風量制御部1310を備えている。風量制御部1310は、角度導出部116で検出された、投射レンズ12の基準位置からのドラム角度から、吸排孔22aもしくは22bのダクト70に対する位置関係を判断し、吸排孔22aもしくは22bのダクト70に対する位置関係から、ファン60の送風の風量を制御する。風量制御部1310は、ファン60に対する駆動電圧を変化させることにより、ファン60の回転速度を変化させ、これにより、送風の風量を制御する。すなわち、風量制御部1310は、電圧を高くすることで、ファン60の回転速度を増加させて、これにより風量を増加させる。一方、風量制御部1310は、電圧を低くすることで、ファン60の回転速度を減少させて、これにより風量を減少させる。
 本放熱構造の第1の例に係る風量制御部1310は、角度導出部116で導出されたドラム角度から、ドラム部10が、吸排孔22aもしくは22bがダクト70と重なる位置の姿勢であると判断した場合には、ダクト70に重なる吸排孔22a,22b面積に比例してファン60の回転速度を速くして風量を多くするように、ファン60の駆動電圧を高い電圧に設定する。
 より具体的には、風量制御部1310は、ドラム角度から、吸排孔22aもしくは22bが全範囲でダクト70と重なる、すなわち吸排孔22aもしくは22bがダクト70と完全に収容された位置の姿勢であると判断した場合には、ファン60の回転速度を最高速度にして風量を最大にするように、ファン60の駆動電圧を最高電圧に設定する。
 そして、風量制御部1310は、ドラム角度から、ダクト70と重なる吸排孔22a,22bの面積が徐々に狭くなっていくと判断した場合には、ファン60の回転速度を徐々に低速にして風量を小さくするように、ファン60の駆動電圧を徐々に低い電圧に設定する。この場合、風量制御部1310は、ファン60の駆動電圧を、連続的に徐々に低くする他、段階的に徐々に低くするように構成してもよい。
 また、風量制御部1310は、吸排孔22aもしくは22bの全範囲でダクト70と重ならない位置の姿勢である場合には、ファン60の回転速度を最低速度にして風量を最小にするように、ファン60の駆動電圧を最低電圧に設定する。
 そして、風量制御部1310は、ドラム角度から、ダクト70に重複する吸排孔22a,22bの面積が徐々に広くなっていくと判断した場合には、ファン60の回転速度を徐々に高速にして風量を大きくするように、ファン60の駆動電圧を徐々に高い電圧に設定する。この場合、風量制御部1310は、ファン60の駆動電圧を、連続的に徐々に高くする他、段階的に徐々に高くするように構成してもよい。
 ここで、ドラム角度と、吸排孔22a、22bとダクト70の重複の状態(位置関係)と対応は、角度・重複状態対応表データとして予め風量制御部1310に設定されている。吸排孔22a、22bとダクト70とが重ならない場合を「重複なし」、吸排孔22a、22bとダクト70とが一部の範囲で重なる場合を「一部重複」、吸排孔22a、22bの全範囲がダクト70に収容される(重複する)場合を「完全重複」と呼ぶと、図19に示す構造の本実施の形態では、ドラム角度と重複範囲は以下の角度・重複状態対応表データに示すような対応関係にある。風量制御部1310は、角度導出部116から送出されたドラム角度から、下記の角度・重複状態対応表データを参照して、ドラム部10の吸排孔22a、22bとダクト70の重複の状態を判断して、上記風量制御を行っている。
 ドラム角度の範囲                :重複の状態
 ドラム角度0°(初期姿勢)~約10°(第1姿勢):重複なし
 約10°(第1姿勢)~約20°        :一部重複
 約20°~約135°(第3姿勢)       :完全重複
 約135°(第3姿勢)~約160°(第4姿勢):一部重複
 約160°(第4姿勢)~約200°(第6姿勢):重複なし
 約200°(第6姿勢)~約225°(第7姿勢):一部重複
 約225°(第7姿勢)~270°(第7姿勢) :完全重複
 次に、プロジェクタ装置1000の放熱制御処理について説明する。プロジェクタ装置1000は、ドラム部10の回転駆動による投射方向の変更に応じて、放熱効率を適切なものにする制御を行うことができる。図23は、プロジェクタ装置1000によるこの放熱制御処理の手順を示すフローチャートである。
 角度導出部116は、上述のように、ドラム部10の回転による、初期姿勢からの投射レンズ12の角度の変化量を、基準位置からのドラム角度として導出し、検出されたドラム角度をファン制御部130の風量制御部1310に入力する(ステップS11)。
 そして、風量制御部1310は、ドラム角度が、吸排孔22a若しくは22bとダクト70が重複しない角度範囲に含まれる範囲であるか否かを、角度・重複状態対応表データを参照して判断する(ステップS12)。そして、ドラム角度が、吸排孔22a若しくは22bとダクト70が重複しない角度範囲に含まれると判断された場合には(ステップS12:Yes)、風量制御部1310はファン60の駆動電圧を設定可能な最低電圧に設定し(ステップS13)、ファン60の回転速度を最低速度まで減少させて、風量を最低とする。
 吸排孔22a若しくは22bとダクト70が重複しないようなドラム角度の場合には、ファン60は、外部の空気をすべて、ダクト70を介さずに直接、吸排孔22aもしくが22bからドラム部10の内部へ吸い込んで、他方の吸排孔22bもしくが22aから排気させることになる。このため、ファン60による風量は最小風量としている。
 そして、ファン制御部130は、投射の停止指示の有無を判断し(ステップS22)、投射停止指示がなければ(ステップS22:No)、ステップS11へ戻る。
 ステップS12で、ドラム角度が、吸排孔22a若しくは22bとダクト70が重複しない角度範囲に含まれない、すなわち、吸排孔22a若しくは22bとダクト70が重複する角度範囲に含まれると判断された場合には(ステップS12:No)、風量制御部1310は、ドラム角度が、吸排孔22a若しくは22bとダクト70が完全に重複する角度範囲、すなわち、吸排孔22a若しくは22bの全範囲がダクト70に収容される角度範囲に含まれるか否かを角度・重複状態対応表データを参照して判断する(ステップS14)。
 そして、ドラム角度が、吸排孔22a若しくは22bとダクト70が完全重複する角度範囲に含まれると判断された場合には(ステップS14:Yes)、風量制御部1310はファン60の駆動電圧を設定可能な最高電圧に設定し(ステップS15)、ファン60の回転速度を最高速度まで増加して、風量を最高とする。そして、ファン制御部130は、投射の停止指示の有無を判断し(ステップS22)、投射停止指示がなければ(ステップS22:No)、ステップS11へ戻る。
 吸排孔22a若しくは22bの全範囲がダクト70に収容されるようなドラム角度の場合には、プロジェクタ装置1000の外部の空気が、ダクト70の吸排孔16a,16bからプロジェクタ装置1000の内部に入り、ダクト70を通過し、吸排孔22aもしくは22bからドラム部10の内部へ吸い込まれ、他方の吸排孔22bもしくは22aから排気させる必要がある。このため、ファン60による風量は、通常より大きくする必要があり、本実施の形態では、最大風量としている。
 ステップS14で、ドラム角度が、吸排孔22a若しくは22bとダクト70が完全重複する角度範囲に含まれないと判断された場合には(ステップS14:No)、吸排孔22a若しくは22bの一部の範囲がダクト70に重複していることを示す。このため、風量制御部1310は、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から増加しているか否かを、今回のドラム角度と前回判断時のドラム角度とから、角度・重複状態対応表データを参照して判断する(ステップS16)。
 そして、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から増加していると判断された場合には(ステップS16:Yes)、風量制御部1310はファン60の駆動電圧を増加して、風量を増加させる(ステップS17)。そして、ファン制御部130は、投射の停止指示の有無を判断し(ステップS22)、投射停止指示がなければ(ステップS22:No)、ステップS11へ戻る。
 吸排孔22a若しくは22bのダクト70と重複する面積が増加している場合には、外部から取り入れる空気に比べてダクト70を介して取り入れる空気の量が次第に多くなるため、前回より大きな風量が必要となってくる。このため、風量制御部1310は、ファン60の駆動電圧を徐々に増加していき、風量を徐々に大きくしている。
 ステップS16で、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から増加していないと判断された場合には(ステップS16:No)、風量制御部1310は、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から減少しているか否かを、今回のドラム角度と前記判断時のドラム角度とから、角度・重複状態対応表データを参照して判断する(ステップS18)。
 そして、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から減少していると判断された場合には(ステップS18:Yes)、風量制御部1310はファン60の駆動電圧を減少して、風量を減少させる(ステップS19)。そして、ファン制御部130は、投射の停止指示の有無を判断し(ステップS22)、投射停止指示がなければ(ステップS22:No)、ステップS11へ戻る。
 吸排孔22a若しくは22bのダクト70と重複する面積が減少している場合には、ダクト70から取り入れる空気に比べて外部から直接取り入れる空気の量が次第に多くなっているため、前回ほど大きな風量は必要としない。このため、風量制御部1310は、ファン60の駆動電圧を徐々に減少していき、風量を徐々に小さくしている。
 ステップS18で、前回判断時のドラム角度から、吸排孔22a若しくは22bのダクト70と重複する面積が前回判断時から減少していないと判断された場合には(ステップS18:No)、ファン制御部130は、投射の停止指示の有無を判断し(ステップS22)、投射停止指示がなければ(ステップS22:No)、ステップS11へ戻る。
 ここで、ステップS22で、投射停止指示があった場合には(ステップS22:Yes)、風量制御部1310は、風量制御の処理を終了する。
 以下、本放熱構造の第1の例による、ドラム部10の回転に即した風量制御について説明する。図24から図33は、0°から270°までの投射レンズ12のドラム角度の変更に基づく投射姿勢毎の放熱に係る空気の流れを説明するための図である。
 図24は、プロジェクタ装置1000の電源がオフになっているとき、又はプロジェクタ装置1000がいわゆる待機状態にあるときの投射姿勢を表す図である。なお、厳密には、このときプロジェクタ装置1000は投射を行っていないが、便宜上この状態500も投射姿勢と呼び、この状態500のときを投射レンズ12の基準位置からのドラム角度を0°として以下説明する。また、上述の通り、この状態500のときのドラム部10の姿勢を初期姿勢と呼ぶこととする。
 プロジェクタ装置1000が、図24に示した初期姿勢にある場合、プロジェクタ装置1000の電源は、オフになっているか、又はいわゆる待機状態にあり、ファン60は停止している。そして、プロジェクタ装置1000の電源がオンされると、投射を開始してドラム部10を回転させ、これによりファン制御部130による処理が開始される。
 図24に示す初期姿勢からファン60を回転させると、吸排孔22a,22bは、まだダクト70と重なっていないので、風量制御部1310は、ファン60の風量を最小に制御して(ステップS13)、吸排孔22bから吸排孔22aの方向に排気する。
 そして、さらにドラム部10を正方向に回転して、図25に示す第1姿勢の状態501となると、吸排孔22bがダクト70と重なり始め、さらに正方向にドラム部10を回転させることにより、ダクト70と重複する吸排孔22bの面積が次第に増加していく。このため、風量制御部1310は、ファン60の風量を、最小風量から徐々に増加させるように制御する(ステップS17)。
 そして、ドラム部10を第1姿勢から正方向に回転させ、図26に示す第2姿勢の状態502になると、吸排孔22bの全範囲がダクト70に収容されてしまう(完全重複)。このため、この状態では、風量制御部1310は、ファン60の風量を最大風量に制御する(ステップS15)。
 そして、ドラム部10を第2姿勢から正方向に回転させ、図27に示す第3姿勢の状態503になると、吸排孔22bの全範囲がダクト70に収容された状態から、吸排孔22bの端部がダクト70の範囲から脱する状態となる。そして、さらにドラム部10を第3姿勢から正方向に回転させ、図28に示す姿勢の状態になると、ダクト70と重複する吸排孔22bの面積が次第に減少してくる。このため、風量制御部1310は、ファン60の風量を、最大風量から徐々に減少させるように制御する(ステップS19)。
 そして、ドラム部10を図28に示す姿勢からさらに正方向に回転させ、図29に示す第4姿勢の状態504および図30に示す第5姿勢の状態505になると、吸排孔22bの全範囲がダクト70の範囲から脱し、吸排孔22bとダクト70が重複しなくなる。風量制御部1310は、ファン60の風量を最小に制御する(ステップS13)。
 そして、さらにドラム部10を正方向に回転させて、図31に示す第6姿勢の状態506となると、吸排孔22aがダクト70と重なり始め、さらに正方向にドラム部10を回転させることにより、ダクト70と重複する吸排孔22aの面積が次第に増加していく。このため、風量制御部1310は、ファン60の風量を、最小風量から徐々に増加させるように制御する(ステップS17)。
 そして、ドラム部10を第6姿勢から正方向に回転させ、図32に示す第7姿勢の状態507および図33に示す第8姿勢の状態508になると、吸排孔22aの全範囲がダクト70に収容されてしまう(完全重複)。このため、この状態では、風量制御部1310は、ファン60の風量を最大風量に制御する(ステップS15)。
 このように、本放熱構造の第1の例では、投射レンズ12のドラム角度からドラム部10の姿勢を判定し、当該姿勢における吸排孔22aもしくは22bとダクト70の重なり範囲の面積に応じて、ファン60の風量を変更する制御を行っているので、常に一定の風量でファン60を駆動する場合に比べて、電力消費量を削減することができる。また、本実施の形態では、ファン60が常に駆動しているわけではないのでファン60による騒音を最小限にすることができる。
 また、本放熱構造の第1の例では、ヒートパイプ61が略直線形状であり、光学エンジンとファン60との間で投射レンズ12の光軸と略平行に配置され、プロジェクタ装置1000の内部の背面側で光源111を接続しているので、光源111が吸排孔22aの近くに配置されることになる。このため、本実施の形態では、図41に示すようなL字状のヒートパイプ2461およびフィン2462を用いる従来技術とは異なり、投射レンズ12の基準位置からのドラム角度が90°から270°に至るまで、図24から図33に示すように、光源111よりもフィン62が上側に位置するようになる。このため、本放熱構造の第1の例では、ファン60による空気が吸排孔22bから光源111の近くの吸排孔22aに流れ、光源111による熱風が投射レンズ12等の光学エンジンに当たらないように回避することができる。
 なお、本放熱構造の第1の例では、風量制御部1310は、吸排孔22aもしくは22bとダクト70との重複がない場合や一部の範囲で重複する場合には、ファン60の風量を最大風量未満の風量に制御しているが、これに限定されるものではない。例えば、吸排孔22aもしくは22bとダクト70との重複がない場合や一部の範囲で重複する場合のような、最大風量未満の風量でファン60を回転させるような投射姿勢であっても、この投射姿勢での投射時間が一定時間以上経過しているような場合等、投射時間に応じてファン60の風量を最大風量に変更するように風量制御部1310を構成してもよい。
 また、本放熱構造の第1の例では、風量制御部1310は、吸排孔22aもしくは22bの全範囲がダクト70の範囲に収容されている場合には、ファン60の風量を最大風量に制御しているが、これに限定されるものではない。例えば、投射するコンテンツの画像データや投射中のコンテンツの音声データに応じて、ファン60の風量を最大風量未満に変更するように風量制御部1310を構成してもよい。例えば、吸排孔22aもしくは22bの全範囲がダクト70の範囲に収容されている場合であっても、投影中のコンテンツが静かな環境で視聴するような映像や音声であることを認識して、ファン60の風量を最大風量から減少させるようにファン60の回転速度を低下させて風量制御部1310を構成することができる。この場合には、コンテンツに応じた風量制御を実現することが可能となる。
 また、本放熱構造の第1の例では、吸排孔22aもしくは22bがダクト70と重なっていない場合には、ファン60の回転速度を最低速度としてファン60の風量を最小としているが、最低速度、最低風量でなくても、一定速度以下の回転速度でファン60を回転させて風量を一定風量以下とするように構成すればよい。
 例えば、本放熱構造の第1の例では、投射レンズ12の基準位置からのドラム角度が180°で投射レンズ12が天井を向いている第5姿勢の場合には(図30参照)、吸排孔22a,22bがいずれもダクト70の範囲に重なっていないため、ファン60の回転速度を最低速度としてファン60の風量を最小としているが、一定速度以下の所定の回転速度でファン60を回転させて風量を一定風量以下の所定の風量とするように風量制御部1310を構成することができる。
 この場合において、さらに、プロジェクタ装置1000に、マイクロフォン等の集音部と、集音した音の音量を測定する音量測定部と、周囲の照度を検知する照度センサとを設け、周囲の音量や照度に応じて、さらにファン60の風量を制御するように風量制御部1310を構成することもできる。
 一例として、ドラム部10が第5姿勢で投射中に測定した周囲の音量が一定音量以下、あるいは周囲の明るさが一定照度以下であった場合には、上記所定の回転速度以下の回転速度でファン60を回転させて、風量を上記所定の風量以下の風量とするように風量制御部1310を構成することができる。この場合には、投射中のプロジェクタ装置1000の周囲の環境が静かな場合において、さらに静音を優先した視聴を行うことができる。
 また、本放熱構造の第1の例では、吸排孔22aもしくは22bの全範囲がダクト70に収容されている場合には、ファン60の回転速度を最高速度としてファン60の風量を最大としているが、最高速度、最大風量でなくても、一定速度以上の回転速度でファン60を回転させて風量を一定風量以上とするように構成すればよい。
 例えば、本放熱構造の第1の例では、投射レンズ12の基準位置からのドラム角度が90°で投射レンズ12が正面を向いている第2姿勢の場合には(図26参照)、吸排孔22a,22bの全範囲がダクト70の範囲に収容されて完全に重複しているため、ファン60の回転速度を最高速度としてファン60の風量を最大としているが、一定速度以上の所定の回転速度でファン60を回転させて風量を一定風量以上の所定の風量とするように風量制御部1310を構成してもよい。
 この場合においても、さらに、プロジェクタ装置1000に、マイクロフォン等の集音部と、集音した音の音量を測定する音量測定部と、周囲の照度を検知する照度センサとを設け、周囲の音量や照度に応じて、ファン60の風量を制御するように風量制御部1310を構成してもよい。
 一例として、ドラム部10が第2姿勢で投射中に測定した周囲の音量が一定音量以上、あるいは周囲の明るさが一定照度以上であった場合には、上記所定の回転速度以上の回転速度でファン60を回転させて、風量を上記所定の風量以上の風量とするように風量制御部1310を構成することができる。この場合には、プロジェクタ装置1000の周囲の環境が、会議中に、視聴者が正面に投射されているコンテンツをみながら議論しているような環境が想定されるので、静音な状態にする必要性が少ない一方、ドラム部10内部の冷却を促進することができる。
<実施形態に適用可能な放熱構造の第2の例>
 上述したプロジェクタ装置1000の放熱制御処理では、ファン60の回転速度を調整して風量を制御していたが、ファン60による送風の方向は特に制御していなかった。この実施形態に適用可能な放熱構造の第2の例では、上述した放熱構造の第1の例の風量制御に加え、投射レンズ12の基準位置からのドラム角度に応じてファン60の送風の方向を制御している。
 実施形態に適用可能な放熱構造の第2の例に係るプロジェクタ装置1500の外観構成、回転機構部115および角度導出部116の構造、及びプロジェクタ装置1500の内部構造については、それぞれ図1A,1B、図2A,2B、及び図19を用いて説明した放熱構造の第1の例と同様である。
 図34は、本放熱構造の第2の例に係るプロジェクタ装置1500の機能的構成を示すブロック図である。図34に示すように、本放熱構造の第2の例に係るプロジェクタ装置1500は、光学エンジン部110と、ファン60と、回転機構部115と、角度導出部116と、画像処理・制御部1030と、ファン制御部1530と、回転制御部104とを主に備えている。ここで、ファン制御部1530以外の構成は上述した放熱構造の第1の例と同様である。
 本実施の形態のファン制御部1530は、図34に示すように、風量制御部1531と、方向制御部1532とを備えている。
 風量制御部1531は、上述した放熱構造の第1の例と同様に、吸排孔22a,22bとダクト70との位置関係に応じて、ファン60の送風の風量を制御する。風量制御部1531による風量制御の詳細は、上述した放熱構造の第1の例と同様である。
 方向制御部1532は、ファン60により吸排孔22a,22bから排気される空気が、視聴者を回避する方向に切り替える。具体的には、方向制御部1532は、吸排孔22aから熱風を排気する構成において、ドラム部10がファン60による熱風がユーザが存在する第2面側に排気されるような姿勢に対応するドラム角度の場合に、ファン60による送風方向を、プロジェクタ装置1500の第2面側から第1面側の方向に切り替える。
 ここで、本放熱構造の第2の例では、ドラム部10がファン60による熱風が第2面側に排気されるような姿勢に対応するドラム角度の範囲は、基準位置から90°より大きい範囲である。なお、ファン60による送風方向の切替えは、方向制御部1532がファン60の回転方向を逆方向に切り替えればよい。
 次に、以上のように構成された本放熱構造の第2の例によるファン制御処理について説明する。図35及び図36は、実施の形態2のファン制御処理の手順を示すフローチャートである。
 まず、角度導出部116は、上述した放熱構造の第1の例と同様に、ドラム部10の回転による、初期姿勢からの投射レンズ12の角度の変化量を、基準位置からのドラム角度として導出し、検出されたドラム角度をファン制御部1530の風量制御部1531と方向制御部1532に入力する(ステップS11)。
 そして、方向制御部1532は、入力されたドラム角度が90°より大きいか否かを判断する(ステップS41)。そして、ドラム角度が90°より大きい場合には(ステップS41:Yes)、ファン60による熱風がユーザが存在する第2面側に排気されないように、ファン60による排気方向を、吸排孔22a(第2面側)から吸排孔22b(第1面側)に排気する方向に設定する(ステップS42)。
 一方、ドラム角度が90°以下の場合には(ステップS41:No)、ファン60による熱風がユーザが存在する第2面側に排気されないように、ファン60による排気方向を、吸排孔22b(第2面側)から吸排孔22a(第1面側)に排気する方向に設定する(ステップS43)。
 そして、ステップS12からS20において、上述した放熱構造の第1の例と同様に、風量制御部1531による風量制御が行われる。
 投射レンズ12の基準位置からのドラム角度が180°である第5姿勢の場合において、実施の形態1では熱風が吸排孔22aから排気されるので(図30参照)、熱風が第2面側のユーザに当たってしまう。
 しかし、本放熱構造の第2の例では、ドラム角度が90°を超えた時点で、方向制御部1532がファン60の回転方向を今までと逆回転させ、風向を切り替え、吸排孔22bから熱風を排気するように制御している。
 図37は、本放熱構造の第2の例において第5姿勢の場合のファン60による送風状態を示す図である。図37に示すように、方向制御部1532は、ファン60の回転方向を切り替えたことにより、今までは吸排孔22bから吸排孔22aの方向に流れていた空気が、吸排孔22aから吸排孔22bの方向に切り替わる。すなわち、冷却のための空気は、ファン60により、プロジェクタ装置1000の第2面側の吸排孔22aから吸引されて、第1面側の吸排孔22bから排気される。
 このように本放熱構造の第2の例では、投射レンズ12の基準位置からのドラム角度に応じてファン60による送風の方向を切り替えているので、上述した放熱構造の第1の例の効果に加え、ファン60による排気が視聴者にあたることを回避することができる。
<実施形態に適用可能な放熱構造の第3の例>
 上述した放熱構造の第2の例では、投射レンズ12のドラム角度に応じてファン60から排気される熱風の風向を、吸排孔22aから吸排孔22bへの方向とその逆方向とで切替える制御を行っていたが、実施形態に適用可能な放熱構造の第3の例では、吸排孔22a若しくは22bとダクト70の位置関係に応じて、ファン60自体を傾けることでファン60からの熱風の風向を変化させている。
 実施形態に適用可能な放熱構造の第3の例に係るプロジェクタ装置1000の外観構成、回転機構部115および角度導出部116の構造については、それぞれ図1A,1B、図2A,2B、及び図19を用いて説明した放熱構造の第1の例と同様である。また、プロジェクタ装置1000の機能的構成は、図22を用いて説明した放熱構造の第1の例と同様である。
 本放熱構造の第3の例では、ドラム部10の内部構造においてファン60の構成が上述した放熱構造の第1の例と異なっている。本実施の形態では、ファン60を収容するファン筐体に重りを設けることで、ファン60自体を傾けている。すなわち、ドラム部10が回転してファン60がダクト70側に位置する姿勢になって、ファン60からの排気方向がダクト70に向いている場合に、ファン60の重心を上方に移動するようにして、重りの自重で、ファン60を傾かせて、ファン60からの排気を、ダクト60の吸排孔16aもしくは16bに向くようにファン60を構成する。
 図38は、本放熱構造の第3の例に係るファン60の構成を示す斜視図である。本放熱構造の第3の例では、ファン60の羽根部60aを収容するファン筐体60bの側面に重り60cを設けることで、ファン60の重心を、図38におけるファン60の下方に移動させる。また、ファン60を、羽根部60aの回転軸と垂直な回動軸2201回りに回動自在にドラム部10内部に配置する。
 そして、ドラム部10が回転して、ファン60が、図38の状態から裏返った状態となり、かつファン60がドラム部10内部の下部のダクト70の近傍に移動した場合に、重心位置がファン60より上方にくるため、重り60cの自重でファン60が回動軸2201回りに回動する。その結果、ファン60の向きは傾いて、羽根部60aがダクト70の吸排孔22aもしくは22bに向くようになる。このため、羽根部60aから流れてくる熱風はダクト70に対して斜めに当たることになり、排気される熱風がダクト70に当たることによる抵抗を低減させて吸排孔16aもしくは16bから排気している。
 図39は、本放熱構造の第3の例における第7姿勢のドラム部10の状態507’を示す図である。図40は、本放熱構造の第3の例における第8姿勢のドラム部10の状態508’を示す図である。
 図39、図40に示すように、ドラム部10が回転して第7姿勢となり、吸排孔22aがダクト70の範囲に重なった場合において、重り60cの自重によりファン60の重心が図39における左斜め上方に位置することになるため、ファン60は回転軸と垂直な軸回りに左側に回動して、羽根部60aの向きが排気ダクト70の吸排孔16b側に向くことになる。
 これにより、ファン60から排気される熱風は、ダクト70に対して斜めに当たり、抵抗を低減させて吸排孔16bから排気させることができる。
 なお、本放熱構造の第3の例では、ファン60に重り60cを設けることでファン60を傾かせていたが、ファン60を傾かせる手法としてはこれに限定されるものではない。
 例えば、ファン60を、羽根部60aの回転軸と垂直な回動軸2201回りに回動させるアクチュエータをドラム部10内部に設け、角度導出部116で導出されたドラム角度が、吸排孔22aがダクト70の範囲と重複するような角度になった場合に、アクチュエータを駆動してファン60を図39、図40に示すように回転軸と垂直な軸回りに左側に回動させるようにファン制御部130を構成することができる。
 この場合、吸排孔22aのダクト70と重複する面積が大きくなるに従って、ファン60の回動角を小さくするように制御するようにファン制御部1300を構成することができる。
 このように、本放熱構造の第3の例では、吸排孔22aもしくは22bがダクト70の範囲に重なって、かつファン60からの排気方向がダクト70に向いている場合に、ファン60を回転軸と垂直な軸回りに回動させて、ファン60から排気される熱風をダクト70に対して斜めに当てることで、排気における抵抗を低減して、冷却効率の低減を抑止し、かつ騒音を低減することができる。
 上述の放熱構造の第1~第3の例では、画像処理・制御部1030、ファン制御部130、1530、回転制御部104は、ハードウェアである回路部として基台20の基板301に搭載した構成とする他、ソフトウェアで実現することもできる。
 この場合、放熱構造の第1~第3の例のプロジェクタ装置1000又は1500で実行される制御プログラムは、例えばROM等に予め組み込まれて提供される。
 放熱構造の第1~第3の例のプロジェクタ装置1000又は1500で実行される制御プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
 さらに、放熱構造の第1~第3の例のプロジェクタ装置1000又は1500で実行される制御プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、放熱構造の第1~第3の例のプロジェクタ装置1000,1500で実行される制御プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 放熱構造の第1~第3の例のプロジェクタ装置1000又は1500で実行される制御プログラムは、上述した各部(画像処理・制御部1030、ファン制御部1300、1530、回転制御部104)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記ROMから制御プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、画像処理・制御部1030、ファン制御部1300、1530、回転制御部104が主記憶装置上に生成されるようになっている。
<他の実施形態>
 他の実施形態に係る投射装置(プロジェクタ装置)は、光源と、光源から射出された光により、投影対象の映像を外部に投射する光学機構と、光源に接続された放熱部材と、放熱部材を冷却するためのファン部と、周面に吸排孔を有し、光源と光学機構とファン部とを収容する回転筐体と、吸排孔は、光の投射方向とは異なる角度で対称に周面に設けられた第1吸排孔と第2吸排孔を含み、ファン部は、第1吸排孔に対応して周面の近傍に設けられ、光学機構は、回転筐体の内部の中央部に配置され、放熱部材は、ファン部と光学機構との間、あるいはファン部と第1吸排孔との間に配置されるように構成し、回転筐体を回転可能に支持する基台と、基台は、所定の空隙を設けて、回転筐体を支持し、ファン部により、空隙から吸排孔を介して、空気が回転筐体に吸引される、あるいは、ファン部により、空気が回転筐体から吸排孔を介して空隙へ排出されるように構成し、回転筐体を回転することで、光の投射方向を移動させる回転機構と、回転筐体の基準位置からの回転角度を検出する角度導出部と、検出された回転角度に基づいて、ファン部からの送風の風量を制御する風量制御部、あるいはファン部による空気の送風方向を切り替える方向制御部の少なくとも一方を備える。
 また、投射装置は、風量制御部は、回転筐体が、ファン部により第2吸排孔から吸引される空気が、空隙を通過して回転筐体の内部に吸引される回転角度である場合に、風量を所定量より高い風量に制御する、または、回転筐体が、ファン部により第2吸排孔から吸引される空気が、空隙を通過せずに、回転筐体の内部に吸引される回転角度である場合に、風量を所定量より低い風量に制御する、または、回転筐体が、ファン部により第1吸排孔から排出される空気が、空隙を通過して外部に排出される回転角度である場合に、風量を所定量より高い風量に制御する、または、回転筐体が、ファン部により第1吸排孔から排出される空気が、空隙を通過せずに、外部に排出される回転角度である場合に、風量を所定量より低い風量に制御すること、の少なくとも一つの制御をする。
 また、投射装置は、マイクロフォン等の集音部と集音した音の音量を測定する音量測定部、または周囲の照度を検知する照度センサを設け、風量制御部を、周囲の音量または照度に応じて、ファン部からの送風の風量を制御するように構成した。
 また、投射装置は、ファン部を羽根部の回転軸と垂直な回動軸回りに回動可能に配し、方向制御部を、角度導出部で導出された回転角度に基づいて、ファン部の回動角度を制御するように構成した。
 また、投射装置は、光源と、光源から出射された光により、投影対象の映像を外部に投射する光学機構と、光源に接続された放熱部材と、光源と、光学機構と、放熱部材を冷却するためのファン部と、周面に吸排孔を有し、光源と光学機構とファン部とを収容する回転筐体と、回転筐体を回転可能に支持する基台と、回転筐体を回転することで、光の投射方向を移動させる回転機構と、を備え、投射装置の冷却制御方法は、回転筐体の基準位置からの回転角度を検出するステップと、検出された回転角度に基づいてファン部からの送風の風量を制御するステップと、を含む。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1000,1500 プロジェクタ装置
10 ドラム部
12 投射レンズ
14 操作部
20 基台
30 ドラム
32 駆動部
35,42a,42b,43 ギア
40 モータ
41 ウォームギア
50a,50b フォトリフレクタ
51a,51b フォトインタラプタ
100 画像切り出し部
101 メモリ
102 画像処理部
103 画像制御部
104 回転制御部
106 画角制御部
110 光学エンジン部
114 表示素子
115 回転機構部
120 CPU
140 画像データ

Claims (4)

  1.  画像データを光に変換して所定の画角で投射する投射部と、
     前記投射部の投射方向を第1の投射方向から第2の投射方向まで変更する投射方向変更部と、
     前記第1の投射方向と、前記投射方向変更部が変更した投射方向との間の投射角を導出する投射角導出部と、
     入力された入力画像データを記憶する記憶部と、
     前記記憶部に記憶された前記入力画像データの画像を、前記投射部が前記第1の投射方向から前記第2の投射方向に亘って投射する場合に、前記投射部が投射する前記画像データとして、前記画角および前記投射角に基づいて前記記憶部に記憶された前記入力画像データの画像の一部の領域を切り出した切り出し画像データを生成する画像切り出し部と
    を備える
    ことを特徴とする投射装置。
  2.  前記画像切り出し部は、少なくとも前記画角の単位角度に対応する画素数と前記投射角とに基づいて前記切り出し画像データを生成する
    ことを特徴とする請求項1に記載の投射装置。
  3.  前記投射方向が前記第1の投射方向から前記第2の投射方向に変化するにつれて、前記投射部から投射面までの距離が大きくなる場合に、前記切り出し画像データの画素毎に、前記投射角に基づいた縮小処理を施す画像処理部をさらに備える
    ことを特徴とする請求項1または請求項2に記載の投射装置。
  4.  前記投射方向が前記第1の投射方向から前記第2の投射方向に変化するにつれて、前記投射部から投射面までの距離が小さくなる場合に、前記切り出し画像データの画素毎に、前記投射角に基づいた拡大処理を施す画像処理部をさらに備える
    ことを特徴とする請求項1または請求項2に記載の投射装置。
PCT/JP2013/059351 2012-03-30 2013-03-28 投射装置 WO2013147068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/496,875 US9666109B2 (en) 2012-03-30 2014-09-25 Projector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-083317 2012-03-30
JP2012-083318 2012-03-30
JP2012083317A JP5838891B2 (ja) 2012-03-30 2012-03-30 投射装置および冷却制御方法
JP2012083318A JP5849832B2 (ja) 2012-03-30 2012-03-30 投射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/496,875 Continuation US9666109B2 (en) 2012-03-30 2014-09-25 Projector

Publications (1)

Publication Number Publication Date
WO2013147068A1 true WO2013147068A1 (ja) 2013-10-03

Family

ID=49260311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059351 WO2013147068A1 (ja) 2012-03-30 2013-03-28 投射装置

Country Status (3)

Country Link
US (1) US9666109B2 (ja)
TW (1) TWI564875B (ja)
WO (1) WO2013147068A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445699A (zh) * 2015-05-12 2018-08-24 苏州佳世达光电有限公司 投影装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233200B (zh) 2014-05-09 2018-07-17 麦克赛尔株式会社 投影型影像显示装置
JP6149825B2 (ja) 2014-08-22 2017-06-21 トヨタ自動車株式会社 車両用操作装置
WO2016047043A1 (ja) 2014-09-25 2016-03-31 パナソニックIpマネジメント株式会社 投影装置
TWI591419B (zh) * 2015-05-05 2017-07-11 佳世達科技股份有限公司 投影裝置及電子裝置
SE539816C2 (en) 2016-04-19 2017-12-05 Scania Cv Ab Method and control unit in a vehicle for estimating a stretch of a road based on a set of tracks of another vehicle
WO2018123152A1 (ja) * 2016-12-26 2018-07-05 ソニー株式会社 投影システム、プロジェクションデバイスおよびクレードル
JP7118793B2 (ja) * 2018-07-31 2022-08-16 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2020201303A (ja) 2019-06-06 2020-12-17 セイコーエプソン株式会社 プロジェクター
JP2020201426A (ja) * 2019-06-12 2020-12-17 セイコーエプソン株式会社 プロジェクター
JP6919689B2 (ja) * 2019-09-20 2021-08-18 セイコーエプソン株式会社 プロジェクター
JP7358978B2 (ja) * 2019-12-25 2023-10-11 セイコーエプソン株式会社 プロジェクター
RU207960U1 (ru) * 2021-07-21 2021-11-26 Общество с ограниченной ответственностью "СтендАп Инновации" Мобильное интерактивное проекционное устройство
US11758089B2 (en) * 2021-08-13 2023-09-12 Vtech Telecommunications Limited Video communications apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251182A (ja) * 2005-03-09 2006-09-21 Sony Corp 画像形成装置および方法
JP2007503021A (ja) * 2003-08-19 2007-02-15 シブジ,シラズ,エム. 発光素子ベースのディスプレイ用方法及び装置
JP2011237707A (ja) * 2010-05-13 2011-11-24 Seiko Epson Corp 画像形成装置
JP2012138686A (ja) * 2010-12-24 2012-07-19 Kyocera Corp 携帯電子機器
JP2013020199A (ja) * 2011-07-14 2013-01-31 Seiko Epson Corp プロジェクションシステム、画像供給装置、プロジェクター、及び、画像投射方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295097A (ja) 1994-04-25 1995-11-10 Sony Corp 機器の放熱機構
JP2004086277A (ja) 2002-08-23 2004-03-18 Seiko Epson Corp 情報処理装置、プロジェクタシステム及びプログラム
US20070058717A1 (en) * 2005-09-09 2007-03-15 Objectvideo, Inc. Enhanced processing for scanning video
JP3953500B1 (ja) 2006-02-07 2007-08-08 シャープ株式会社 画像投影方法及びプロジェクタ
JP2013146049A (ja) * 2011-12-15 2013-07-25 Sanyo Electric Co Ltd 画像表示装置および携帯機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503021A (ja) * 2003-08-19 2007-02-15 シブジ,シラズ,エム. 発光素子ベースのディスプレイ用方法及び装置
JP2006251182A (ja) * 2005-03-09 2006-09-21 Sony Corp 画像形成装置および方法
JP2011237707A (ja) * 2010-05-13 2011-11-24 Seiko Epson Corp 画像形成装置
JP2012138686A (ja) * 2010-12-24 2012-07-19 Kyocera Corp 携帯電子機器
JP2013020199A (ja) * 2011-07-14 2013-01-31 Seiko Epson Corp プロジェクションシステム、画像供給装置、プロジェクター、及び、画像投射方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445699A (zh) * 2015-05-12 2018-08-24 苏州佳世达光电有限公司 投影装置

Also Published As

Publication number Publication date
TW201403584A (zh) 2014-01-16
US9666109B2 (en) 2017-05-30
TWI564875B (zh) 2017-01-01
US20150009218A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2013147068A1 (ja) 投射装置
US9726965B2 (en) Projection device, image correction method, and computer-readable recording medium
JP5958072B2 (ja) 投射装置および画像補正方法
JP5838891B2 (ja) 投射装置および冷却制御方法
JP6146025B2 (ja) 投射装置、画像補正方法およびプログラム
JP5381145B2 (ja) プロジェクター
KR101993222B1 (ko) 디스플레이 장치
WO2013172314A1 (ja) 画像投射装置および画像投射方法
JP3130127U (ja) ドーム用ビデオプロジェクターアダプター
US20060007408A1 (en) Device and method for adjusting color wheel index
WO2013176005A1 (ja) 投射装置、画像補正方法およびプログラム
JP6146038B2 (ja) 投射装置および投射方法
JP5849832B2 (ja) 投射装置
JP2006215431A (ja) プロジェクタ装置
JP2007072031A (ja) プロジェクタ
JP2003207847A (ja) 画像表示装置及び偏向装置
JP2003207846A (ja) 画像表示装置、偏向装置及び画像表示システム
JP5874529B2 (ja) 画像投射装置および画像投射方法
JP6146028B2 (ja) 投射装置および投射方法
JP5958069B2 (ja) 画像投射装置および画像投射方法
JP2016014748A (ja) 画像投射装置
JP2018159821A (ja) 投写型映像表示装置の調整方法、および投写型映像表示装置
JP2017211492A (ja) 投写型映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769822

Country of ref document: EP

Kind code of ref document: A1