WO2013146864A1 - 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池 - Google Patents

活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013146864A1
WO2013146864A1 PCT/JP2013/058962 JP2013058962W WO2013146864A1 WO 2013146864 A1 WO2013146864 A1 WO 2013146864A1 JP 2013058962 W JP2013058962 W JP 2013058962W WO 2013146864 A1 WO2013146864 A1 WO 2013146864A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
battery
lithium
capacity
Prior art date
Application number
PCT/JP2013/058962
Other languages
English (en)
French (fr)
Inventor
友彦 加藤
佐野 篤史
正樹 蘇武
昭信 野島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US14/388,988 priority Critical patent/US9559352B2/en
Priority to CN201380017418.7A priority patent/CN104205437B/zh
Priority to JP2014507949A priority patent/JP5910730B2/ja
Publication of WO2013146864A1 publication Critical patent/WO2013146864A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material, an electrode using the active material, and a lithium ion secondary battery.
  • Patent Document 1 it is proposed to improve the initial charge and discharge efficiency by including a lithium-containing metal oxide containing nickel and manganese and LiFePO 4 .
  • the present invention has been made in view of the above-described problems of the prior art, and has a high capacity, high initial charge / discharge efficiency and high average discharge voltage, an electrode using the same, and a lithium ion secondary battery The purpose is to provide.
  • the active material according to the present invention comprises: At least one first active material selected from active material represented by composition formula (1) or composition formula (2); Li w Ni x (M1) y (M2) z O 2 (1)
  • M1 is at least one selected from Co and Mn
  • M2 is at least one selected from Al, Fe, Cr and Mg
  • 0.001 ⁇ z ⁇ 0.2 Li t Ni p Co q Mn r (M3) s O 2 ⁇
  • M3 is at least one selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, 2.0 ⁇ (p + q + r + s + t) ⁇ 2.2, 1.0 ⁇ t ⁇ 1.
  • is 0 ⁇ ⁇ 1.
  • is 0 ⁇ ⁇ 1.
  • the active material according to the present invention can provide a positive electrode active material having high capacity, high initial charge / discharge efficiency and high average discharge voltage, and a lithium ion secondary battery using the positive electrode active material.
  • the present inventors think as follows. When the first active material and the second active material are mixed or heat-treated, Li of the first active material moves to the second active material, so that the crystal structure of the first active material is partially stabilized. It seems that Furthermore, it is considered that the second active material material contributes to charging / discharging, so that the initial charge / discharge efficiency is high and the average discharge voltage is high.
  • the electrode according to the present invention includes a current collector and an active material layer including the active material described above and provided on the current collector. Thereby, an electrode with high capacity, high initial charge / discharge efficiency, and high average discharge voltage can be obtained.
  • the lithium ion secondary battery according to the present invention includes the above-described electrode, a negative electrode provided in opposition thereto, a separator provided therebetween, and an electrolytic solution. Thereby, it is possible to obtain a lithium ion secondary battery having a high capacity, high initial charge / discharge efficiency, and high average discharge voltage.
  • Li w Ni x (M1) y (M2) z O 2 compositional formula (1)
  • Li a Ni b Co c Mn d O 2 composition formula (2)
  • Li 1- ⁇ VOPO 4 composition The material of the formula (3) is a notation based on the stoichiometric composition, and oxygen or a transition metal may be partially lost.
  • a positive electrode active material having a high capacity, a high initial charge / discharge efficiency and a high average discharge voltage, an electrode using the positive electrode active material, and a lithium ion secondary battery.
  • the active material of this embodiment is At least one first active material selected from active material represented by composition formula (1) or composition formula (2); Li w Ni x (M1) y (M2) z O 2 (1)
  • M1 is at least one selected from Co and Mn
  • M2 is at least one selected from Al, Fe, Cr and Mg
  • 0.001 ⁇ z ⁇ 0.2 is At least one first active material selected from active material represented by composition formula (1) or composition formula (2); Li w Ni x (M1) y (M2) z O 2 (1)
  • M1 is at least one selected from Co and Mn
  • M2 is at least one selected from Al, Fe, Cr and Mg
  • 2.0 ⁇ (x + y + z + w) ⁇ 2 0.3 ⁇ x ⁇ 0.95
  • M3 is at least one selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, 2.0 ⁇ (p + q + r + s + t) ⁇ 2.2, 1.0 ⁇ t ⁇ 1. 3, 0 ⁇ p ⁇ 0.3, 0 ⁇ q ⁇ 0.3, 0.3 ⁇ r ⁇ 0.7, 0 ⁇ s ⁇ 0.1. ]
  • the ratio ( ⁇ ) between the first active material (A) and the second active material (B) is 0.4 mol% ⁇ ⁇ ⁇ 18 mol%.
  • the active material of the present embodiment it is possible to provide a positive electrode active material having a high capacity, high initial charge / discharge efficiency and high average discharge voltage, and a lithium ion secondary battery using the positive electrode active material.
  • first active material examples include those represented by the composition formula (1) Li w Ni x (M1) y (M2) z O 2 .
  • M1 is at least one selected from Co and Mn.
  • M2 is at least one selected from Al, Fe, Cr and Mg.
  • w is 1.0 ⁇ w ⁇ 1.1
  • x + y + z + w is 2.0 ⁇ (x + y + z + w) ⁇ 2.1
  • x is 0.3 ⁇ x ⁇ 0.95
  • y 0.01 ⁇ y ⁇ 0. 4 and z satisfying 0.001 ⁇ z ⁇ 0.2 can be used. Thereby, a high capacity can be obtained.
  • As another first active material include those represented by the composition formula (2) Li t Ni p Co q Mn r (M3) s O 2.
  • M3 is at least one selected from Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V.
  • p + q + r + s + t is 2.0 ⁇ (p + q + r + s + t) ⁇ 2.2
  • y is 1.0 ⁇ t ⁇ 1.3
  • p is 0 ⁇ p ⁇ 0.3
  • q is 0 ⁇ q ⁇ 0.3
  • r is A material satisfying 0.3 ⁇ r ⁇ 0.7 and s satisfying 0 ⁇ s ⁇ 0.1 can be used. Thereby, a high capacity can be obtained.
  • the Ni amount p in the composition formula (2) is preferably 0.04 ⁇ p ⁇ 0.3, and more preferably 0.08 ⁇ p ⁇ 0.3. Most preferred is 0.17 ⁇ p ⁇ 0.3.
  • the Mn amount r in the composition formula (2) is preferably 0.35 ⁇ p ⁇ 0.6, and more preferably 0.45 ⁇ p ⁇ 0.6.
  • the Co amount q in the composition formula (2) is preferably 0 ⁇ p ⁇ 0.28, more preferably 0.14 ⁇ p ⁇ 0.28.
  • the first active material described above may contain the active material represented by any one of the composition formula (1) and the composition formula (2). A mixture of the above may be used.
  • the second active material examples include materials represented by a composition formula (3) Li 1- ⁇ VOPO 4 different from that of the first active material.
  • may be 0 ⁇ ⁇ 1.
  • is preferably 0.1 ⁇ ⁇ ⁇ 1, and more preferably 0.2 ⁇ ⁇ ⁇ 1. More preferably, 0.5 ⁇ ⁇ ⁇ 1. If ⁇ is 0.2 or more, it is considered that interdiffusion of Li with the first active material material easily occurs.
  • the crystal form of Li 1- ⁇ VOPO 4 is not particularly limited and may be partially amorphous, but Li 1- ⁇ VOPO 4 that is orthorhombic is particularly preferable. By using Li 1- ⁇ VOPO 4 which is orthorhombic, one having a particularly high average discharge voltage can be obtained.
  • a part of the V element of the second active material material may be substituted with one or more elements selected from the group consisting of Ti, Ni, Co, Mn, Fe, Zr, Cu, Zn, and Yb.
  • the average particle diameter of primary particles of the first active material and the second active material is preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • a lithium ion secondary battery using such an active material has a high capacity.
  • the average particle size is 0.07 ⁇ m or more and 3 ⁇ m or less.
  • the average particle diameter of the primary particles of the second active material is smaller than the average particle diameter of the primary particles of the first active material.
  • the second active material is preferably present near the surface of the first active material.
  • the method for producing the first active material is not particularly limited, but includes at least a raw material preparation step and a firing step.
  • a method such as pulverization / mixing, thermal decomposition mixing, precipitation reaction, hydrolysis, etc., by blending a predetermined lithium source and metal source so as to satisfy the molar ratio shown in composition formula (1) or composition formula (2) Can be manufactured.
  • the method for producing the second active material is not particularly limited, but includes at least a raw material preparation step and a firing step.
  • a lithium source, a vanadium source, a phosphorus source and water are stirred and mixed to prepare a mixture (mixed solution).
  • the mixing ratio of the lithium source, vanadium source and phosphorus source is adjusted, for example, by adjusting the molar ratio of Li, V and P in the mixture to the stoichiometric ratio of LiVOPO 4 (1: 1: 1).
  • a second active material can be produced by electrochemically desorbing Li from LiVOPO 4 obtained by drying and baking.
  • a phosphorus source, a vanadium source, and distilled water are stirred to prepare a mixture thereof, and the mixture is dried to produce a hydrate VOPO 4 .2H 2 O, followed by further heat treatment to make VOPO 4 May be manufactured.
  • the obtained VOPO 4 may be used as the second active material.
  • the second active material can be produced by mixing and heat-treating VOPO 4 and a lithium source.
  • the compound forms of the metal source, lithium source, vanadium source, and phosphorus source described above are not particularly limited, and known materials such as oxides and salts can be selected according to the process.
  • a pulverizer or a classifier may be used.
  • a mortar, a ball mill, a bead mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • wet pulverization in which an organic solvent such as water or hexane coexists can be used.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.
  • the first active material and the second active material are weighed at a predetermined ratio and mixed as necessary.
  • These mixing methods are not particularly limited, and any apparatus can be used.
  • a powder mixer such as a mortar, a V-type mixer, an S-type mixer, a raker, a ball mill, a planetary ball mill, etc. can be mixed dry or wet.
  • the positive electrode active material obtained by the above mixing method may be fired in an argon atmosphere, an air atmosphere, an oxygen atmosphere, a nitrogen atmosphere, or a mixed atmosphere thereof.
  • the lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.
  • the laminate 30 is configured such that the positive electrode 10 and the negative electrode 20 are disposed to face each other with the separator 18 interposed therebetween.
  • the positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12.
  • the negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22.
  • the positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18.
  • Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.
  • the positive electrode active material layer 14 is a layer containing the above-described active material particles 1, a binder, and a conductive material added as necessary.
  • the conductive material added as necessary include carbon blacks, carbon materials, and conductive oxides such as ITO.
  • the binder is not particularly limited as long as it can bind the active material particles and the conductive material to the current collector, and a known binder can be used.
  • a known binder can be used.
  • fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.
  • Such a positive electrode is formed by a known method, for example, an electrode active material containing the active material particles 1 described above, or an active material particle 1, a binder, and a conductive material.
  • a slurry added to a solvent such as -methyl-2-pyrrolidone or N, N-dimethylformamide is applied to the surface of the positive electrode current collector 12 and dried.
  • a copper foil or the like can be used.
  • the thing containing a negative electrode active material, a electrically conductive material, and a binder can be used. It does not specifically limit as a electrically conductive material, A carbon material, a metal powder, etc. can be used.
  • a fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) can be used.
  • carbon materials such as graphite and non-graphitizable carbon, metals that can be combined with lithium such as Al, Si and Sn, and amorphous materials mainly composed of oxides such as SiO 2 and SnO 2 Examples thereof include particles containing a compound, lithium titanate (Li 4 Ti 5 O 12 ), and the like.
  • the manufacturing method of the negative electrode 20 may be applied to the current collector after adjusting the slurry in the same manner as the manufacturing method of the positive electrode 10.
  • the electrolytic solution is not particularly limited.
  • an electrolytic solution containing a lithium salt in an organic solvent can be used.
  • the lithium salt LiPF 6, LiClO 4, salts of LiBF 4 or the like can be used.
  • these salts may be used individually by 1 type, and may use 2 or more types together.
  • organic solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and the like. These may be used alone or in combination of two or more at any ratio.
  • the separator 18 is at least one selected from the group consisting of a monolayer of a porous film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester and polypropylene.
  • a fiber nonwoven fabric made of a constituent material can be used.
  • the case 50 seals the laminate 30 and the electrolytic solution therein.
  • the case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside.
  • a metal laminate film can be used. .
  • the leads 60 and 62 are made of a conductive material such as aluminum.
  • the active material of this embodiment can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries.
  • a secondary battery other than a lithium ion secondary battery such as a metallic lithium secondary battery (which uses an electrode containing the composite particles of the present invention as a cathode and metallic lithium as an anode).
  • electrochemical capacitors such as lithium capacitors.
  • Example 1 in producing the positive electrode, a lithium nickel composite oxide (Li 1.01 Ni 0.8 Co 0.15 Al 0.005 ) was used as the first active material shown in the composition formula (1) . 05 O 2 ) and Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 as a second active material material were weighed in a molar ratio of 99: 1 and put in a mortar. The mixture was used as the positive electrode active material.
  • Li 1.01 Ni 0.8 Co 0.15 Al 0.005 Li 1.01 Ni 0.8 Co 0.15 Al 0.005
  • a positive electrode paint was prepared by mixing the active material of Example 1, a conductive additive, and a solvent containing a binder.
  • the positive electrode coating material was applied to an aluminum foil (thickness 20 ⁇ m) as a current collector by a doctor blade method, dried at 100 ° C., and rolled. This obtained the positive electrode comprised from a positive electrode active material layer and a collector.
  • As the conductive assistant carbon black (DAB50, manufactured by Denki Kagaku Kogyo Co., Ltd.) and graphite were used.
  • As the solvent containing the binder N-methyl-2-pyrrolidinone (KF 7305, manufactured by Kureha Chemical Industry Co., Ltd.) in which PVDF was dissolved was used.
  • a negative electrode paint was prepared in the same manner as the positive electrode paint, using natural graphite, using only carbon black as a conductive additive.
  • the negative electrode coating material was applied to a copper foil (thickness: 16 ⁇ m) as a current collector by a doctor blade method, dried at 100 ° C., and rolled. This obtained the negative electrode comprised from a negative electrode active material layer and a collector.
  • the produced positive electrode, negative electrode and separator (polyolefin microporous membrane) were cut into predetermined dimensions.
  • the positive electrode and the negative electrode were provided with portions to which no electrode paint was applied in order to weld the external lead terminals.
  • a positive electrode, a negative electrode, and a separator were laminated in this order.
  • a small amount of hot melt adhesive ethylene-methacrylic acid copolymer, EMAA was applied and fixed so that the positive electrode, the negative electrode, and the separator did not shift.
  • An aluminum foil (width 4 mm, length 40 mm, thickness 100 ⁇ m) and nickel foil (width 4 mm, length 40 mm, thickness 100 ⁇ m) were ultrasonically welded to the positive electrode and the negative electrode, respectively, as external lead terminals.
  • Polypropylene (PP) grafted with maleic anhydride was wrapped around this external lead terminal and thermally bonded. This is to improve the sealing performance between the external terminal and the exterior body.
  • An aluminum laminate material composed of a PET layer, an Al layer, and a PP layer was used as a battery outer package enclosing a battery element in which a positive electrode, a negative electrode, and a separator were stacked.
  • the thickness of the PET layer was 12 ⁇ m.
  • the thickness of the Al layer was 40 ⁇ m.
  • the thickness of the PP layer was 50 ⁇ m.
  • PET is polyethylene terephthalate and PP is polypropylene.
  • the PP layer was disposed inside the outer package.
  • a battery element was placed in the outer package, an appropriate amount of electrolyte was added, and the outer package was vacuum-sealed to produce a lithium ion secondary battery of Example 1.
  • As the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 M (mol / L) in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) was used.
  • the battery was discharged at a constant current of 19 mA / g until the end-of-discharge voltage reached 2.8 V (vs. Li / Li + ), and the initial discharge capacity Qd (unit: mAh / g) in the battery. was measured.
  • the initial charge / discharge efficiency (%) in the battery of Example 1 was determined from the initial charge capacity Qc and the initial discharge capacity Qd according to the following formula, and the results are shown in Table 1 below.
  • Initial charge / discharge efficiency (%) (Qd / Qc) ⁇ 100
  • the battery was similarly charged with a constant current of 19 mA / g until the end-of-charge voltage was 4.3 V (vs. Li / Li + ), and further 4.3 V (vs.
  • the battery was charged at a constant voltage at a constant voltage of Li / Li + ) until the current value decreased to 9.5 mA / g, paused for 10 minutes, and then discharged at a constant current of 19 mA / g at a discharge end voltage of 2.8 V (vs.
  • the average discharge voltage (unit: V) when discharging until Li / Li + ) was 3.75V.
  • the capacity at that time was 187 mAh / g.
  • a battery having a capacity of 180 mAh / g or more and an initial charge / discharge efficiency of 90% or more is evaluated as “A”.
  • a battery having a capacity of less than 180 mAh / g or a battery having an initial charge / discharge efficiency of less than 90% was evaluated as “F”.
  • Example 7 in producing the positive electrode, a lithium nickel composite oxide (Li 1.2 Ni 0.17 Co 0.08 Mn 0.005 ) was used as the first active material shown in the composition formula (2) . 55 O 2 ) and Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 as the second active material material are weighed in a molar ratio of 99.6: 0.4. And what was mixed with the mortar was used as a positive electrode active material.
  • Li 1.2 Ni 0.17 Co 0.08 Mn 0.005 Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 as the second active material material.
  • the battery was discharged at a constant current of 24 mA / g until the final discharge voltage was 2.0 V (vs. Li / Li + ), and the initial discharge capacity Qd in the battery was measured.
  • the battery was similarly charged at a constant current of 24 mA / g until the end-of-charge voltage reached 4.6 V (vs. Li / Li + ), and further 4.6 V (vs. Li / Li + ) at a constant voltage until the current value drops to 12 mA / g, and after 10 minutes of rest, each of the above three-electrode test cells was discharged at a constant current of 24 mA / g.
  • Table 2 shows the average discharge voltage and discharge capacity when discharging until the voltage reaches 2.0 V (vs. Li / Li + ).
  • Example 8 to 12 Comparative Examples 3 and 4
  • Comparative Example 3 and Comparative Example 4 except that the ratio ⁇ was changed, lithium ion secondary batteries were produced in the same manner as in Example 7, and the electrical characteristics were evaluated. The results are shown in Table 2.
  • a battery having a capacity of 220 mAh / g or more and an initial charge / discharge efficiency of 80% or more is evaluated as “A”.
  • a battery having a capacity of less than 220 mAh / g or a battery having an initial charge / discharge efficiency of less than 80% was evaluated as “F”.
  • Example 13 to 17, Comparative Example 5 In Examples 13 to 17 and Comparative Example 5, in producing the positive electrode, lithium nickel composite oxide (Li 1.2 Ni 0.17 Co) was used as the first active material shown in the composition formula (2). 0.08 Mn 0.55 O 2 ) and a compound having a composition described in Table 3 obtained by desorbing lithium from orthorhombic LiVOPO 4 as the second active material, a molar ratio of 97: 3 What weighed by ratio and mixed in the mortar was used as a positive electrode active material.
  • Comparative Examples 6 and 7 In Comparative Example 6 and Comparative Example 7, in producing the positive electrode, lithium nickel composite oxide (Li 1.2 Ni 0.17 Co 0 .0 ) was used as the first active material shown in the composition formula (2) . 08 Mn 0.55 O 2 ) and a compound having the composition shown in Table 4 obtained by desorbing lithium from LiFePO 4 as the second active material, were weighed in a molar ratio of 97: 3, and mortar What was mixed in was used as the positive electrode active material.
  • lithium nickel composite oxide Li 1.2 Ni 0.17 Co 0 .0
  • Table 4 obtained by desorbing lithium from LiFePO 4 as the second active material
  • lithium nickel composite oxide Li 1.01 Ni 0.8 Co
  • the first active material shown in the composition formula (1) 0.15 Al 0.05 O 2
  • a compound having a composition described in Table 5 obtained by desorbing lithium from orthorhombic LiVOPO 4 as the second active material, and a molar ratio of 97: 3 What weighed by ratio and mixed in the mortar was used as a positive electrode active material.
  • Example 23 to 25 in preparing the positive electrode, as the first active material shown in the composition formula (1), the lithium nickel composite oxide having the composition shown in Table 6 and the second active material As a positive electrode active material, Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 97: 1 and mixed in a mortar.
  • Example 26 to 32 in Examples 26 to 32, in preparing the positive electrode, as the first active material shown in the composition formula (1), the lithium nickel composite oxide having the composition shown in Table 7 and the second active material As a positive electrode active material, Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 97: 1 and mixed in a mortar.
  • Comparative Examples 9-12 In Comparative Examples 9 to 12, in producing the positive electrode, a lithium nickel composite oxide (Li 1.01 Ni 0.8 Co 0.15 Al) was used as the first active material shown in the composition formula (2). 0.05 O 2 ) and a compound having the composition shown in Table 8 obtained by desorbing lithium from LiFePO 4 as the second active material, were weighed at a molar ratio of 97: 3, and The mixture was used as the positive electrode active material.
  • Example 33 Comparative Example 15
  • lithium having the composition and weight ratio shown in Table 10 was used as the first active material material shown in the composition formula (1) and the composition formula (2).
  • the nickel composite oxide and the second active material Li 0 obtained by desorbing lithium from Li 0.4 VOPO 4 or LiFePO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 .4 FePO 4 was weighed at a molar ratio of 97: 3 and mixed in a mortar, and used as the positive electrode active material.
  • a battery having a capacity of 180 mAh / g or more, an initial charge / discharge efficiency of 90% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having an average discharge voltage of less than 3.6 V was evaluated as “F”.
  • Example 34 Comparative Example 16
  • lithium having the composition and weight ratio shown in Table 11 was used as the first active material material shown in the composition formula (1) and the composition formula (2).
  • the nickel composite oxide and the second active material Li 0 obtained by desorbing lithium from Li 0.4 VOPO 4 or LiFePO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 .4 FePO 4 was weighed at a molar ratio of 97: 3 and mixed in a mortar, and used as the positive electrode active material.
  • a battery having a capacity of 220 mAh / g or more, an initial charge / discharge efficiency of 80% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having an average discharge voltage of less than 3.6 V was evaluated as “F”.
  • Example 35 to 38 Comparative Examples 17 to 19
  • a lithium nickel composite oxide having the composition described in Table 12 As the second active material, Li 0.4 VOPO 4 obtained by removing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 97: 3 and mixed in a mortar to form a positive electrode Used as an active material.
  • a battery having a capacity of 180 mAh / g or more, an initial charge / discharge efficiency of 90% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having a capacity of less than 180 mAh / g was evaluated as “F”.
  • Example 39 to 42, Comparative Examples 20 to 22 in producing the positive electrode, as the first active material shown in the composition formula (1), a lithium nickel composite oxide having the composition described in Table 13; As the second active material, Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 95: 5 and mixed in a mortar. Used as an active material.
  • a battery having a capacity of 180 mAh / g or more, an initial charge / discharge efficiency of 90% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having a capacity of less than 180 mAh / g was evaluated as “F”.
  • Example 43 to 49 Comparative Examples 23 to 29
  • a lithium nickel composite oxide having the composition described in Table 14 As the second active material, Li 0.4 VOPO 4 obtained by removing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 97: 3 and mixed in a mortar to form a positive electrode Used as an active material.
  • a battery having a capacity of 220 mAh / g or more, an initial charge / discharge efficiency of 80% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having a capacity of less than 220 mAh / g was evaluated as “F”.
  • Example 50 to 56 Comparative Examples 30 to 36
  • a lithium nickel composite oxide having the composition described in Table 15 was used as the first active material shown in the above composition formula (2) in preparing the positive electrode.
  • the second active material Li 0.4 VOPO 4 obtained by desorbing lithium from orthorhombic LiVOPO 4 was weighed at a molar ratio of 95: 5 and mixed in a mortar. Used as an active material.
  • a battery having a capacity of 220 mAh / g or more, an initial charge / discharge efficiency of 80% or more, and an average discharge voltage of 3.6 V or more is evaluated as “A”.
  • a battery having a capacity of less than 220 mAh / g was evaluated as “F”.
  • Comparative Examples 37-38 In Comparative Examples 37 and 39, in producing the positive electrode, lithium nickel composite oxide (Li 1.01 Ni 0.8 Co 0.15 Al) was used as the first active material shown in the composition formula (2). 0.05 O 2 ) was used as the second active material, and V 2 O 5 was weighed in a molar ratio of 97: 3 and 95: 5 and mixed in a mortar and used as the positive electrode active material.
  • lithium nickel composite oxide Li 1.01 Ni 0.8 Co 0.15 Al
  • 0.05 O 2 was used as the second active material
  • V 2 O 5 was weighed in a molar ratio of 97: 3 and 95: 5 and mixed in a mortar and used as the positive electrode active material.
  • Comparative Examples 39 and 40 In Comparative Example 39 and Comparative Example 40, a lithium-nickel composite oxide (Li 1.2 Ni 0.17 Co 0 .0 ) was used as the first active material material represented by the composition formula (2) in preparing the positive electrode . 08 Mn 0.55 O 2 ) as a second active material, V 2 O 5 was weighed in a molar ratio of 97: 3 and 95: 5 and mixed in a mortar and used as the positive electrode active material.
  • the example has a higher capacity, higher initial charge / discharge efficiency, and higher average discharge voltage than the comparative example.

Abstract

【課題】 高容量でかつ初回充放電効率の優れた、平均放電電圧の高い活物質を提供すること。 【解決手段】 本発明に係る活物質は、第1の活物質材料と第2の活物質材料とを含んでおり、第1の活物質材料(A)と第2の活物質材料(B)の合計モル数に対する第2の活物質材料(B)の割合(δ)が0.4mol%≦δ≦18mol%〔ただし、δは、δ=(B/(A+B))×100とする。〕であることを特徴とするものを用いる。

Description

活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池
 本発明は、活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池に関する。
 近年、環境・エネルギー問題の解決へ向けて、種々の電気自動車の普及が期待されている。これら電気自動車の実用化の鍵を握るモータ駆動用電源などの車載電源として、リチウムイオン二次電池の開発が鋭意行われている。しかしながら、車載電源として電池を広く普及するためには、電池を高性能にして、より安くする必要がある。また、電気自動車の一充電走行距離をガソリンエンジン車に近づける必要があり、より高エネルギーの電池が望まれている。
 電池のエネルギー密度を高め高放電容量とするためには、正極と負極の単位質量あたりに蓄えられる電気量を大きくする必要がある。この要請に応えられる可能性のある正極材料(正極用活物質)として、Ni-Co-Mn三元系複合酸化物や空間群R - 3 m に帰属される結晶構造を有し、遷移金属サイトにリチウムを含有するいわゆる固溶体系材料が検討されている。 
 しかし、上記のNi-Co-Mn三元系複合酸化物や固溶体系材料は、初回充電時の不可逆容量が高いため、正極活物質の初期充放電効率が低く、電池設計において対向する負極を過剰に用いなければならず、電池容量の低下等の問題があった。
 そのため、特許文献1においては、ニッケルとマンガンとを含有するリチウム含有金属酸化物とLiFePOとを含むようにすることにより、初回の充放電効率を向上させることが提案されている。
特開2008-235151号公報
 しかしながら、上記特許文献1に記載のニッケルとマンガンとを含有するリチウム含有金属酸化物とLiFePOとを含む正極では、初回の充放電効率は向上しているものの、平均放電電圧が低下してしまうという問題があった。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高容量で初回充放電効率が高くかつ平均放電電圧の高い正極活物質及びそれを用いてなる電極ならびにリチウムイオン二次電池を提供することを目的とする。
 上記目的を達成するために、本発明に係る活物質は、
 組成式(1)または組成式(2)で表される活物質材料から選ばれる少なくとも1種の第1の活物質材料と、
  LiNi(M1)(M2)   ・・・(1)
 〔M1はCo、Mnから選ばれた少なくとも1種;M2はAl、Fe、CrおよびMgから選ばれた少なくとも1種;1.0<w<1.1;2.0<(x+y+z+w)≦2.1;0.3<x<0.95;0.01<y<0.4;0.001<z<0.2〕、
  LiNiCoMn(M3)   ・・・(2)
 〔M3はAl,Si,Zr,Ti,Fe,Mg,Nb,BaおよびVからなる群から選ばれる少なくとも1種、2.0≦(p+q+r+s+t)≦2.2、1.0<t≦1.3、0<p≦0.3、0≦q≦0.3、0.3≦r≦0.7、0≦s≦0.1〕、
 前記第1の活物質とは異なる組成式(3)で表される第2の活物質材料と、
  Li1-αVOPO   ・・・(3)
 〔ただしαは、0<α≦1である。〕
を含んでおり、
 第1の活物質材料(A)と第2の活物質材料(B)の合計モル数に対する第2の活物質材料(B)の割合(δ)が0.4mol%≦δ≦18mol%であることを特徴とする。
 つまりδ(単位:mol%)は、δ=(B/(A+B))×100で示されるものである。
 本発明に係る活物質によれば、高容量で初回充放電効率が高くかつ平均放電電圧の高い正極活物質及びそれを用いてなるリチウムイオン二次電池を提供することができる。このような理由については必ずしも明らかではないが、本発明者らは以下のように考えられる。第1の活物質と第2の活物質の混合あるいは熱処理時に、第1の活物質のLiが第2の活物質へ移動することにより、部分的に第1の活物質の結晶構造が安定化していると思われる。さらに第2の活物質材料が充放電に寄与することで、高容量で初回充放電効率が高くかつ平均放電電圧が高くなっていると考えられる。
 本発明に係る電極は、集電体と、上述した活物質を含み集電体上に設けられた活物質層とを備える。これにより、高容量で初回充放電効率が高く、かつ平均放電電圧が高い電極を得ることができる。
 本発明に係るリチウムイオン二次電池は、上述した電極と、それに対抗して設けられた負極と、その間に設けられたセパレータと、電解液とを備える。これにより、高容量で初回充放電効率が高く、かつ平均放電電圧が高いリチウムイオン二次電池を得ることができる。
なお、LiNi(M1)(M2)(組成式(1))、LiNiCoMn(組成式(2))やLi1-αVOPO(組成式(3))等の材料は化学量論組成に基づいた表記であり、一部、酸素や遷移金属が欠損していても構わない。
 本発明によれば、高容量で初回充放電効率が高くかつ平均放電電圧の高い正極活物質及びそれを用いてなる電極ならびにリチウムイオン二次電池を提供することができる。
本実施形態の活物質を含む正極活物質層を備えるリチウムイオン二次電池の模式断面図である。
 以下、本発明の一実施形態に係る活物質、リチウムイオン二次電池について説明する。なお、本発明は、下記の実施形態に限定されるものではない。
 本実施形態の活物質は、
 組成式(1)または組成式(2)で表される活物質材料から選ばれる少なくとも1種の第1の活物質材料と、
  LiNi(M1)(M2)   ・・・(1)
 〔M1はCo、Mnから選ばれた少なくとも1種;M2はAl、Fe、CrおよびMgから選ばれた少なくとも1種;1.0<w<1.1;2.0<(x+y+z+w)≦2.1;0.3<x<0.95;0.01<y<0.4;0.001<z<0.2を満たすものである。〕、
  LiNiCoMn(M3)   ・・・(2)
 〔M3はAl,Si,Zr,Ti,Fe,Mg,Nb,BaおよびVからなる群から選ばれる少なくとも1種、2.0≦(p+q+r+s+t)≦2.2、1.0<t≦1.3、0<p≦0.3、0≦q≦0.3、0.3≦r≦0.7、0≦s≦0.1を満たすものである。〕、
 第1の活物質とは異なる組成式(3)で表される第2の活物質材料
  Li1-αVOPO   ・・・(3)
 〔ただしαは、0<α≦1である。〕
と、を含んでおり、第1の活物質材料(A)対する第2の活物質材料(B)との割合(δ)が0.4mol%≦δ≦18mol%であることを特徴としている。
 本実施形態の活物質によれば、高容量で初回充放電効率が高くかつ平均放電電圧の高い正極活物質及びそれを用いてなるリチウムイオン二次電池を提供することができる。
 (第1の活物質材料)
 第1の活物質材料としては、組成式(1)LiNi(M1)(M2)で表されるもの挙げられる。M1はCo、Mnから選ばれた少なくとも1種以上である。またM2は、Al、Fe、CrおよびMgから選ばれた少なくとも1種以上である。中でも、wが1.0<w<1.1、x+y+z+wが2.0<(x+y+z+w)≦2.1、xが0.3<x<0.95、yが0.01<y<0.4、zが0.001<z<0.2を満たすものを用いることができる。これにより高容量が得られる。
 また、別の第1の活物質材料としては、組成式(2)LiNiCoMn(M3)で表されるものが挙げられる。M3は、Al,Si,Zr,Ti,Fe,Mg,Nb,BaおよびVから選ばれた少なくとも1種以上である。中でも、p+q+r+s+tが2.0≦(p+q+r+s+t)≦2.2、yが1.0≦t≦1.3、pが0<p≦0.3、qが0≦q≦0.3、rが0.3≦r≦0.7、sが0≦s≦0.1を満たすものを用いることができる。これにより高容量が得られる。
 さらに組成式(2)中のNi量pは、0.04≦p≦0.3が好ましく、0.08≦p≦0.3がさらに好ましい。最も好ましいのは0.17≦p≦0.3である。
 また、組成式(2)中のMn量rは、0.35≦p≦0.6が好ましく、0.45≦p≦0.6がさらに好ましい。
 組成式(2)中のCo量qは、0≦p≦0.28が好ましく、0.14≦p≦0.28がさらに好ましい。
 なお、上述した第1の活物質材料としては、上記組成式(1)、または組成式(2)のいずれか一方の式で示される活物質材料を含有すれば良いが、組成の異なる2種類以上のものを混合して用いても良い。
 (第2の活物質材料)
 第2の活物質材料としては、第1の活物質とは異なる組成式(3) Li1-αVOPOで表されるものが挙げられる。
 αは0<α≦1であればよい。このうちαは、0.1≦α≦1であることが好ましく、0.2≦α≦1であることがより好ましい。0.5≦α≦1であることがさらに好ましい。αが0.2以上であると第1の活物質材料とのLiの相互拡散が起こりやすくなると考えられる。
 Li1-αVOPOの結晶形態は特に問わず、一部非晶質状態となっていてもよいが、特に斜方晶系であるLi1-αVOPOが好ましい。斜方晶系であるLi1-αVOPOを用いることで特に平均放電電圧が高いものが得られる。
 第2の活物質材料のV元素の一部がTi,Ni,Co,Mn,Fe,Zr,Cu,Zn及びYbからなる群から選択される一以上の元素で置換されていてもよい。
 そして、第1の活物質材料(Amol)に対する第2の活物質材料(Bmol)の割合(δ)が0.4mol%≦δ≦18mol%であればよい。さらに、δが1mol%≦δ≦10mol%であることが好ましく、3mol%≦δ≦10mol%であることがさらに好ましい。これにより高容量で初回充放電効率が高くかつ平均放電電圧が高いものが得られる。
 δ=(B/(A+B))×100
割合(δ)が0.4mol%未満だと初回充放電効率が小さくなる可能性があり、18mol%より大きいと容量が小さくなる可能性がある。
 第1の活物質および第2の活物質の一次粒子の平均粒子径は0.05μm以上、10μm以下であることが好ましい。このような活物質を用いたリチウムイオン二次電池では、高容量のものが得られる。一次粒子の平均粒子径が0.05μmより小さい活物質を用いた場合は、粉体の取扱いが難しくなる傾向があり、10μmより大きい活物質を用いた場合は、容量が小さくなる傾向がある。より好ましくは、平均粒子径は0.07μm以上、3μm以下である。
 さらには、第2活物質の一次粒子の平均粒子径は、第1活物質の一次粒子の平均粒子径よりも小さいことが好ましい。また、第2活物質は第1活物質の表面近傍に存在することが好ましい。これらにより、第1の活物質と第2の活物質の混合あるいは熱処理時に、第1の活物質のLiが第2の活物質へ移動するなどの相互作用が容易に行われる。
 第1の活物質の製造方法は特に限定されないが、少なくとも原料調製工程及び焼成工程を備える。組成式(1)または組成式(2)に示すモル比を満たすように所定のリチウム源および金属源を配合して、粉砕・混合、熱的な分解混合、沈殿反応、または加水分解等の方法により、製造することができる。
 第2の活物質の製造方法は特に限定されないが、少なくとも原料調製工程及び焼成工程を備える。原料調製工程では、リチウム源、バナジウム源、リン源および水を攪拌、混合して、混合物(混合液)を調製する。原料調製工程により得た混合物を乾燥する乾燥工程を焼成工程前に実施しても良い。必要に応じて乾燥工程および焼成工程前に水熱合成工程を実施しても良い。
 リチウム源、バナジウム源およびリン源の配合比は、例えば混合物中のLi,VおよびPのモル比を、LiVOPOの化学量論比(1:1:1)になるように調整し、混合物を乾燥および焼成することにより得られたLiVOPOから、電気化学的にLiを脱離させることにより第2の活物質を製造することができる。
 または、リン源、バナジウム源および蒸留水を攪拌してこれらの混合物を調整し、混合物を乾燥することによって、水和物であるVOPO・2HOを製造し、さらに熱処理することによりVOPOを製造してもよい。得られたVOPOを第2の活物質として用いてもよく、さらにはVOPOとリチウム源とを混合、熱処理することにより第2の活物質を製造することができる。
 なお、上述した金属源や、リチウム源、バナジウム源、リン源の化合物形態は、特に問わず、酸化物、塩、等、プロセスに合わせ公知の材料が選択できる。
 所望の粒子径を有する活物質の粉体を得るためには、粉砕機や分級機を用いてもよい。例えば乳鉢、ボールミル、ビーズミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には、水又はヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、ふるいや風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
 第1の活物質材料と第2の活物質材料を所定の割合で秤量し、必要に応じて混合する。これらの混合方法は特に限定されず、任意の装置を用いることができる。その具体例としては、乳鉢、V型混合機、S型混合機、らいかい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
 さらに、本実施形態では、上記混合方法により得た正極活物質を、アルゴン雰囲気中、空気雰囲気中、酸素雰囲気中、窒素雰囲気中またはそれらの混合雰囲気中で焼成してもよい。
 <リチウムイオン二次電池>
 続いて、本実施形態に係る電極、およびリチウムイオン二次電池について図1を参照して簡単に説明する。
 リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。
 積層体30は、正極10および負極20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14および負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12および負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。
 正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、上述の活物質粒子1、バインダーおよび、必要に応じて添加される導電材を含む層である。必要に応じて添加される導電材としては、例えば、カーボンブラック類、炭素材料、ITO等の導電性酸化物が挙げられる。
 バインダーは、上記の活物質粒子と導電材とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。
 このような正極は、公知の方法、例えば、前述の活物質粒子1を含む電極活物質、又は活物質粒子1、バインダーおよび導電材を、それらの種類に応じた溶媒、例えばPVDFの場合はN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。
 負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電材および、バインダーを含むものを使用できる。導電材としては特に限定されず、炭素材料、金属粉などが使用できる。負極に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が使用できる。
 負極活物質としては、黒鉛、難黒鉛化炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
 負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して集電体に塗布すればよい。
 電解液としては、特に限定されず、例えば、本実施形態では、有機溶媒にリチウム塩を含む電解液を使用することができる。リチウム塩としては、例えば、LiPF、LiClO、LiBF等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
 有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネートおよび、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。
 また、セパレータ18は、ポリエチレン、ポリプロピレン又はポリオレフィンからなる多孔質フィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が使用できる。
 ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されず、例えば、金属ラミネートフィルムを利用できる。
 リード60,62は、アルミニウム、等の導電材料から形成されている。
 本実施形態の活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の複合粒子を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 実施例1においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.01Ni0.8Co0.15Al0.05)と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを99:1のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [正極の作製]
 実施例1の活物質と、導電助剤と、バインダーを含む溶媒とを混合して、正極用塗料を調製した。正極用塗料を集電体であるアルミニウム箔(厚み20μm)にドクターブレード法で塗布後、100℃で乾燥し、圧延した。これにより、正極活物質層及び集電体から構成される正極を得た。導電助剤としては、カーボンブラック(電気化学工業(株)製、DAB50)および黒鉛を用いた。バインダーを含む溶媒としては、PVDFを溶解したN-メチル-2-ピロリジノン(呉羽化学工業(株)製、KF7305)を用いた。
 [負極の作製]
 天然黒鉛を用い、導電助剤としてカーボンブラックだけを用い、正極用塗料と同様の方法で、負極用塗料を調製した。負極用塗料を集電体である銅箔(厚み16μm)にドクターブレード法で塗布後、100℃で乾燥し、圧延した。これにより、負極活物質層及び集電体から構成される負極を得た。
 [リチウムイオン二次電池の作製]
 作製した正極、負極とセパレータ(ポリオレフィン製の微多孔質膜)を所定の寸法に切断した。正極、負極には、外部引き出し端子を溶接するために電極用塗料を塗布しない部分を設けておいた。正極、負極、セパレータをこの順序で積層した。積層するときには、正極、負極、セパレータがずれないようにホットメルト接着剤(エチレン-メタアクリル酸共重合体、EMAA)を少量塗布し固定した。正極、負極には、それぞれ、外部引き出し端子としてアルミニウム箔(幅4mm、長さ40mm、厚み100μm)、ニッケル箔(幅4mm、長さ40mm、厚み100μm)を超音波溶接した。この外部引き出し端子に、無水マレイン酸をグラフト化したポリプロピレン(PP)を巻き付け熱接着させた。これは外部端子と外装体とのシール性を向上させるためである。正極、負極、セパレータを積層した電池要素を封入する電池外装体として、PET層、Al層およびPP層から構成されるアルミニウムラミネート材料を用いた。PET層の厚さは12μmであった。Al層の厚さは40μmであった。PP層の厚さは50μmであった。なお、PETはポリエチレンテレフタレート、PPはポリプロピレンである。電池外装体を作製では、PP層を外装体の内側に配置させた。この外装体の中に電池要素を入れ電解液を適当量添加し、外装体を真空密封し、実施例1のリチウムイオン二次電池を作製した。なお、電解液としては、エチレンカーボンネート(EC)とジメチルカーボネート(DMC)の混合溶媒にLiPFを濃度1M(mol/L)で溶解させたものを用いた。混合溶媒におけるECとDMCとの体積比は、EC:DMC=30:70とした。
 [電気特性の測定]
 次に、上記のようにして作製した実施例1の電池セルを用いて、それぞれ19mA/gの定電流で充電終止電圧が4.3V(vs.Li/Li)になるまで充電を行い、さらに4.3V(vs.Li/Li)の定電圧で電流値が9.5mA/gに低下するまで定電圧充電を行って、初回充電容量Qcを測定した。
 そして、10分間休止した後、19mA/gの定電流で放電終止電圧が2.8V(vs.Li/Li)になるまで放電させて、電池における初回放電容量Qd(単位:mAh/g)を測定した。
 そして、上記の初回充電容量Qcと初回放電容量Qdとから下記の式により、実施例1の電池における初回充放電効率(%)を求め、その結果を下記の表1に示した。
 初回充放電効率(%)=(Qd/Qc)×100
 初回充電容量および初回放電容量を測定した後、同様に19mA/gの定電流で充電終止電圧が4.3V(vs.Li/Li)になるまで充電を行い、さらに4.3V(vs.Li/Li)の定電圧で電流値が9.5mA/gに低下するまで定電圧充電を行い、10分間休止した後、19mA/gの定電流で放電終止電圧が2.8V(vs.Li/Li)になるまで放電させた時の平均放電電圧(単位:V)を求めたところ3.75Vであった。また、その時の容量は、187mAh/gであった。
 (実施例2~6、比較例1、2)
 実施例2~6、比較例1および比較例2においては、割合δを変更した以外は、実施例1と同様にリチウムイオン二次電池を作製し、電気特性を評価した。結果は表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上である電池を「A」と評価する。容量が180mAh/g未満である電池、又は初回充放電効率が90%未満である電池を「F」と評価した。
 (実施例7)
 実施例7においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.2Ni0.17Co0.08Mn0.55)と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを99.6:0.4のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 次に、実施例1と同様に作製した実施例7の電池セルを用いて、それぞれ24mA/gの定電流で充電終止電圧が4.6V(vs.Li/Li)になるまで充電を行い、さらに4.6V(vs.Li/Li)の定電圧で電流値が12mA/gに低下するまで定電圧充電を行って、初回充電容量Qcを測定した。
 そして、10分間休止した後、24mA/gの定電流で放電終止電圧が2.0V(vs.Li/Li)になるまで放電させて、電池における初回放電容量Qdを測定した。
 上記の初回充電容量Qcと初回放電容量Qdとから、実施例1と同様に初回充放電効率(%)を求め、その結果を下記の表2に示した。
 初回充電容量および初回放電容量を測定した後、同様に24mA/gの定電流で充電終止電圧が4.6V(vs.Li/Li)になるまで充電を行い、さらに4.6V(vs.Li/Li)の定電圧で電流値が12mA/gに低下するまで定電圧充電を行い、10分間休止した後、上記の各三電極式試験用セルを24mA/gの定電流で放電終止電圧が2.0V(vs.Li/Li)になるまで放電させた時の平均放電電圧および放電容量を表2に示す。
 (実施例8~12、比較例3、4)
 実施例8~12、比較例3および比較例4おいては、割合δを変更した以外は、実施例7と同様にリチウムイオン二次電池を作製し、電気特性を評価した。結果は表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上である電池を「A」と評価する。容量が220mAh/g未満である電池、又は初回充放電効率が80%未満である電池を「F」と評価した。
 (実施例13~17、比較例5)
 実施例13~17および比較例5においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.2Ni0.17Co0.08Mn0.55)と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得た表3記載の組成の化合物とを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上である電池を「A」と評価する。初回充放電効率が80%未満である電池を「F」と評価した。
 (比較例6,7)
 比較例6および比較例7においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.2Ni0.17Co0.08Mn0.55)と、第2の活物質材料としてはLiFePOからリチウムを脱離させて得た表4に記載の組成の化合物とを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、平均放電電圧が、3.6V未満である電池を「F」と評価した。
 (実施例18~22、比較例8)
 実施例18~22および比較例8においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.01Ni0.8Co0.15Al0.05)と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得た表5記載の組成の化合物とを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は実施例1と同様に行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。初回充放電効率が90%未満である電池を「F」と評価した。
 (実施例23~25)
 実施例23~25においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、表6記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを97:1のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は実施例1と同様に行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
表6において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価した。
 (実施例26~32)
 実施例26~32においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、表7記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを97:1のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
表7において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価した。
 (比較例9~12)
 比較例9~12においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.01Ni0.8Co0.15Al0.05)と、第2の活物質材料としてはLiFePOからリチウムを脱離させて得た表8に記載の組成の化合物とを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例1と同様に行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8において、平均放電電圧が、3.6V未満である電池を「F」と評価した。
 (比較例13,14)
 比較例13および比較例14においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.2Ni0.17Co0.08Mn0.55)と、第2の活物質材料としてはLiFePOからリチウムを脱離させて得た表9に記載の組成の化合物とを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9において、平均放電電圧が、3.6V未満である電池を「F」と評価した。
 (実施例33、比較例15)
 実施例33、および比較例15においては、正極を作製するにあたり、前記の組成式(1)および組成式(2)に示す第1の活物質材料として、表10記載の組成および重量比のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOまたはLiFePOからリチウムを脱離させて得たLi0.4FePOとを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は実施例1と同様に行った。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。平均放電電圧が3.6V未満である電池を「F」と評価した。
 (実施例34、比較例16)
 実施例34、および比較例16においては、正極を作製するにあたり、前記の組成式(1)および組成式(2)に示す第1の活物質材料として、表11記載の組成および重量比のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOまたはLiFePOからリチウムを脱離させて得たLi0.4FePOとを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は実施例7と同様に行った。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
表11において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。平均放電電圧が3.6V未満である電池を「F」と評価した。
 (実施例35~38、比較例17~19)
 実施例35~38および比較例17~19においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、表12記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例1と同様に行った。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。容量が180mAh/g未満である電池を「F」と評価した。
 (実施例39~42、比較例20~22)
 実施例39~42および比較例20~22においては、正極を作製するにあたり、前記の組成式(1)に示す第1の活物質材料として、表13記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを95:5のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例1と同様に行った。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13において、容量が180mAh/g以上であり、且つ初回充放電効率が90%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。容量が180mAh/g未満である電池を「F」と評価した。
 (実施例43~49、比較例23~29)
 実施例43~49および比較例23~29においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、表14記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを97:3のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 表14において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。容量が220mAh/g未満である電池を「F」と評価した。
 (実施例50~56、比較例30~36)
 実施例50~56および比較例30~36においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、表15記載の組成のリチウムニッケル複合酸化物と、第2の活物質材料としては斜方晶系のLiVOPOからリチウムを脱離させて得たLi0.4VOPOとを95:5のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例7と同様に行った。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表15において、容量が220mAh/g以上であり、且つ初回充放電効率が80%以上であり、且つ平均放電電圧が3.6V以上である電池を「A」と評価する。容量が220mAh/g未満である電池を「F」と評価した。
 (比較例37~38)
 比較例37および39においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.01Ni0.8Co0.15Al0.05)を、第2の活物質材料として、Vを97:3および95:5のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は、実施例1と同様に行った。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 表16において、平均放電電圧が、3.6V未満である電池を「F」と評価した。
 (比較例39、40)
 比較例39および比較例40においては、正極を作製するにあたり、前記の組成式(2)に示す第1の活物質材料として、リチウムニッケル複合酸化物(Li1.2Ni0.17Co0.08Mn0.55)を、第2の活物質材料としてVを97:3および95:5のmol比で秤量し、乳鉢にて混合したものを正極活物質として用いた。
 [電気特性の測定]
 電池セルの作製、及び電気特性の測定は実施例7と同様に行った。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 表17において、平均放電電圧が、3.6V未満である電池を「F」と評価した。
以上、これまで評価した結果から明らかな様に、実施例は、比較例と比較して高容量で初回充放電効率が高く、かつ平均放電電圧が高いものが得られることが確認できる。
 10・・・正極,20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・積層体、50・・・ケース、60,62・・・リード、100・・・リチウムイオン二次電池。

Claims (3)

  1.  組成式(1)または組成式(2)で表される活物質材料から選ばれる少なくとも1種の第1の活物質材料と、
      LiNi(M1)(M2)   ・・・(1)
     〔M1はCo、Mnから選ばれた少なくとも1種;M2はAl、Fe、CrおよびMgから選ばれた少なくとも1種 ;1.0<w<1.1 ; 2.0<(x+y+z+w)≦2.1;0.3<x<0.95;0.01<y<0.4;0.001<z<0.2〕、
      LiNiCoMn(M3)   ・・・(2)
     〔M3はAl,Si,Zr,Ti,Fe,Mg,Nb,BaおよびVからなる群から選ばれる少なくとも1種、2.0≦(p+q+r+s+t)≦2.2、1.0<t≦1.3、0<p≦0.3、0≦q≦0.3、0.3≦r≦0.7、0≦s≦0.1〕、
     前記第1の活物質とは異なる組成式(3)で表される第2の活物質材料
      Li1-αVOPO   ・・・(3)
     〔ただしαは、0<α≦1である。〕
    と、を含んでおり、前記第1の活物質材料(A)と前記第2の活物質材料(B)の合計モル数に対する前記第2の活物質材料(B)の割合(δ)が0.4mol%≦δ≦18mol%であることを特徴とする、活物質。
     〔ただし、δは、δ=(B/(A+B))×100とする。〕
  2.  集電体と、請求項1に記載の活物質を含み前記集電体上に設けられた活物質層と、を備えることを特徴とする電極。
  3.  請求項2記載の電極と、それに対向して設けられた負極と、その間に設けられたセパレータと、電解液と、を備えることを特徴とするリチウムイオン二次電池。
     
PCT/JP2013/058962 2012-03-27 2013-03-27 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池 WO2013146864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/388,988 US9559352B2 (en) 2012-03-27 2013-03-27 Active material, electrode using same, and lithium ion secondary battery
CN201380017418.7A CN104205437B (zh) 2012-03-27 2013-03-27 活性物质、使用该活性物质的电极以及锂离子二次电池
JP2014507949A JP5910730B2 (ja) 2012-03-27 2013-03-27 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-070937 2012-03-27
JP2012070937 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146864A1 true WO2013146864A1 (ja) 2013-10-03

Family

ID=49260113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058962 WO2013146864A1 (ja) 2012-03-27 2013-03-27 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US9559352B2 (ja)
JP (1) JP5910730B2 (ja)
CN (1) CN104205437B (ja)
WO (1) WO2013146864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127024A (ja) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、その製造方法、それを含む正極、及びそれを含むリチウム電池
JP2017152295A (ja) * 2016-02-26 2017-08-31 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250402A1 (en) * 2016-02-25 2017-08-31 Tdk Corporation Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
KR102189056B1 (ko) * 2018-03-15 2020-12-10 포항공과대학교 산학협력단 리튬 이차전지용 양극 활물질 및 그 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523368A (ja) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド 混合粒子を含む電極
JP2008277152A (ja) * 2007-04-27 2008-11-13 Tdk Corp 活物質、電極、電池、及び活物質の製造方法
JP2009224776A (ja) * 2008-03-13 2009-10-01 Commiss Energ Atom 不揮発性電気化学メモリデバイス

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141468A1 (en) * 2003-04-03 2007-06-21 Jeremy Barker Electrodes Comprising Mixed Active Particles
US7901810B2 (en) * 2003-06-03 2011-03-08 Valence Technology, Inc. Battery active materials and methods for synthesis
US7563541B2 (en) * 2004-10-29 2009-07-21 Medtronic, Inc. Lithium-ion battery
JP2007123251A (ja) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd 非水電解質二次電池
US7790319B2 (en) * 2006-04-21 2010-09-07 Valence Technology, Inc. Method for making electrode active material
JP5036348B2 (ja) * 2007-02-27 2012-09-26 三洋電機株式会社 非水電解質二次電池用正極活物質の製造方法
JP5159134B2 (ja) * 2007-03-23 2013-03-06 三洋電機株式会社 非水電解質二次電池
EP2264814A4 (en) * 2008-04-17 2016-08-17 Jx Nippon Mining & Metals Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY, POSITIVE ELECTRODE FOR RECHARGEABLE BATTERY, AND LITHIUM-ION BATTERY
JP5029540B2 (ja) * 2008-09-01 2012-09-19 ソニー株式会社 正極活物質、これを用いた正極および非水電解質二次電池
US8821763B2 (en) * 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP5588995B2 (ja) * 2008-11-20 2014-09-10 エルジー・ケム・リミテッド 電池特性が改良されたリチウム二次電池
US20100159324A1 (en) * 2008-12-19 2010-06-24 Conocophillips Company Lithium powders for batteries
IT1395971B1 (it) * 2009-06-29 2012-11-02 Lafer S R L Unita' centrale per l'alimentazione e il controllo remoti di motori elettrici
DE102010011413A1 (de) * 2010-03-15 2011-09-15 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle für dynamische Einsätze
US20120052299A1 (en) * 2010-09-01 2012-03-01 Jiang Fan Non-spherical electroactive agglomerated particles, and electrodes and batteries comprising the same
JP2012174485A (ja) * 2011-02-22 2012-09-10 Fuji Heavy Ind Ltd 正極活物質、これを用いたリチウムイオン蓄電デバイス、及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523368A (ja) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド 混合粒子を含む電極
JP2008277152A (ja) * 2007-04-27 2008-11-13 Tdk Corp 活物質、電極、電池、及び活物質の製造方法
JP2009224776A (ja) * 2008-03-13 2009-10-01 Commiss Energ Atom 不揮発性電気化学メモリデバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127024A (ja) * 2014-12-26 2016-07-11 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、その製造方法、それを含む正極、及びそれを含むリチウム電池
JP2017152295A (ja) * 2016-02-26 2017-08-31 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN104205437A (zh) 2014-12-10
JPWO2013146864A1 (ja) 2015-12-14
US9559352B2 (en) 2017-01-31
CN104205437B (zh) 2016-11-09
JP5910730B2 (ja) 2016-04-27
US20150111105A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5095179B2 (ja) 非水電解質電池、リチウムチタン複合酸化物および電池パック
JP5396798B2 (ja) 活物質材料、それを用いた正極及びリチウムイオン二次電池
JP4245532B2 (ja) 非水電解質二次電池
JP5439299B2 (ja) 電池用負極活物質、非水電解質電池、電池パック、及び自動車
JP4950980B2 (ja) 非水電解質電池および非水電解質電池負極活物質用リチウムチタン複合酸化物
US20110217574A1 (en) Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery
KR20120129816A (ko) 축전 디바이스 및 축전 디바이스용 양극
JP5512056B2 (ja) 非水電解質二次電池およびその製造方法
JP5910730B2 (ja) 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池
JP6096985B1 (ja) 非水電解質電池及び電池パック
WO2011086690A1 (ja) 正極活物質の評価方法
US20190165372A1 (en) Positive electrode material and lithium secondary battery using the same
KR101368124B1 (ko) 비수 전해액형 리튬 이온 2차 전지
JP5209004B2 (ja) 電池用活物質、非水電解質電池、電池パック、及び自動車
JP5807599B2 (ja) 活物質及びリチウムイオン二次電池
JP7140125B2 (ja) リチウムイオン二次電池用負極およびこれを含むリチウムイオン二次電池
JP4966347B2 (ja) 負極活物質、非水電解質電池及び電池パック
JP5847757B2 (ja) 電池用負極活物質の製造方法
TWI600195B (zh) 非水電解質二次電池及使用其之組電池
JP6394193B2 (ja) 正極活物質、正極及びリチウムイオン二次電池
JP6385665B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び車
JP2021157936A (ja) 負極活物質、負極及び二次電池
JP5375009B2 (ja) 活物質材料、それを用いた正極及びリチウムイオン二次電池
JP5567056B2 (ja) 非水電解質電池及び電池パック
JP2016035937A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14388988

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13770165

Country of ref document: EP

Kind code of ref document: A1