WO2013145075A1 - 蒸気用配管 - Google Patents

蒸気用配管 Download PDF

Info

Publication number
WO2013145075A1
WO2013145075A1 PCT/JP2012/057729 JP2012057729W WO2013145075A1 WO 2013145075 A1 WO2013145075 A1 WO 2013145075A1 JP 2012057729 W JP2012057729 W JP 2012057729W WO 2013145075 A1 WO2013145075 A1 WO 2013145075A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
steam
tube
stainless steel
piping
Prior art date
Application number
PCT/JP2012/057729
Other languages
English (en)
French (fr)
Inventor
西田 秀高
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2012/057729 priority Critical patent/WO2013145075A1/ja
Priority to JP2014505423A priority patent/JP5579950B2/ja
Publication of WO2013145075A1 publication Critical patent/WO2013145075A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the present invention relates to a steam pipe for flowing high-temperature and high-pressure steam such as power steam.
  • Steam pipes are used in power plant boilers and steam turbines.
  • high-temperature and high-pressure steam having a temperature of 280 ° C. or higher and a pressure of several MPa is used as the power steam flowing through the steam pipe.
  • steam having higher temperature and pressure tends to be used to improve power generation efficiency.
  • high temperature steam of about 620 ° C. and 5 MPa or more is used.
  • high temperature and high pressure steam whose temperature and pressure are set somewhat lower than those of a thermal power plant is used in order to enhance safety.
  • Patent Document 1 describes that a surface layer made of superaustenite is provided on the surface of a base material made of ferrite chrome steel for the purpose of providing a heat exchanger tube having high corrosion resistance.
  • Patent Document 2 describes a composite pipe in which an intermediate layer made of an inorganic material is provided between an inner pipe of ferritic stainless steel and an outer pipe of austenitic stainless steel.
  • the thickness of the surface layer is between 0.1 and 0.5 mm, and the thickness of the substrate is between 0.2 and 1.5 mm. ing. It is difficult to distribute high-temperature and high-pressure power steam over a long period of time with such a thin tube. Further, the composite pipe of Patent Document 2 is used for an exhaust manifold of an automobile, and it is difficult to distribute power steam over a long period of time.
  • the present invention has been made in view of such circumstances, and its purpose is to reduce the weight while securing the necessary strength in the piping for steam for flowing high-temperature and high-pressure steam, and stress corrosion cracking. It is to suppress the occurrence of.
  • the steam pipe of the present invention is constituted by a double pipe in which an inner pipe and an outer pipe thinner than the inner pipe are fixed, and one of the inner pipe and the outer pipe is ferrite.
  • the inner tube and the outer tube are made of austenitic stainless steel, and the inside of the inner tube is used as a space for circulating steam.
  • the steam pipe of the present invention is composed of a double pipe made of a combination of a ferritic chromium steel having a low coefficient of thermal expansion and an austenitic stainless steel having a high creep strength.
  • the thickness of chrome steel can be reduced. Thereby, the weight reduction of the whole piping can be achieved.
  • the outer pipe is made of ferritic chromium steel with a small coefficient of thermal expansion, so that compressive force acts on the inner pipe and can suppress stress corrosion cracking. .
  • the present invention it is possible to reduce the weight while ensuring the necessary strength in the steam pipe for flowing high-temperature and high-pressure steam. Moreover, the occurrence of stress corrosion cracking can be suppressed.
  • FIG.1 and FIG.2 is sectional drawing explaining the piping 10 for vapor
  • the illustrated steam pipe 10 is a power steam pipe for flowing power steam.
  • the power steam is steam that serves as power for a steam turbine or the like.
  • the steam temperature is set to 300 ° C. to 650 ° C.
  • the steam pressure is set to 5 Mpa to 8 Mpa.
  • the steam pipe 10 is a double pipe having an inner pipe 11 and an outer pipe 12.
  • the diameter D of the steam pipe 10 varies depending on the application, but is determined within a range of 200 mm to 1000 mm, for example.
  • the outer tube 12 is configured to be thinner than the inner tube 11.
  • the dimensions of the outer pipe 12 and the inner pipe 11 will be described.
  • the thickness t12 of the outer pipe 12 is 10 mm.
  • the wall thickness t11 of 11 is 40 mm.
  • the thickness t12 of the outer tube 12 is 30 mm, and the thickness t11 of the inner tube 11 is 40 mm.
  • the steam pipe 10 of the present embodiment is constituted by a double pipe to which an inner pipe 11 and an outer pipe 12 thinner than the inner pipe 11 are fixed.
  • the total thickness t11 of the pipe 11 is configured to be 1 ⁇ 4 or less of the diameter of the outer pipe 12.
  • the inner pipe 11 is made of ferritic chromium steel
  • the outer pipe 12 is made of austenitic stainless steel.
  • Ferritic chromium steel is a steel material conventionally used for thermal power generation boilers, and for example, 1Cr, 1.5Cr, 2.25Cr, 9Cr, 12Cr are known. This ferritic chromium steel has a characteristic that its coefficient of thermal expansion is smaller than that of austenitic stainless steel.
  • Austenitic stainless steel is a stainless steel material having an austenitic phase. For example, SUS301, SUS304, and SUS316 are known. This austenitic stainless steel has a feature that the creep strength at a high temperature is very large.
  • the steam pipe 10 is composed of a double pipe to which an inner pipe 11 and an outer pipe 12 are fixed.
  • a double tube can be manufactured by integrating by shrink fitting.
  • Shrink fit is a method of joining two objects using thermal expansion and contraction.
  • the outer tube 12 is heated to expand in the radial direction to expand the inner diameter, and the inner tube 11 is fitted into the inner diameter portion of the outer tube 12. And it returns to normal temperature and couple
  • the outer tube 12 is heated to about 600 ° C. to 700 ° C. to be expanded.
  • the inner tube 11 is kept at room temperature, and when the inner tube 11 is inserted into the outer tube 12, it is returned to room temperature.
  • the inner pipe 11 protrudes from the outer pipe 12 at both ends in the pipe longitudinal direction.
  • the reason why the end portion of the inner pipe 11 is protruded from the outer pipe 12 in this way is to join the steam pipes 10 and 10 to each other. That is, this steam pipe 10 has an inner pipe 11 made of ferritic chromium steel and an outer pipe 12 made of austenitic stainless steel, so that the inner pipe 11 and the outer pipe 12 have different welding rods. It is difficult to weld the inner tube 11 and the outer tube 12 at the same time. Therefore, in the steam pipe 10 of the present embodiment, the end portion of the inner pipe 11 is protruded from the outer pipe 12 so that the inner pipes 11 and 11 are welded first, and then the outer pipes 12 and 12 are welded together. Like to do.
  • one end of the inner pipe 11A of one steam pipe 10A and the other end of the inner pipe 11B of the other steam pipe 10B are brought into contact with each other and indicated by a thick line WD in the figure.
  • the butted portion between the inner pipes 11A and 11B is welded over the entire circumference.
  • the welding pieces 13A and 13B are arranged on the outer peripheral surfaces of the inner pipes 11A and 11B, and are indicated by a thick line WD in the figure.
  • one end of the outer pipe 12A of one steam pipe 10A and the other end of the outer pipe 12B of the other steam pipe 10B are welded to the weld pieces 13A and 13B, respectively.
  • the welding pieces 13A and 13B are obtained by dividing a ring-shaped member made of the same material as the outer tube 12 in the circumferential direction, and are used for connecting the outer tubes 12A and 12B to each other.
  • the weld pieces 13A and 13B of the present embodiment have the outer diameter and the wall thickness aligned with the outer diameter and the wall thickness of the outer tube 12, and the width W12 between the end surfaces of the outer tube 12 (see FIG. 13A).
  • the ring-shaped member defined in (1) is divided into two equal parts (cut at 180 degrees) in the circumferential direction.
  • the inner pipe 11 is made of ferritic chromium steel
  • the outer pipe 12 is made of austenitic stainless steel having high creep strength.
  • the outer tube 12 is reinforced. For this reason, the bending stress acting on the steam pipe 10 can be borne by the outer pipe 12 (austenite stainless steel). Therefore, even if the thickness of the inner pipe 11 (ferritic chromium steel) is reduced, the necessary strength can be obtained for the entire pipe. That is, since the required strength can be obtained even if the thickness of the pipe (thickness of the inner pipe 11 + thickness of the outer pipe 12) is reduced, the entire pipe can be made lightweight.
  • FIG. 4 is a cross-sectional view illustrating the steam pipe 20 of the second embodiment.
  • the illustrated steam pipe 20 is composed of a double pipe having an inner pipe 21 and an outer pipe 22 like the steam pipe 10 of the first embodiment, but is different from the steam pipe 10 of the first embodiment.
  • the inner tube 21 is made of austenitic stainless steel
  • the outer tube 22 is made of ferritic chromium steel.
  • the diameter of the steam pipe 20 (outer pipe 22), the thickness of the outer pipe 22, and the thickness of the inner pipe 21 are the same as those of the steam pipe 10 of the first embodiment. The same is true in that the inner tube 21 protrudes from the outer tube 22 at both ends in the tube longitudinal direction. For this reason, detailed description of these points is omitted.
  • the steam pipe 20 uses austenitic stainless steel with high creep strength at high temperatures for the inner pipe 21, the required strength can be obtained even if the thickness of the steam pipe 20 is reduced. It is possible to configure a light weight. Further, since the inner pipe 21 through which the steam passes is made of austenitic stainless steel, high resistance to corrosion can be obtained.
  • the outer tube 22 is made of ferritic chromium steel having a small coefficient of thermal expansion
  • the inner tube 21 made of austenitic stainless steel is Although it tries to expand to the outer peripheral side, the outer tube 22 is in a state of suppressing the expansion of the inner tube 21.
  • compressive stress acts on the inner tube 21.
  • stress corrosion cracking of austenitic stainless steel is caused by tensile force and corrosion.
  • compressive stress can be applied to the inner pipe 21 by passing high-temperature and high-pressure steam through the inner pipe 21. For this reason, it becomes possible to suppress the occurrence of stress corrosion cracking.
  • This structure is particularly effective in a nuclear power generation facility (steam temperature of 300 ° C. to 500 ° C., steam pressure of about 5 MPa) using steam piping made of austenitic stainless steel. That is, from the viewpoint of obtaining high creep strength and resistance to corrosion, nuclear power generation facilities use steam pipes made of austenitic stainless steel, but have the problem of causing stress corrosion cracking. Yes.
  • the conventional steam pipe By replacing the conventional steam pipe with the steam pipe 20 of the present embodiment, the occurrence of stress corrosion cracking can be suppressed while maintaining the conventional characteristics of high creep strength and corrosion resistance.
  • the steam pipes 10 and 20 of each embodiment are constituted by double pipes in which the inner pipes 11 and 21 and the outer pipes 12 and 22 thinner than the inner pipes 11 and 21 are fixed.
  • 21 and one of the outer pipes 12, 22 are made of ferritic chromium steel
  • the other of the inner pipes 11, 21 and the outer pipes 12, 22 are made of austenitic stainless steel
  • the thickness of the ferritic chromium steel can be reduced by the amount using the austenitic stainless steel, and the weight of the entire pipe can be reduced.
  • the inner pipe 11 is made of ferritic chrome steel and the outer pipe 12 is made of austenitic stainless steel, it is generated inside the member in the fine grain region of the heat affected zone. Type IV cracks can be prevented.
  • the outer pipe 22 is made of ferritic chromium steel having a small thermal expansion coefficient. Therefore, a compressive force acts on the inner tube 21 made of austenitic stainless steel, and stress corrosion cracking can be suppressed.
  • the diameter D of the steam pipes 10 and 20 (outer pipes 12 and 22) is 200 mm or more and 1000 mm or less
  • the thickness of the outer pipes 12 and 22 is 10 mm or more and 30 mm or less
  • the thickness of the inner pipes 11 and 21 is 40 mm.
  • the thickness is 100 mm or less and larger than the thickness of the outer pipes 12 and 22, and the thickness of the steam pipes 10 and 20 (the thickness of the outer pipes 12 and 22 and the thickness of the inner pipes 11 and 21).
  • the dimensions (diameter and thickness) of the steam pipes 10 and 20 are merely examples, and are not limited to these dimensions. The dimensions may be appropriately determined according to the use of the steam pipe.
  • Steam pipes 10 and 20 are not limited to the distribution of power steam.
  • the present invention can be applied to any steam pipe that allows high-temperature and high-pressure steam at the same level as power steam.
  • the above-described first embodiment has exemplified the weld pieces 13A and 13B obtained by dividing the ring-shaped member into two in the circumferential direction, but the number of divisions can be arbitrarily determined. . For example, it may be divided into three or four. Further, as shown in FIG. 5, flange portions FG may be provided at the end portions of the weld pieces 23 ⁇ / b> A and 23 ⁇ / b> B, and the weld pieces may be screwed and fixed to each other with the flange portions FG, and then welded to the outer tubes 12 and 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

【課題】高温高圧の蒸気を流すための蒸気用配管において、必要な強度を確保しつつ軽量化を図る。また、応力腐食割れの発生を抑制する。 【解決手段】本発明の蒸気用配管10は、内管11とこの内管11よりも薄肉の外管12とが固着された二重管によって構成されている。そして、内管11がフェライト系クロム鋼によって作製され、外管12がオーステナイト系ステンレス鋼によって作製されている。さらに、内管11の内部を、蒸気を流通させるための空間としている。

Description

蒸気用配管
 本発明は、動力用蒸気などの高温高圧の蒸気を流すための蒸気用配管に関する。
 発電プラントのボイラーや蒸気タービンでは蒸気用配管が用いられている。蒸気用配管を流れる動力用蒸気には、例えば温度が280℃以上、圧力が数MPaとされた高温高圧の蒸気が用いられる。そして、火力発電プラントでは、発電効率を向上させるために、より高い温度と圧力の蒸気が用いられる傾向にある。例えば、620℃程度、5MPa以上の高温蒸気が用いられる。一方、原子力発電プラントでは、安全性を高めるために火力発電プラントよりも多少温度と圧力が低く設定された高温高圧蒸気が用いられている。
 火力発電プラントで用いられる蒸気用配管は、高温域での運転を考慮して、熱膨張率の低いフェライト系クロム鋼で作製される。しかし、フェライト系クロム鋼は、強度が低いため、蒸気圧力に耐えるためには管の肉厚を十分に大きくする必要があり、重量が嵩んでしまう問題点があった。
 一方、原子力発電プラントで用いられる蒸気用配管は、耐久性を考慮して高温下でのクリープ強度が高いオーステナイト系ステンレス鋼で作製される。しかし、オーステナイト系ステンレス鋼は、熱膨張率が大きく、長期間の使用によって応力腐食割れ(SCC)が発生してしまう。
 特許文献1には、高い耐食性を持つ熱交換器管を提供することを目的として、フェライトクロム鋼からなる基材の表面にスーパーオーステナイトからなる表面層を設けたものが記載されている。また、特許文献2には、フェライト系ステンレス鋼の内管とオーステナイト系ステンレス鋼の外管との間に無機質からなる中間層を設けた複合管が記載されている。
特表2002-510030号公報 特開平7-156329号公報
 特許文献1の熱交換器管では、表面層の部分の厚さを0.1~0.5mmの間とし、基材の厚さを0.2~1.5mmの間とすることが推奨されている。このような薄手の管で高温高圧の動力用蒸気を長期間に亘って流通させることは困難である。また、特許文献2の複合管は、自動車のエキゾーストマニホールドに用いられるものであり、やはり動力用蒸気を長期間に亘って流通させることは困難である。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、高温高圧の蒸気を流すための蒸気用配管において、必要な強度を確保しつつ軽量化を図ること、応力腐食割れの発生を抑制することにある。
 前記目的を達成するため、本発明の蒸気用配管は、内管と前記内管よりも薄肉の外管とが固着された二重管によって構成され、前記内管と前記外管の一方がフェライト系クロム鋼によって作製され、前記内管と前記外管の他方がオーステナイト系ステンレス鋼によって作製され、前記内管の内部を、蒸気を流通させるための空間としたことを特徴とする。
 本発明の蒸気用配管は、熱膨張率が小さいフェライト系クロム鋼とクリープ強度が大きいオーステナイト系ステンレス鋼の組み合わせによる二重管によって構成されているので、オーステナイト系ステンレス鋼を用いた分だけフェライト系クロム鋼の肉厚を薄くすることができる。これにより、配管全体の軽量化が図れる。
 そして、フェライト系クロム鋼を内管に用いた構成では、熱影響部の細粒域において部材内部に発生するタイプIVのクラックを防止することができる。反対に、オーステナイト系ステンレス鋼を内管に用いた構成では、熱膨張率の小さなフェライト系クロム鋼で外管が構成されるので、内管には圧縮力が作用し、応力腐食割れを抑制できる。
 本発明によれば、高温高圧の蒸気を流すための蒸気用配管において、必要な強度を確保しつつ軽量化を図ることができる。また、応力腐食割れの発生を抑制することができる。
第1実施形態の蒸気用配管を直径方向に切断した断面図である。 第1実施形態の蒸気用配管を軸線方向に切断した断面図である。 配管同士の接合を説明する図であり、(a)は内管同士の溶接の説明する図、(b)は湾曲連結片を介してなされる外管の下半部分同士の溶接を説明する図、(c)は湾曲連結片を介してなされる外管の上半部分同士の溶接を説明する図である。 第2実施形態の蒸気用配管を直径方向に切断した断面図である。 連結片の他の態様を説明する図である。
 以下、本発明の実施形態について説明する。図1及び図2は、第1実施形態の蒸気用配管10を説明する断面図である。
 例示した蒸気用配管10は、動力用蒸気を流すための動力用蒸気配管である。動力用蒸気とは、蒸気タービン等の動力となる蒸気であり、例えば蒸気温度が300℃以上650℃以下、蒸気圧力が5Mpa以上8Mpa以下に定められる。
 蒸気用配管10は、内管11と外管12を有する二重管で構成されている。蒸気用配管10の直径Dは、用途によって様々であるが、例えば200mm以上1000mm以下の範囲に定められる。そして、本実施形態では、外管12が内管11よりも薄肉となるように構成されている。
 外管12及び内管11の寸法について説明すると、例えば、外管12の直径(蒸気用配管10の直径Dに相当する)が200mmの場合、外管12の肉厚t12が10mmとなり、内管11の肉厚t11が40mmとなる。また、外管12の直径が1000mmの場合、外管12の肉厚t12が30mmとなり、内管11の肉厚t11が40mmとなる。
 すなわち、本実施形態の蒸気用配管10は、内管11とこの内管11よりも薄肉の外管12とが固着された二重管によって構成されており、外管12の肉厚t12と内管11の肉厚t11の合計(蒸気用配管10の肉厚t10)が、外管12の直径の1/4以下となるように構成されている。これにより、高温高圧の動力用蒸気を流すための空間を確保しつつ必要な強度を得ている。
 本実施形態の蒸気用配管10は、内管11がフェライト系クロム鋼によって作製され、外管12がオーステナイト系ステンレス鋼によって作製されている。フェライト系クロム鋼は、従来より火力発電ボイラー用に用いられている鋼材であり、例えば1Cr,1.5Cr,2.25Cr,9Cr,12Crが知られている。このフェライト系クロム鋼は、オーステナイト系ステンレス鋼よりも熱膨張率が小さいという特性を有している。オーステナイト系ステンレス鋼は、オーステナイト相を有するステンレス鋼材であり、例えばSUS301,SUS304,SUS316が知られている。このオーステナイト系ステンレス鋼は、高温下におけるクリープ強度が非常に大きいという特徴を有している。
 そして、これらの鋼材のうち最も好ましい組み合わせは、フェライト系クロム鋼が9Cr,12Crであり、オーステナイト系ステンレス鋼がSUS304,SUS316である。
 図2に示すように、この蒸気用配管10は、内管11と外管12とが固着された二重管によって構成されている。このような二重管は、焼きばめで一体化することにより作製できる。焼きばめは、熱膨張と収縮を利用して二つの物体を結合する方法である。例えば、外管12を加熱することで径方向に膨張させて内径を拡げ、外管12の内径部分に内管11をはめ込む。そして常温に戻し外管12の収縮によって両者を結合する。本実施形態では、外管12を600℃~700℃程度に加熱して膨張させる。内管11については常温のままとし、内管11を外管12に挿入したら常温に戻す。
 なお、常温に戻す際において、急冷すると外管12に衝撃が加わってしまう。反対に、冷却速度が遅すぎると外管12の収縮が不十分になる。このため、外管12の冷却速度は、熱衝撃が加わらず、元のサイズに収縮されるように定める。
 また、この蒸気用配管10では、管長手方向の両端部において、内管11が外管12よりも突出されている。このように内管11の端部を外管12よりも突出させた理由は、蒸気用配管10,10同士の接合のためである。すなわち、この蒸気用配管10は、内管11がフェライト系クロム鋼で作製され、外管12がオーステナイト系ステンレス鋼で作製されているため、内管11と外管12とで溶接棒が異なり、内管11と外管12とを同時に溶接することは困難である。そこで、本実施形態の蒸気用配管10では、内管11の端部を外管12よりも突出させることで、先に内管11,11同士を溶接した後、外管12,12同士を溶接するようにしている。
 例えば、図3(a)に示すように、一方の蒸気用配管10Aの内管11Aの一端と他方の蒸気用配管10Bの内管11Bの他端とを当接させ、図中太線WDで示すように、内管11A,11B同士の突き合わせ部分を全周に亘って溶接する。内管11A,11B同士を溶接したならば、図3(b)及び(c)に示すように、溶接片13A,13Bを内管11A,11Bの外周面に配置し、図中太線WDで示すように、一方の蒸気用配管10Aの外管12Aの一端と他方の蒸気用配管10Bの外管12Bの他端とを、それぞれ溶接片13A,13Bに溶接する。
 ここで、溶接片13A,13Bは、外管12と同じ材質で構成されたリング状部材を周方向に分割したものであり、外管12A,12B同士を連結するために用いられる。本実施形態の溶接片13A,13Bは、外径及び肉厚が外管12の外径及び肉厚に揃えられ、かつ、幅が外管12の端面同士の間隔W12(図13(a)参照)に定められたリング状部材を、周方向に2等分(180度で切断)することで作製されている。そして、図3(b)に示すように、一方の溶接片13Aを溶接することで外管12A,12Bの下半部分を連結し、その後、図3(c)に示すように、他方の溶接片13Bを溶接することで外管12A,12Bの上半部分を連結している。
 このような構成を有する蒸気用配管10では、内管11がフェライト系クロム鋼によって作製され、外管12が高いクリープ強度を有するオーステナイト系ステンレス鋼によって作製されており、内管11の外周側を外管12で補強する構造となっている。このため、蒸気用配管10に作用する曲げ応力を外管12(オーステナイト系ステンレス鋼)で負担することができる。従って、内管11(フェライト系クロム鋼)の肉厚を薄くしても配管全体として必要な強度を得ることができる。すなわち、配管の肉厚(内管11の肉厚+外管12の肉厚)を薄くしても必要な強度が得られるため、配管全体として軽量に構成することが可能となる。
 次に第2実施形態について説明する。図4は、第2実施形態の蒸気用配管20を説明する断面図である。
 例示した蒸気用配管20は、第1実施形態の蒸気用配管10と同様に内管21と外管22を有する二重管で構成されているが、第1実施形態の蒸気用配管10とは異なり、内管21がオーステナイト系ステンレス鋼によって作製され、外管22がフェライト系クロム鋼によって作製されている。なお、蒸気用配管20(外管22)の直径、外管22の肉厚、及び内管21の肉厚については、第1実施形態の蒸気用配管10と同じである。また、管長手方向の両端部において、内管21が外管22よりも突出されている点も同じである。このため、これらの点については詳細な説明を省略する。
 この蒸気用配管20は、高温下におけるクリープ強度の強いオーステナイト系ステンレス鋼を内管21に用いているので、蒸気用配管20の肉厚を薄くしても必要な強度が得られ、配管全体として軽量に構成することが可能となる。また、蒸気が通る内管21がオーステナイト系ステンレス鋼で構成されているので、腐食に対する高い耐性が得られる。
 さらに、熱膨張率の小さなフェライト系クロム鋼によって外管22が作製されているので、内管21の内側に高温高圧の蒸気を流通させた際、オーステナイト系ステンレス鋼で作製された内管21が外周側に膨張しようとするが、内管21の膨張を外管22が押さえる状態になる。これにより、内管21には圧縮応力が作用する。オーステナイト系ステンレス鋼に対する応力腐食割れは、引っ張り力と腐食によって発生することが知られている。これに対し、本実施形態の蒸気用配管20では、高温高圧の蒸気を内管21に通すことで、内管21に圧縮応力を作用させることができる。このため、応力腐食割れの発生を抑制することが可能となる。
 この構造は、オーステナイト系ステンレス鋼で作製された蒸気用配管が用いられている原子力発電設備(蒸気温度300℃~500℃,蒸気圧力5MPa程度)において、とりわけ有効である。すなわち、高いクリープ強度を得る観点及び腐食に対する耐性を得る観点から原子力発電設備では、オーステナイト系ステンレス鋼で作製された蒸気用配管が用いられているが、応力腐食割れが発生するという問題を抱えている。従来の蒸気用配管を本実施形態の蒸気用配管20に置き換えることで、高クリープ強度、耐腐食性という従来の特徴はそのままに、応力腐食割れの発生を抑制することができる。
 以上説明した各実施形態から次のことが判る。すなわち、各実施形態の蒸気用配管10,20は、内管11,21とこの内管11,21よりも薄肉の外管12,22とが固着された二重管によって構成され、内管11,21と外管12,22の一方がフェライト系クロム鋼によって作製され、内管11,21と外管12,22の他方がオーステナイト系ステンレス鋼によって作製され、内管11,21の内部を、蒸気を流通させるための空間としている。この蒸気用配管10,20では、オーステナイト系ステンレス鋼を用いた分だけフェライト系クロム鋼の肉厚を薄くすることができ、配管全体の軽量化が図れる。
 そして、内管11がフェライト系クロム鋼によって作製され、外管12がオーステナイト系ステンレス鋼によって作製された第1実施形態の蒸気用配管10では、熱影響部の細粒域において部材内部に発生するタイプIVのクラックを防止することができる。
 また、内管21がオーステナイト系ステンレス鋼によって作製され、外管22がフェライト系クロム鋼によって作製された第2実施形態の蒸気用配管20では、熱膨張率の小さなフェライト系クロム鋼で外管22が構成されるので、オーステナイト系ステンレス鋼によって作製された内管21には圧縮力が作用し、応力腐食割れを抑制できる。
 また、各実施形態の蒸気用配管10,20に関し、管長手方向両端部において内管11,21が外管12,22よりも突出しているので、一対の蒸気用配管10,20を連結する際の溶接作業を容易化することができる。
 そして、各実施形態の蒸気用配管10,20を動力用蒸気(温度が300℃以上650℃以下であり、圧力が5Mpa以上8Mpa以下である高温高圧の蒸気)の流通に用いた場合には、発電プラントのボイラーや蒸気タービンで問題になっていた諸問題(蒸気用配管の軽量化や応力腐食割れの防止等)を効果的に抑制することができる。
 特に、蒸気用配管10,20(外管12,22)の直径Dを200mm以上1000mm以下とし、外管12,22の肉厚を10mm以上30mm以下とし、内管11,21の肉厚を40mm以上100mm以下であって外管12,22の肉厚よりも大きな値とし、かつ、蒸気用配管10,20の肉厚(外管12,22の肉厚と内管11,21の肉厚の合計)を外管の直径の1/4以下とすることで、発電プラントのボイラーや蒸気タービンにおける諸問題を効果的に抑制することができる。
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。
 蒸気用配管10,20の寸法(直径、肉厚)はあくまで例示であり、この寸法に限られない。寸法は、蒸気用配管の用途に応じて適宜に定めればよい。
 蒸気用配管10,20は、動力用蒸気の流通用に限られない。動力用蒸気と同程度の高温高圧の蒸気を流す蒸気用配管であれば、本発明を適用できる。
 外管12,22同士を連結する溶接片に関し、前述の第1実施形態では、リング状部材を周方向に2分割した溶接片13A,13Bを例示したが、分割数は任意に定めることができる。例えば、3分割にしてもよいし、4分割にしてもよい。また、図5に示す様に、溶接片23A,23Bの端部にフランジ部FGを設け、フランジ部FGで溶接片同士をねじ止め固定した後に、外管12,22と溶接してもよい。
10(10A,10B) 蒸気用配管
11(11A,11B) 内管
12(12A,12B) 外管
13A,13B 溶接片
20 蒸気用配管
21 内管
22 外管

Claims (7)

  1.  内管と前記内管よりも薄肉の外管とが固着された二重管によって構成され、
     前記内管と前記外管の一方がフェライト系クロム鋼によって作製され、前記内管と前記外管の他方がオーステナイト系ステンレス鋼によって作製され、
     前記内管の内部を、蒸気を流通させるための空間としたことを特徴とする蒸気用配管。
  2.  前記内管がフェライト系クロム鋼によって作製され、
     前記外管がオーステナイト系ステンレス鋼によって作製されていることを特徴とする請求項1に記載の蒸気用配管。
  3.  前記内管がオーステナイト系ステンレス鋼によって作製され、
     前記外管がフェライト系クロム鋼によって作製されていることを特徴とする請求項1に記載の蒸気用配管。
  4.  管長手方向両端部において、前記内管が前記外管よりも突出していることを特徴とする請求項1から3の何れか1項に記載の蒸気用配管。
  5.  前記蒸気の温度が300℃以上650℃以下であることを特徴とする請求項1から4の何れか1項に記載の蒸気用配管。
  6.  前記蒸気の圧力が5Mpa以上8Mpa以下であることを特徴とする請求項5に記載の蒸気用配管。
  7.  前記外管の直径が200mm以上1000mm以下であり、
     前記外管の肉厚が10mm以上30mm以下であり、
     前記内管の肉厚が40mm以上100mm以下であって前記外管の肉厚よりも大きな値であり、かつ、
     前記外管の肉厚と前記内管の肉厚の合計が、前記外管の直径の1/4以下であることを特徴とする請求項1から6の何れか1項に記載の蒸気用配管。
PCT/JP2012/057729 2012-03-26 2012-03-26 蒸気用配管 WO2013145075A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/057729 WO2013145075A1 (ja) 2012-03-26 2012-03-26 蒸気用配管
JP2014505423A JP5579950B2 (ja) 2012-03-26 2012-03-26 蒸気用配管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057729 WO2013145075A1 (ja) 2012-03-26 2012-03-26 蒸気用配管

Publications (1)

Publication Number Publication Date
WO2013145075A1 true WO2013145075A1 (ja) 2013-10-03

Family

ID=49258445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057729 WO2013145075A1 (ja) 2012-03-26 2012-03-26 蒸気用配管

Country Status (2)

Country Link
JP (1) JP5579950B2 (ja)
WO (1) WO2013145075A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105419A (ja) * 2019-12-26 2021-07-26 株式会社前川製作所 バイメタル配管、断熱配管及び冷凍システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300211A (ja) * 1993-04-08 1994-10-28 Hitachi Ltd 蒸気発生装置および蒸気発生装置用伝熱管
JPH11193448A (ja) * 1998-01-05 1999-07-21 Nkk Corp クラッド鋼管
JP2001500191A (ja) * 1996-09-05 2001-01-09 サンドビック アクティエボラーグ(プブル) 燃焼プラントに用いる複合管へのNi系合金の使用
JP2010071636A (ja) * 2008-09-17 2010-04-02 Korea Atomic Energy Research Inst オンラインで伝熱管の破損を感知する機能を有するナトリウム冷却高速炉用蒸気発生器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290213A (ja) * 1995-04-20 1996-11-05 Sumitomo Metal Ind Ltd 金属二重管の製造方法
JPH09119791A (ja) * 1995-10-25 1997-05-06 Toshiba Corp 蒸気発生器用二重伝熱管およびその製造方法
JP2003262490A (ja) * 2002-03-07 2003-09-19 Kawasaki Heavy Ind Ltd 伝熱管の付着灰除去方法及び付着灰の除去が容易な伝熱管
JP4807076B2 (ja) * 2005-12-28 2011-11-02 Dowaテクノロジー株式会社 伝熱管,伝熱管の製造方法及び流動床炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300211A (ja) * 1993-04-08 1994-10-28 Hitachi Ltd 蒸気発生装置および蒸気発生装置用伝熱管
JP2001500191A (ja) * 1996-09-05 2001-01-09 サンドビック アクティエボラーグ(プブル) 燃焼プラントに用いる複合管へのNi系合金の使用
JPH11193448A (ja) * 1998-01-05 1999-07-21 Nkk Corp クラッド鋼管
JP2010071636A (ja) * 2008-09-17 2010-04-02 Korea Atomic Energy Research Inst オンラインで伝熱管の破損を感知する機能を有するナトリウム冷却高速炉用蒸気発生器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105419A (ja) * 2019-12-26 2021-07-26 株式会社前川製作所 バイメタル配管、断熱配管及び冷凍システム
JP7409867B2 (ja) 2019-12-26 2024-01-09 株式会社前川製作所 バイメタル配管、断熱配管及び冷凍システム

Also Published As

Publication number Publication date
JPWO2013145075A1 (ja) 2015-08-03
JP5579950B2 (ja) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2233876B1 (en) Welded header/nozzle structure
JP5579943B1 (ja) 配管用の補強用具
JP5415588B2 (ja) 蒸気配管用の補強用具
JP5579950B2 (ja) 蒸気用配管
JP5304392B2 (ja) 異材継手構造及びその製造方法
CN107002914B (zh) 流体导管元件以及用于形成流体导管元件的方法
JP2019090332A (ja) 排気マニホールド
Saha et al. Failure of a secondary superheater tube in a 140-MW thermal power plant
US4209123A (en) Prevention of sensitization of welded-heat affected zones in structures primarily made from austenitic stainless steel
JP2015017778A (ja) 管寄せ部構造及びこれを用いた熱交換器
KR100216867B1 (ko) 버트용접조인트
JP6008632B2 (ja) 高強度低合金鋼の溶接構造体、ボイラ水壁パネルおよびその製造方法
JP5579910B1 (ja) 減温管
JP2777277B2 (ja) 蒸気弁
Sippy et al. An Improved Design of Threaded Closures for Screw Plug (Breech Lock) Heat Exchangers
CN209876263U (zh) 一种波纹管连接结构
JP5384416B2 (ja) ルーズフランジ式フレア管継手、ルーズフランジ式フレア管継手用鋼管、ルーズフランジ式フレア管継手用鋼管の製造方法及び鋼管の接合方法
Wang et al. ICOPE-15-C162 Research on the superheater header material for 700℃ USC boiler
RU176792U1 (ru) Термоуплотняемый компенсатор
JP6296501B2 (ja) 二重管からなる排ガス管端部の構造、該構造を備えた排ガス管
JP2015038413A (ja) スタブ管の溶接構造
JPS60247479A (ja) 突合せ溶接継手
JP2014202260A (ja) 伸縮継手
JP2011127714A (ja) 蒸気配管、蒸気配管を使用した蒸気ボイラ
JP2003240171A (ja) 配管連結構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873307

Country of ref document: EP

Kind code of ref document: A1