WO2013145079A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013145079A1
WO2013145079A1 PCT/JP2012/057749 JP2012057749W WO2013145079A1 WO 2013145079 A1 WO2013145079 A1 WO 2013145079A1 JP 2012057749 W JP2012057749 W JP 2012057749W WO 2013145079 A1 WO2013145079 A1 WO 2013145079A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating point
power
output
power conversion
voltage
Prior art date
Application number
PCT/JP2012/057749
Other languages
English (en)
French (fr)
Inventor
中林 弘一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/057749 priority Critical patent/WO2013145079A1/ja
Priority to JP2014507050A priority patent/JP5646112B2/ja
Publication of WO2013145079A1 publication Critical patent/WO2013145079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a power conversion device that converts a DC voltage source such as a solar cell into AC power and operates in conjunction with a system.
  • Power converters that operate in conjunction with the grid by extracting power from a DC voltage source with output impedance, such as a solar cell, perform maximum power point tracking control to maximize the power extracted from the DC voltage source. Implemented. Thereby, it always operates to output the maximum power.
  • Patent Document 1 discloses a power conversion device configured to perform power control and shift to a steady operation in which power is supplied to a load after the output of a solar battery power source reaches an optimum operating point.
  • the present invention has been made in view of the above, and is a power conversion that allows a user to recognize whether the DC power source is operating at the maximum power point (that is, whether the maximum power can be extracted from the DC voltage source).
  • the object is to obtain a device.
  • the present invention converts power supplied from a DC voltage source into AC power by maximum power point tracking control, and operates in conjunction with a system.
  • An operating point estimating means for estimating whether or not the DC voltage source is operating near an optimum operating point based on output power from the DC voltage source, and an estimation result in the operating point estimating means.
  • Display means for displaying the relationship between the optimum operating point and the actual operating point.
  • the power conversion device of the present invention there is an effect that the user can easily know the operation state of the solar cell and can know whether or not the operation near the optimum operation point is realized. Furthermore, there is an effect that it is possible to quickly detect the possibility of an abnormality in the apparatus.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a power conversion device according to the present invention.
  • FIG. 2 is a diagram illustrating a display example of the operation state of the solar cell.
  • FIG. 3 is a diagram illustrating an example of operation waveforms of each unit of the power conversion device.
  • FIG. 4 is a diagram illustrating a configuration example of a second embodiment of the power conversion device according to the present invention.
  • FIG. 5 is a diagram illustrating an example of an operation waveform of each unit of the power conversion device.
  • FIG. 6 is a diagram illustrating an example of operation waveforms of each unit of the power conversion device.
  • FIG. 7 is a figure which shows the structural example of Embodiment 3 of the power converter device concerning this invention.
  • FIG. 8 is a diagram illustrating a characteristic example of a solar cell.
  • FIG. 9 is a diagram illustrating a configuration example of a power conversion device according to a fourth embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a characteristic example of a solar cell.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a power conversion device according to the present invention.
  • the power converter shown in FIG. 1 includes a solar cell 1 as a DC voltage source, an AC system 2 that is connected, a power converter 3 that converts DC power output from the solar cell 1 into AC power, A current measurement unit 7 that measures the output current of the battery 1, a voltage measurement unit 8 that measures the output voltage of the solar cell 1, a measurement result (current measurement value Is) by the current measurement unit 7, and a measurement result by the voltage measurement unit 8
  • a power calculation unit 9 that calculates power from (voltage measurement value Vs), an operating point estimation unit 10 that estimates the operating point of the solar cell 1 from the power value Ps calculated by the power calculation unit 9, and an operating point estimation unit 10
  • the display part 14 which displays the operation state of the solar cell 1 based on the estimation result in is provided.
  • the power converter 3 includes a step-up / step-down circuit 4 that steps up or down the output voltage of the solar cell 1, a smoothing circuit 5 that smoothes the output of the step-up / down circuit 4, and the DC power that has been smoothed by the smoothing circuit 5 into AC power.
  • the power conversion unit 3 converts the DC power supplied from the solar cell 1 into AC power by maximum power point tracking control similar to that of a conventional general power conversion device. Therefore, detailed description of each component included in the power conversion unit 3 is omitted.
  • the operating point estimation unit 10 includes a total fluctuation component calculation unit 11 that calculates the total fluctuation component of the power value calculated by the power calculation unit 9 and an inverter among the total fluctuation component of the power value calculated by the power calculation unit 9.
  • a solar cell based on a quadruple frequency component calculation unit 12 that calculates a frequency component that is four times the fundamental frequency of the output current, a calculation result in the total variation component calculation unit 11 and a calculation result in the quadruple frequency component calculation unit 12 And a divider 13 for calculating one operating point.
  • FIG. 3 is a diagram showing an example of the operation waveform of each part when the output voltage of the solar cell 1 is operating near the optimum operating point in the power conversion device of the first embodiment.
  • FIG. 3A shows the output current waveform of the inverter circuit 6 when the frequency of the AC system 2 is 50 Hz and the AC system 2 is operated in conjunction with the frequency.
  • the output current phase of the inverter circuit 6 is controlled to coincide with the voltage phase of the AC system 2, and the cycle is 20 msec.
  • FIG. 3B shows a fundamental wave component waveform obtained by removing a high frequency component caused by PWM switching of the inverter circuit 6 from the current flowing through the smoothing circuit 5.
  • FIG. 3C shows a voltage ripple waveform generated at both ends of the smoothing circuit 5 due to the current flowing through the smoothing circuit 5.
  • FIG. 3D shows a current ripple waveform generated at the output of the solar cell 1 due to the voltage ripple generated at both ends of the smoothing circuit 5 (FIG. 3C).
  • FIG. 3E shows the power Ps calculated by the power calculation unit 9 from the amount of electricity (current measurement value Is, voltage measurement value Vs) measured by the current measurement unit 7 and the voltage measurement unit 8.
  • the power value Ps output from the power calculation unit 9 is input to the total variation component calculation unit 11 and the quadruple frequency component calculation unit 12 that constitute the operating point estimation unit 10.
  • Total fluctuation component calculation unit 11 and quadruple frequency component calculation unit 12 respectively calculate the magnitude of the total fluctuation of power value Ps and the magnitude of the quadruple frequency component (a frequency component that is four times the fundamental frequency of the inverter output current). Calculate. Then, the divider 13 divides the output of the quadruple frequency component computing unit 12 (the magnitude of the quadruple frequency component) by the output of the total fluctuation component computing unit 11 (the magnitude of the total fluctuation), thereby quadrupling the frequency. Find the proportion of component sizes.
  • the display unit 14 displays the operating point of the solar cell 1 as a bar graph in accordance with the ratio of the magnitude of the quadruple frequency component obtained by the operating point estimation unit 10 (see FIG. 2).
  • the bar graph display is completely turned off when the ratio of the size of the quadruple frequency component is zero.
  • every time the ratio of the size of the quadruple frequency component increases by 15% one unit is turned on from the left, and when it is 90% or more, all units are turned on.
  • the bar graph display on the display unit 14 is fully lit, the user can recognize that the solar cell 1 is in an ideal state operating near the optimum operating point.
  • the display unit 14 indicates whether or not the solar cell 1 that is a DC voltage source is operating near the optimal operating point by lighting a bar graph lamp.
  • other methods such as numerical display, graph display (other than bar graph), lamp display (normal / abnormal), etc. may be used.
  • the power conversion device of the present embodiment includes the total fluctuation component of the power output from the solar cell 1 and the quadruple frequency component output when the solar cell 1 is operating near the optimum operating point.
  • the ratio of the quadruple frequency component to the total output power is calculated based on (four times the frequency component of the fundamental frequency), and the calculation result is displayed on the display unit 14. Since the calculation result indicates the rate of operation near the optimal operating point, the user can easily know the operating state of the solar cell 1 (whether it is an ideal state operating near the optimal operating point). Can do. Further, when the apparatus is not operating at the optimum operating point due to an abnormality in the apparatus, the number of bar graph lamps is reduced, so that it is possible to quickly detect the possibility of an abnormality in the apparatus.
  • the operating point is estimated and displayed during operation of the power conversion unit 3, even if the IV characteristics change due to fluctuations in solar radiation, the user can always be notified of the correct result.
  • FIG. FIG. 4 is a diagram illustrating a configuration example of a second embodiment of the power conversion device according to the present invention.
  • the power conversion device of the present embodiment has a configuration in which the operating point estimation unit 10 provided in the power conversion device of Embodiment 1 (see FIG. 1) is replaced with an operating point estimation unit 20.
  • the components other than the operating point estimation unit 20 are the same as those in the first embodiment. Therefore, description of parts other than the operating point estimation unit 20 is omitted.
  • the operating point estimation unit 20 includes a current waveform difference calculation unit 21, a voltage waveform difference calculation unit 22, and a multiplier 23.
  • the current waveform difference calculation unit 21 obtains the magnitude of the difference between the pulsation waveform of the output current Is of the solar cell 1 and the pulsation waveform of the output power Ps.
  • the voltage waveform difference calculation unit 22 obtains the magnitude of the difference between the pulsation waveform of the output voltage Vs of the solar cell 1 and the pulsation waveform of the output power Ps.
  • FIG. 5 is a diagram illustrating an example of an operation waveform of each part when the output voltage of the solar cell 1 is operating at a voltage lower than the optimum operating point in the power conversion device of the second embodiment.
  • FIG. 6 is a diagram illustrating an example of an operation waveform of each part when the output voltage of the solar cell 1 is operating at a voltage higher than the optimum operating point in the power conversion device of the second embodiment.
  • the DC voltage source has characteristics close to those of the current source in the voltage region where the operating point is lower than the optimum operating point.
  • the ripple waveform of the electric power Ps becomes the same waveform as the voltage ripple waveform shown in FIG.
  • the DC voltage source has characteristics close to those of the voltage source. Therefore, the ripple waveform of the power Ps calculated by the power calculation unit 9 is as shown in FIG. The waveform is the same as the current ripple waveform shown in FIG.
  • the ripple waveform of the power Ps calculated by the power calculating unit 9 is as shown in FIG. 3 (e), as shown in FIG. 3 (c) and FIG. 3 (d). It becomes a waveform different from both.
  • the current waveform difference calculation unit 21 calculates the difference between the current ripple waveform and the power ripple waveform
  • the voltage waveform difference calculation unit 22 calculates the voltage ripple waveform and the power ripple waveform.
  • the multiplier 23 multiplies these calculation results to obtain an operating point estimation result.
  • the output of the current waveform difference calculating unit 21 or the voltage waveform difference calculating unit 22 is small, so the output (multiplication) of the operating point estimating unit 20
  • the calculation result of the device 23 becomes relatively small.
  • the outputs of the current waveform difference calculating unit 21 and the voltage waveform difference calculating unit 22 are both large, so that the calculation result of the operating point estimating unit 20 is relatively large.
  • the display unit 14 is, for example, completely turned off when the calculation result of the operating point estimation unit 20 is 0, and increases the number of lights as the calculation result increases.
  • the operating point estimation unit 20 calculates the difference between the current ripple waveform and the power ripple waveform and the difference between the voltage ripple waveform and the power ripple waveform, and the calculation results thereof.
  • the operating point estimation results were obtained by multiplying each other. Also in this case, the same effect as in the first embodiment can be obtained.
  • FIG. FIG. 7 is a figure which shows the structural example of Embodiment 3 of the power converter device concerning this invention.
  • the power conversion device according to the present embodiment has a configuration in which the operating point estimation unit 10 included in the power conversion device according to the first embodiment (see FIG. 1) is replaced with an operating point estimation unit 30.
  • the components other than the operating point estimation unit 30 are the same as those in the first embodiment. Therefore, description of parts other than the operating point estimation unit 30 is omitted.
  • the operating point estimation unit 30 includes a time differentiator 31 that performs time differentiation on the output power Ps of the solar cell 1, a time differentiator 32 that performs time differentiation on the output voltage Vs of the solar cell 1, and a time differentiator. And a divider 33 that divides the operation result in 31 by the operation result in the time differentiator 32.
  • FIG. 8 is a diagram illustrating an example of characteristics of the solar cell 1.
  • the current Is characteristic with respect to the voltage Vs on the horizontal axis the power Ps characteristic with respect to the voltage Vs, and the voltage derivative of power that is the result of dividing the time derivative of Ps with respect to the voltage Vs by the time derivative of Vs.
  • the characteristic of value dPs / dVs is shown.
  • the voltage differential value dPs / dVs of power (output of the operating point estimation unit 30) is 0.
  • the voltage differential value dPs / dVs of power is a positive value, and the maximum value is equal to the current Is.
  • the voltage differential value dPs / dVs of power is a negative value.
  • the operating point estimation unit 30 of the present embodiment calculates the voltage differential value dPs / dVs of electric power and obtains the operating point estimation result.
  • the display unit 14 is fully lit when, for example, the absolute value of the voltage differential value dPs / dVs of power is close to 0 (below a predetermined value), and the number of lighting is reduced as the absolute value increases.
  • the operating point estimation unit 30 obtains the absolute value of the voltage differential value dPs / dVs of power, and operates near the optimal operating point based on this absolute value. Decided to determine whether or not. Also in this case, the same effect as in the first embodiment can be obtained.
  • FIG. 9 is a diagram illustrating a configuration example of a power conversion device according to a fourth embodiment of the present invention.
  • the power conversion device according to the present embodiment has a configuration in which the operating point estimation unit 10 included in the power conversion device according to the first embodiment (see FIG. 1) is replaced with an operating point estimation unit 40.
  • the components other than the operating point estimation unit 40 are the same as those in the first embodiment. Therefore, description of parts other than the operating point estimation unit 40 is omitted.
  • the operating point estimation unit 40 includes a time differentiator 41 that performs time differentiation on the output power Ps of the solar cell 1, a time differentiator 42 that performs time differentiation on the output voltage Vs of the solar cell 1, and a time differentiator. And an arithmetic unit 43 that calculates the operating point estimation result using the calculation results in 41 and 42 and the output current Is of the solar cell 1.
  • the computing unit 43 first obtains a voltage differential value dPs / dVs of power, and then divides this differential value by the output current Is of the solar cell 1, and the obtained result (dPs / dVs / Is) is an operating point. It is assumed that
  • FIG. 10 is a diagram illustrating a characteristic example of the solar cell 1, and shows a calculation result (dPs / dVs / Is) by the calculator 43 instead of dPs / dVs of FIG. 8 described in the third embodiment. It is.
  • the calculation result by the calculator 43 (the output of the operating point estimation unit 40) is zero.
  • the calculation result is a positive value
  • the calculation result is a negative value.
  • the difference from the operating point estimation unit 30 shown in the third embodiment is the maximum value of the output, and the maximum value of the output of the operating point estimation unit 40 is 1 regardless of the current Is.
  • the display unit 14 is fully lit when the absolute value of the output of the operating point estimation unit 40 is close to 0, and the number of lighting is reduced as the absolute value increases. When the absolute value is close to 1, all lights are turned off.
  • the operating point estimation unit 40 is near the optimal operating point based on the result of dividing the voltage differential value dPs / dVs of power by the output current Is of the solar cell 1. I decided to determine if it was working. Also in this case, the same effect as in the first embodiment can be obtained.
  • Embodiment 3 when operating at a voltage different from the optimum operating point, the dPs / dVs calculation value changes depending on the solar radiation intensity (power generation amount). However, in this embodiment, the solar radiation intensity changes. Even so, the calculated value of dPs / dVs / Is does not change. Therefore, when not operating at the optimum operating point, it is possible to display more accurately how much the deviation occurs from the optimum operating point than the power conversion device of the third embodiment.
  • the present invention is useful as a power conversion device that converts a DC voltage source such as a solar cell into AC power and operates in conjunction with a system.

Abstract

 直流電圧源の最適動作点で動作しているかを使用者が認知可能な電力変換装置を得ることを目的とする。本発明は、太陽電池1から供給された電力を最大電力点追従制御により交流電力に変換し、AC系統2へ連系して動作する電力変換装置であって、太陽電池1の出力電力に基づいて、太陽電池1が最適動作点付近で動作しているか否か推定する動作点推定部10と、動作点推定部10における推定結果に基づいて、最適動作点と実際の動作点の関係を表示する表示部14と、を備える。

Description

電力変換装置
 本発明は、太陽電池等の直流電圧源を交流電力へ変換し、系統へ連系して動作する電力変換装置に関する。
 太陽電池などのように出力インピーダンスを持つ直流電圧源から電力を取り出して、系統に連系して動作する電力変換装置は、直流電圧源から取り出す電力を最大にするための最大電力点追従制御を実装している。これにより常に最大電力を出力するよう動作する。
 例えば、太陽電池電源の起動時に、太陽電池のI-V特性を測定すると共に、このI-V特性から電力値を求めることにより最適動作点を検知し、最適動作点を制御目標に設定して電力制御を行い、太陽電池電源の出力が最適動作点に到達した後に、負荷に対して給電を行う定常運転に移行するように構成した電力変換装置が特許文献1で開示されている。
特許第3373896号公報
 上記のような構成の従来の電力変換装置においては、日照変動によりI-V特性が変化した場合や装置の異常などにより最適動作点で動作していない状態であっても、使用者はそれを認知できない。その結果、ある期間において積算電力量が減少していても、その原因が日照条件の低下なのか、装置の異常なのかを判断することができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、直流電圧源の最大電力点で動作しているか(すなわち、直流電圧源から最大電力を取り出せているか)を使用者が認知可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、直流電圧源から供給された電力を最大電力点追従制御により交流電力に変換し、系統へ連系して動作する電力変換装置であって、前記直流電圧源からの出力電力に基づいて、前記直流電圧源が最適動作点付近で動作しているか否か推定する動作点推定手段と、前記動作点推定手段における推定結果に基づいて、最適動作点と実際の動作点の関係を表示する表示手段と、を備えることを特徴とする。
 本発明にかかる電力変換装置によれば、使用者が太陽電池の動作状態を容易に知ることができ、最適動作点付近での動作が実現できているかどうかを知ることができるという効果を奏する。さらに、装置に異常がある可能性をいち早く察知することができる、という効果を奏する。
図1は、本発明にかかる電力変換装置の実施の形態1の構成例を示す図である。 図2は、太陽電池の動作状態の表示例を示す図である。 図3は、電力変換装置の各部の動作波形の一例を示す図である。 図4は、本発明にかかる電力変換装置の実施の形態2の構成例を示す図である。 図5は、電力変換装置の各部の動作波形の一例を示す図である。 図6は、電力変換装置の各部の動作波形の一例を示す図である。 図7は、本発明にかかる電力変換装置の実施の形態3の構成例を示す図である。 図8は、太陽電池の特性例を示す図である。 図9は、本発明にかかる電力変換装置の実施の形態4の構成例を示す図である。 図10は、太陽電池の特性例を示す図である。
 以下に、本発明にかかる電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる電力変換装置の実施の形態1の構成例を示す図である。図1に示した電力変換装置は、直流電圧源としての太陽電池1と、連系するAC系統2と、太陽電池1から出力された直流電力を交流電力に変換する電力変換部3と、太陽電池1の出力電流を計測する電流計測部7と、太陽電池1の出力電圧を計測する電圧計測部8と、電流計測部7による計測結果(電流計測値Is)および電圧計測部8による計測結果(電圧計測値Vs)から電力を演算する電力演算部9と、電力演算部9により演算された電力値Psから太陽電池1の動作点を推定する動作点推定部10と、動作点推定部10における推定結果に基づいて太陽電池1の動作状態の表示を行う表示部14と、を備える。
 電力変換部3は、太陽電池1の出力電圧を昇圧または降圧する昇降圧回路4と、昇降圧回路4の出力を平滑する平滑回路5と、平滑回路5で平滑された直流電力を交流電力へ変換するインバータ回路6と、を備える。この電力変換部3は、従来の一般的な電力変換装置と同様の最大電力点追従制御により、太陽電池1から供給された直流電力を交流電力に変換する。そのため、電力変換部3が備えている各構成要素については詳細な説明を省略する。
 動作点推定部10は、電力演算部9により演算された電力値の全変動成分を演算する全変動成分演算部11と、電力演算部9により演算された電力値の全変動成分のうち、インバータ出力電流の基本周波数の4倍の周波数成分を演算する4倍周波数成分演算部12と、全変動成分演算部11での演算結果および4倍周波数成分演算部12での演算結果に基づいて太陽電池1の動作点を演算する除算器13と、を備える。
 図2は、本実施の形態の電力変換装置の表示部14が表示する内容の一例、すなわち、太陽電池1の動作状態の表示例を示す図である。なお、最大電力点=最適動作点である。
 図3は、実施の形態1の電力変換装置において、太陽電池1の出力電圧が最適動作点付近で動作している場合の各部の動作波形の一例を示す図である。
 図3(a)は、AC系統2の周波数を50Hzとし、これに連系して運転させたときのインバータ回路6の出力電流波形である。インバータ回路6の出力電流位相はAC系統2の電圧位相に一致するよう制御されており、周期は20msecである。
 図3(b)は、平滑回路5に流れる電流のうち、インバータ回路6のPWMスイッチングにともなう高周波成分を除いた基本波成分波形である。
 図3(c)は、平滑回路5に流れる電流により、この平滑回路5の両端に発生する電圧リプル波形である。
 図3(d)は、上記の平滑回路5の両端に発生する電圧リプル(図3(c))により、太陽電池1の出力に発生する電流リプル波形である。
 図3(e)は、電流計測部7および電圧計測部8で計測された電気量(電流計測値Is,電圧計測値Vs)から電力演算部9が演算した電力Psである。太陽電池1が最適動作点付近で動作している場合は、図3(e)のように、インバータ回路6の出力電流の基本波周波数の4倍の成分のリプルが観測される。
 電力演算部9から出力された電力値Psは、動作点推定部10を構成する全変動成分演算部11および4倍周波数成分演算部12に入力される。全変動成分演算部11および4倍周波数成分演算部12は、それぞれ、電力値Psの全変動の大きさおよび4倍周波数成分(インバータ出力電流の基本周波数の4倍の周波数成分)の大きさを演算する。そして、除算器13が、4倍周波数成分演算部12の出力(4倍周波数成分の大きさ)を全変動成分演算部11の出力(全変動の大きさ)で除すことで、4倍周波数成分の大きさの割合を求める。
 表示部14は、動作点推定部10で求められた4倍周波数成分の大きさの割合に応じて、太陽電池1の動作点をバーグラフで表示する(図2参照)。図2に示した表示例において、バーグラフ表示は、4倍周波数成分の大きさの割合が0のとき、全消灯となる。また、4倍周波数成分の大きさの割合が15%増加するごとに左から1単位ずつ点灯させ、90%以上では全点灯となる。ユーザーは、表示部14へのバーグラフ表示が全点灯の場合、太陽電池1が最適動作点付近で動作している理想的な状態であることを認識できる。
 ここでは、表示部14が、動作点推定部10の演算結果に基づいて、直流電圧源である太陽電池1が最適動作点付近で動作しているか否かをバーグラフ状のランプの点灯で示すようにしたが、他の方法、例えば、数値表示、グラフ表示(バーグラフ以外)、ランプ表示(正常/異常など)などを使用してもよい。
 このように、本実施の形態の電力変換装置は、太陽電池1から出力される電力の全変動成分と、太陽電池1が最適動作点付近で動作している場合に出力される4倍周波数成分(基本周波数の4倍の周波数成分)とに基づいて、出力された全電力に対する4倍周波数成分の割合を算出し、算出結果を表示部14に表示させることとした。算出結果は、最適動作点付近で動作している割合を示すので、使用者は容易に太陽電池1の動作状態(最適動作点付近で動作している理想的な状態か否か)を知ることができる。また装置の異常などにより最適動作点で動作していない時は、バーグラフ状のランプ点灯数が少なくなるため、装置に異常がある可能性をいち早く察知することができる。
 また、動作点の推定および表示を電力変換部3の運転中に行うため、日射変動によりI-V特性が変化した場合でも常に正しい結果をユーザーへ知らせることができる。
実施の形態2.
 図4は、本発明にかかる電力変換装置の実施の形態2の構成例を示す図である。本実施の形態の電力変換装置は、実施の形態1の電力変換装置(図1参照)が備えていた動作点推定部10を動作点推定部20に置き換えた構成となっている。動作点推定部20以外については実施の形態1と同様である。そのため、動作点推定部20以外の部分については説明を省略する。
 動作点推定部20は、電流波形差異演算部21、電圧波形差異演算部22および乗算器23を備えている。
 電流波形差異演算部21は、太陽電池1の出力電流Isの脈動波形と出力電力Psの脈動波形との差の大きさを求める。電圧波形差異演算部22は、太陽電池1の出力電圧Vsの脈動波形と出力電力Psの脈動波形との差の大きさを求める。
 図5は、実施の形態2の電力変換装置において、太陽電池1の出力電圧が最適動作点よりも低い電圧で動作している場合の各部の動作波形の一例を示す図である。
 図6は、実施の形態2の電力変換装置において、太陽電池1の出力電圧が最適動作点よりも高い電圧で動作している場合の各部の動作波形の一例を示す図である。
 図5および図6において、(a)~(e)は、実施の形態1で使用した図3の(a)~(e)にそれぞれ対応する。
 直流電圧源が太陽電池モジュールである太陽電池1の場合は、動作点が最適動作点よりも低い電圧の領域では、直流電圧源は電流源に近い特性になるため、電力演算部9で演算される電力Psのリプル波形は図5(e)のごとく、図5(c)に示す電圧リプル波形と同様の波形となる。また、動作点が最適動作点よりも高い電圧の領域では、直流電圧源は電圧源に近い特性になるため、電力演算部9で演算される電力Psのリプル波形は図6(e)のごとく、図6(d)に示す電流リプル波形と同様の波形となる。
 これに対して、動作点が最適動作点付近の場合は、電力演算部9で演算される電力Psのリプル波形は図3(e)のごとく、図3(c)および図3(d)のいずれとも異なる波形となる。
 そこで、本実施の形態の動作点推定部20では、電流波形差異演算部21が電流リプル波形と電力リプル波形との差分を演算し、電圧波形差異演算部22が電圧リプル波形と電力リプル波形との差分を演算し、これらの演算結果同士を乗算器23が乗算して動作点の推定結果とする。
 動作点が最適動作点よりも高い電圧の領域、または低い電圧の領域のときには、電流波形差異演算部21または電圧波形差異演算部22の出力が小さくなるため、動作点推定部20の出力(乗算器23の演算結果)は相対的に小さくなる。動作点が最適動作点付近の場合には、電流波形差異演算部21および電圧波形差異演算部22の出力はいずれも大きくなるため、動作点推定部20の演算結果は相対的に大きくなる。
 表示部14は、たとえば、動作点推定部20の演算結果が0のときに全消灯とし、演算結果が大きくなるにつれて点灯数を増やす。
 このように、本実施の形態の電力変換装置において、動作点推定部20は、電流リプル波形と電力リプル波形との差分および電圧リプル波形と電力リプル波形との差分を演算し、これらの演算結果同士を乗算して動作点の推定結果を求めることとした。この場合にも、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 図7は、本発明にかかる電力変換装置の実施の形態3の構成例を示す図である。本実施の形態の電力変換装置は、実施の形態1の電力変換装置(図1参照)が備えていた動作点推定部10を動作点推定部30に置き換えた構成となっている。動作点推定部30以外については実施の形態1と同様である。そのため、動作点推定部30以外の部分については説明を省略する。
 動作点推定部30は、太陽電池1の出力電力Psに対して時間微分を行う時間微分器31と、太陽電池1の出力電圧Vsに対して時間微分を行う時間微分器32と、時間微分器31における演算結果を時間微分器32における演算結果で除す除算器33と、を備えている。
 図8は、太陽電池1の特性例を示す図である。図8では、横軸の電圧Vsに対する電流Isの特性と、電圧Vsに対する電力Psの特性と、電圧Vsに対する、Psの時間微分値をVsの時間微分値で除した結果である電力の電圧微分値dPs/dVsの特性と、を示している。
 電圧が最適動作点Vpmの場合、電力の電圧微分値dPs/dVs(動作点推定部30の出力)は0となる。これに対して、動作点が最適動作点よりも低い電圧の場合、電力の電圧微分値dPs/dVsは正の値となり、最大値は電流Isと等しくなる。動作点が最適動作点よりも低い電圧の場合、電力の電圧微分値dPs/dVsは負の値となる。
 そこで、本実施の形態の動作点推定部30では、電力の電圧微分値dPs/dVsを演算して動作点の推定結果とする。
 表示部14は、例えば、電力の電圧微分値dPs/dVsの絶対値が0に近いとき(所定値以下のとき)に全点灯し、絶対値が大きくなるにつれて点灯数を減らす。
 このように、本実施の形態の電力変換装置において、動作点推定部30は、電力の電圧微分値dPs/dVsの絶対値を求め、この絶対値に基づいて、最適動作点付近で動作しているかどうかを判定することにした。この場合にも、実施の形態1と同様の効果を得ることができる。
実施の形態4.
 図9は、本発明にかかる電力変換装置の実施の形態4の構成例を示す図である。本実施の形態の電力変換装置は、実施の形態1の電力変換装置(図1参照)が備えていた動作点推定部10を動作点推定部40に置き換えた構成となっている。動作点推定部40以外については実施の形態1と同様である。そのため、動作点推定部40以外の部分については説明を省略する。
 動作点推定部40は、太陽電池1の出力電力Psに対して時間微分を行う時間微分器41と、太陽電池1の出力電圧Vsに対して時間微分を行う時間微分器42と、時間微分器41および42における演算結果と太陽電池1の出力電流Isとを用いて動作点の推定結果を演算する演算器43と、を備えている。
 演算器43は、まず、電力の電圧微分値dPs/dVsを求め、次に、この微分値を太陽電池1の出力電流Isで除し、得られた結果(dPs/dVs/Is)を動作点の推定結果とする。
 図10は、太陽電池1の特性例を示す図であり、実施の形態3で示した図8のdPs/dVsに代えて、演算器43による演算結果(dPs/dVs/Is)を示したものである。
 図示したように、電圧が最適動作点Vpmの場合、演算器43による演算結果(動作点推定部40の出力)は0になる。これに対して、動作点が最適動作点よりも低い電圧の場合、演算結果は正の値となり、動作点が最適動作点よりも高い電圧の場合、演算結果は負の値となる。実施の形態3で示した動作点推定部30との違いは出力の最大値であり、動作点推定部40の出力の最大値は電流Isにかかわらず1となる。
 表示部14は、動作点推定部40出力の絶対値が0に近いときに全点灯し、絶対値が大きくなるにつれて点灯数を減らしていく。絶対値が1に付近になると全消灯する。
 このように、本実施の形態の電力変換装置において、動作点推定部40は、電力の電圧微分値dPs/dVsを太陽電池1の出力電流Isで除した結果に基づいて、最適動作点付近で動作しているかどうかを判定することにした。この場合にも、実施の形態1と同様の効果を得ることができる。
 実施の形態3では、最適動作点と異なる電圧で動作していた場合に、dPs/dVs演算値が日射強度(発電電力量)により変化していたが、本実施の形態では、日射強度が変化してもdPs/dVs/Is演算値は変化しない。そのため、最適動作点で動作していない場合に、最適動作点からどれだけズレが生じているかを、実施の形態3の電力変換装置よりも正確に表示できる。
 以上のように、本発明は、太陽電池等の直流電圧源を交流電力へ変換し、系統へ連系して動作する電力変換装置として有用である。
 1 太陽電池
 2 AC系統
 3 電力変換部
 4 昇降圧回路
 5 平滑回路
 6 インバータ回路
 7 電流計測部
 8 電圧計測部
 9 電力演算部
 10,20,30,40 動作点推定部
 11 全変動成分演算部
 12 4倍周波数成分演算部
 13,33 除算器
 14 表示部
 21 電流波形差異演算部
 22 電圧波形差異演算部
 23 乗算器
 31,32,41,42 時間微分器
 43 演算器

Claims (8)

  1.  直流電圧源から供給された電力を最大電力点追従制御により交流電力に変換し、系統へ連系して動作する電力変換装置であって、
     前記直流電圧源からの出力電力に基づいて、前記直流電圧源が最適動作点付近で動作しているか否か推定する動作点推定手段と、
     前記動作点推定手段における推定結果に基づいて、最適動作点と実際の動作点の関係を表示する表示手段と、
     を備えることを特徴とする電力変換装置。
  2.  前記動作点推定手段は、
     前記直流電圧源からの出力電力の脈動変化のうち、前記系統へ出力する電流の基本波周波数の4倍の周波数成分の比に基づいて前記推定を行うことを特徴とする請求項1に記載の電力変換装置。
  3.  前記動作点推定手段は、
     前記比が1に近い場合、最適動作点付近で動作していると判断することを特徴とする請求項2に記載の電力変換装置。
  4.  前記動作点推定手段は、
     前記直流電圧源からの出力電力の脈動の波形、出力電圧の脈動の波形および出力電流の脈動の波形に基づいて前記推定を行うことを特徴とする請求項1に記載の電力変換装置。
  5.  前記動作点推定手段は、
     前記出力電力の脈動の波形が、前記出力電圧の脈動の波形および前記出力電流の脈動の波形のいずれにも一致しない場合、最適動作点付近で動作していると判断することを特徴とする請求項4に記載の電力変換装置。
  6.  前記動作点推定手段は、
     前記直流電圧源からの出力電力の時間微分値、および前記直流電圧源からの出力電圧の時間微分値に基づいて前記推定を行うことを特徴とする請求項1に記載の電力変換装置。
  7.  前記動作点推定手段は、
     前記出力電力の時間微分値を前記出力電圧の時間微分値で除した値が0に近い場合、最適動作点付近で動作していると判断することを特徴とする請求項6に記載の電力変換装置。
  8.  前記動作点推定手段は、
     前記出力電力の時間微分値を前記出力電圧の時間微分値で除し、さらに前記直流電圧源からの出力電流で除した値が0に近い場合、最適動作点付近で動作していると判断することを特徴とする請求項6に記載の電力変換装置。
PCT/JP2012/057749 2012-03-26 2012-03-26 電力変換装置 WO2013145079A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/057749 WO2013145079A1 (ja) 2012-03-26 2012-03-26 電力変換装置
JP2014507050A JP5646112B2 (ja) 2012-03-26 2012-03-26 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057749 WO2013145079A1 (ja) 2012-03-26 2012-03-26 電力変換装置

Publications (1)

Publication Number Publication Date
WO2013145079A1 true WO2013145079A1 (ja) 2013-10-03

Family

ID=49258449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057749 WO2013145079A1 (ja) 2012-03-26 2012-03-26 電力変換装置

Country Status (2)

Country Link
JP (1) JP5646112B2 (ja)
WO (1) WO2013145079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093048A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 太陽電池ストリング動作点検出方法、太陽電池ストリング不具合検出方法、システムおよび装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100819A (ja) * 1985-10-29 1987-05-11 Toshiba Corp 太陽光発電用インバ−タの制御装置
JPH0876865A (ja) * 1994-09-02 1996-03-22 Omron Corp 最大電力点追従装置
WO2011104882A1 (ja) * 2010-02-26 2011-09-01 東芝三菱電機産業システム株式会社 太陽光発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100819A (ja) * 1985-10-29 1987-05-11 Toshiba Corp 太陽光発電用インバ−タの制御装置
JPH0876865A (ja) * 1994-09-02 1996-03-22 Omron Corp 最大電力点追従装置
WO2011104882A1 (ja) * 2010-02-26 2011-09-01 東芝三菱電機産業システム株式会社 太陽光発電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093048A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 太陽電池ストリング動作点検出方法、太陽電池ストリング不具合検出方法、システムおよび装置

Also Published As

Publication number Publication date
JP5646112B2 (ja) 2014-12-24
JPWO2013145079A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6187587B2 (ja) インバータ装置
JP6414546B2 (ja) インバータ装置
WO2016092613A1 (ja) 無停電電源装置
CN104662788A (zh) 直接型交流电力转换装置
WO2017061177A1 (ja) 電力変換装置及びその制御方法
JP2011142738A (ja) 電源制御システム
WO2017175393A1 (ja) 太陽光発電システム
Gnanavadivel et al. Investigation of Power Quality Improvement in Super Lift Luo Converter
JP2017060303A (ja) 電源装置
JP2012222911A (ja) 力率改善装置
JP6366083B2 (ja) インバータの制御装置
EP3316471A1 (en) Conversion device and method for controlling the same
JP5337663B2 (ja) ドライバ回路
JP5646112B2 (ja) 電力変換装置
WO2015141355A1 (ja) 変換装置
JP6045814B2 (ja) 太陽光発電システムおよびそれに用いる動作点補正装置
JP6776203B2 (ja) Dc/dcコンバータの制御装置
JP2007325365A (ja) 系統連系インバータ装置
JP5741000B2 (ja) 電力変換装置
JP5963531B2 (ja) インバータ装置および太陽光発電システム
JP6500738B2 (ja) 電力変換装置及びその制御方法
JP2015136271A (ja) 充電装置および充電方法
JP2010207041A (ja) 電力変換装置
JP2016178744A (ja) 電力変換装置
JP2012085411A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872660

Country of ref document: EP

Kind code of ref document: A1