WO2013146182A1 - 真空成膜装置および真空成膜方法 - Google Patents

真空成膜装置および真空成膜方法 Download PDF

Info

Publication number
WO2013146182A1
WO2013146182A1 PCT/JP2013/056436 JP2013056436W WO2013146182A1 WO 2013146182 A1 WO2013146182 A1 WO 2013146182A1 JP 2013056436 W JP2013056436 W JP 2013056436W WO 2013146182 A1 WO2013146182 A1 WO 2013146182A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
deposition
preventing plate
vacuum
plate
Prior art date
Application number
PCT/JP2013/056436
Other languages
English (en)
French (fr)
Inventor
川下守
野村文保
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR20147024113A priority Critical patent/KR20140138665A/ko
Priority to US14/388,569 priority patent/US20150060263A1/en
Priority to EP13769688.6A priority patent/EP2835444A1/en
Priority to CN201380016348.3A priority patent/CN104204270A/zh
Publication of WO2013146182A1 publication Critical patent/WO2013146182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3328Problems associated with coating adhesion, stress, lift-off of deposited films

Definitions

  • the present invention relates to a vacuum film forming apparatus and a vacuum film forming method.
  • Vacuum deposition methods such as vapor deposition, sputtering, and CVD are techniques for forming a thin film on a substrate by depositing and depositing particles of the deposition material on the substrate in a vacuum chamber.
  • the film deposition material particles adhere to other places, such as the inner wall of the vacuum chamber and the substrate transport device, and the film attached to places other than the substrate peels off, affecting the substrate.
  • a deposition plate is generally provided in a place where particles of a film forming material other than the substrate are not desired to adhere.
  • the method of covering the target area with aluminum foil or copper foil and discarding the foil after the completion of one batch of film formation is used as a method for easily obtaining an anti-adhesion effect, but this method increases the amount of waste, In addition, a large load is generated in terms of running cost.
  • a method of reducing the amount of waste by using a metal plate as an anti-adhesion plate as an alternative to the foil and peeling the film of the film-forming substance attached to the anti-adhesion plate and reusing the anti-adhesion plate is also used.
  • the film adhering to the adhesion preventing plate peels off during film formation, and dust is generated, which causes a product defect by adhering to the base material or adversely affecting the film formation.
  • Patent Document 1 discloses a form of an adhesion preventing plate used in an ITO sputtering apparatus.
  • the surface of the adhesion preventing plate is roughened to increase the contact area.
  • the adhesion preventing plate can be reused by removing the adhered ITO film by etching or blasting.
  • Patent Document 2 shows a form of a deposition plate used in a thin film manufacturing apparatus. This is a technique for ensuring adhesion by providing grooves on the surface of the deposition preventive plate and further applying a sprayed coating on the surface layer. The deposition plate can be reused by peeling off the film adhered to the deposition plate together with the spray coating and applying the spray coating again.
  • Patent Document 3 discloses a form of a metal film peeling prevention structure in a metal film forming apparatus.
  • a sprayed film made of aluminum or an aluminum alloy is formed on the surface of the member so that the attached metal film does not peel off from a predetermined member on which the metal film is deposited and deposited, and the surface is appropriately roughened. It has the characteristic of being.
  • the surface area is increased by roughening to improve the adhesion, and the thermal sprayed film has a stress relaxation effect on the deposited film to prevent peeling.
  • Patent Document 4 shows a form of a protective plate for the purpose of eliminating these drawbacks.
  • This is a technique for directly adjusting the temperature of the deposition plate itself. Thereby, the temperature difference between the film-forming particles and the deposition preventing plate is optimized to form a film with a film stress as small as possible, thereby preventing peeling due to the film stress. According to the knowledge of the present inventors, this method can prevent the adhesion film from peeling off very effectively, but has the following problems.
  • the vacuum deposition system has few structures. This is because it is affected by outgas from the member.
  • an extra heater or cooler must be provided in the vacuum chamber.
  • there is a risk of extra exhaust time due to outgas, or the degree of vacuum may change during temperature adjustment, and the heating medium or power source of the heater or cooler may be changed to the atmosphere side. Since it must be introduced into the vacuum chamber, there is a risk that it is not desirable for the vacuum apparatus, such as a risk of vacuum leakage at the introduction portion.
  • the object of the present invention is to solve the above-mentioned problems, and can be reused, and it is possible to achieve both an anti-film formation function on a member to be protected and an anti-peeling function of the film attached to the anti-adhesion plate.
  • An object of the present invention is to provide a high-quality and stable vacuum film forming apparatus and vacuum film forming method by providing a plate.
  • the present invention provides a vacuum film forming apparatus for forming a film of a film forming material on a substrate, which is disposed so as to cover at least a part of a protection target member, and
  • the deposition preventing material for preventing adhesion of the particles of the film-forming substance to the target member has an area of a contact surface between the other structure including the protection target member and the deposition preventing film.
  • the first heat insulating member is disposed between the surface excluding the contact surface and the other structure including the protection target member, and is smaller than the area of the film deposition surface on which the particles are adhered.
  • a vacuum film forming apparatus wherein the protection target member is a member cooled by a cooling means.
  • the contact surface between another structure including the member to be protected and the deposition preventing plate is provided only on a side far from the film forming source of the film forming material.
  • a vacuum film forming apparatus is provided.
  • the contact between the other structure including the member to be protected and the deposition preventing plate is performed at an end portion of the deposition preventing plate.
  • a vacuum film forming apparatus is provided.
  • a vacuum film forming apparatus characterized in that a sprayed film formed by a spraying method is formed on the coating surface of the deposition preventing plate.
  • the vacuum forming device is characterized in that the second heat insulating member is sandwiched and attached to a contact surface where the member to which the adhesion preventing plate is attached and the adhesion preventing plate are in contact with each other.
  • a membrane device is provided.
  • a vacuum film forming method characterized by using any one of the above vacuum film forming apparatuses.
  • the “member to be protected” refers to a member that is in a position where it is directly exposed from the film forming source and needs to be protected from adhesion of particles of the film forming material.
  • a constituent member of a film forming source an inner wall of a vacuum chamber, and a partition wall.
  • the “heat insulating member” refers to an object having a structure in which heat is not easily transmitted or a substance having a low thermal conductivity.
  • the former corresponds to glass wool or polyurethane foam, and the latter corresponds to silicon rubber or air.
  • a vacuum is also handled as a heat insulating member in the present invention.
  • a vacuum film forming apparatus having a simple structure of an adhesion-preventing plate that is extremely difficult to peel and drop off the adhered film can be obtained. For this reason, when the film is formed using the vacuum film forming apparatus according to the present invention, the formation of a high quality film is not affected by the occurrence of defects due to entrainment of dust or the deterioration of film quality due to abnormal discharge starting from dust. A membrane is possible.
  • a roll-to-roll vacuum film forming apparatus is configured using a target pressing member of a magnetron sputtering electrode as a member to be protected.
  • the present invention relates to the structure of the deposition plate of the vacuum deposition apparatus, the structure of the magnetron sputter electrode not directly related to the configuration of the deposition plate, the configuration of the member to be protected, and the film forming means, etc.
  • the present invention is not limited to the following contents, and in order to explain the structure of the deposition preventing plate according to the present invention in an easy-to-understand manner, the structure around the deposition preventing plate according to the present invention, for example, the structure of the sputter electrode is described in detail. It is only explained.
  • FIG. 2 is a schematic sectional view of the vacuum film forming apparatus.
  • an unwinder 203, a main roller 204, a winder 205, a base material transport system composed of various guide roller groups not assigned part numbers, and a film forming source in this figure, a sputter electrode is used as an example
  • the vacuum chamber 201 is evacuated, and then the base material 206 is deposited on the base material 206 by a sputtering method while being transported by the base material transport system.
  • the inside of the vacuum chamber 201 is divided into a film forming chamber for forming a film and a winding chamber in which a base material transport system is accommodated, and a partition wall 202 is provided to perform separate pressure management from different viewpoints. It is common.
  • a partition wall 202 is provided to perform separate pressure management from different viewpoints. It is common.
  • various webs including a plastic film are used.
  • a vacuum film forming apparatus that is not a roll-to-roll system, for example, a single wafer processing type vacuum film forming apparatus, a silicon wafer, a glass plate, or the like may be used as a base material.
  • FIG. 1 is a schematic cross-sectional view when a vacuum film forming apparatus according to the present invention is configured using a target pressing member of a magnetron sputtering electrode generally used as a film forming source for a vacuum film forming apparatus as a protection target member.
  • a sputtering target 104 is mounted on the sputtering electrode 105, and is fixed by a target presser that is a protection target member 102.
  • a magnet for forming a magnetic field is provided in the vicinity of the protection target member 102, and a refrigerant path 103 is provided inside the protection target member 102 so as not to demagnetize due to heat transfer from the heated protection target member 102. Then, cooling is performed using some cooling means such as flowing water or oil as a refrigerant.
  • This electrode is placed in a vacuum chamber and a voltage is applied between the sputtering electrode 105 and an anode that is electrically insulated from the sputtering electrode 105 to cause plasma discharge in the discharge space 106, thereby generating a sputtering target.
  • 104 is sputtered, the target material is knocked out as particles of the film forming substance, and is deposited and deposited on the substrate to form a film. Any material can be used as long as the anode is electrically insulated from the sputtering electrode 105 and functions as an electrical counter electrode of the sputtering electrode 105 (cathode).
  • the main roller 204, the vacuum chamber wall surface 207, the vacuum chamber bottom surface 208, and the vacuum chamber top surface. 209 and the like can be anodes if insulated from the sputtering electrode 105.
  • the film-forming substance refers to a substance that exerts a desired function by forming a thin film on a substrate.
  • copper is used as a film-forming substance, or for a packaging material.
  • aluminum is used as a film-forming material, or it is appropriately selected in consideration of functions, costs, and the like.
  • the sputtering target 104 is a film forming source, and the particles of the film forming material struck out from the film forming source are scattered in all directions, so that there are components attached to the protection target member 102.
  • the film-forming substance particles adhere to and accumulate on the protection target member 102 to form a film, depending on the physical properties, the electrical, thermal, magnetic, and physical characteristics of the protection target member 102 are changed, and the discharge conditions are not satisfied. It can be a factor to stabilize. Further, the adhesion film peels off itself to become dust, or arc discharge is induced to generate dust, which increases the risk of adversely affecting the quality of the film formation on the substrate.
  • an adhesion preventing plate 101 is provided so as to cover the surface of the protection target member 102 to which particles of the film-forming substance adhere, and the adhesion prevention plate 101 and the protection target member 102 are brought into contact with each other only at the contact surface.
  • a first heat insulating member is provided between the adhesion prevention plate 101 and the protection target member 102.
  • the deposition preventing plate 101 is heated by ion or atomic collision energy during film formation.
  • the contact surface is limited to a small size, and the other portions are made of a heat insulating structure, so that the deposition plate is heated to a temperature at which the amount of heat released from the contact surface and the amount of heat received by the deposition plate 101 are balanced. It is possible to increase the temperature of 101 itself without adjusting the temperature from the outside.
  • the heat source for heating the deposition plate 101 is derived from the deposition energy, the deposition plate temperature is close to a temperature suitable for deposition with the deposition component kept at a low film stress.
  • the temperature is adjusted without any special adjustment at a high temperature at a high film formation rate and at a low temperature at a low film formation rate.
  • This tendency tends to appear more prominently closer to the film forming source, and the present invention can be particularly suitably used as an adhesion preventing plate for covering the protection target member 102 adjacent to the film forming source.
  • the technical idea of the present invention is not used, the amount of heat received by the deposition preventive plate 101 is immediately radiated from a wide contact surface, so the temperature of the deposition preventive plate 101 does not rise and the object of the present invention cannot be achieved. is there.
  • the deposition preventing plate of the present invention has a simple structure and can be miniaturized, it is possible to minimize a decrease in film formation rate or to prevent a decrease in film formation rate.
  • the protection target member 102 is arranged in a state where it is literally adjacent to and in contact with the sputtering target 104 that is the film formation source, but some object is placed between the film formation source and the protection target member.
  • the protection plate 101 is preferably made by molding from a plate-like material.
  • a material having low thermal conductivity such as zirconia-based ceramics is preferably used, but it is in a vacuum heat insulating state because it is placed in a vacuum environment during film formation only by leaving a gap. It is.
  • the vacuum pressure at this time may be a pressure used in a normal vacuum film forming process, and is generally sufficient if it is 10 3 Pa or less.
  • a contact surface is provided on the side far from the sputtering target 104 of the deposition preventive plate 101, a material having low thermal conductivity such as zirconia-based ceramics is provided as the first heat insulating member at the end on the near side, and the other parts A structure in which one heat insulating member is evacuated is also preferably used.
  • the “far side” means a place where the distance from the center point of the sputtering target 104 is longer than the distance from the center point of the deposition prevention plate 101, and the “near side” conversely of the deposition prevention plate 101. A place that is shorter than the distance to the center point.
  • the distance between the protection plate 101 and the member 102 to be protected is the processing accuracy of the deposition plate, the clearance with other members, and the rate at which the deposition plate reduces the sputtering efficiency. Is appropriately determined from the viewpoint of optimizing the thickness, but is preferably in the range of about 0.3 mm to 10 mm.
  • the first heat insulating member is vacuum, approximately 0.3 mm to 5 mm is generally used, and when it is a solid heat insulating member, approximately 1 mm to 10 mm is preferably used.
  • the film deposition material particles adhere and deposit while the temperature of the deposition preventing plate 101 is low the film grows in a state in which a large film stress remains due to rapid cooling, so that the adhered film peels off very much. It is not good because it becomes easy. Since the deposition preventing plate 101 receives sputtering heat or plasma heat, the film stress of the adhesion film is suppressed low by keeping the temperature of the deposition preventing plate 101 as high as possible so as not to let the heat escape. For this purpose, it is effective to reduce the contact area between the deposition preventing plate 101 and other structures including the protection target member 102, and it is installed so as to contact other members at the end of the deposition preventing plate 101. Is preferred.
  • the area of the contact surface between the deposition preventing plate 101 and another structure including the protection target member 102 is preferably smaller than the area of the deposition surface on which the particles of the deposition material of the deposition preventing plate 101 are adhered. More preferably, it is set to / 2. Regarding the lower limit of the contact area, it is physically impossible that the contact area is zero. However, the smaller the contact area, the better the heat retaining effect of the deposition preventing plate itself, which is preferable.
  • the second heat insulating member is sandwiched and attached to the contact surface where the deposition preventing plate 101 and the protection target member 102 are in contact with each other, since the heat insulating effect is further increased.
  • a method in which a heat insulating member such as zirconia ceramics is sandwiched between the contact surface of the deposition preventing plate 101 and the protection target member 102 and bolt fastening is preferably used. In this case, the main heat transfer path is via the bolt. It becomes a route and heat transfer efficiency can be greatly reduced.
  • the contact surface only on the far side of the deposition plate 104 from the film forming source 104 is effective in suppressing the temperature drop of the deposition plate 101 from the viewpoint of making it difficult for heat to move.
  • the thickness of the adhesion-preventing plate is appropriately determined in consideration of parameters such as processing accuracy of the adhesion-preventing plate, thermal strain resistance, mechanical strength, and estimated film deposition amount, but it should be in the range of 1 mm to 3 mm. Economical and favorable. Further, the above range is preferable from the viewpoint that the deposition plate itself does not increase the area for shielding the film formation particles and does not affect the film formation rate.
  • the material of the deposition preventing plate is preferably the same as the material of the film forming material from the viewpoint of preventing peeling, but may be appropriately selected from cleaning characteristics, thermal characteristics, mechanical characteristics, etc. during reuse. For example, when the attached film is removed by chemical cleaning and reused, a stainless steel material having high corrosion resistance is preferably used.
  • the contact area increases and the adhesion of the adhered film increases.
  • the synergistic effect with the above-described film stress relaxation effect is more preferable because the peeling prevention function is further strengthened.
  • the thermal spray material at this time may be a metal material such as tungsten or a non-metal material such as ceramic.
  • FIG. 2 is a schematic cross-sectional view of a vacuum film forming apparatus according to the present invention in which a deposition plate is provided on the vacuum chamber wall surface.
  • the vacuum chamber 201 accommodates the unwinder 203, the main roller 204, the winder 205, and a base material conveyance system composed of various guide roller groups not assigned part numbers, and the magnetron sputtering electrode described in FIG.
  • This is an apparatus for forming a film on a base material by sputtering using a magnetron sputtering electrode while transporting the base material 206 by the base material transport system after evacuating the interior of 201.
  • the inside of the vacuum chamber 201 is divided into a film forming chamber for forming a film and a winding chamber in which a base material transport system is accommodated, and a partition wall 202 is provided to perform separate pressure management from different viewpoints. It is common.
  • the particles of the film forming material from the film forming source are directly on the vacuum chamber wall surface 207 and part of the partition wall 202, and indirectly on the vacuum chamber bottom surface 208 and the vacuum chamber top surface 209, respectively.
  • the deposition preventing plate 101 can be suitably used. This is particularly suitable when it is necessary to cool a part of the vacuum chamber wall surface 207 or the partition wall 202 exposed directly from the film forming source.
  • Example 1 The results of film formation experiments using the above-described deposition preventing plate as a target pressing member for a sputtering electrode will be described.
  • the sputtering electrode itself has the structure shown in FIG. 1, and the protection target member 102 is a member for pressing the sputtering target 104 against the sputtering electrode 105.
  • the temperature of the protection target member 102 tends to increase due to plasma or ion attack.
  • the cooling water passage 103 is provided inside the member and the cooling water is passed therethrough.
  • the structure is cooled by In this case, the protection target member 102 is located in the immediate vicinity of the sputtering target, and when the spatter formed on the protection target member 102 is peeled off and becomes dust, an abnormal discharge is caused.
  • the width of the deposition surface of the deposition preventive plate 101 is set to be 36 mm in total, which is 20 mm for the longer side and 16 mm for the shorter side, and the end portion 10 mm of the deposition protection plate 101 is attached so as to be in contact with the member 102 to be protected. Further, the portion other than the contact surface was designed such that the gap between the deposition preventing plate 101 and the protection target member 102 was 1.2 mm. That is, it is a form using vacuum heat insulation as the first heat insulation member. Since the deposition type is nickel, pure nickel was used as the material of the sputtering target 104. Considering that the nickel film adhering to the adhesion preventing plate 101 is removed by chemical cleaning and reused, austenitic stainless steel (SUS304) was used as the material of the adhesion preventing plate 101.
  • SUS304 austenitic stainless steel
  • argon gas is introduced at 500 sccm, the pressure in the vacuum chamber is adjusted to 0.5 Pa, sputtering is performed, and an output capable of forming a film with a film thickness of about 1 mm on a workpiece (not shown).
  • Film formation experiments were performed at the same time. As a result, the sputtered film was formed on the deposition preventing plate 101 with a thickness of a little less than 1 mm, but no peeling occurred. At this time, the highest temperature reached by the deposition preventing plate was 300 ° C.
  • Example 2 Although the structure is almost the same as in Example 1, a test similar to that in Example 1 was performed using a member to be protected 102 that was not provided with the cooling water path 103. The structure of the deposition preventing plate was exactly the same as in Example 1.
  • Example 3 The structure is almost the same as in Example 1, but the end 20 mm of the deposition preventing plate 101 is installed so as to be fixed to the member 102 to be protected. Sputtering was performed using this sputtering electrode, and a film formation experiment was performed for a time sufficient to form a film with a thickness of about 0.4 mm on a workpiece (not shown).
  • Example 2 Although the structure was almost the same as that of Example 1, a test similar to that of Example 1 was performed using a structure in which no gap was formed between the protection target member 102 and the deposition preventing plate 101.
  • the film adhering to the deposition preventing plate 101 was peeled off during the film formation, and abnormal discharge occurred frequently.
  • the maximum temperature reached by the deposition preventing plate 101 was 50 ° C.
  • the present invention can be applied not only to the sputtering electrode but also to a deposition preventing plate of a vacuum film forming apparatus such as a vapor deposition apparatus or a CVD apparatus, but the application range is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 保護対象部材を問わず、付着膜の剥離を極めて低いレベルに抑制することが可能な真空成膜装置用防着板を提供するため、保護対象部材との接触面積を小さくし、かつ接触面以外は断熱されるように防着板を配置する。

Description

真空成膜装置および真空成膜方法
 本発明は、真空成膜装置および真空成膜方法に関する。
 基材に機能膜を付与する手段にはそれぞれ特徴の異なる様々な方法があり、機能膜に求められる特性や生産性に応じて適宜選択されて用いられている。蒸着法やスパッタリング法、CVD法などの真空成膜法は、真空チャンバー内で基材に成膜物質の粒子を付着させて堆積させることで基材上に薄膜形成させる技術であるが、基材以外の場所、例えば真空チャンバーの内壁や基材の搬送装置などにも成膜物質の粒子が付着してしまい、基材以外の場所に付着した膜が剥離して基材に影響を与えることで製品欠点を生じさせてしまったり、設備トラブルにつながったりする問題がある。このような問題を避けるために、基材以外の成膜物質の粒子が付着して欲しくない場所には防着板が設けられるのが一般的である。
 アルミ箔や銅箔などで対象箇所を覆い、1バッチの成膜終了後に箔ごと廃棄する方法が簡便に防着効果が得られる方法として用いられるが、この方法では廃棄物の量が多くなり、またランニングコスト面でも大きな負荷が生じる。
 このため箔の代替として金属板を防着板として用い、防着板に付着した成膜物質の膜を剥離させて防着板を再利用することで廃棄物量を削減する方法も用いられている。しかしこの方法では防着板に付着した膜が成膜中に剥離・脱落することによりダストを生じ、基材に付着したり成膜に悪影響を及ぼしたりして製品欠点を誘発する原因となる。
 特許文献1には、ITOスパッタリング装置で用いられる防着板の形態が示されている。防着板とITO膜との密着力を向上させるため、防着板表面を粗面化して接触面積拡大を図る技術である。防着板は、付着したITO膜をエッチングやブラストで除去して再利用することが可能である。
 また特許文献2には薄膜製造装置に用いられる防着板の形態が示されている。防着板表面に溝を付与し、さらに表層に溶射膜を付与することにより、密着力を確保する技術である。防着板に付着した膜を、溶射膜ごと剥離させて再度溶射膜を付与することにより、防着板を再利用することが可能である。
 また特許文献3にはメタル成膜装置におけるメタル膜剥離防止構造の形態が示されている。メタル膜が付着して堆積する所定の部材から、付着メタル膜が剥離脱落しないように、部材表面にアルミニウムまたはアルミニウム合金からなる溶射膜を形成し、かつ、その表面が適度に粗面化されているという特徴を有するものである。粗面化により表面積を稼いで密着力を向上させつつ、溶射膜に付着膜の応力緩和効果を持たせて剥離を防止する技術である。
 いずれの方法も剥離防止に対してある程度の効果はあるものの、本願発明者らの知見によれば、長時間連続成膜する工程や成膜速度が極めて高速なプロセスにおいては、防着板に堆積する膜厚が厚くなることで膜応力が増大し、膜応力が密着力に打ち勝つと付着膜が剥離してしまうことが多い。また冷却部材を保護するための防着板にあっては、防着板自体が伝熱により冷却の影響を受けており、そこに飛来した成膜物質の粒子が急冷されながら膜を形成して行く。このため膜応力は極めて大きくなり、すぐに防着板から剥離してしまう。このように膜応力が大きくなるようなプロセスで用いるには効果が充分とは言えなかった。
 特許文献4には、これら欠点の解消を目的とした防着板の形態が示されている。防着板自体を直接温度調節する技術である。これにより成膜粒子と防着板との温度差を最適化して出来るだけ小さい膜応力で成膜することにより、膜応力による剥離を防止するものである。本発明者らの知見によれば、この方法は極めて効果的に付着膜の剥離防止が可能ではあるが、以下に示すような課題を有する。
 まず防着板に温度調節のためのヒーターまたはクーラー、あるいはその双方を設置する必要がある。そのため防着板自体のサイズが大型化するのである。その結果成膜粒子を遮蔽する領域が多くなり、成膜レートが下がるなど成膜装置にとって極めて重大な悪影響を被ることとなる。
 また真空成膜装置の内部は基本的に構造物が少ないほうが良い。これは部材からのアウトガスの影響を受けるからである。ところが防着板自体を温度調節するためには防着板にヒーターやクーラーを取り付ける必要があり、余計なヒーターやクーラーを真空槽内に設けなければならない。ヒーターやクーラーの材質や構造によってはアウトガスの影響により排気時間が余計にかかったり温度調節中に真空度が変化したりする恐れがあり、さらにはヒーターやクーラーの温媒や動力源等を大気側から真空槽内に導入しなければならないため、導入部において真空漏れの恐れがあるなど、真空装置にとっては好ましくないリスクが生じることとなる。
特開平8-333678号公報 特開2006-57172号公報 特開2008-291299号公報 特開平6-322528号公報
 本発明の目的は、かかる課題を解決し、再利用可能であり、かつ、保護対象部材への着膜防止機能と防着板に付着した膜の剥離防止機能とを両立させることが出来る防着板を提供することにより、高品位で安定的な真空成膜装置および真空成膜方法を提供することにある。
 上記目的を達成するために、本発明は、基材上に成膜物質の膜を成膜する真空成膜装置であって、保護対象部材の少なくとも一部を覆うように配設され、前記保護対象部材への前記成膜物質の粒子の付着を防止する防着板が、前記保護対象部材を含む他の構造物と前記防着板との接触面の面積を前記防着板の成膜物質の粒子を付着させる着膜面の面積よりも小さくし、かつ、前記接触面を除く面と前記保護対象部材を含む他の構造物との間に第1の断熱部材を設けて配設されたことを特徴とする真空成膜装置を提供する。
 また、本発明の好ましい形態によれば、前記保護対象部材は、冷却手段により冷却された部材であることを特徴とする真空成膜装置を提供する。
 また、本発明の別の好ましい形態によれば、前記保護対象部材を含む他の構造物と前記防着板との前記接触面が、前記成膜物質の成膜源から遠い側にのみ設けられていることを特徴とする真空成膜装置を提供する。
 また、本発明の別の好ましい形態によれば、前記保護対象部材を含む他の構造物と前記防着板との接触を、前記防着板の端部で行わせるものであることを特徴とする真空成膜装置を提供する。
 また、本発明の別の好ましい形態によれば、前記防着板の前記着膜面に溶射法により成膜された溶射膜が形成されていることを特徴とする真空成膜装置を提供する。
 また、本発明の別の好ましい形態によれば、前記防着板を取り付ける部材と前記防着板とが接触する接触面に第2の断熱部材を挟みこんで取り付けられることを特徴とする真空成膜装置を提供する。
 また、本発明の別の好ましい形態によれば、上記いずれかの真空成膜装置を用いることを特徴とする真空成膜方法を提供する。
 本発明において、「保護対象部材」とは、成膜源から直接曝露される位置にあり、成膜物質の粒子の付着から保護することが必要な部材をいう。例えば、成膜源の構成部材、真空槽内壁、隔壁などである。
 本発明において「断熱部材」とは、熱が伝わりにくい構造の物体か、熱伝導率の小さい物質をいう。例えば前者はグラスウールや発泡ポリウレタンなどが該当し、後者はシリコンゴムや空気などが該当する。また真空も本発明において断熱部材として取り扱うこととする。
 本発明によれば、以下に説明するとおり、付着膜の剥離・脱落が極めて生じにくいシンプルな構造の防着板を備えた真空成膜装置が得られる。このため本発明による真空成膜装置を用いて成膜すれば、ダストの巻き込みによる欠点の発生や、ダストを起点とした異常放電による膜品質の悪化などの影響を受けず、高品質膜の成膜が可能となる。
マグネトロンスパッタ電極のターゲット押さえ部材を保護対象部材として本発明による真空成膜装置を構成した場合の一例の概略断面図である。 真空槽壁面に防着板を設けた本発明による真空成膜装置の一例の概略断面図である。
 以下、本発明の最良の実施形態の例を、マグネトロンスパッタ電極のターゲット押さえ部材を保護対象部材として本発明によるロールtoロール方式の真空成膜装置を構成した場合を例にとって、図面を参照しながら説明する。なお、本発明は真空成膜装置の防着板の構成に関するものであるので、防着板の構成に直接関係しないマグネトロンスパッタ電極の構造や保護対象部材の構成、さらには成膜手段に関することなどは以下に示す内容に限定されるものではなく、本発明による防着板の構成をわかりやすく解説するために、本発明による防着板の周辺の構造物、例えばスパッタ電極の構造について詳細に具体的に説明しているだけである。
 図2は真空成膜装置の概略断面図である。真空槽201の内部にアンワインダー203、メインローラ204、ワインダー205と部番をつけない各種ガイドローラ群からなる基材搬送系と、成膜源(この図においては一例としてスパッタ電極を用いた)とを収容し、真空槽201内を真空にした後に基材206を前記基材搬送系により搬送しながらスパッタリング法によって基材206に成膜を施す装置である。真空槽201内部は、成膜を実施する成膜室と基材搬送系が収容された巻き取り室とに分けられ、それぞれ違う観点から別々の圧力管理をするために隔壁202が設けられるのが一般的である。基材206には、プラスチックフィルムをはじめとする各種ウェブが用いられる。ロールtoロール方式でない真空成膜装置、たとえば枚葉処理方式の真空成膜装置の場合、基材にはシリコンウェハやガラス板等が用いられるケースもある。
 図1は、真空成膜装置用の成膜源として一般的に用いられるマグネトロンスパッタ電極のターゲット押さえ部材を保護対象部材として本発明による真空成膜装置を構成した場合の概略断面図である。スパッタリング電極105にスパッタリングターゲット104が搭載され、保護対象部材102であるターゲット押さえにより固定されている。保護対象部材102の近傍には磁界形成のための磁石が設けられており、加熱された保護対象部材102からの伝熱により減磁しないよう保護対象部材102の内部には冷媒経路103が設けられ、そこに冷媒として水や油などを流すことなど、何らかの冷却手段を用いて冷却している。
 この電極を真空槽内に設置してスパッタリング電極105と、スパッタリング電極105に対して電気的に絶縁されたアノードとの間に電圧を印加することで放電空間106にプラズマ放電を生じさせ、スパッタリングターゲット104をスパッタさせ、ターゲット材料を成膜物質の粒子として叩き出し、基材に付着・堆積させて成膜するものである。なおアノードはスパッタリング電極105と電気的に絶縁され、スパッタリング電極105(カソード)の電気的な対極として機能すれば何でも良く、例えばメインローラ204や真空槽壁面207、真空槽底面208、真空槽天面209などは、スパッタリング電極105と絶縁されていればアノードになり得る。また成膜物質は、基材に薄膜形成させることにより所望の機能を発揮するための物質のことを言い、例えば回路基材用の製品であれば銅を成膜物質としたり、包装材料用の製品であればアルミを成膜物質としたり、機能やコスト等を総合的に勘案して適宜選択するものである。
 ここでスパッタリングターゲット104は成膜源であり、成膜源から叩き出された成膜物質の粒子は四方八方に飛び散るため、保護対象部材102に付着する成分も存在する。成膜物質の粒子が保護対象部材102に付着・堆積して膜になると、その物性によっては保護対象部材102の電気的、熱的、磁気的、物理的な特性を変化させ、放電条件を不安定にする要因になり兼ねない。また付着膜が剥離することによりそれ自体がダストになったり、あるいはアーク放電を誘発してダストを発生させたりして、基材の成膜に対して品質上の悪影響を与えるリスクが大きくなる。
 そこで、保護対象部材102の成膜物質の粒子が付着する面を覆うように防着板101を設け、防着板101と保護対象部材102とを接触面でのみ接触させ、接触面以外の防着板101の保護対象部材側は防着板101と保護対象部材102との間に第1の断熱部材を設けて配設する。このような構成とすることにより、防着板101の温度低下を抑制し、熱の授受を行う接触面以外の部分から熱が逃げないようにすることができる。
 もう少し詳細にメカニズムを説明する。防着板101は、成膜中にはイオンや原子の衝突エネルギーなどによって加熱されている。本発明の技術思想に沿って接触面を小さく限定し、それ以外の部分を断熱構造とすることにより、接触面からの放熱量と防着板101が受ける熱量とが均衡する温度まで防着板101自体の温度を上昇させることが、外部からの温度調節なしに可能となるのである。さらに防着板101を加熱する熱源は成膜エネルギー由来のものであることから、成膜成分が膜応力を低く保った状態で成膜されるのに適した温度に近い防着板温度となるよう、高成膜レート時には高温に、低成膜レート時には低温に、それぞれ特別な調整をせずとも成り行きで温度調整される。この傾向は成膜源に近いほど顕著に現れる傾向があり、成膜源に隣接している保護対象部材102をカバーするための防着板としては、本発明は特に好適に用いることが出来る。逆に本発明の技術思想によらない場合、防着板101が受けた熱量は直ちに広い接触面から放熱されるため、防着板101の温度が上昇せず本発明の目的を達し得ないのである。また成膜源と隣接した場所に大きな構造物を設置すると成膜源から基材に向かう成膜粒子の飛翔を妨げることになる場合が多く、成膜レートの低下に直結するため好ましくないが、本発明の防着板は構造がシンプルで小型化が出来るため成膜レート低下を最小限に抑える、あるいは成膜レート低下を生じさせないことが可能なのである。なお、図1において保護対象部材102は成膜源であるスパッタリングターゲット104に対して文字通り隣あって接している状態で配置されているが、成膜源と保護対象部材との間に何らかの物体を挟み込んであったとしても、成膜源に近接し、成膜粒子の飛翔に対して暴露される状態で配置されており、実質的に隣接していると見做せる状態であれば、成膜源に隣接していると考えて良い。図1に示される形状のみならず、スパッタリングターゲット104の上面の上に載った構造物や、同面と同一面を形成するように横に配置された構造物であっても良い。
 防着板101は板状の材料から成形して作るのが好ましい。第1の断熱部材としては、ジルコニア系セラミックスなどの熱伝導率の小さい材料が好適に用いられるが、隙間を空けておくだけでも成膜中は真空環境下におかれるため真空断熱状態となり、好適である。このときの真空の圧力は、通常の真空成膜プロセスで用いられる圧力であればよく、おおむね10Pa以下であれば充分である。また、防着板101のスパッタリングターゲット104から遠い側に接触面を設け、近い側の端部の第1の断熱部材としてジルコニア系セラミックスなどの熱伝導率の小さい材料を設け、そのほかの部分の第1の断熱部材を真空とするような構造も好適に用いられる。ここで「遠い側」とは、スパッタリングターゲット104の中心点からの距離が防着板101の中心点との距離よりも長い場所のことをいい、「近い側」は逆に防着板101の中心点との距離よりも短い場所のことをいう。
 防着板101と保護対象部材102との間の距離、すなわち第1の断熱部材の厚みの範囲は、防着板の加工精度と他部材とのクリアランスや防着板がスパッタ効率を低下させる割合を適正化する観点から適宜決定されるが、0.3mmから10mm程度の範囲とするのが好ましい。第1の断熱部材が真空の場合でおおむね0.3mm~5mm、固体断熱部材の場合では1mm~10mm程度が好適に用いられる。防着板101の温度が低い状態で成膜物質の粒子が付着・堆積した場合、急冷されることにより大きな膜応力が残った状態で膜成長することとなるため、付着膜は非常に剥離し易い状態となるため良くない。防着板101は、スパッタ熱やプラズマ熱を受けるので、その熱をなるべく逃がさないようにして防着板101の温度を高温に保つことで付着膜の膜応力を低く抑制するのである。そのためには、防着板101と保護対象部材102を含む他の構造物との接触面積を小さくすることが有効であり、防着板101の端部でほかの部材と接触させるように設置するのが好ましい。防着板101と保護対象部材102を含む他の構造物との接触面の面積は、防着板101の成膜物質の粒子を付着させる着膜面の面積よりも小さくするのが好ましく、1/2以下とするのがより好ましい。接触面積の下限については、ゼロとなることは構造上物理的にあり得ないが、小さければ小さいほど防着板自体の保温効果が高くなるので好ましい。
 また防着板101と保護対象部材102とが接触する接触面に第2の断熱部材を挟み込んで取り付けると更に断熱効果が高まるので、より好ましい。例えば防着板101の接触面と保護対象部材102との間にジルコニア系セラミックスなどの断熱部材を挟み、ボルト締結する方法が好適に用いられ、この場合は主な伝熱経路はボルトを経由した経路となり大幅に伝熱効率を低下させることができる。
 また接触面を防着板101の成膜源104から遠い側にのみ設けることも、熱の移動をしにくくするという観点から防着板101の温度低下抑制に効果がある。防着板の板厚は、防着板の加工精度や熱歪耐性、機械的強度、推定着膜量などのパラメータを勘案して適宜決定されるが、1mm~3mmの範囲内とするのが経済的で好ましい。また、防着板自体により成膜粒子を遮蔽する領域が多くなるということがなく、成膜レートに影響を与えないという観点からも上記範囲が好ましい。
 防着板の材質は、成膜材料の材質と同一のものが剥離防止の観点からは好適に用いられるが、再利用時の洗浄特性や熱特性、機械特性などから適宜選択して構わない。例えば付着膜を化学的洗浄で除去して再利用するような場合は耐食性の高いステンレス系材料が好適に用いられる。
 さらに防着板101の表面に中心線平均粗さで12.5μm以上の粗面化を施すことで、接触面積が増加して付着膜の密着性が高まる。前述の膜応力緩和効果との相乗効果で更に剥離防止機能が強化されるのでより好ましい。
 また防着板101の表面に溶射法によって設けられる溶射膜を設けることにより、溶射膜が緩衝膜として機能するため更に剥離防止効果が高まり、より好ましい。このときの溶射材料はタングステンなどの金属材料でも構わないし、セラミックなどの非金属材料でも構わない。
 図2に真空槽壁面に防着板を設けた本発明による真空成膜装置の概略断面図を示す。真空槽201の内部にアンワインダー203、メインローラ204、ワインダー205と部番をつけない各種ガイドローラ群からなる基材搬送系と、図1にて解説したマグネトロンスパッタ電極とを収容し、真空槽201内を真空にした後に基材206を前記基材搬送系により搬送しながらマグネトロンスパッタ電極を用いてスパッタリング法によって基材に成膜を施す装置である。真空槽201内部は、成膜を実施する成膜室と基材搬送系が収容された巻き取り室とに分けられ、それぞれ違う観点から別々の圧力管理をするために隔壁202が設けられるのが一般的である。
 この系においては、成膜源からの成膜物質の粒子が真空槽壁面207や隔壁202の一部には直接的に、また真空槽底面208や真空槽天面209には間接的に、それぞれ付着することが考えられ、これらの壁面を保護対象部材として保護する要望がある場合がある。このような場合にも好適に防着板101を用いることが出来る。成膜源から直接曝露されている真空槽壁面207や隔壁202の一部について、そこを冷却する必要がある場合には特に好適である。
[実施例1]
 以上説明した防着板を、スパッタリング電極のターゲット押さえ部材に用いて成膜実験を行った結果を説明する。
 スパッタリング電極自体は図1に示す構造であり、保護対象部材102はスパッタリングターゲット104をスパッタリング電極105に押さえつけるための部材である。保護対象部材102はプラズマやイオンアタックにより温度が上がる傾向にあるが、温度が上がると熱伸びなどのさまざまな弊害があるため、部材内部に冷却水経路103を設け、そこに冷却水を通すことで冷却する構造とした。この場合の保護対象部材102はスパッタリングターゲットのすぐ近傍にあり、保護対象部材102に着膜したスパッタカスが剥離してダストになると異常放電の原因となるため、防着板101を設けた。防着板101の着膜面の幅は図示の長い方が20mmと短い方が16mmの合計36mmとし、防着板101の端部10mmを保護対象部材102に接触するように取り付ける設計とした。また接触面以外の部分は、防着板101と保護対象部材102との隙間が1.2mmとなるように設計した。すなわち、第1の断熱部材として真空断熱を用いた形態である。成膜種はニッケルであるため、スパッタリングターゲット104の材質は純ニッケルを用いた。防着板101に付着するニッケル膜を化学洗浄にて除去して再利用することを考慮し、防着板101の素材はオーステナイト系ステンレス(SUS304)を用いた。
 以上に説明したスパッタリング電極を用いて、アルゴンガスを500sccm導入し、真空槽内圧力を0.5Paに調整してスパッタリングを行い、図示しないワークにのべ1mm程度の膜厚で成膜できるだけの出力および時間にて、成膜実験を実施した。その結果、防着板101には最大で1mm弱の厚みでスパッタ膜が形成されていたが、剥離はまったく生じなかった。またこのとき防着板の最高到達温度は300℃であった。
[実施例2]
 実施例1とほぼ同様の構造であるが、保護対象部材102に冷却水経路103を設けなかったものを用いて、実施例1と同様のテストを実施した。なお、防着板の構造は実施例1とまったく同じものを用いた。
 その結果、防着板101には最大で1mm弱の厚みでスパッタ膜が形成されていたが、剥離はまったく生じなかった。
[実施例3]
 実施例1とほぼ同様の構造であるが、防着板101の端部20mmを保護対象部材102に固定するように設置し、その他の構造は実施例1と同じものを用いた。このスパッタリング電極を用いてスパッタリングを行い、図示しないワークにのべ0.4mm程度の膜厚で成膜できるだけの時間、成膜実験を実施した。
 その結果、防着板101には最大で0.4mm弱の厚みでスパッタ膜が形成されていたが、剥離はまったく生じなかった。その後1mm厚まで成膜すると、成膜中には剥離は見られなかったが、成膜終了後、真空槽を大気開放して開いてみると防着板101に付着した膜がやや剥離していることが確認された。
[比較例1]
 実施例1とほぼ同様の構造であるが、防着板101を設けない電極を用い、実施例1と同様のテストを実施した。
 その結果、保護対象部材102に付着した膜が成膜中にポロポロ剥がれることとなり、異常放電が多発した。
[比較例2]
 実施例1とほぼ同様の構造であるが、保護対象部材102と防着板101とに隙間を生じないように構成したものを用い、実施例1と同様のテストを実施した。
 その結果、防着板101に付着した膜が成膜中にポロポロ剥がれることとなり、異常放電が多発した。なお、このときの防着板101の最高到達温度は50℃であった。
 本発明は、スパッタリング電極に限らず、蒸着装置やCVD装置などの真空成膜装置の防着板にも応用することができるが、その応用範囲が、これらに限られるものではない。
 101  防着板
 102  保護対象部材
 103  冷却水経路
 104  スパッタリングターゲット
 105  スパッタリング電極
 106  放電空間
 201  真空槽
 202  隔壁
 203  アンワインダー
 204  メインローラ
 205  ワインダー
 206  基材
 207  真空槽壁面
 208  真空槽底面
 209  真空槽天面

Claims (8)

  1. 基材上に成膜物質の膜を成膜する真空成膜装置であって、冷却手段により冷却された保護対象部材の少なくとも一部を覆うように配設され、前記保護対象部材への前記成膜物質の粒子の付着を防止する防着板が、前記保護対象部材を含む他の構造物と前記防着板との接触面の面積を前記防着板の成膜物質の粒子を付着させる着膜面の面積よりも小さくし、かつ、前記防着板の前記保護対象部材側で前記接触面を除く面と前記保護対象部材を含む他の構造物との間に第1の断熱部材を設けて配設されたことを特徴とする真空成膜装置。
  2. 前記保護対象部材が成膜源に隣接していることを特徴とする請求項1に記載の真空成膜装置。
  3. 前記第1の断熱部材の厚さが0.3mm以上10mm以下であることを特徴とする請求項1または2に記載の真空成膜装置。
  4. 前記保護対象部材を含む他の構造物と前記防着板との前記接触面が、前記成膜物質の成膜源から遠い側にのみ設けられていることを特徴とする請求項1~3のいずれかに記載の真空成膜装置。
  5. 前記保護対象部材を含む他の構造物と前記防着板との接触を、前記防着板の端部で行わせるものであることを特徴とする請求項1~4のいずれかに記載の真空成膜装置。
  6. 前記防着板の前記着膜面に溶射法により成膜された溶射膜が形成されていることを特徴とする請求項1~5のいずれかに記載の真空成膜装置。
  7. 前記防着板を取り付ける部材と前記防着板とが接触する接触面に第2の断熱部材を挟みこんで取り付けられることを特徴とする請求項1~6のいずれかに記載の真空成膜装置。
  8. 請求項1~7のいずれかに記載の真空成膜装置を用いて基材上に成膜物質の膜を成膜することを特徴とする真空成膜方法。
PCT/JP2013/056436 2012-03-29 2013-03-08 真空成膜装置および真空成膜方法 WO2013146182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20147024113A KR20140138665A (ko) 2012-03-29 2013-03-08 진공 성막 장치 및 진공 성막 방법
US14/388,569 US20150060263A1 (en) 2012-03-29 2013-03-08 Vacuum film deposition device and vacuum film deposition method
EP13769688.6A EP2835444A1 (en) 2012-03-29 2013-03-08 Vacuum film deposition device and vacuum film deposition method
CN201380016348.3A CN104204270A (zh) 2012-03-29 2013-03-08 真空成膜装置及真空成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-076494 2012-03-29
JP2012076494 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013146182A1 true WO2013146182A1 (ja) 2013-10-03

Family

ID=49259450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056436 WO2013146182A1 (ja) 2012-03-29 2013-03-08 真空成膜装置および真空成膜方法

Country Status (7)

Country Link
US (1) US20150060263A1 (ja)
EP (1) EP2835444A1 (ja)
JP (1) JPWO2013146182A1 (ja)
KR (1) KR20140138665A (ja)
CN (1) CN104204270A (ja)
TW (1) TW201348483A (ja)
WO (1) WO2013146182A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702351B (zh) * 2015-11-17 2020-01-07 中微半导体设备(上海)股份有限公司 带遮挡板的限流环装置与化学气相沉积设备及其调节方法
CN105449126B (zh) * 2015-12-22 2018-03-16 上海天马有机发光显示技术有限公司 一种蒸镀掩模板及其制作方法
JP7012157B2 (ja) * 2018-06-20 2022-01-27 株式会社アルバック 防着部材及び真空処理装置
CN113227445B (zh) * 2018-12-27 2023-03-28 株式会社爱发科 真空处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322528A (ja) 1993-05-06 1994-11-22 Hitachi Ltd スパッタ方法およびスパッタ装置
JPH08333678A (ja) 1995-06-05 1996-12-17 Teijin Ltd Ito膜スパッタリング装置
JP2000192223A (ja) * 1998-12-25 2000-07-11 Matsushita Electric Ind Co Ltd マグネトロンスパッタリング方法とマグネトロンスパッタリング装置
JP2005060757A (ja) * 2003-08-11 2005-03-10 Ulvac Japan Ltd 成膜装置、及び成膜方法
JP2006057172A (ja) 2004-08-24 2006-03-02 Neos Co Ltd 薄膜製造装置及びその製造方法
JP2008291299A (ja) 2007-05-23 2008-12-04 Texas Instr Japan Ltd メタル成膜装置におけるメタル膜剥離防止構造及び当該構造を用いる半導体装置の製造方法
JP2009215624A (ja) * 2008-03-12 2009-09-24 Seiko Epson Corp 成膜方法及び電気光学装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169031A (en) * 1978-01-13 1979-09-25 Polyohm, Inc. Magnetron sputter cathode assembly
EP0144838B1 (de) * 1983-12-05 1989-10-11 Leybold Aktiengesellschaft Magnetronkatode zum Zerstäuben ferromagnetischer Targets
US20020090464A1 (en) * 2000-11-28 2002-07-11 Mingwei Jiang Sputter chamber shield
CN100999813A (zh) * 2007-01-17 2007-07-18 友达光电股份有限公司 真空蒸镀设备及其防附着结构
MY150439A (en) * 2008-04-30 2014-01-30 Ulvac Inc Method for production of water-reactive a1 film, and structural member for film-forming chamber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322528A (ja) 1993-05-06 1994-11-22 Hitachi Ltd スパッタ方法およびスパッタ装置
JPH08333678A (ja) 1995-06-05 1996-12-17 Teijin Ltd Ito膜スパッタリング装置
JP2000192223A (ja) * 1998-12-25 2000-07-11 Matsushita Electric Ind Co Ltd マグネトロンスパッタリング方法とマグネトロンスパッタリング装置
JP2005060757A (ja) * 2003-08-11 2005-03-10 Ulvac Japan Ltd 成膜装置、及び成膜方法
JP2006057172A (ja) 2004-08-24 2006-03-02 Neos Co Ltd 薄膜製造装置及びその製造方法
JP2008291299A (ja) 2007-05-23 2008-12-04 Texas Instr Japan Ltd メタル成膜装置におけるメタル膜剥離防止構造及び当該構造を用いる半導体装置の製造方法
JP2009215624A (ja) * 2008-03-12 2009-09-24 Seiko Epson Corp 成膜方法及び電気光学装置の製造方法

Also Published As

Publication number Publication date
KR20140138665A (ko) 2014-12-04
US20150060263A1 (en) 2015-03-05
JPWO2013146182A1 (ja) 2015-12-10
EP2835444A1 (en) 2015-02-11
CN104204270A (zh) 2014-12-10
TW201348483A (zh) 2013-12-01

Similar Documents

Publication Publication Date Title
TWI470101B (zh) 濺鍍成膜裝置及防附著構件
KR101067104B1 (ko) 성막 장치, 전자 디바이스의 제조 방법
JP5395255B2 (ja) 電子デバイスの製造方法およびスパッタリング方法
WO2013146182A1 (ja) 真空成膜装置および真空成膜方法
WO2016190007A1 (ja) プラズマ原子層成長装置
JP5880485B2 (ja) 成膜装置およびこれを用いた金属化樹脂フィルムの製造方法
TWI673790B (zh) 電漿蝕刻裝置
JP2007042818A (ja) 成膜装置及び成膜方法
JP5654939B2 (ja) 成膜装置
WO2009157228A1 (ja) スパッタリング装置、スパッタリング方法及び発光素子の製造方法
JP2010275574A (ja) スパッタリング装置および半導体装置製造方法
CN116904953A (zh) 一种气相沉积设备
JP2009174060A (ja) 成膜装置の基板トレイ
JP2017066429A (ja) スパッタリング装置および薄膜の製造方法
JP4858492B2 (ja) スパッタリング装置
US6620298B1 (en) Magnetron sputtering method and apparatus
JP2015141956A (ja) プラズマ処理装置およびプラズマ処理方法
JP2013147711A (ja) 気相成長装置
JP5978072B2 (ja) 絶縁膜の形成方法
JPH11100665A (ja) スパッタリング装置
JP2006283135A (ja) 成膜装置及び成膜方法
JP5632946B2 (ja) 遮蔽部材
TWI523964B (zh) 連續式濺鍍設備
JP5254277B2 (ja) 真空成膜装置用部品の製造方法
JP2003073801A (ja) スパッタ装置およびその方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512684

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013769688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024113

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE