WO2013145099A1 - ハイブリッド車両の駆動制御装置 - Google Patents

ハイブリッド車両の駆動制御装置 Download PDF

Info

Publication number
WO2013145099A1
WO2013145099A1 PCT/JP2012/057818 JP2012057818W WO2013145099A1 WO 2013145099 A1 WO2013145099 A1 WO 2013145099A1 JP 2012057818 W JP2012057818 W JP 2012057818W WO 2013145099 A1 WO2013145099 A1 WO 2013145099A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
brake
rotating element
gear
differential mechanism
Prior art date
Application number
PCT/JP2012/057818
Other languages
English (en)
French (fr)
Inventor
創 加藤
祐紀 桑本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280071721.0A priority Critical patent/CN104245458A/zh
Priority to DE112012006097.0T priority patent/DE112012006097T5/de
Priority to PCT/JP2012/057818 priority patent/WO2013145099A1/ja
Priority to US14/387,759 priority patent/US20150018152A1/en
Publication of WO2013145099A1 publication Critical patent/WO2013145099A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2863Arrangements for adjusting or for taking-up backlash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears

Definitions

  • the present invention relates to an improvement of a drive control device for a hybrid vehicle.
  • Patent Document 1 a first rotating element connected to a first electric motor, a second rotating element connected to an engine, and an output rotating member connected to the second electric motor and two-stage deceleration to the second electric motor
  • a differential mechanism having a third rotating element connected via a machine, and a crankshaft locking device for restraining the rotation of the crankshaft of the engine, which is capable of traveling with a second electric motor as a drive source.
  • a hybrid vehicle in which a second motor travel mode capable of traveling using both the first motor and the second motor as drive sources is obtained.
  • the output line from the second electric motor during the acceleration operation during the decelerating driving in the electric motor driving particularly when the second electric motor is switched from the regenerative state to the power running state.
  • Clicking noise or vibration may occur when backlash clogs with the gear on the output side power transmission system.
  • This clicking sound or vibration is caused by the backlash of the output line gear when the second motor is switched to the power running state from the state where the backlash of the output line gear is clogged in the regenerative state of the second motor.
  • a first differential mechanism including a first rotating element coupled to the first electric motor, a second rotating element coupled to the engine, and a third rotating element coupled to the output rotating member, A first rotating element, a second rotating element, and a third rotating element connected to the two electric motors, and one of the second rotating element and the third rotating element is a third rotating element in the first differential mechanism;
  • a second differential mechanism coupled to the clutch, a clutch that selectively couples the rotating element in the first differential mechanism and the rotating element in the second differential mechanism, and the rotating element in the second differential mechanism
  • a hybrid vehicle that includes a brake that is selectively coupled to a non-rotating member and that can travel in a plurality of travel modes by a combination of clutch and brake engagement operations is conceivable.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to reduce the rattling generated from the gear of the output line from the second motor during acceleration operation during deceleration traveling in the motor traveling.
  • An object of the present invention is to provide a drive control device for a hybrid vehicle that reduces noise.
  • the present inventor has made an acceleration operation during deceleration traveling in which the brake is engaged and regeneration is performed by the second electric motor in the hybrid vehicle capable of traveling in the plurality of traveling modes. It has been found that the gear rattling noise is suitably suppressed when the brake engagement capacity is reduced. The present invention has been made based on such findings.
  • the gist of the present invention is that: (a) a first differential mechanism and a second differential mechanism having four rotating elements as a whole, and an engine and a first electric motor respectively connected to the four rotating elements. , A second electric motor, and an output rotating member, and one of the four rotating elements includes a rotating element of the first differential mechanism and a rotating element of the second differential mechanism via a clutch.
  • a hybrid in which the rotating elements of the first differential mechanism or the second differential mechanism that are selectively connected by the clutch are selectively connected to a non-rotating member via a brake.
  • a drive control device for a vehicle wherein (b) when the acceleration operation is performed during deceleration traveling in electric motor travel with the brake engaged, the engagement capacity of the brake is temporarily reduced and then reengaged. is there.
  • the engaging capacity of the brake is temporarily reduced and then engaged again during acceleration operation during deceleration traveling in electric motor traveling with the brake engaged. For this reason, at the time of acceleration operation during deceleration traveling in the motor traveling with the brake engaged, the teeth of the rotating element coupled to the second motor and the teeth meshing with the teeth of the rotating element coupled to the second motor Since the brake slips when the backlash is clogged, the backlash between the teeth of the rotating element connected to the second electric motor and the teeth meshing with the teeth of the rotating element connected to the second electric motor is clogged. Impact force is reduced. As a result, rattling noise generated from the gear of the output line from the second electric motor is reduced during acceleration operation during decelerating traveling in the electric motor traveling.
  • the brake engagement capacity is temporarily reduced by releasing the brake during the acceleration operation. For this reason, the impact force at the time of the backlash of the tooth
  • the brake engagement capacity is temporarily reduced by half-engaging the brake during the acceleration operation. For this reason, by making the brake half-engaged, the backlash of the gear of the output line after the rotating element meshing with the rotating element of the second electric motor is gradually clogged, and the rattling noise is reduced and the acceleration operation is performed.
  • the acceleration response of the subsequent vehicle is preferably improved.
  • the first differential mechanism includes a first rotation element connected to the first electric motor, a second rotation element connected to the engine, and a third rotation connected to the output rotation member.
  • the second differential mechanism includes a first rotating element, a second rotating element, and a third rotating element connected to the second electric motor, and the second rotating element and the third rotating element. Any one of the rotating elements is connected to a third rotating element in the first differential mechanism, and the clutch includes a second rotating element in the first differential mechanism and a second differential element in the second differential mechanism. Of the second rotating element and the third rotating element, the rotating element that is not connected to the third rotating element in the first differential mechanism is selectively engaged, and the brake is the second rotating element. Second rotation element and third rotation required in differential mechanism The rotating element of which is not connected to the third rotating element in said first differential mechanism of, but selectively engaging to said non-rotating member. Even if it does in this way, the same effect as the 1st invention is acquired.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a hybrid vehicle drive device to which the present invention is preferably applied. It is a figure explaining the principal part of the control system provided in order to control the drive of the drive device of FIG.
  • FIG. 2 is an engagement table showing clutch and brake engagement states in each of five types of travel modes established in the drive device of FIG. 1.
  • FIG. 4 is a collinear diagram that can represent the relative relationship of the rotational speeds of the respective rotary elements on a straight line in the drive device of FIG.
  • FIG. 4 is a collinear diagram that can represent on a straight line the relative relationship between the rotational speeds of the rotating elements in the drive device of FIG.
  • FIG. 4 is a collinear diagram that can represent the relative relationship of the rotational speeds of the respective rotary elements on a straight line in the drive device of FIG. 1, corresponding to the HV-2 mode of FIG.
  • FIG. 4 is a collinear diagram that can represent on a straight line the relative relationship between the rotational speeds of the rotating elements in the drive device of FIG. 1, corresponding to the HV-3 mode of FIG. It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus of FIG. 2 was equipped.
  • FIG. 9 is a collinear diagram illustrating a control operation of the backlash filling control unit of FIG. 8, showing a state in which the brake engagement capacity is temporarily reduced by the brake being half-engaged. .
  • FIG. 3 is a flowchart for explaining a main part of a control operation for reducing a rattling noise generated from a gear of an output line of a second motor during an acceleration operation during deceleration traveling in the motor traveling by the electronic control device of FIG. 2. It is a skeleton diagram explaining the composition of the other hybrid vehicle drive device to which the present invention is applied suitably. It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied.
  • the first differential mechanism and the second differential mechanism have four rotation elements as a whole when the clutch is engaged.
  • the first differential mechanism and the second differential mechanism are: In the state in which the plurality of clutches are engaged, there are four rotating elements as a whole.
  • the present invention relates to a first differential mechanism and a second differential mechanism that are represented as four rotating elements on the nomographic chart, an engine connected to each of the four rotating elements, a first electric motor, A second electric motor, and an output rotating member, wherein one of the four rotating elements includes a rotating element of the first differential mechanism and a rotating element of the second differential mechanism via a clutch.
  • a hybrid vehicle that is selectively connected and a rotating element of the first differential mechanism or the second differential mechanism that is to be engaged by the clutch is selectively connected to a non-rotating member via a brake. It is suitably applied to the drive control apparatus.
  • the clutch and the brake are preferably hydraulic engagement devices whose engagement state is controlled (engaged or released) according to the hydraulic pressure, for example, a wet multi-plate friction engagement device.
  • a meshing engagement device that is, a so-called dog clutch (meshing clutch) may be used.
  • the engagement state may be controlled (engaged or released) according to an electrical command, such as an electromagnetic clutch or a magnetic powder clutch.
  • one of a plurality of travel modes is selectively established according to the engagement state of the clutch and the brake.
  • the operation of the engine is stopped and the brake is engaged and the clutch is released in an EV traveling mode in which at least one of the first electric motor and the second electric motor is used as a driving source for traveling.
  • the EV-1 mode is established, and the EV-2 mode is established by engaging both the brake and the clutch.
  • the brake In the hybrid travel mode in which the engine is driven and the first electric motor and the second electric motor drive or generate electric power as required, the brake is engaged and the clutch is released, so that the HV-1
  • the HV-2 mode is established when the brake is released and the clutch is engaged
  • the HV-3 mode is established when both the brake and the clutch are released.
  • each rotating element in each of the first differential mechanism and the second differential mechanism when the clutch is engaged and the brake is released.
  • the arrangement order indicates the first rotation in the first differential mechanism when the rotation speeds corresponding to the second rotation element and the third rotation element in each of the first differential mechanism and the second differential mechanism are superimposed.
  • FIG. 1 is a skeleton diagram illustrating the configuration of a hybrid vehicle drive device 10 (hereinafter simply referred to as drive device 10) to which the present invention is preferably applied.
  • the drive device 10 of the present embodiment is a device for horizontal use that is preferably used in, for example, an FF (front engine front wheel drive) type vehicle and the like, and an engine 12, which is a main power source,
  • the first electric motor MG1, the second electric motor MG2, the first planetary gear device 14 as a first differential mechanism, and the second planetary gear device 16 as a second differential mechanism are provided on a common central axis CE.
  • the drive device 10 is configured substantially symmetrically with respect to the center axis CE, and in FIG. 1, the lower half of the center line is omitted. The same applies to each of the following embodiments.
  • the engine 12 is, for example, an internal combustion engine such as a gasoline engine that generates driving force by combustion of fuel such as gasoline injected in a cylinder.
  • the first electric motor MG1 and the second electric motor MG2 are preferably so-called motor generators each having a function as a motor (engine) for generating a driving force and a generator (generator) for generating a reaction force.
  • the stators (stator) 18 and 22 are fixed to a housing (case) 26 which is a non-rotating member, and rotors (rotors) 20 and 24 are provided on the inner peripheral sides of the stators 18 and 22. ing.
  • the first planetary gear unit 14 is a single pinion type planetary gear unit having a gear ratio ⁇ 1, and is a carrier as a second rotation element that supports the sun gear S1 and the pinion gear P1 as the first rotation element so as to be capable of rotating and revolving.
  • a ring gear R1 as a third rotation element that meshes with the sun gear S1 via C1 and the pinion gear P1 is provided as a rotation element (element).
  • the second planetary gear device 16 is a single pinion type planetary gear device having a gear ratio of ⁇ 2, and is a carrier as a second rotating element that supports the sun gear S2 and the pinion gear P2 as the first rotating element so as to be capable of rotating and revolving.
  • a ring gear R2 as a third rotating element that meshes with the sun gear S2 via C2 and the pinion gear P2 is provided as a rotating element (element).
  • the sun gear S1 of the first planetary gear unit 14 is connected to the rotor 20 of the first electric motor MG1.
  • the carrier C1 of the first planetary gear device 14 is connected to an input shaft 28 that is rotated integrally with the crankshaft of the engine 12.
  • the input shaft 28 is centered on the central axis CE.
  • the direction of the central axis of the central axis CE is referred to as an axial direction (axial direction) unless otherwise distinguished.
  • the ring gear R1 of the first planetary gear device 14 is connected to the output gear 30 that is an output rotating member, and is also connected to the ring gear R2 of the second planetary gear device 16.
  • the sun gear S2 of the second planetary gear device 16 is connected to the rotor 24 of the second electric motor MG2.
  • the driving force output from the output gear 30 includes a counter driven gear 34 that meshes with the output gear 30 in a relatively non-rotatable manner, a final drive gear 36 that is integrally provided on the shaft portion 34a of the counter driven gear 34, a differential gear device 38, and the like. It is transmitted to a pair of left and right drive wheels 64 via an axle (drive shaft) 62. On the other hand, torque input to the drive wheels 64 from the road surface of the vehicle is transmitted from the output gear 30 to the drive device 10 via the differential gear device 38, the axle 62, the final drive gear 36, and the counter driven gear 34 ( Input).
  • a mechanical oil pump 32 such as a vane pump is connected to an end of the input shaft 28 opposite to the engine 12, and hydraulic pressure that is used as a source pressure of a hydraulic control circuit 60 and the like to be described later when the engine 12 is driven. Is output.
  • an electric oil pump driven by electric energy may be provided.
  • the carrier C1 of the first planetary gear unit 14 and the carrier C2 of the second planetary gear unit 16 are selectively engaged between the carriers C1 and C2 (disconnection between the carriers C1 and C2).
  • a clutch CL is provided.
  • a brake BK for selectively engaging (fixing) the carrier C2 with the housing 26 is provided between the carrier C2 of the second planetary gear device 16 and the housing 26 which is a non-rotating member.
  • the clutch CL and the brake BK are preferably hydraulic engagement devices whose engagement states are controlled (engaged or released) according to the hydraulic pressure supplied from the hydraulic control circuit 60.
  • a wet multi-plate friction engagement device or the like is preferably used, but a meshing engagement device, that is, a so-called dog clutch (meshing clutch) may be used.
  • an engagement state may be controlled (engaged or released) according to an electrical command supplied from the electronic control device 40, such as an electromagnetic clutch or a magnetic powder clutch.
  • the first planetary gear device 14 and the second planetary gear device 16 are arranged coaxially with the input shaft 28 (on the central axis CE), and the central shaft It arrange
  • the second electric motor MG1 is disposed on the opposite side of the engine 12 with respect to the second planetary gear device 16. That is, the first electric motor MG1 and the second electric motor MG2 are arranged at positions facing each other with the first planetary gear device 14 and the second planetary gear device 16 interposed therebetween with respect to the axial direction of the central axis CE. That is, in the drive device 10, in the axial direction of the central axis CE, the first electric motor MG1, the first planetary gear device 14, the clutch CL, the second planetary gear device 16, the brake BK, and the second electric motor MG2 from the engine 12 side. In order, these components are arranged on the same axis.
  • FIG. 2 is a diagram for explaining a main part of a control system provided in the drive device 10 in order to control the drive of the drive device 10.
  • the electronic control unit 40 shown in FIG. 2 includes a CPU, a ROM, a RAM, an input / output interface, and the like, and executes signal processing in accordance with a program stored in advance in the ROM while using a temporary storage function of the RAM.
  • the microcomputer is a so-called microcomputer, and executes various controls related to driving of the drive device 10 including drive control of the engine 12 and hybrid drive control related to the first electric motor MG1 and the second electric motor MG2. That is, in this embodiment, the electronic control device 40 corresponds to a drive control device for a hybrid vehicle to which the drive device 10 is applied.
  • the electronic control device 40 is configured as an individual control device for each control as necessary, such as for output control of the engine 12 and operation control of the first electric motor MG1 and the second electric motor MG2.
  • the electronic control device 40 is configured to be supplied with various signals from sensors, switches, and the like provided in each part of the driving device 10. That is, the operation position signal Sh output from the shift operating device 41 in response to manual operation to the neutral position, forward travel position, reverse travel position, etc., and the accelerator output sensor 42 correspond to the driver's output request amount.
  • signal representing the accelerator opening a CC is an operation amount of an accelerator pedal (not shown) to a signal indicative of engine rotational speed N E is the rotational speed of the engine 12 by the engine rotational speed sensor 44, MG1 first motor by the rotational speed sensor 46
  • a signal representing the rotational speed N MG1 of MG1 a signal representing the rotational speed N MG2 of the second electric motor MG2 by the MG2 rotational speed sensor 48, and a rotational speed N OUT of the output gear 30 corresponding to the vehicle speed V by the output rotational speed sensor 50.
  • the electronic control device 40 is configured to output an operation command to each part of the drive device 10. That is, as an engine output control command for controlling the output of the engine 12, a fuel injection amount signal for controlling a fuel supply amount to an intake pipe or the like by the fuel injection device, and an ignition timing (ignition timing) of the engine 12 by the ignition device are commanded. An ignition signal and an electronic throttle valve drive signal supplied to the throttle actuator for operating the throttle valve opening ⁇ TH of the electronic throttle valve are output to the engine control device 56 that controls the output of the engine 12.
  • a command signal commanding the operation of the first motor MG1 and the second motor MG2 is output to the inverter 58, and electric energy corresponding to the command signal is transmitted from the battery to the first motor MG1 and the second motor MG2 via the inverter 58.
  • the output (torque) of the first electric motor MG1 and the second electric motor MG2 is controlled by being supplied. Electric energy generated by the first electric motor MG1 and the second electric motor MG2 is supplied to the battery via the inverter 58 and stored in the battery.
  • a command signal for controlling the engagement state of the clutch CL and the brake BK is supplied to an electromagnetic control valve such as a linear solenoid valve provided in the hydraulic control circuit 60, and the hydraulic pressure output from the electromagnetic control valve is controlled. The engagement state of the clutch CL and the brake BK is controlled.
  • the driving device 10 functions as an electric differential unit that controls the differential state between the input rotation speed and the output rotation speed by controlling the operation state via the first electric motor MG1 and the second electric motor MG2.
  • the electric energy generated by the first electric motor MG1 is supplied to the battery and the second electric motor MG2 via the inverter 58.
  • the main part of the power of the engine 12 is mechanically transmitted to the output gear 30, while a part of the power is consumed for power generation by the first electric motor MG 1 and is converted into electric energy there.
  • the electric energy is supplied to the second electric motor MG2.
  • the second electric motor MG2 is driven and the power output from the second electric motor MG2 is transmitted to the output gear 30.
  • FIG. 3 is an engagement table showing the engagement states of the clutch CL and the brake BK in each of the five types of travel modes established in the drive device 10, with the engagement indicated by “ ⁇ ” and the release indicated by a blank. Yes.
  • the operation of the engine 12 is stopped and at least one of the first electric motor MG1 and the second electric motor MG2 is used for traveling.
  • “HV-1 mode”, “HV-2 mode”, and “HV-3 mode” are all driven by the first electric motor MG1 and the second electric motor MG2 while driving the engine 12 as a driving source for traveling, for example.
  • a reaction force may be generated by at least one of the first electric motor MG1 and the second electric motor MG2, or may be idled in an unloaded state.
  • the operation of the engine 12 is stopped, and in the EV traveling mode in which at least one of the first electric motor MG ⁇ b> 1 and the second electric motor MG ⁇ b> 2 is used as a driving source for traveling, Is engaged and the clutch CL is released to establish the EV-1 mode (travel mode 1), and the brake BK and the clutch CL are both engaged to establish the EV-2 mode (travel mode 2). Be made.
  • the brake BK is engaged and the clutch CL is engaged.
  • the HV-1 mode travel mode 3
  • the brake BK is released and the clutch CL is engaged
  • the HV-2 mode (travel mode 4) is set. Both the brake BK and the clutch CL are set.
  • the HV-3 mode (travel mode 5) is established.
  • the solid line Y1 is the sun gear S1 (first electric motor MG1) of the first planetary gear unit 14, the broken line Y2 is the sun gear S2 (second electric motor MG2) of the second planetary gear unit 16, and the solid line Y3.
  • the carrier C1 (engine 12) of the first planetary gear unit 14 the broken line Y3 'is the carrier C2 of the second planetary gear unit 16
  • the solid line Y4 is the ring gear R1 (output gear 30) of the first planetary gear unit 14, and the broken line Y4'.
  • the relative rotational speeds of the three rotating elements in the first planetary gear unit 14 are indicated by a solid line L1
  • the relative rotational speeds of the three rotating elements in the second planetary gear unit 16 are indicated by a broken line L2.
  • the intervals between the vertical lines Y1 to Y4 are determined according to the gear ratios ⁇ 1 and ⁇ 2 of the first planetary gear device 14 and the second planetary gear device 16. That is, regarding the vertical lines Y1, Y3, Y4 corresponding to the three rotating elements in the first planetary gear device 14, the distance between the sun gear S1 and the carrier C1 corresponds to 1, and the distance between the carrier C1 and the ring gear R1. Corresponds to ⁇ 1.
  • the space between the sun gear S2 and the carrier C2 corresponds to 1, and the space between the carrier C2 and the ring gear R2 Corresponds to ⁇ 2. That is, in the drive device 10, the gear ratio ⁇ 2 of the second planetary gear device 16 is preferably larger than the gear ratio ⁇ 1 of the first planetary gear device 14 ( ⁇ 2> ⁇ 1).
  • each traveling mode in the driving apparatus 10 will be described with reference to FIGS.
  • the “EV-1 mode” shown in FIG. 3 corresponds to the first electric motor traveling mode in the drive device 10, and preferably the operation of the engine 12 is stopped and the second electric motor MG2 is used for traveling. This is an EV traveling mode used as a driving source for the vehicle.
  • FIG. 4 is a collinear diagram corresponding to the EV-1 mode. If described using this collinear diagram, the carrier C1 and the second planet of the first planetary gear unit 14 are released by releasing the clutch CL. The gear device 16 can rotate relative to the carrier C2. By engaging the brake BK, the carrier C2 of the second planetary gear device 16 is connected (fixed) to the housing 26, which is a non-rotating member, and its rotational speed is zero.
  • the rotation direction of the sun gear S2 is opposite to the rotation direction, and negative torque (torque in the negative direction) is output by the second electric motor MG2.
  • the torque causes the ring gear R2, that is, the output gear 30, to rotate in the positive direction. That is, by outputting negative torque by the second electric motor MG2, the hybrid vehicle to which the drive device 10 is applied can travel forward. In this case, the first electric motor MG1 is idled.
  • the relative rotation of the clutches C1 and C2 is allowed, and the EV (electric) traveling in a vehicle equipped with a so-called THS (Toyota Hybrid System) in which the clutch C2 is connected to a non-rotating member is performed.
  • THS Toyota Hybrid System
  • the forward or reverse EV traveling control by the second electric motor MG2 can be performed.
  • the “EV-2 mode” shown in FIG. 3 corresponds to the second electric motor travel mode in the drive device 10, and preferably the operation of the engine 12 is stopped and the first electric motor MG1 and the second electric motor MG2 This is an EV traveling mode in which at least one of the electric motors MG2 is used as a driving source for traveling.
  • FIG. 5 is a collinear diagram corresponding to the EV-2 mode. If the collinear diagram is used to explain, the carrier C1 and the second planetary gear device 14 of the first planetary gear unit 14 are engaged by engaging the clutch CL. The planetary gear device 16 cannot be rotated relative to the carrier C2.
  • the carrier C2 of the second planetary gear device 16 and the carrier C1 of the first planetary gear device 14 engaged with the carrier C2 are connected to the housing 26 which is a non-rotating member. (Fixed) and the rotation speed is zero.
  • the rotation direction of the sun gear S1 and the rotation direction of the ring gear R1 are opposite to each other, and in the second planetary gear device 16, the rotation direction of the sun gear S2 and the ring gear are reversed.
  • the direction of rotation of R2 is the opposite direction.
  • the hybrid vehicle to which the drive device 10 is applied can be moved forward or backward by at least one of the first electric motor MG1 and the second electric motor MG2.
  • a mode in which power generation is performed by at least one of the first electric motor MG1 and the second electric motor MG2 can be established.
  • torque limitation due to heat it is possible to run to ease restrictions such as torque limitation due to heat.
  • the EV-2 mode it is possible to perform EV traveling under a wide range of traveling conditions, or to perform EV traveling continuously for a long time. Therefore, the EV-2 mode is suitably employed in a hybrid vehicle having a high ratio of EV traveling such as a plug-in hybrid vehicle.
  • the “HV-1 mode” shown in FIG. 3 corresponds to the first engine (hybrid) travel mode in the drive device 10, and is preferably used as a travel drive source when the engine 12 is driven. In addition, this is a hybrid travel mode in which driving or power generation is performed by the first electric motor MG1 and the second electric motor MG2 as necessary.
  • the collinear diagram of FIG. 4 also corresponds to the HV-1 mode. If described with reference to this collinear diagram, the carrier C1 and the first planetary gear unit 14 of the first planetary gear unit 14 are released by releasing the clutch CL. The two planetary gear unit 16 can rotate relative to the carrier C2.
  • the carrier C2 of the second planetary gear device 16 is connected (fixed) to the housing 26, which is a non-rotating member, and its rotational speed is zero.
  • the engine 12 is driven, and the output gear 30 is rotated by the output torque.
  • reaction force torque is output by the first electric motor MG ⁇ b> 1, whereby transmission from the engine 12 to the output gear 30 is enabled.
  • the rotation direction of the sun gear S2 and the rotation direction of the ring gear R2 are opposite because the brake BK is engaged. That is, when negative torque (negative direction torque) is output by the second electric motor MG2, the ring gears R1 and R2, that is, the output gear 30 are rotated in the positive direction by the torque.
  • the “HV-2 mode” shown in FIG. 3 corresponds to the second engine (hybrid) traveling mode in the driving apparatus 10, and is preferably used as a driving source for traveling when the engine 12 is driven. In addition, this is a hybrid travel mode in which driving or power generation is performed by the first electric motor MG1 and the second electric motor MG2 as necessary.
  • FIG. 6 is a collinear diagram corresponding to the HV-2 mode. If described using this collinear diagram, the carrier C1 and the second planetary gear device 14 of the first planetary gear unit 14 are engaged by engaging the clutch CL. The planetary gear device 16 is not allowed to rotate relative to the carrier C2, and operates as one rotating element that rotates the carriers C1 and C2 integrally.
  • the ring gears R1 and R2 Since the ring gears R1 and R2 are connected to each other, the ring gears R1 and R2 operate as one rotating element that is rotated integrally. That is, in the HV-2 mode, the rotating elements in the first planetary gear device 14 and the second planetary gear device 16 in the drive device 10 function as a differential mechanism including four rotating elements as a whole. That is, four gears in order from the left in FIG. 6 are the sun gear S1 (first electric motor MG1), the sun gear S2 (second electric motor MG2), the carriers C1 and C2 (engine 12) connected to each other, A composite split mode is obtained in which ring gears R1 and R2 (output gear 30) connected to each other are connected in this order.
  • the arrangement order of the rotating elements in the first planetary gear device 14 and the second planetary gear device 16 is preferably the sun gear S1 indicated by the vertical line Y1.
  • the sun gear S2 indicated by the vertical line Y2, the carriers C1 and C2 indicated by the vertical line Y3 (Y3 ′), and the ring gears R1 and R2 indicated by the vertical line Y4 (Y4 ′) are arranged in this order.
  • the gear ratios ⁇ 1 and ⁇ 2 of the first planetary gear device 14 and the second planetary gear device 16 are respectively represented by a vertical line Y1 corresponding to the sun gear S1 and a vertical line Y2 corresponding to the sun gear S2, as shown in FIG.
  • the interval between the vertical lines Y1 and Y3 is larger than the interval between the vertical lines Y2 and Y3 ′.
  • the distance between the sun gears S1, S2 and the carriers C1, C2 corresponds to 1
  • the distance between the carriers C1, C2 and the ring gears R1, R2 corresponds to ⁇ 1, ⁇ 2.
  • the gear ratio ⁇ 2 of the second planetary gear device 16 is larger than the gear ratio ⁇ 1 of the first planetary gear device 14.
  • the carrier C1 of the first planetary gear unit 14 and the carrier C2 of the second planetary gear unit 16 are coupled, and the carriers C1 and C2 are integrated.
  • the reaction force can be applied to the output of the engine 12 by either the first electric motor MG1 or the second electric motor MG2. That is, when the engine 12 is driven, the reaction force can be shared by one or both of the first electric motor MG1 and the second electric motor MG2, and the engine 12 can be operated at an efficient operating point, or the torque can be limited by heat.
  • working etc. which ease the restrictions of this become possible.
  • the “HV-3 mode” shown in FIG. 3 corresponds to the third engine (hybrid) travel mode in the drive device 10, and is preferably used as a travel drive source when the engine 12 is driven.
  • the first electric motor MG1 generates electric power so that the speed ratio is continuously variable, and the operating point of the engine 12 is operated along a preset optimum curve.
  • FIG. 7 is a collinear diagram corresponding to the HV-3 mode. If described using this collinear diagram, the carrier C1 and the second planet of the first planetary gear unit 14 are released by releasing the clutch CL.
  • the gear device 16 can rotate relative to the carrier C2.
  • the carrier C2 of the second planetary gear device 16 can rotate relative to the housing 26, which is a non-rotating member.
  • the second electric motor MG2 can be disconnected from the drive system (power transmission path) and stopped.
  • the second electric motor MG2 is always rotated with the rotation of the output gear 30 (ring gear R2) when the vehicle is traveling.
  • the rotation speed of the second electric motor MG2 reaches a limit value (upper limit value)
  • the rotation speed of the ring gear R2 is increased and transmitted to the sun gear S2, and the like. Therefore, it is not always preferable to always rotate the second electric motor MG2 at a relatively high vehicle speed from the viewpoint of improving efficiency.
  • the second electric motor MG2 is driven by the engine 12 and the first electric motor MG1 by separating the second electric motor MG2 from the drive system at a relatively high vehicle speed, so that the second electric motor MG2 is driven.
  • the maximum rotation speed upper limit value
  • the engine 12 is driven and used as a driving source for traveling, and driving or power generation is performed by the first electric motor MG1 and the second electric motor MG2 as necessary.
  • three modes of the HV-1 mode, the HV-2 mode, and the HV-3 mode can be selectively established by a combination of engagement and release of the clutch CL and the brake BK.
  • the mode with the highest transmission efficiency among these three modes according to the vehicle speed, the gear ratio, etc. of the vehicle it is possible to improve the transmission efficiency and thus improve the fuel efficiency. it can.
  • FIG. 8 is a functional block diagram illustrating a main part of the control function of the electronic control unit 40 of FIG.
  • the mode determination means that is, the mode determination unit 70 requests which one of the five modes, EV-1 mode 1, EV-2 mode, HV-1 mode, HV-2 mode, and HV-3 mode is established.
  • Vehicle parameters such as driving force, vehicle speed V and accelerator opening A CC , SOC, operating temperature, output state of engine control device 56 and inverter 58, output state of mode switching control unit 72 described later, or already set flag, etc. Determine based on.
  • the mode switching control means determines the driving mode to be established in the drive device 10 according to the determination result of the mode determination unit 70 or based on, for example, the vehicle speed V and the accelerator opening degree A CC. It is determined whether the electric driving or the hybrid driving is performed based on whether the required driving force of the person is a preset electric traveling region or an engine traveling region, or based on a request based on the SOC. When electric travel is selected, one of the EV-1 mode and the EV-2 mode is selected based on a request based on the SOC, a driver's selection, and the like.
  • the HV-1 mode, the HV-2 mode, and the HV are set so that the driving force and the fuel consumption are compatible based on the efficiency and transmission efficiency of the engine 12, the magnitude of the required driving force, and the like.
  • Select one of the -3 modes For example, the establishment of the HV-1 mode is selected for the low gear at low vehicle speed (high reduction ratio region), and the establishment of the HV-2 mode is selected for the middle gear (medium reduction ratio region) of medium vehicle speed. In the (reduction speed ratio range), establishment of the HV-3 mode is selected.
  • the mode switching control unit 72 when switching from the EV-2 mode, which is electric motor driving using the first electric motor MG1 and the second electric motor MG2, to the HV-1 mode, which is engine driving, the mode switching control unit 72 is engaged until then. Of the clutch CL and brake BK, the clutch CL is released via the hydraulic control circuit 60, the engine 12 is started by the first electric motor MG1, and the engagement of the brake BK is continued. That is, the state shown in the alignment chart of FIG. 5 is changed to the state shown in the alignment chart of FIG.
  • the acceleration operation determination means that is, the acceleration operation determination unit 74 determines whether or not an acceleration operation has been performed while the vehicle is decelerating when the accelerator pedal is not depressed. That is, the acceleration operation determination unit 74 determines, based on the accelerator opening sensor 42, whether or not the accelerator pedal is depressed while the vehicle is decelerating while the accelerator pedal is not depressed. Based on the accelerator opening sensor 42 and the output rotation speed sensor 50, the vehicle decelerating traveling state in which the accelerator pedal is not depressed is determined. Further, the second electric motor MG2 is in a regenerative state while the vehicle is decelerating while the accelerator pedal is not depressed.
  • the brake release control means that is, the brake release control unit 76, is determined by the mode determination unit 70 that the EV-1 mode or EV-2 mode, which is the electric motor traveling mode in which the brake BK is engaged, is established, and When the acceleration operation determination unit 74 determines that the accelerator pedal is depressed, the hydraulic control command signal Sp for reducing the engagement capacity of the brake BK is output from the electronic control unit 40 to the hydraulic control circuit 60. For example, when the above condition is satisfied, the brake release control unit 76 outputs the hydraulic control command signal Sp that releases the brake BK or makes the brake BK half-engaged from the electronic control unit 40 to the hydraulic control circuit 60. Then, the engagement capacity of the brake BK is reduced.
  • the hydraulic pressure output from an electromagnetic control valve such as a linear solenoid valve in the hydraulic control circuit 60 is controlled in accordance with the hydraulic control command signal Sp, and the brake BK is released or the brake BK is half off.
  • the engaged state is established.
  • the backlash packing control means that is, the backlash packing control unit 78, from the second electric motor MG2, or the second electric motor MG2 and the first electric motor MG1
  • a relatively small backlash packing torque is output to pack backlash of the output line gear from the second electric motor MG2.
  • the output line gear from the second electric motor MG2 is an output side power transmission system in which the power output from the second electric motor MG2 shown in FIG. 1 is transmitted to the pair of drive wheels 64, for example, a pinion gear P2. , Output gear 30, counter driven gear 34, and the like.
  • the mode determination unit 70 determines that the EV-1 mode is set and the brake BK is half-engaged by the brake release control unit 76 in response to the acceleration operation, as shown in FIG.
  • the brake BK is applied to the sliding carrier C2. Since the rotation is allowed, the impact force when backlash or the like between the outer peripheral teeth of the sun gear S2 and the outer peripheral teeth of the pinion gear P2 is reduced is reduced.
  • the backlash filling torque output from the second electric motor MG2 by the backlash filling control unit 78 and the engagement capacity for causing the brake BK to be in a semi-engaged state by the brake release control unit 76 are outputted from the second electric motor MG2.
  • the torque is not transmitted to the road surface, but is set to a value that can transmit a relatively small torque that can close backlash of the output line gear from the second electric motor MG2. Further, by making the brake BK half-engaged, over-rotation of the sun gear S2 connected to the second electric motor MG2 that is likely to occur when the brake BK is released is prevented.
  • the gear backlash filling determining means 80 executes the operation from the second electric motor MG2. It is determined whether the backlash of the output line gear is clogged. For example, the rotation speed of the output gear 30 and the rotation speed of the drive wheel 64 are synchronized based on the output rotation speed sensor 50 and the wheel speed sensor 52, or the backlash filling control unit 78 executes backlash filling. It is determined that the backlash of the gear of the output line from the second electric motor MG2 is clogged based on whether a time set in advance through experiments or the like has elapsed.
  • the brake engagement control means that is, the brake engagement control unit 82, reengages the brake BK when the gear backlash filling determination unit 80 determines that the backlash of the output line gear from the second electric motor MG2 is blocked.
  • the hydraulic control command signal Sp is output from the electronic control unit 40 to the hydraulic control circuit 60.
  • the hydraulic pressure output from an electromagnetic control valve such as a linear solenoid valve in the hydraulic control circuit 60 is controlled according to the hydraulic control command signal Sp, and the brake BK is engaged.
  • the motor acceleration control means that is, the motor acceleration control unit 84 is set based on the amount of depression of the accelerator pedal in the acceleration operation determination unit 74, the vehicle speed V, and the like.
  • the required driving force requested by the driver is output from the motor.
  • the motor acceleration control unit 84 determines that the EV-1 mode is satisfied by the mode determination unit 70, and the requested drive requested by the driver from the second motor MG2. If the mode determination unit 70 determines that the EV-2 mode is established, the second motor MG2 or a request requested by the driver from the second motor MG2 and the first motor MG1 Outputs driving force.
  • FIG. 10 shows a state in which the second electric motor MG2 is switched when the second electric motor MG2 is switched from the regenerative state to the power running state in the electronic control device 40 of FIG. It is a flowchart explaining the principal part of the control action
  • step S1 corresponding to the mode determination unit 70 (hereinafter, step is omitted), whether or not the motor travel mode is engaged with the brake BK, that is, EV-1 mode or EV-2. It is determined whether or not the mode is set. If the determination in S1 is negative, this routine is ended. If the determination is affirmative, in S2 corresponding to the acceleration operation control unit 74, the vehicle is decelerating while the accelerator pedal is not depressed, that is, second. It is determined whether or not the accelerator pedal is depressed during regeneration of the electric motor MG2. If the determination in S2 is negative, this routine is terminated. If the determination is affirmative, in S3 corresponding to the brake release control unit 76, the engagement capacity of the brake BK is reduced and the brake is released. BK is released or the brake BK is half-engaged.
  • S5 corresponding to the gear backlash filling determination unit 80, it is determined whether or not the backlash of the gear of the output line of the second electric motor MG2 is blocked by the backlash filling control unit 78 in S4.
  • S3 and S4 are executed.
  • the brake BK is reengaged in S6 corresponding to the brake engagement control unit 82. Then, in S7 corresponding to the motor acceleration control unit 84, if the EV-1 mode is selected, the second motor MG2 is selected. If the EV-2 mode is selected, the second motor MG2 or the second motor MG2 and the first motor MG1 are selected. The required driving force requested by the driver is output and the vehicle is accelerated.
  • the brake is applied during the acceleration operation during the deceleration traveling in the electric motor traveling in the EV-1 mode or the EV-2 mode with the brake BK engaged.
  • the brake BK is re-engaged by the brake engagement control unit 82.
  • the brake BK is Since the carrier C2 is allowed to rotate by sliding, the impact force when the backlash is clogged is reduced.
  • the acceleration operation is performed while the electric motor is running at a reduced speed, that is, when the second electric motor MG2 is switched from the regenerative state to the power running state, the gear of the output line from the second electric motor MG2 has a relatively large backlash.
  • the rattling noise that occurs when clogging occurs is suitably reduced.
  • the brake BK is released during acceleration operation during deceleration traveling in the electric motor traveling in the EV-1 mode or EV-2 mode with the brake BK engaged.
  • the engagement capacity of the brake BK is temporarily reduced. For this reason, the impact force when the backlash between the outer peripheral teeth of the sun gear S2 connected to the second electric motor MG2 and the outer peripheral teeth of the pinion gear P2 meshing with the outer peripheral teeth of the sun gear S2 is suitably reduced.
  • the brake BK is half-pressed during acceleration operation during deceleration traveling in the electric motor traveling in the EV-1 mode or EV-2 mode with the brake BK engaged.
  • the engagement capacity of the brake BK can be temporarily reduced. Therefore, by making the brake BK half-engaged, the backlash of the gear of the output line after the pinion gear P2 meshing with the sun gear S2 connected to the second electric motor MG2 is gradually clogged, and the rattling noise is reduced. Over-rotation of the second electric motor MG2 or the sun gear S2 during BK release is prevented. Further, the acceleration response of the vehicle after the acceleration operation is preferably improved.
  • the drive control device for a hybrid vehicle of the present invention like the drive device 100 shown in FIG. 11 and the drive device 110 shown in FIG. 12, has the first electric motor MG1, the first planetary gear device 14 and the second gear in the direction of the central axis CE.
  • the present invention is also preferably applied to a configuration in which the arrangement (arrangement) of the electric motor MG2, the second planetary gear device 16, the clutch CL, and the brake BK is changed.
  • the carrier C2 is allowed to rotate in one direction with respect to the housing 26 between the carrier C2 of the second planetary gear device 16 and the housing 26 which is a non-rotating member.
  • the present invention is also preferably applied to a configuration in which a one-way clutch (one-way clutch) OWC that prevents reverse rotation is provided in parallel with the brake BK.
  • a single-pinion type second planetary gear unit 16 such as a driving unit 130 shown in FIG. 14, a driving unit 140 shown in FIG. 15, and a driving unit 150 shown in FIG.
  • the present invention is also preferably applied to a configuration including a pinion type second planetary gear device 16 '.
  • the second planetary gear device 16 ' includes a sun gear S2' as a first rotation element, a carrier C2 'as a second rotation element that supports a plurality of pinion gears P2' meshed with each other so as to rotate and revolve, and a pinion gear.
  • a ring gear R2 ′ as a third rotating element meshing with the sun gear S2 ′ via P2 ′ is provided as a rotating element (element).
  • the hybrid vehicle drive device 100, 110, 120, 130, 140, 150 of the second embodiment is connected to the sun gear S1 as the first rotating element connected to the first electric motor MG1 and the engine 12.
  • a first planetary gear unit 14 as a first differential mechanism including a carrier C1 as a second rotation element and a ring gear R1 as a third rotation element coupled to an output gear 30 as an output rotation member;
  • One of C2 (C2 ') and ring gear R2 (R2') is a second differential mechanism connected to the ring gear R1 of the first planetary gear unit 14.
  • a clutch CL that selectively engages an element, and a rotating element that is not connected to the ring gear R1 out of the carrier C2 (C2 ′) and the ring gear R2 (R2 ′) includes a housing 26 that is a non-rotating member. And a brake BK that is selectively engaged with the brake BK.
  • the brake release control is performed at the time of acceleration operation during deceleration traveling in the electric motor traveling in the EV-1 mode or the EV-2 mode with the brake BK engaged.
  • the brake BK is re-engaged by the brake engagement control portion 82.
  • FIGS. 17 to 19 illustrate the configuration and operation of other hybrid vehicle drive devices 160, 170, and 180 to which the present invention is preferably applied in place of the hybrid vehicle drive device 10 of the first embodiment.
  • FIG. As described above, the relative rotational speeds of the sun gear S1, the carrier C1, and the ring gear R1 in the first planetary gear device 14 are indicated by solid lines L1, and the relative speeds of the sun gear S2, the carrier C2, and the ring gear R2 in the second planetary gear device 16 are compared.
  • the rotational speed is indicated by a broken line L2.
  • the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the engine 12, and the second electric motor MG2, respectively.
  • the sun gear S2, the carrier C2, and the ring gear R2 are connected to the non-rotating member 26 via the second electric motor MG2, the output rotating member 30, and the brake BK, respectively, and the sun gear S1 and the ring gear R2 are selected via the clutch CL. Connected.
  • the ring gear R1 and the sun gear S2 are connected to each other.
  • the sun gear S 1, the carrier C 1, and the ring gear R 1 of the first planetary gear device 14 are connected to the first electric motor MG 1, the output rotating member 30, and the engine 12, respectively.
  • the sun gear S2, the carrier C2, and the ring gear R2 are connected to the non-rotating member 26 via the second electric motor MG2, the output rotating member 30, and the brake BK, respectively, and the sun gear S1 and the ring gear R2 are selected via the clutch CL. Connected.
  • the carriers C1 and C2 are connected to each other.
  • the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the output rotating member 30, and the engine 12, respectively.
  • the sun gear S2, the carrier C2, and the ring gear R2 are connected to the non-rotating member 26 and the output rotating member 30 via the second electric motor MG2 and the brake BK, respectively, and the ring gear R1 and the carrier C2 are selected via the clutch CL. Connected.
  • the carrier C1 and the ring gear R2 are connected to each other.
  • the embodiment shown in FIGS. 17 to 19 has four rotating elements (represented as four rotating elements) on the collinear chart as in the embodiments shown in FIGS. 4 to 7 and FIGS. 11 to 16 described above.
  • the first planetary gear unit 14 as the first differential mechanism and the second planetary gear units 16 and 16 'as the second differential mechanism, and the first electric motor MG1 connected to the four rotating elements, Two electric motors MG2, an engine 12, and an output rotation member (output gear 30), one of the four rotation elements being the rotation element of the first planetary gear device 14 and the second planetary gear device.
  • a housing in which the rotating elements 16 and 16 'are selectively connected via a clutch CL, and the rotating elements of the second planetary gear devices 16 and 16' to be engaged by the clutch CL are non-rotating members.
  • 26 against A is the point drive control apparatus for a hybrid vehicle which is selectively connected via a rk BK, have in common. That is, the hybrid vehicle drive control apparatus of the present invention described above with reference to FIG. 8 and the like is also preferably applied to the configurations shown in FIGS.
  • the first planetary gear device 14 is connected to the first electric motor MG1 in the same manner as the embodiments shown in FIGS. 4 to 7 and FIGS. 11 to 16.
  • the second planetary gear device 16 includes a sun gear S1 as a rotating element, a carrier C1 as a second rotating element connected to the engine 12, and a ring gear R1 as a third rotating element connected to the output gear 30.
  • (16 ') is a sun gear S2 (S2') as a first rotating element connected to the second electric motor MG2, a carrier C2 (C2 ') as a second rotating element, and a ring gear R2 as a third rotating element.
  • the switch CL selectively selects the carrier C1 in the first planetary gear unit 14 and the rotating element that is not connected to the ring gear R1 out of the carrier C2 (C2 ′) and the ring gear R2 (R2 ′).
  • the brake BK has a rotating element which is not connected to the ring gear R1 of the carrier C2 (C2 ') and the ring gear R2 (R2') is attached to the housing 26 which is a non-rotating member. It is selectively engaged with each other.
  • S4 corresponding to the backlash packing control unit 78 and S5 corresponding to the gear backlash packing determination unit 80 are provided, but these are not necessarily provided. There is no need to be done. That is, when the accelerator pedal is depressed in S2 corresponding to the acceleration operation determination unit 74 and the required driving force requested by the driver is output from the second electric motor MG2 in S7 corresponding to the motor acceleration control unit 84, the brake is released. The engagement capacity of the brake BK is temporarily reduced for a time predetermined by experiment or the like until S6 corresponding to the brake engagement control unit 82 is executed in S3 corresponding to the control unit 76.
  • Hybrid vehicle drive device 12 Engine 14: First planetary gear device (first differential mechanism) 16, 16 ': Second planetary gear device (second differential mechanism) 26: Housing (case, non-rotating member) 30: Output gear (output rotating member) 40: Electronic control device (drive control device) 74: Acceleration operation determination unit (acceleration operation determination means) 76: Brake release control section (brake release control means) 82: Brake engagement control unit (brake engagement control means) MG1: first electric motor MG2: second electric motor BK: brake CL: clutch

Abstract

 電動機走行における減速走行中の加速操作時において、第2電動機からのアウトプットラインのギヤから発生する歯打ち音を低減させるハイブリッド車両の駆動制御装置を提供する。 ブレーキBKを係合させた電動機走行における減速走行中の加速操作時に、ブレーキBKの係合容量を一時的に低下させた後再度係合する。このため、ブレーキBKを係合させた電動機走行における減速走行中の加速操作時において、第2電動機MG2に連結されたサンギヤS2の外周歯とそのサンギヤS2の外周歯に噛み合うピニオンギヤP2の外周歯とのバックラッシュが詰まった際にブレーキBKが滑るので、サンギヤS2の外周歯とピニオンギヤP2の外周歯とのバックラッシュが詰まった際の衝撃力が低減される。これによって、電動機走行における減速走行中の加速操作時において、第2電動機MG2からのアウトプットラインのギヤから発生する歯打ち音が低減する。

Description

ハイブリッド車両の駆動制御装置
 本発明は、ハイブリッド車両の駆動制御装置の改良に関する。
 例えば、特許文献1に示すように、第1電動機に連結された第1回転要素と、エンジンに連結された第2回転要素と、及び出力回転部材に連結され且つ第2電動機に2段の減速機を介して連結された第3回転要素とを備えた差動機構と、エンジンのクランク軸の回転を拘束するクランク軸ロック装置とを備え、第2電動機を駆動源として走行可能な通常の第1電動機走行モードの他に、第1電動機および第2電動機を共に駆動源として走行可能な第2電動機走行モードが得られるハイブリッド車両が知られている。
特開2008-265600号公報
 ところで、特許文献1に示すような従来のハイブリッド車両では、電動機走行における減速走行中の加速操作時において、特に第2電動機の回生状態から力行状態への切替時に、その第2電動機からのアウトプットライン(出力側動力伝達系)のギヤでバックラッシュが詰まるカチン音或いは振動が発生することがあった。このカチン音或いは振動は、第2電動機の回生状態におけるそのアウトプットラインのギヤのバックラッシュが詰まっている状態から第2電動機が力行状態に切り替わることによって、そのアウトプットラインのギヤのバックラッシュが詰まっている側とは反対側の比較的大きいバックラッシュが急激に詰められることによりそのアウトプットラインのギヤから発生する歯打ち音である。
 これに対して、第1電動機に連結された第1回転要素、エンジンに連結された第2回転要素、及び出力回転部材に連結された第3回転要素を備えた第1差動機構と、第2電動機に連結された第1回転要素、第2回転要素、及び第3回転要素を備え、それら第2回転要素及び第3回転要素の何れか一方が前記第1差動機構における第3回転要素に連結された第2差動機構と、前記第1差動機構における回転要素と前記第2差動機構における回転要素とを選択的に連結するクラッチと、前記第2差動機構における回転要素を非回転部材に対して選択的に連結するブレーキとを、備え、クラッチおよびブレーキの係合作動の組合せによって複数の走行モードで走行可能なハイブリッド車両が考えられる。
 このような複数の走行モードで走行可能なハイブリッド車両においても同様に、前記ブレーキを係合させた電動機走行における減速走行中の加速操作時に、前記第2電動機からのアウトプットラインのギヤのバックラッシュが急激に詰まって歯打ち音が発生する可能がある。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電動機走行における減速走行中の加速操作時において、第2電動機からのアウトプットラインのギヤから発生する歯打ち音を低減させるハイブリッド車両の駆動制御装置を提供することにある。
 本発明者は、以上の事情を背景として種々検討を重ねた結果、前記複数の走行モードで走行可能なハイブリッド車両において、ブレーキを係合させて第2電動機で回生を行う減速走行中に加速操作が行われるときに、そのブレーキの係合容量を低下させると前記歯打ち音が好適に抑制されるという事実を見い出した。本発明はこのような知見に基づいて為されたものである。
 すなわち、本発明の要旨とするところは、(a) 全体として4つの回転要素を有する第1差動機構及び第2差動機構と、それら4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、そのクラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置であって、(b) 前記ブレーキを係合させた電動機走行における減速走行中の加速操作時に、前記ブレーキの係合容量を一時的に低下させた後再度係合することにある。
 本発明のハイブリッド車両の駆動制御装置によれば、前記ブレーキを係合させた電動機走行における減速走行中の加速操作時に、前記ブレーキの係合容量を一時的に低下させた後再度係合する。このため、前記ブレーキを係合させた電動機走行における減速走行中の加速操作時において、前記第2電動機に連結された回転要素の歯とその第2電動機に連結された回転要素の歯に噛み合う歯とのバックラッシュが詰まった際に前記ブレーキが滑るので、前記第2電動機に連結された回転要素の歯とその第2電動機に連結された回転要素の歯に噛み合う歯とのバックラッシュが詰まった際の衝撃力が低減される。これによって、電動機走行における減速走行中の加速操作時において、第2電動機からのアウトプットラインのギヤから発生する歯打ち音が低減する。
 ここで、好適には、前記加速操作時に、前記ブレーキが解放されることにより前記ブレーキの係合容量を一時的に低下させられる。このため、前記第2電動機に連結された回転要素の歯とその第2電動機に連結された回転要素の歯に噛み合う歯とのバックラッシュが詰まった際の衝撃力が好適に低減される。
 また、好適には、前記加速操作時に、前記ブレーキが半係合とされることにより前記ブレーキの係合容量を一時的に低下させられる。このため、前記ブレーキを半係合にすることで、前記第2電動機の回転要素に噛み合う回転要素以降のアウトプットラインのギヤのバックラッシュが緩やかに詰り歯打ち音が低減すると共に、前記加速操作時後の車両の加速応答性が好適に向上する。
 また、好適には、前記第1差動機構は、前記第1電動機に連結された第1回転要素、前記エンジンに連結された第2回転要素、及び前記出力回転部材に連結された第3回転要素を備えたものであり、前記第2差動機構は、前記第2電動機に連結された第1回転要素、第2回転要素、及び第3回転要素を備え、それら第2回転要素及び第3回転要素の何れか一方が前記第1差動機構における第3回転要素に連結されたものであり、前記クラッチは、前記第1差動機構における第2回転要素と、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素とを選択的に係合させるものであり、前記ブレーキは、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素を、前記非回転部材に対して選択的に係合させるものである。このようにしても、第1発明と同じ効果が得られる。
本発明が好適に適用されるハイブリッド車両用駆動装置の構成を説明する骨子図である。 図1の駆動装置の駆動を制御するために備えられた制御系統の要部を説明する図である。 図1の駆動装置において成立させられる5種類の走行モードそれぞれにおけるクラッチ及びブレーキの係合状態を示す係合表である。 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のEV-1モード、およびHV-1モードに対応する図である。 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のEV-2モードに対応する図である。 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のHV-2モードに対応する図である。 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のHV-3モードに対応する図である。 図2の電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。 図8のバックラッシュ詰め制御部の制御作動を説明する共線図であって、ブレーキが半係合とされることによりそのブレーキの係合容量が一時的に低下させられた状態を示している。 図2の電子制御装置による、電動機走行における減速走行中の加速操作時に、第2電動機のアウトプットラインのギヤから発生する歯打ち音を低減させる制御作動の要部をそれぞれ説明するフローチャートである。 本発明が好適に適用される他のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成および作動を説明する共線図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成および作動を説明する共線図である。 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成および作動を説明する共線図である。
 本発明において、前記第1差動機構及び第2差動機構は、前記クラッチが係合された状態において全体として4つの回転要素を有するものである。また、好適には、前記第1差動機構及び第2差動機構の要素相互間に前記クラッチに加え他のクラッチを備えた構成において、前記第1差動機構及び第2差動機構は、それら複数のクラッチが係合された状態において全体として4つの回転要素を有するものである。換言すれば、本発明は、共線図上において4つの回転要素として表される第1差動機構及び第2差動機構と、それら4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、そのクラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置に好適に適用されるものである。
 前記クラッチ及びブレーキは、好適には、何れも油圧に応じて係合状態が制御される(係合乃至解放させられる)油圧式係合装置であり、例えば、湿式多板型の摩擦係合装置等が好適に用いられるが、噛合式の係合装置すなわち所謂ドグクラッチ(噛合クラッチ)であってもよい。或いは、電磁式クラッチや磁粉式クラッチ等、電気的な指令に応じて係合状態が制御される(係合乃至解放させられる)ものであってもよい。
 本発明が適用される駆動装置においては、前記クラッチ及びブレーキの係合状態等に応じて、複数の走行モードの何れかが選択的に成立させられる。好適には、前記エンジンの運転が停止させられると共に、前記第1電動機及び第2電動機の少なくとも一方を走行用の駆動源として用いるEV走行モードにおいて、前記ブレーキが係合されると共に前記クラッチが解放されることでEV-1モードが、前記ブレーキ及びクラッチが共に係合されることでEV-2モードがそれぞれ成立させられる。前記エンジンを駆動させると共に、前記第1電動機及び第2電動機により必要に応じて駆動乃至発電等を行うハイブリッド走行モードにおいて、前記ブレーキが係合されると共に前記クラッチが解放されることでHV-1モードが、前記ブレーキが解放されると共に前記クラッチが係合されることでHV-2モードが、前記ブレーキ及びクラッチが共に解放されることでHV-3モードがそれぞれ成立させられる。
 本発明において、好適には、前記クラッチが係合させられ、且つ、前記ブレーキが解放させられている場合における前記第1差動機構及び第2差動機構それぞれにおける各回転要素の共線図における並び順は、前記第1差動機構及び第2差動機構それぞれにおける第2回転要素及び第3回転要素に対応する回転速度を重ねて表した場合に、前記第1差動機構における第1回転要素、前記第2差動機構における第1回転要素、前記第1差動機構における第2回転要素及び第2差動機構における第2回転要素、前記第1差動機構における第3回転要素及び第2差動機構における第3回転要素の順である。
 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。以下の説明に用いる図面において、各部の寸法比等は必ずしも正確には描かれていない。
 図1は、本発明が好適に適用されるハイブリッド車両用駆動装置10(以下、単に駆動装置10という)の構成を説明する骨子図である。この図1に示すように、本実施例の駆動装置10は、例えばFF(前置エンジン前輪駆動)型車両等に好適に用いられる横置き用の装置であり、主動力源であるエンジン12、第1電動機MG1、第2電動機MG2、第1差動機構としての第1遊星歯車装置14、及び第2差動機構としての第2遊星歯車装置16を共通の中心軸CE上に備えて構成されている。駆動装置10は、中心軸CEに対して略対称的に構成されており、図1においては中心線の下半分を省略して図示している。以下の各実施例についても同様である。
 エンジン12は、例えば、気筒内噴射されるガソリン等の燃料の燃焼によって駆動力を発生させるガソリンエンジン等の内燃機関である。第1電動機MG1及び第2電動機MG2は、好適には、何れも駆動力を発生させるモータ(発動機)及び反力を発生させるジェネレータ(発電機)としての機能を有する所謂モータジェネレータであり、それぞれのステータ(固定子)18、22が非回転部材であるハウジング(ケース)26に固設されると共に、各ステータ18、22の内周側にロータ(回転子)20、24を備えて構成されている。
 第1遊星歯車装置14は、ギヤ比がρ1であるシングルピニオン型の遊星歯車装置であり、第1回転要素としてのサンギヤS1、ピニオンギヤP1を自転及び公転可能に支持する第2回転要素としてのキャリアC1、及びピニオンギヤP1を介してサンギヤS1と噛み合う第3回転要素としてのリングギヤR1を回転要素(要素)として備えている。第2遊星歯車装置16は、ギヤ比がρ2であるシングルピニオン型の遊星歯車装置であり、第1回転要素としてのサンギヤS2、ピニオンギヤP2を自転及び公転可能に支持する第2回転要素としてのキャリアC2、及びピニオンギヤP2を介してサンギヤS2と噛み合う第3回転要素としてのリングギヤR2を回転要素(要素)として備えている。
 第1遊星歯車装置14のサンギヤS1は、第1電動機MG1のロータ20に連結されている。第1遊星歯車装置14のキャリアC1は、エンジン12のクランク軸と一体的に回転させられる入力軸28に連結されている。この入力軸28は、中心軸CEを軸心とするものであり、以下の実施例において、特に区別しない場合には、この中心軸CEの軸心の方向を軸方向(軸心方向)という。第1遊星歯車装置14のリングギヤR1は、出力回転部材である出力歯車30に連結されると共に、第2遊星歯車装置16のリングギヤR2と相互に連結されている。第2遊星歯車装置16のサンギヤS2は、第2電動機MG2のロータ24に連結されている。
 出力歯車30から出力された駆動力は、出力歯車30に相対回転不能に噛み合うカウンタードリブンギヤ34とそのカウンタードリブンギヤ34の軸部34aに一体的に設けられたファイナルドライブギヤ36と差動歯車装置38及び車軸(ドライブシャフト)62とを介して左右一対の駆動輪64へ伝達される。一方、車両の走行路面から駆動輪64に対して入力されるトルクは、差動歯車装置38及び車軸62とファイナルドライブギヤ36とカウンタードリブンギヤ34とを介して出力歯車30から駆動装置10へ伝達(入力)される。入力軸28におけるエンジン12と反対側の端部には、例えばベーンポンプ等の機械式オイルポンプ32が連結されており、エンジン12の駆動に伴い後述する油圧制御回路60等の元圧とされる油圧が出力されるようになっている。このオイルポンプ32に加えて、電気エネルギにより駆動される電動式オイルポンプが設けられたものであってもよい。
 第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との間には、それらキャリアC1とC2との間を選択的に係合させる(キャリアC1とC2との間を断接する)クラッチCLが設けられている。第2遊星歯車装置16のキャリアC2と非回転部材であるハウジング26との間には、そのハウジング26に対してキャリアC2を選択的に係合(固定)させるブレーキBKが設けられている。これらのクラッチCL及びブレーキBKは、好適には、何れも油圧制御回路60から供給される油圧に応じて係合状態が制御される(係合乃至解放させられる)油圧式係合装置であり、例えば、湿式多板型の摩擦係合装置等が好適に用いられるが、噛合式の係合装置すなわち所謂ドグクラッチ(噛合クラッチ)であってもよい。更には、電磁式クラッチや磁粉式クラッチ等、電子制御装置40から供給される電気的な指令に応じて係合状態が制御される(係合乃至解放させられる)ものであってもよい。
 図1に示すように、駆動装置10において、第1遊星歯車装置14及び第2遊星歯車装置16は、それぞれ入力軸28と同軸上(中心軸CE上)に配置されており、且つ、中心軸CEの軸方向において対向する位置に配置されている。すなわち、中心軸CEの軸方向に関して、第1遊星歯車装置14は、第2遊星歯車装置16に対してエンジン12側に配置されている。中心軸CEの軸方向に関して、第1電動機MG1は、第1遊星歯車装置14に対してエンジン12側に配置されている。中心軸CEの軸方向に関して、第2電動機MG1は、第2遊星歯車装置16に対してエンジン12の反対側に配置されている。すなわち、第1電動機MG1、第2電動機MG2は、中心軸CEの軸方向に関して、第1遊星歯車装置14及び第2遊星歯車装置16を間に挟んで対向する位置に配置されている。すなわち、駆動装置10においては、中心軸CEの軸方向において、エンジン12側から第1電動機MG1、第1遊星歯車装置14、クラッチCL、第2遊星歯車装置16、ブレーキBK、第2電動機MG2の順でそれらの構成が同軸上に配置されている。
 図2は、駆動装置10の駆動を制御するためにその駆動装置10に備えられた制御系統の要部を説明する図である。この図2に示す電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェイス等を含んで構成され、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を実行する所謂マイクロコンピュータであり、エンジン12の駆動制御や、第1電動機MG1及び第2電動機MG2に関するハイブリッド駆動制御をはじめとする駆動装置10の駆動に係る各種制御を実行する。すなわち、本実施例においては、電子制御装置40が駆動装置10の適用されたハイブリッド車両の駆動制御装置に相当する。この電子制御装置40は、エンジン12の出力制御用や第1電動機MG1及び第2電動機MG2の作動制御用といったように、必要に応じて各制御毎に個別の制御装置として構成される。
 図2に示すように、電子制御装置40には、駆動装置10の各部に設けられたセンサやスイッチ等から各種信号が供給されるように構成されている。すなわち、ニュートラルポジション、前進走行ポジション、後進走行ポジションなどへ手動操作されることに応答してシフト操作装置41から出力される操作位置信号Sh、アクセル開度センサ42により運転者の出力要求量に対応する図示しないアクセルペダルの操作量であるアクセル開度ACCを表す信号、エンジン回転速度センサ44によりエンジン12の回転速度であるエンジン回転速度NEを表す信号、MG1回転速度センサ46により第1電動機MG1の回転速度NMG1を表す信号、MG2回転速度センサ48により第2電動機MG2の回転速度NMG2を表す信号、出力回転速度センサ50により車速Vに対応する出力歯車30の回転速度NOUTを表す信号、車輪速センサ52により駆動装置10における各駆動輪64それぞれの速度NWを表す信号、及びバッテリSOCセンサ54により図示しないバッテリの充電残量(充電状態)SOCを表す信号等が、それぞれ上記電子制御装置40に供給される。
 電子制御装置40からは、駆動装置10の各部に作動指令が出力されるように構成されている。すなわち、エンジン12の出力を制御するエンジン出力制御指令として、燃料噴射装置による吸気配管等への燃料供給量を制御する燃料噴射量信号、点火装置によるエンジン12の点火時期(点火タイミング)を指令する点火信号、及び電子スロットル弁のスロットル弁開度θTHを操作するためにスロットルアクチュエータへ供給される電子スロットル弁駆動信号等が、そのエンジン12の出力を制御するエンジン制御装置56へ出力される。第1電動機MG1及び第2電動機MG2の作動を指令する指令信号がインバータ58へ出力され、そのインバータ58を介してバッテリからその指令信号に応じた電気エネルギが第1電動機MG1及び第2電動機MG2に供給されてそれら第1電動機MG1及び第2電動機MG2の出力(トルク)が制御される。第1電動機MG1及び第2電動機MG2により発電された電気エネルギがインバータ58を介してバッテリに供給され、そのバッテリに蓄積されるようになっている。クラッチCL、ブレーキBKの係合状態を制御する指令信号が油圧制御回路60に備えられたリニアソレノイド弁等の電磁制御弁へ供給され、それら電磁制御弁から出力される油圧が制御されることでクラッチCL、ブレーキBKの係合状態が制御されるようになっている。
 駆動装置10は、第1電動機MG1及び第2電動機MG2を介して運転状態が制御されることにより、入力回転速度と出力回転速度の差動状態が制御される電気式差動部として機能する。例えば、第1電動機MG1により発電された電気エネルギをインバータ58を介してバッテリや第2電動機MG2へ供給する。これにより、エンジン12の動力の主要部は機械的に出力歯車30へ伝達される一方、その動力の一部は第1電動機MG1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機MG2へ供給される。そして、その第2電動機MG2が駆動されて第2電動機MG2から出力された動力が出力歯車30へ伝達される。この電気エネルギの発生から第2電動機MG2で消費されるまでに関連する機器により、エンジン12の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
 以上のように構成された駆動装置10が適用されたハイブリッド車両においては、エンジン12、第1電動機MG1、及び第2電動機MG2の駆動状態、及びクラッチCL、ブレーキBKの係合状態等に応じて、複数の走行モードの何れかが選択的に成立させられる。図3は、駆動装置10において成立させられる5種類の走行モードそれぞれにおけるクラッチCL、ブレーキBKの係合状態を示す係合表であり、係合を「○」で、解放を空欄でそれぞれ示している。この図3に示す走行モード「EV-1モード」、「EV-2モード」は、何れもエンジン12の運転が停止させられると共に、第1電動機MG1及び第2電動機MG2の少なくとも一方を走行用の駆動源として用いるEV走行モードである。「HV-1モード」、「HV-2モード」、「HV-3モード」は、何れもエンジン12を例えば走行用の駆動源として駆動させると共に、第1電動機MG1及び第2電動機MG2により必要に応じて駆動乃至発電等を行うハイブリッド走行モードである。このハイブリッド走行モードにおいて、第1電動機MG1及び第2電動機MG2の少なくとも一方により反力を発生させるものであってもよく、無負荷の状態で空転させるものであってもよい。
 図3に示すように、駆動装置10においては、エンジン12の運転が停止させられると共に、第1電動機MG1及び第2電動機MG2の少なくとも一方を走行用の駆動源として用いるEV走行モードにおいて、ブレーキBKが係合されると共にクラッチCLが解放されることでEV-1モード(走行モード1)が、ブレーキBK及びクラッチCLが共に係合されることでEV-2モード(走行モード2)がそれぞれ成立させられる。エンジン12を例えば走行用の駆動源として駆動させると共に、第1電動機MG1及び第2電動機MG2により必要に応じて駆動乃至発電等を行うハイブリッド走行モードにおいて、ブレーキBKが係合されると共にクラッチCLが解放されることでHV-1モード(走行モード3)が、ブレーキBKが解放されると共にクラッチCLが係合されることでHV-2モード(走行モード4)が、ブレーキBK及びクラッチCLが共に解放されることでHV-3モード(走行モード5)がそれぞれ成立させられる。
 図4~図7は、駆動装置10(第1遊星歯車装置14及び第2遊星歯車装置16)において、クラッチCL及びブレーキBKそれぞれの係合状態に応じて連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示しており、横軸方向において第1遊星歯車装置14及び第2遊星歯車装置16のギヤ比ρの相対関係を示し、縦軸方向において相対的回転速度を示す二次元座標である。車両前進時における出力歯車30の回転方向を正の方向(正回転)として各回転速度を表している。横線X1は回転速度零を示している。縦線Y1~Y4は、左から順に実線Y1が第1遊星歯車装置14のサンギヤS1(第1電動機MG1)、破線Y2が第2遊星歯車装置16のサンギヤS2(第2電動機MG2)、実線Y3が第1遊星歯車装置14のキャリアC1(エンジン12)、破線Y3′が第2遊星歯車装置16のキャリアC2、実線Y4が第1遊星歯車装置14のリングギヤR1(出力歯車30)、破線Y4′が第2遊星歯車装置16のリングギヤR2それぞれの相対回転速度を示している。図4~図7においては、縦線Y3及びY3′、縦線Y4及びY4′をそれぞれ重ねて表している。ここで、リングギヤR1及びR2は相互に連結されているため、縦線Y4、Y4′にそれぞれ示すリングギヤR1及びR2の相対回転速度は等しい。
 図4~図7においては、第1遊星歯車装置14における3つの回転要素の相対的な回転速度を実線L1で、第2遊星歯車装置16における3つの回転要素の相対的な回転速度を破線L2でそれぞれ示している。縦線Y1~Y4(Y2~Y4′)の間隔は、第1遊星歯車装置14及び第2遊星歯車装置16の各ギヤ比ρ1、ρ2に応じて定められている。すなわち、第1遊星歯車装置14における3つの回転要素に対応する縦線Y1、Y3、Y4に関して、サンギヤS1とキャリアC1との間が1に対応するものとされ、キャリアC1とリングギヤR1との間がρ1に対応するものとされる。第2遊星歯車装置16における3つの回転要素に対応する縦線Y2、Y3′、Y4′に関して、サンギヤS2とキャリアC2との間が1に対応するものとされ、キャリアC2とリングギヤR2との間がρ2に対応するものとされる。すなわち、駆動装置10において、好適には、第1遊星歯車装置14のギヤ比ρ1よりも第2遊星歯車装置16のギヤ比ρ2の方が大きい(ρ2>ρ1)。以下、図4~図7を用いて駆動装置10における各走行モードについて説明する。
 図3に示す「EV-1モード」は、駆動装置10における第1の電動機走行モードに相当するものであり、好適には、エンジン12の運転が停止させられると共に、第2電動機MG2が走行用の駆動源として用いられるEV走行モードである。図4は、このEV-1モードに対応する共線図であり、この共線図を用いて説明すれば、クラッチCLが解放されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。ブレーキBKが係合されることで第2遊星歯車装置16のキャリアC2が非回転部材であるハウジング26に対して連結(固定)され、その回転速度が零とされている。このEV-1モードにおいては、第2遊星歯車装置16において、サンギヤS2の回転方向と回転方向とが逆方向となり、第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクによりリングギヤR2すなわち出力歯車30は正の方向に回転させられる。すなわち、第2電動機MG2により負のトルクを出力させることにより、駆動装置10の適用されたハイブリッド車両を前進走行させることができる。この場合において、第1電動機MG1は空転させられる。このEV-1モードでは、クラッチC1及びC2の相対回転が許容されると共に、そのクラッチC2が非回転部材に連結された所謂THS(Toyota Hybrid System)を搭載した車両におけるEV(電気)走行と同様の、第2電動機MG2による前進或いは後進のEV走行制御を行うことができる。
 図3に示す「EV-2モード」は、駆動装置10における第2の電動機走行モードに相当するものであり、好適には、エンジン12の運転が停止させられると共に、第1電動機MG1及び第2電動機MG2の少なくとも一方が走行用の駆動源として用いられるEV走行モードである。図5は、このEV-2モードに対応する共線図であり、この共線図を用いて説明すれば、クラッチCLが係合されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との相対回転が不能とされている。更に、ブレーキBKが係合されることで第2遊星歯車装置16のキャリアC2及びそのキャリアC2に係合された第1遊星歯車装置14のキャリアC1が非回転部材であるハウジング26に対して連結(固定)され、その回転速度が零とされている。このEV-2モードにおいては、第1遊星歯車装置14において、サンギヤS1の回転方向とリングギヤR1の回転方向とが逆方向となると共に、第2遊星歯車装置16において、サンギヤS2の回転方向とリングギヤR2の回転方向とが逆方向となる。すなわち、第1電動機MG1乃至第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクによりリングギヤR1及びR2すなわち出力歯車30は正の方向に回転させられる。すなわち、第1電動機MG1及び第2電動機MG2の少なくとも一方により、駆動装置10の適用されたハイブリッド車両を前進走行或いは後進走行させることができる。
 EV-2モードにおいては、第1電動機MG1及び第2電動機MG2の少なくとも一方により発電を行う形態を成立させることもできる。この形態においては、第1電動機MG1及び第2電動機MG2の一方或いは両方により走行用の駆動力(トルク)を分担して発生させることが可能となり、各電動機を効率の良い動作点で動作させたり、熱によるトルク制限等の制約を緩和する走行等が可能となる。更に、バッテリの充電状態が満充電の場合等、回生による発電が許容されない場合に、第1電動機MG1及び第2電動機MG2の一方或いは両方を空転させることも可能である。すなわち、EV-2モードにおいては、幅広い走行条件においてEV走行を行うことや、長時間継続してEV走行を行うことが可能となる。従って、EV-2モードは、プラグインハイブリッド車両等、EV走行を行う割合が高いハイブリッド車両において好適に採用される。
 図3に示す「HV-1モード」は、駆動装置10における第1のエンジン(ハイブリッド)走行モードに相当するものであり、好適には、エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて第1電動機MG1及び第2電動機MG2による駆動乃至発電が行われるハイブリッド走行モードである。図4の共線図は、このHV-1モードに対応するものでもあり、この共線図を用いて説明すれば、クラッチCLが解放されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。ブレーキBKが係合されることで第2遊星歯車装置16のキャリアC2が非回転部材であるハウジング26に対して連結(固定)され、その回転速度が零とされている。このHV-1モードにおいては、エンジン12が駆動させられ、その出力トルクにより出力歯車30が回転させられる。この際、第1遊星歯車装置14において、第1電動機MG1により反力トルクを出力させることで、エンジン12から出力歯車30への伝達が可能とされる。第2遊星歯車装置16においては、ブレーキBKが係合されていることで、サンギヤS2の回転方向とリングギヤR2の回転方向とが逆方向となる。すなわち、第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクによりリングギヤR1及びR2すなわち出力歯車30は正の方向に回転させられる。
 図3に示す「HV-2モード」は、駆動装置10における第2のエンジン(ハイブリッド)走行モードに相当するものであり、好適には、エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて第1電動機MG1及び第2電動機MG2による駆動乃至発電が行われるハイブリッド走行モードである。図6は、このHV-2モードに対応する共線図であり、この共線図を用いて説明すれば、クラッチCLが係合されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との相対回転が不能とされており、キャリアC1及びC2が一体的に回転させられる1つの回転要素として動作する。リングギヤR1及びR2は相互に連結されていることで、それらリングギヤR1及びR2は一体的に回転させられる1つの回転要素として動作する。すなわち、HV-2モードにおいて、駆動装置10における第1遊星歯車装置14及び第2遊星歯車装置16における回転要素は、全体として4つの回転要素を備えた差動機構として機能する。すなわち、図6において紙面向かって左から順に示す4つの回転要素であるサンギヤS1(第1電動機MG1)、サンギヤS2(第2電動機MG2)、相互に連結されたキャリアC1及びC2(エンジン12)、相互に連結されたリングギヤR1及びR2(出力歯車30)の順に結合した複合スプリットモードとなる。
 図6に示すように、HV-2モードにおいて、好適には、第1遊星歯車装置14及び第2遊星歯車装置16における各回転要素の共線図における並び順が、縦線Y1で示すサンギヤS1、縦線Y2で示すサンギヤS2、縦線Y3(Y3′)で示すキャリアC1及びC2、縦線Y4(Y4′)で示すリングギヤR1及びR2の順となる。第1遊星歯車装置14及び第2遊星歯車装置16それぞれのギヤ比ρ1、ρ2は、共線図において図6に示すようにサンギヤS1に対応する縦線Y1とサンギヤS2に対応する縦線Y2とが上記の並び順となるように、すなわち縦線Y1と縦線Y3との間隔が、縦線Y2と縦線Y3′との間隔よりも広くなるように定められている。換言すれば、サンギヤS1、S2とキャリアC1、C2との間が1に対応するものとされ、キャリアC1、C2とリングギヤR1、R2との間がρ1、ρ2に対応することから、駆動装置10においては、第1遊星歯車装置14のギヤ比ρ1よりも第2遊星歯車装置16のギヤ比ρ2の方が大きい。
 HV-2モードにおいては、クラッチCLが係合されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2とが連結されており、それらキャリアC1及びC2が一体的に回転させられる。このため、エンジン12の出力に対して、第1電動機MG1及び第2電動機MG2の何れによっても反力を受けることができる。すなわち、エンジン12の駆動に際して、その反力を第1電動機MG1及び第2電動機MG2の一方乃至両方で分担して受けることが可能となり、効率の良い動作点で動作させたり、熱によるトルク制限等の制約を緩和する走行等が可能となる。
 図3に示す「HV-3モード」は、駆動装置10における第3のエンジン(ハイブリッド)走行モードに相当するものであり、好適には、エンジン12が駆動されて走行用の駆動源として用いられると共に第1電動機MG1による発電が行われて連続的に変速比が可変とされ、エンジン12の作動点が予め設定された最適曲線に沿って作動させられるハイブリッド走行モードである。このHV-3モードにおいては、第2電動機MG2を駆動系から切り離してエンジン12及び第1電動機MG1により駆動を行う等の形態を実現することができる。図7は、このHV-3モードに対応する共線図であり、この共線図を用いて説明すれば、クラッチCLが解放されることで第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。ブレーキBKが解放されることで第2遊星歯車装置16のキャリアC2が非回転部材であるハウジング26に対して相対回転可能とされている。斯かる構成においては、第2電動機MG2を駆動系(動力伝達経路)から切り離して停止させておくことが可能である。
 HV-1モードにおいては、ブレーキBKが係合されているため、車両走行時において第2電動機MG2は出力歯車30(リングギヤR2)の回転に伴い常時回転させられる。斯かる形態において、比較的高回転となる領域では第2電動機MG2の回転速度が限界値(上限値)に達することや、リングギヤR2の回転速度が増速されてサンギヤS2に伝達されること等から、効率向上の観点からは比較的高車速時に第2電動機MG2を常時回転させておくことは必ずしも好ましくない。一方、HV-3モードにおいては、比較的高車速時に第2電動機MG2を駆動系から切り離してエンジン12及び第1電動機MG1により駆動を行う形態を実現することで、その第2電動機MG2の駆動が不要な場合における引き摺り損失を低減できることに加え、その第2電動機MG2に許容される最高回転速度(上限値)に起因する最高車速への制約を解消すること等が可能とされる。
 以上の説明から明らかなように、駆動装置10においては、エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて第1電動機MG1及び第2電動機MG2による駆動乃至発電が行われるハイブリッド走行に関して、クラッチCL及びブレーキBKの係合乃至解放の組み合わせにより、HV-1モード、HV-2モード、及びHV-3モードの3つのモードを選択的に成立させることができる。これにより、例えば車両の車速や変速比等に応じてそれら3つのモードのうち最も伝達効率の高いモードを選択的に成立させることで、伝達効率の向上延いては燃費の向上を実現することができる。
 図8は、図2の電子制御装置40の制御機能の要部を説明する機能ブロック線図である。モード判定手段すなわちモード判定部70は、EV-1モード1、EV-2モード、HV-1モード、HV-2モード、及びHV-3モードの5つのモードのいずれが成立しているかを、要求駆動力、車速V及びアクセル開度ACC、SOC、作動温度などの車両パラメータ、エンジン制御装置56やインバータ58の出力状態、後述するモード切換制御部72の出力状態、或いは既に設定されたフラグなどに基づいて判定する。
 モード切換制御手段すなわちモード切換制御部72は、駆動装置10において成立させる走行モードを、モード判定部70の判定結果に従って、または、たとえば、車速V及びアクセル開度ACCに基づいて判定される運転者の要求駆動力が予め設定された電気走行領域およびエンジン走行領域のいずれであるかに基づいて、或いはSOCに基づく要求に基づいて、電気走行かハイブリッド走行であるか否かを判定する。電気走行が選択された場合には、SOCに基づく要求や運転者の選択などに基づいて、EV-1モードおよびEV-2モードの一方を選択する。ハイブリッド走行が選択された場合は、エンジン12の効率および伝達効率、要求駆動力の大きさなどに基づいて、駆動力および燃費が両立するように、HV-1モード、HV-2モード、及びHV-3モードのいずれか1つを選択する。たとえば、低車速のローギヤ(高減速比域)ではHV-1モードの成立が選択され、中車速の中域ギヤ(中減速比域)ではHV-2モードの成立が選択され、高車速のハイギヤ(低減速比域)ではHV-3モードの成立が選択される。このモード切換制御部72は、たとえば第1電動機MG1および第2電動機MG2を駆動源とする電動機走行であるEV-2モードからエンジン走行であるHV-1モードへ切り換える場合は、それまで係合していたクラッチCLおよびブレーキBKのうち、油圧制御回路60を介してクラッチCLを解放して第1電動機MG1によりエンジン12を始動させ、ブレーキBKの係合を継続させる。すなわち、図5の共線図に示す状態から図4の共線図に示す状態とされる。
 加速操作判定手段すなわち加速操作判定部74は、アクセルペダルが踏み込まれていない車両減速走行中に、加速操作が行われたか否かを判定する。すなわち、加速操作判定部74は、アクセルペダルが踏み込まれていない車両減速走行中に、アクセルペダルが踏み込まれたか否かをアクセル開度センサ42に基づいて判定する。なお、アクセル開度センサ42および出力回転速度センサ50に基づいて、上記アクセルペダルが踏み込まれていない車両減速走行状態を判定する。また、上記アクセルペダルが踏み込まれていない車両減速走行中には、第2電動機MG2は回生状態である。
 ブレーキ解放制御手段すなわちブレーキ解放制御部76は、モード判定部70でブレーキBKが係合している電動機走行モードであるEV-1モードまたはEV-2モードが成立していると判定され、且つ、加速操作判定部74でアクセルペダルが踏み込まれたと判定されると、ブレーキBKの係合容量を低下させる油圧制御指令信号Spを電子制御装置40から油圧制御回路60に出力する。たとえば、ブレーキ解放制御部76は、上記条件が成立されると、ブレーキBKを解放させるか或いはブレーキBKを半係合にさせる油圧制御指令信号Spを電子制御装置40から油圧制御回路60に出力し、ブレーキBKの係合容量を低下させる。油圧制御回路60では、その油圧制御指令信号Spに従って、その油圧制御回路60内のリニアソレノイド弁等の電磁制御弁から出力される油圧が制御されてブレーキBKが解放されるか或いはブレーキBKが半係合状態となる。
 バックラッシュ詰め制御手段すなわちバックラッシュ詰め制御部78は、ブレーキ解放制御部76によってブレーキBKの係合容量が低下させられると、第2電動機MG2、或いは、第2電動機MG2および第1電動機MG1から、比較的小さなバックラッシュ詰めトルクを出力させて、第2電動機MG2からのアウトプットラインのギヤのバックラッシュを詰める。なお、上記の第2電動機MG2からのアウトプットラインのギヤとは、図1に示す第2電動機MG2から出力された動力が一対の駆動輪64に伝達される出力側動力伝達系であり例えばピニオンギヤP2、出力歯車30、カウンタードリブンギヤ34等である。
 たとえば、モード判定部70でEV-1モードであると判定され、加速操作に応答してブレーキ解放制御部76によってブレーキBKが半係合状態とされると、図9に示すように、第2電動機MG2からサンギヤS2に負のトルクが出力されて、サンギヤS2の外周歯とそのサンギヤS2の外周歯に噛み合うピニオンギヤP2の外周歯とのバックラッシュが詰められるときに、ブレーキBKが滑りキャリヤC2の回転が許容されるのでサンギヤS2の外周歯とピニオンギヤP2の外周歯とのバックラッシュなどが詰められたときの衝撃力が低減される。なお、バックラッシュ詰め制御部78で第2電動機MG2から出力されるバックラッシュ詰めトルク、およびブレーキ解放制御部76でブレーキBKを半係合状態にする係合容量は、第2電動機MG2から出力されるトルクが路面までは伝わらないが、第2電動機MG2からのアウトプットラインのギヤのバックラッシュを詰めることができる程度の比較的小さなトルクを伝達できる値に予め設定されている。また、ブレーキBKを半係合状態にすることで、ブレーキBKを解放している際に起こり易い第2電動機MG2に連結されたサンギヤS2の過回転が防止される。
 ギヤバックラッシュ詰め判定手段すなわちギヤバックラッシュ詰め判定部80は、バックラッシュ詰め制御部78で第2電動機MG2からのアウトプットラインのギヤのバックラッシュの詰めが実行されると、その第2電動機MG2からのアウトプットラインのギヤのバックラッシュが詰まったか否かを、判定する。たとえば、出力回転速度センサ50および車輪速センサ52に基づいて出力歯車30の回転数と駆動輪64の回転数とが同期したか、或いは、バックラッシュ詰め制御部78でバックラッシュの詰めが実行されてから予め実験等によって設定された時間が経過したかに基づいて、第2電動機MG2からのアウトプットラインのギヤのバックラッシュが詰まったと判定する。
 ブレーキ係合制御手段すなわちブレーキ係合制御部82は、ギヤバックラッシュ詰め判定部80で第2電動機MG2からのアウトプットラインのギヤのバックラッシュが詰まったと判定されると、ブレーキBKを再係合させる油圧制御指令信号Spを電子制御装置40から油圧制御回路60に出力する。油圧制御回路60では、その油圧制御指令信号Spに従って、その油圧制御回路60内のリニアソレノイド弁等の電磁制御弁から出力される油圧が制御されてブレーキBKが係合する。
 電動機加速制御手段すなわち電動機加速制御部84は、ブレーキ係合制御部82でブレーキBKが係合されると、加速操作判定部74においてアクセルペダルが踏み込まれた踏み込み量および車速V等に基づいて設定される運転者の要求する要求駆動力を電動機から出力する。すなわち、電動機加速制御部84は、上記条件が成立すると、モード判定部70でEV-1モードが成立していると判定されている場合には、第2電動機MG2から運転者の要求する要求駆動力を出力し、モード判定部70でEV-2モードが成立していると判定されている場合には、第2電動機MG2、または第2電動機MG2および第1電動機MG1から運転者の要求する要求駆動力を出力する。
 図10は、図2の電子制御装置40において、ブレーキBKを係合させた電動機走行における減速走行中の加速操作時に第2電動機MG2の回生状態から力行状態への切替時に、第2電動機MG2のアウトプットラインのギヤから発生する歯打ち音を低減させる制御作動の要部をそれぞれ説明するフローチャートであり、所定の制御周期で繰り返し実行される。
 図10において、先ず、モード判定部70に対応するステップ(以下、ステップを省略する)S1において、ブレーキBKが係合された電動機走行モードであるか否か、すなわちEV-1モード或いはEV-2モードであるか否かが判定される。このS1の判定が否定される場合には本ルーチンが終了させられるが、肯定される場合には、加速操作制御部74に対応するS2において、アクセルペダル踏み込まれていない車両減速走行中すなわち第2電動機MG2の回生時に、アクセルペダルが踏み込まれたか否かが判定される。このS2の判定が否定される場合には本ルーチンが終了させられるが、肯定される場合には、ブレーキ解放制御部76に対応するS3において、ブレーキBKの係合容量が低下させられて、ブレーキBKが解放させられるかまたはブレーキBKが半係合状態とされる。
 次に、バックラッシュ詰め制御部78に対応するS4では、S3でブレーキBKの係合容量が低下させられると、EV-1モードであるなら第2電動機MG2、EV-2モードであるなら第2電動機MG2或いは第2電動機MG2および第1電動機MG1からバックラッシュ詰めトルクを出力させて第2電動機MG2のアウトプットラインのギヤのバックラッシュを詰める。
 次に、ギヤバックラッシュ詰め判定部80に対応するS5では、S4でのバックラッシュ詰め制御部78によって第2電動機MG2のアウトプットラインのギヤのバックラッシュが詰まったか否かが判定される。このS5の判定が否定される場合すなわち第2電動機MG2のアウトプットラインのギヤのバックラッシュが詰まっていない場合には、S3およびS4が実行される。
 S5の判定が肯定される場合には、ブレーキ係合制御部82に対応するS6において、ブレーキBKが再係合させられる。そして、次に、電動機加速制御部84に対応するS7において、EV-1モードであるなら第2電動機MG2、EV-2モードであるなら第2電動機MG2或いは第2電動機MG2および第1電動機MG1から、運転者の要求する要求駆動力が出力されて車両が加速する。
 上述のように、本実施例の駆動装置10の電子制御装置40によれば、ブレーキBKを係合させたEV-1モード又はEV-2モードによる電動機走行における減速走行中の加速操作時に、ブレーキ解放制御部76でブレーキBKの解放又は半係合によりその係合容量が一時的に低下させられた後、ブレーキ係合制御部82でブレーキBKを再係合される。このため、加速操作に応答してたとえば第2電動機MG2に連結されたサンギヤS2の外周歯とそのサンギヤS2の外周歯に噛み合うピニオンギヤP2の外周歯とのバックラッシュが詰められた際にブレーキBKが滑ってキャリヤC2の回転が許容されるので、そのバックラッシュが詰まった際の衝撃力が低減される。これによって、電動機走行における減速走行中の加速操作時において、すなわち、第2電動機MG2の回生状態から力行状態への切替時において、第2電動機MG2からのアウトプットラインのギヤの比較的に大きいバックラッシュが詰まる際に発生する歯打ち音が好適に低減される。
 また、本実施例の駆動装置10の電子制御装置40によれば、ブレーキBKを係合させたEV-1モード又はEV-2モードによる電動機走行における減速走行中の加速操作時に、ブレーキBKが解放されることによりブレーキBKの係合容量が一時的に低下させられる。このため、第2電動機MG2に連結されたサンギヤS2の外周歯とそのサンギヤS2の外周歯に噛み合うピニオンギヤP2の外周歯とのバックラッシュが詰まった際の衝撃力が好適に低減される。
 また、本実施例の駆動装置10の電子制御装置40によれば、ブレーキBKを係合させたEV-1モード又はEV-2モードによる電動機走行における減速走行中の加速操作時に、ブレーキBKが半係合とされることによりブレーキBKの係合容量を一時的に低下させられる。このため、ブレーキBKを半係合にすることで、第2電動機MG2に連結されたサンギヤS2に噛み合うピニオンギヤP2以降のアウトプットラインのギヤのバックラッシュが緩やかに詰り歯打ち音が低減すると共に、ブレーキBK解放中の第2電動機MG2またはサンギヤS2の過回転が防止される。また、前記加速操作時後の車両の加速応答性が好適に向上する。
 続いて、本発明の他の好適な実施例を図面に基づいて詳細に説明する。以下の説明において、実施例相互に共通する部分については同一の符号を付してその説明を省略する。
 図11~図16は、前述の実施例1のハイブリッド車両用駆動装置10に替えて、本発明が好適に適用される他のハイブリッド車両用駆動装置100、110、120、130、140、150の構成をそれぞれ説明する骨子図である。本発明のハイブリッド車両の駆動制御装置は、図11に示す駆動装置100や図12に示す駆動装置110のように、中心軸CE方向の前記第1電動機MG1、第1遊星歯車装置14、第2電動機MG2、第2遊星歯車装置16、クラッチCL及びブレーキBKの配置(配列)を変更した構成にも好適に適用される。図13に示す駆動装置120のように、前記第2遊星歯車装置16のキャリアC2と非回転部材である前記ハウジング26との間に、そのキャリアC2のハウジング26に対する一方向の回転を許容し且つ逆方向の回転を阻止する一方向クラッチ(ワンウェイクラッチ)OWCを、前記ブレーキBKと並列に備えた構成にも好適に適用される。図14に示す駆動装置130、図15に示す駆動装置140、図16に示す駆動装置150のように、前記シングルピニオン型の第2遊星歯車装置16の代替として、第2差動機構としてのダブルピニオン型の第2遊星歯車装置16′を備えた構成にも好適に適用される。この第2遊星歯車装置16′は、第1回転要素としてのサンギヤS2′、相互に噛み合わされた複数のピニオンギヤP2′を自転及び公転可能に支持する第2回転要素としてのキャリアC2′、及びピニオンギヤP2′を介してサンギヤS2′と噛み合う第3回転要素としてのリングギヤR2′を回転要素(要素)として備えたものである。
 このように、上記実施例2のハイブリッド車両用駆動装置100、110、120、130、140、150は、第1電動機MG1に連結された第1回転要素としてのサンギヤS1、エンジン12に連結された第2回転要素としてのキャリアC1、及び出力回転部材である出力歯車30に連結された第3回転要素としてのリングギヤR1を備えた第1差動機構である第1遊星歯車装置14と、第2電動機MG2に連結された第1回転要素としてのサンギヤS2(S2′)、第2回転要素としてのキャリアC2(C2′)、及び第3回転要素としてのリングギヤR2(R2′)を備え、それらキャリアC2(C2′)及びリングギヤR2(R2′)の何れか一方が前記第1遊星歯車装置14のリングギヤR1に連結された第2差動機構である第2遊星歯車装置16(16′)と、前記第1遊星歯車装置14におけるキャリアC1と、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素とを選択的に係合させるクラッチCLと、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素を、非回転部材であるハウジング26に対して選択的に係合させるブレーキBKとを、備えている。このため、前述の実施例1の電子制御装置40をそれぞれ設けることにより、ブレーキBKを係合させたEV-1モード又はEV-2モードによる電動機走行における減速走行中の加速操作時に、ブレーキ解放制御部76でブレーキBKの解放又は半係合によりその係合容量が一時的に低下させられた後、ブレーキ係合制御部82でブレーキBKを再係合されるので、加速操作に応答してたとえば第2電動機MG2に連結されたサンギヤS2の外周歯とそのサンギヤS2の外周歯に噛み合うピニオンギヤP2の外周歯とのバックラッシュが詰められた際にブレーキBKが滑ってキャリヤC2の回転が許容されるので、そのバックラッシュが詰まった際の衝撃力が低減されるなど、前述の実施例1と同様の効果が得られる。
 図17~図19は、前述の実施例1のハイブリッド車両用駆動装置10に替えて、本発明が好適に適用される他のハイブリッド車両用駆動装置160、170、180の構成および作動をそれぞれ説明する共線図である。前述と同様に、第1遊星歯車装置14におけるサンギヤS1、キャリヤC1、リングギヤR1の相対的な回転速度を実線L1で、第2遊星歯車装置16におけるサンギヤS2、キャリヤC2、リングギヤR2の相対的な回転速度を破線L2でそれぞれ示している。ハイブリッド車両用駆動装置160では、第1遊星歯車装置14のサンギヤS1、キャリヤC1、およびリングギヤR1は、第1電動機MG1、エンジン12、および第2電動機MG2にそれぞれ連結され、第2遊星歯車装置16のサンギヤS2、キャリヤC2、およびリングギヤR2は、第2電動機MG2、出力回転部材30、およびブレーキBKを介して非回転部材26にそれぞれ連結され、サンギヤS1とリングギヤR2とがクラッチCLを介して選択的に連結されている。前記リングギヤR1とサンギヤS2とが相互に連結されている。ハイブリッド車両用駆動装置170では、第1遊星歯車装置14のサンギヤS1、キャリヤC1、およびリングギヤR1は、第1電動機MG1、出力回転部材30、およびエンジン12にそれぞれ連結され、第2遊星歯車装置16のサンギヤS2、キャリヤC2、およびリングギヤR2は、第2電動機MG2、出力回転部材30、およびブレーキBKを介して非回転部材26にそれぞれ連結され、サンギヤS1とリングギヤR2とがクラッチCLを介して選択的に連結されている。前記キャリヤC1及びC2が相互に連結されている。ハイブリッド車両用駆動装置180では、第1遊星歯車装置14のサンギヤS1、キャリヤC1、およびリングギヤR1は、第1電動機MG1、出力回転部材30、およびエンジン12にそれぞれ連結され、第2遊星歯車装置16のサンギヤS2、キャリヤC2、およびリングギヤR2は、第2電動機MG2、ブレーキBKを介して非回転部材26、および出力回転部材30にそれぞれ連結され、リングギヤR1とキャリヤC2とがクラッチCLを介して選択的に連結されている。前記キャリアC1とリングギヤR2とが相互に連結されている。
 図17~図19の実施例では、前述の実施例1の電子制御装置40をそれぞれ設けることにより、ブレーキBKを係合させたEV-1モード又はEV-2モードによる電動機走行における減速走行中の加速操作時に、ブレーキ解放制御部76でブレーキBKの解放又は半係合によりその係合容量が一時的に低下させられた後、ブレーキ係合制御部82でブレーキBKを再係合されるので、前述の実施例1と同様の効果が得られる。
 図17~図19に示す実施例では、前述した図4~7、図11~16等に示す実施例と同様に、共線図上において4つの回転要素を有する(4つの回転要素として表現される)第1差動機構としての第1遊星歯車装置14及び第2差動機構としての第2遊星歯車装置16、16′と、それら4つの回転要素にそれぞれ連結された第1電動機MG1、第2電動機MG2、エンジン12、及び出力回転部材(出力歯車30)とを、備え、前記4つの回転要素のうちの1つは、前記第1遊星歯車装置14の回転要素と前記第2遊星歯車装置16、16′の回転要素とがクラッチCLを介して選択的に連結され、そのクラッチCLによる係合対象となる前記第2遊星歯車装置16、16′の回転要素が、非回転部材であるハウジング26に対してブレーキBKを介して選択的に連結されるハイブリッド車両の駆動制御装置である点で、共通している。すなわち、図8等を用いて前述した本発明のハイブリッド車両の駆動制御装置は、図17~図19に示す構成にも好適に適用される。
 また、図17~図19に示す実施例は、図4~7、図11~16に示す実施例と同様に、前記第1遊星歯車装置14は、前記第1電動機MG1に連結された第1回転要素としてのサンギヤS1、前記エンジン12に連結された第2回転要素としてのキャリアC1、及び前記出力歯車30に連結された第3回転要素としてのリングギヤR1を備え、前記第2遊星歯車装置16(16′)は、前記第2電動機MG2に連結された第1回転要素としてのサンギヤS2(S2′)、第2回転要素としてのキャリアC2(C2′)、及び第3回転要素としてのリングギヤR2(R2′)を備え、それらキャリアC2(C2′)及びリングギヤR2(R2′)の何れか一方が前記第1遊星歯車装置14のリングギヤR1に連結されたものであり、前記クラッチCLは、前記第1遊星歯車装置14におけるキャリアC1と、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素とを選択的に係合させるものであり、前記ブレーキBKは、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素を、非回転部材であるハウジング26に対して選択的に係合させるものである。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 本実施例の電子制御装置40において、図10に示すように、バックラッシュ詰め制御部78に対応するS4およびギヤバックラッシュ詰め判定部80に対応するS5が設けられていたが、これらが必ずしも設けられる必要はない。すなわち、加速操作判定部74に対応するS2でアクセルペダルが踏み込まれて電動機加速制御部84に対応するS7で第2電動機MG2から運転者が要求する要求駆動力が出力される際に、ブレーキ解放制御部76に対応するS3でブレーキ係合制御部82に対応するS6が実行されるまでの予め実験等により定められた時間だけ一時的にブレーキBKの係合容量を低下させる。これによって、電動機加速制御部84によって第2電動機MG2が回転駆動してサンギヤS2の外周歯とピニオンギヤP2の外周歯とのバックラッシュが詰まった際にブレーキBKが滑るので、サンギヤS2の外周歯とピニオンギヤP2の外周歯とのバックラッシュが詰まった際の衝撃力が低減され歯打ち音が低減される。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10、100、110、120、130、140、150、160、170、180:ハイブリッド車両用駆動装置
12:エンジン
14:第1遊星歯車装置(第1差動機構)
16、16′:第2遊星歯車装置(第2差動機構)
26:ハウジング(ケース、非回転部材)
30:出力歯車(出力回転部材)
40、:電子制御装置(駆動制御装置)
74:加速操作判定部(加速操作判定手段)
76:ブレーキ解放制御部(ブレーキ解放制御手段)
82:ブレーキ係合制御部(ブレーキ係合制御手段)
MG1:第1電動機
MG2:第2電動機
BK:ブレーキ
CL:クラッチ

Claims (4)

  1.  全体として4つの回転要素を有する第1差動機構及び第2差動機構と、該4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、
     前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、
     該クラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置であって、
     前記ブレーキを係合させた電動機走行における減速走行中の加速操作時に、前記ブレーキの係合容量を一時的に低下させた後再度係合することを特徴とするハイブリッド車両の駆動制御装置。
  2.  前記加速操作時に、前記ブレーキが解放されることにより前記ブレーキの係合容量を一時的に低下させられる請求項1のハイブリッド車両の駆動制御装置。
  3.  前記加速操作時に、前記ブレーキが半係合とされることにより前記ブレーキの係合容量を一時的に低下させられる請求項1のハイブリッド車両の駆動制御装置。
  4.  前記第1差動機構は、前記第1電動機に連結された第1回転要素、前記エンジンに連結された第2回転要素、及び前記出力回転部材に連結された第3回転要素を備えたものであり、
     前記第2差動機構は、前記第2電動機に連結された第1回転要素、第2回転要素、及び第3回転要素を備え、それら第2回転要素及び第3回転要素の何れか一方が前記第1差動機構における第3回転要素に連結されたものであり、
     前記クラッチは、前記第1差動機構における第2回転要素と、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素とを選択的に係合させるものであり、
     前記ブレーキは、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素を、前記非回転部材に対して選択的に係合させるものである
     請求項1から3の何れか1項に記載のハイブリッド車両の駆動制御装置。
PCT/JP2012/057818 2012-03-26 2012-03-26 ハイブリッド車両の駆動制御装置 WO2013145099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280071721.0A CN104245458A (zh) 2012-03-26 2012-03-26 混合动力车辆的驱动控制装置
DE112012006097.0T DE112012006097T5 (de) 2012-03-26 2012-03-26 Antriebssteuervorrichtung für ein Hybridfahrzeug
PCT/JP2012/057818 WO2013145099A1 (ja) 2012-03-26 2012-03-26 ハイブリッド車両の駆動制御装置
US14/387,759 US20150018152A1 (en) 2012-03-26 2012-03-26 Hybrid vehicle drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057818 WO2013145099A1 (ja) 2012-03-26 2012-03-26 ハイブリッド車両の駆動制御装置

Publications (1)

Publication Number Publication Date
WO2013145099A1 true WO2013145099A1 (ja) 2013-10-03

Family

ID=49258469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057818 WO2013145099A1 (ja) 2012-03-26 2012-03-26 ハイブリッド車両の駆動制御装置

Country Status (4)

Country Link
US (1) US20150018152A1 (ja)
CN (1) CN104245458A (ja)
DE (1) DE112012006097T5 (ja)
WO (1) WO2013145099A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405232B1 (ko) * 2013-07-17 2014-06-20 현대자동차 주식회사 하이브리드 자동차의 동력전달장치
US9260105B2 (en) * 2013-08-05 2016-02-16 GM Global Technology Operations LLC System and method of power management for a hybrid vehicle
JP2015205638A (ja) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101584013B1 (ko) * 2014-11-25 2016-01-20 현대자동차주식회사 하이브리드 차량용 파워트레인
KR101584012B1 (ko) 2014-11-25 2016-01-11 현대자동차주식회사 하이브리드 차량용 파워트레인
KR101637743B1 (ko) 2014-11-25 2016-07-21 현대자동차주식회사 하이브리드 차량용 파워트레인
JP6319132B2 (ja) * 2015-02-18 2018-05-09 トヨタ自動車株式会社 ハイブリッド車両
JP6888497B2 (ja) * 2017-09-21 2021-06-16 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN110553016A (zh) * 2018-06-02 2019-12-10 罗灿 变线速减速离合器
CN109515427B (zh) * 2018-10-23 2020-08-07 吉利汽车研究院(宁波)有限公司 混合动力车辆的驱动装置及混合动力车辆
JP7131417B2 (ja) * 2019-02-01 2022-09-06 トヨタ自動車株式会社 車両の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667931U (ja) * 1993-02-28 1994-09-22 自動車部品工業株式会社 湿式クラッチを備えた減速機のガラ音防止装置
JP2005199942A (ja) * 2004-01-19 2005-07-28 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力伝達装置
WO2010052766A1 (ja) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518063B2 (ja) * 2000-07-11 2010-08-04 アイシン・エィ・ダブリュ株式会社 駆動装置
KR100954716B1 (ko) * 2004-04-27 2010-04-23 도요타 지도샤(주) 차량용 구동 시스템을 위한 제어 장치
JP2008013041A (ja) * 2006-07-06 2008-01-24 Denso Corp 内燃機関の停止制御装置
US7712560B2 (en) * 2006-09-06 2010-05-11 Ford Global Technologies, Llc Hybrid electric vehicle powertrain
KR101113576B1 (ko) * 2009-11-09 2012-02-22 현대자동차주식회사 하이브리드 차량의 변속기
KR101283039B1 (ko) * 2011-06-09 2013-07-05 현대자동차주식회사 하이브리드 차량의 동력전달장치
RU2014102260A (ru) * 2011-07-27 2015-09-10 Тойота Дзидося Кабусики Кайся Приводной механизм гибридного транспортного средства
DE112011105511T5 (de) * 2011-08-10 2014-04-24 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeugantriebsvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667931U (ja) * 1993-02-28 1994-09-22 自動車部品工業株式会社 湿式クラッチを備えた減速機のガラ音防止装置
JP2005199942A (ja) * 2004-01-19 2005-07-28 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに動力伝達装置
WO2010052766A1 (ja) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法

Also Published As

Publication number Publication date
CN104245458A (zh) 2014-12-24
US20150018152A1 (en) 2015-01-15
DE112012006097T5 (de) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013145099A1 (ja) ハイブリッド車両の駆動制御装置
JP6114255B2 (ja) ハイブリッド車両の駆動制御装置
JP5874814B2 (ja) ハイブリッド車両の駆動制御装置
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
JP5884898B2 (ja) ハイブリッド車両の駆動制御装置
WO2013145100A1 (ja) ハイブリッド車両の駆動制御装置
JP5846219B2 (ja) ハイブリッド車両の駆動制御装置
WO2013140546A1 (ja) ハイブリッド車両の駆動制御装置
JP5884896B2 (ja) ハイブリッド車両の駆動制御装置
JP5971330B2 (ja) ハイブリッド車両の駆動制御装置
JP5884893B2 (ja) ハイブリッド車両の駆動制御装置
JP6024740B2 (ja) ハイブリッド車両の駆動制御装置
WO2013145089A1 (ja) ハイブリッド車両の駆動制御装置
JP5954408B2 (ja) ハイブリッド車両の駆動制御装置
WO2013140545A1 (ja) ハイブリッド車両の駆動制御装置
WO2013140539A1 (ja) ハイブリッド車両の駆動制御装置
JP2013203388A (ja) ハイブリッド車両の駆動制御装置
JP2013203386A (ja) ハイブリッド車両の駆動制御装置
JP5924402B2 (ja) ハイブリッド車両の駆動制御装置
WO2013145098A1 (ja) ハイブリッド車両の駆動制御装置
JP2013203385A (ja) ハイブリッド車両の駆動制御装置
JP2013203383A (ja) ハイブリッド車両の駆動制御装置
JPWO2013145099A1 (ja) ハイブリッド車両の駆動制御装置
JP2013203387A (ja) ハイブリッド車両の駆動制御装置
JP2013203382A (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387759

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014507070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120060970

Country of ref document: DE

Ref document number: 112012006097

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872567

Country of ref document: EP

Kind code of ref document: A1