WO2013138881A1 - Irrigation systems used in the growing of cotton and wheat - Google Patents

Irrigation systems used in the growing of cotton and wheat Download PDF

Info

Publication number
WO2013138881A1
WO2013138881A1 PCT/BR2012/000080 BR2012000080W WO2013138881A1 WO 2013138881 A1 WO2013138881 A1 WO 2013138881A1 BR 2012000080 W BR2012000080 W BR 2012000080W WO 2013138881 A1 WO2013138881 A1 WO 2013138881A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
water
cotton
crop
wheat
Prior art date
Application number
PCT/BR2012/000080
Other languages
French (fr)
Portuguese (pt)
Inventor
Paulo Roberto SIBIN
Original Assignee
Sibin Paulo Roberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibin Paulo Roberto filed Critical Sibin Paulo Roberto
Priority to PCT/BR2012/000080 priority Critical patent/WO2013138881A1/en
Publication of WO2013138881A1 publication Critical patent/WO2013138881A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/09Watering arrangements making use of movable installations on wheels or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • This patent application refers to an "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP", which has been developed for the purpose of providing various irrigation through a technique that increases productivity and ensures quality, especially in periods without rain, when traditionally irrigated cultivation tends to decrease productivity, with the drip irrigation system this problem is eliminated and there is also no risk of crop loss.
  • Irrigated agriculture occupied around 18% (275 million hectares) of the total cultivated area on the planet (1.5 billion hectares), consuming about 70% of the total quality water used, which is higher than the amount consumed by the sector. (21%) and domestic consumption (9%) (SANTOS, 1998).
  • the irrigated area is approximately 16 million hectares, distributed mainly in Mexico, Argentina, Brazil, Chile and Peru.
  • the world's irrigated area contributes 42% of total production.
  • the irrigated area corresponds to 18% of the cultivated area, but contributes to 42% of the total production (CHRISTOFIDIS, 2002).
  • Irrigated agriculture in order to remain environmentally sustainable, needs to be efficient in using water for irrigation, as well as in the use of agrochemicals that are applied to plants or soil can cause contamination of groundwater resources.
  • Efficient use of irrigation water can be achieved by acting on: a) the existing irrigation structure, in terms of crop types, irrigation systems and water use management; b) irrigation management methods and c) techniques that allow increased efficiency of water use.
  • Cotton which is considered the most important natural or artificial textile fiber, is also the most complete harnessing plant and offers the most varied utility products.
  • Cotton is very susceptible to weed competition.
  • the soil when superficially scarified, provides more air to the roots of the crop.
  • Cotton in its structure, has a higher amount of nitrogen and potassium than phosphorus; However, it is experimentally known that the need for the provision of this element in the soil is generally much greater than the others.
  • Corn also called abati, auati and avati, is a known food or feed because of its nutritional qualities. All scientific evidence suggests that it is a plant of American origin, as it was grown there since the pre-Columbian period. It's one of the most nutritious foods out there, containing almost all known amino acids, with exceptions being lysine and tryptophan.
  • irrigation Of the technologies used for food production the most known and important is irrigation.
  • the objective of irrigation is to supply water to the plants in the necessary quantity and at the appropriate time, to obtain adequate production levels and better product quality.
  • An adequate irrigation system should be able to provide the producer with the possibility of making use of the water resource with maximum efficiency, increasing crop productivity, reducing production costs and thus maximizing the return on investments.
  • Irrigation in agriculture is an important factor in crop yield. By controlling irrigation, more optimized growing conditions can be created and maintained, thereby increasing crop yield on a given amount of land. Irrigation is achieved at a price, requiring irrigation equipment and water to supply irrigation equipment. In some parts of the world available water is scarce, so it is advantageous to use available water resources in the most conservative and cost-effective way possible.
  • Irrigation of soils that do not directly support plant growth is a waste of water.
  • Other forms of loss include evaporation, which varies depending on climate, temperature and relative humidity. In arid regions, these losses are substantial, leading to increased irrigation costs.
  • Drip irrigation is a relatively new technology that can save water, energy and increase profits. So drip irrigation can help solve three of the most important problems in irrigated cotton and corn crops - water scarcity, increased pumping (energy) costs and falling farm profits.
  • Drip irrigation is defined as a frequent, slow and accurate application of water through line or point emitters over the below surface of the at a small operating pressure (20 - 200 kPa) and at a low discharge rate (0.6 to 20 LPH), resulting in partial wetting of the soil surface.
  • surface drip irrigation The application of water to the soil surface as drops or small flow through emitters placed at a predetermined distance along the side of the drip is called surface drip irrigation (Fig. 14). It can be of two types - online or integral surface drip system. The full drip line is recommended for sugar cane.
  • Underground Drip (SDI): The application of water below the surface through emitters mounted on the inner wall of the (1.0 - 3.0 LPH) discharge ratio drip line generally has the same range as full surface drip irrigation. This method of water application is different and should not be confused with the method where the root area is irrigated by water table control, referred to herein as sub-irrigation.
  • the integral drip line (thin or thick wall) is installed at a predetermined depth in the soil depending on soil type and crop needs. There are two main types of SDI - "mono cultivation” and "multicultural".
  • Effective drip technology requires more intensive application of crop, soil, climate, engineering, and economic factors than flood irrigation typically does. New management perspectives and skills are required for planting configuration, land preparation, drip design features, irrigation schedule, fertigation, system operation & maintenance
  • the filtration system is the assembly of independently controlled physical components used to remove suspended solids from irrigation water. Irrigation water filtration is vital for drip irrigation schemes to prevent blocking of emitters as the internal passages of the emitters are very small.
  • Filtration system design recommendations should include location, size, specification of available suspended material sizes, filter types, and maintenance requirements.
  • a primary filter should be placed after the pump and fertigation unit to remove fine and large particles from the stream.
  • Secondary filters can be used from the primary filter to remove any particles that may pass through the primary filter during normal or cleaning operations. When secondary filters are used, the size of the openings is usually larger than the primary filter to minimize the attention required.
  • the filter flow openings should be small enough to prevent unwanted particles from entering the system.
  • the size of the filter should be based on the diameter of the emitter opening or the type and size of contaminants to be filtered.
  • the filter capacity must be large enough to allow a nominal flow without frequent cleaning. Filters that are manually cleaned should require more than daily maintenance. Sizes should be the most economical with the lowest friction losses ranging from 0.3 to 0.5 bars.
  • Types Filtering should be done using different types of filters; screen (for inorganic impurities and water of moderate quality or following primary filtration with sand and disc filters) disc (for removal of impurities of organic and inorganic origin, algae included), hydrocyclones (for separation of sand or silt from water well or river filters) and sand or medium filters (for open wells, open reservoirs, streams, etc.).
  • screen for inorganic impurities and water of moderate quality or following primary filtration with sand and disc filters
  • disc for removal of impurities of organic and inorganic origin, algae included
  • hydrocyclones for separation of sand or silt from water well or river filters
  • sand or medium filters for open wells, open reservoirs, streams, etc.
  • drip irrigation systems In most drip irrigation systems it is driven from the easel assembly to a secondary line to which the drip lines are connected. Although there are several types of dripperlines that are used, they are all designed to distribute water evenly over the entire design area of a given field block. A variation in the discharge rate of the dripperline emitters that is acceptable is on the order of 8 - 10%.
  • Dripper lines vary in sender design, quality, discharge uniformity, and cost. From the outside, most lines of integral drippers look alike. Even so, there are differences between products, particularly emitters. Consistency and superior performance of an integral dripper line depend on the quality of its emitter. Several years of experience have shown that the following Factors should be considered when selecting the row of drippers that should be on the surface or buried over a complete crop life cycle.
  • Dripper lines come in a wide range of wall thickness. Construction and thickness of the dripperline should be sufficient to reduce the risk of the pipe being bent or caught by traffic in the field such as mechanical loaders, farm machinery, etc.
  • Nominal diameters are 16 mm and 22 mm. A larger diameter will allow water to be supplied to a larger length of dripperline before pressure drops below design requirements. This results in cost savings of secondary lines.
  • the mobile or self-propelled sprinkler irrigation system is powered by hydraulic energy, consisting of a hydraulic cannon (cannon sprinkler), mounted under a platform, which moves on the ground simultaneously irrigating. It requires a propulsion engine, a cannon-type sprinkler, a high-pressure hose (up to 500m), a wire rope or a coiled spool (depending on the type of movement) and a platform for installation. Normally the turning angle of the sprinkler is 330 ° to keep the moving range of the car or sprinkler dry, as will be presented later.
  • the equipment moves by retracting a wire rope.
  • the water that is pumped for irrigation turns a turbine, which drives a gear system, promoting the displacement of the platform (trolley with sprinkler) and its withdrawal by the anchored steel cable.
  • It is mainly used for irrigation of pastures, corn and soybeans.
  • Experiences regarding the use of this equipment worldwide indicate that its feasibility is for irrigation of regions with less severe water deficit, where irrigation is important but not necessary for a long period of the year.
  • the main advantage of the system is that it allows irrigate multiple areas with just one piece of equipment. Generally, you need machinery to wrap the hose after on-site irrigation.
  • Self-Propelled Reel Winder System is a mechanized system that irrigates areas of different shapes and slopes, with low labor requirements.
  • the equipment consists of a suction pipe, a pump set, a main line, a winding spool and an irrigation carriage, containing a cannon-type sprinkler or a sprinkler bar.
  • the winding spool is formed by the drive assembly and reel with polyethylene hose, mounted on two to six-wheel chassis and coupling to tractor drawbar.
  • the drive assembly consists of a hydraulic turbine and a speed reduction box, which winds the hose to the spool with the irrigation carriage at the other end of the hose, with track irrigation occurring as the hose is coiled.
  • the sprinkler mounted on two wheels in the irrigation car, travels at a predetermined constant speed on various models via a computerized electronic panel, irrigating up to 115 m wide for up to 650 m at a time. of lenght. After irrigating a particular strip, the set is easily moved to irrigate adjacent strips.
  • the self-propelled winding reel advantageously replaces the old self-propelled systems, where the entire drive assembly moved along with the sprinkler along the irrigated track by dragging a flexible hose.
  • Advantages include improved irrigation carriage speed control and smaller cannon droplet size today.
  • the irrigation bar can replace the cannon-type sprinkler in smaller slopes with the advantage of better water distribution uniformity and smaller droplets.
  • the boom which can be longer than 50 m, is equipped with sprinkler sprinklers operating at working pressure between 1 and 3 kgf cm2, which reduces energy consumption. In this case, the bar is mounted on a four-wheeled carriage, which allows the height of the bar to be adjusted and uses the same reel-reel system.
  • Central pivot sprinkler irrigation system is characterized by circular movement, self-propelled to hydraulic or electric power.
  • the equipment consists of a lateral line of 200 to 800 m of extension suspended by a structure formed by towers with wheels, triangles and trusses, besides the pumping station and emitters (sprinklers).
  • the distance between towers ranges from 24 to 76 m, the most common being 30, 38, 52 and 54 m.
  • Each tower has its own propulsion system, but there is a central one to control the speed and alignment of the pivot, with reference to the last tower.
  • the propulsion system of each tower is electric, with 0.5 to 1.5 hp motors, which allow better control of the speed of the towers.
  • the linear irrigation system also known as the movable lateral or even, as some incorrectly call it, the linear pivot, can be defined as an automated sprinkler irrigation system, introduced in 1977 from the concept of movement used in the center pivot and taking advantage of parts of its structures and components, but with the innovation of a walking system, which allows mobility of all equipment in a transverse direction on the crop to be irrigated.
  • This technology is responsible for irrigating approximately 600,000 hectares of grain crops, fodder, vegetables, sugar cane, coffee and fruit worldwide.
  • the control car is the main component that differentiates the linear ones from the other sprinkler automated irrigation systems. Can be located in the center of the equipment and at the same time irradiate piping areas to simultaneously irrigate both sides, or be located on the side of the irrigated area if only one side irrigates. In both situations the displacement occurs along the area along with the whole system.
  • the cart consists of a control tower, formed by transverse beams where wheels with gearbox-linked reducers are coupled to small gearmotors that transmit sufficient torque to rotate them across the ground and propel the structure.
  • the control panel In it is located the control panel, where the main operating parameters are controlled.
  • They may contain, in the case of channel feed, floating suction, motor, pump and generator, these three when coupled in a single set is called a 3x1 set.
  • hose feeding the operation is done by a water supply cap in place of the floating suction and motor coupled to a generator called a generator set.
  • connection pipe between the water inlet and its outlet to supply the pipes of the overhead system and subsequent sprinkling in the crop.
  • linear systems can be divided into linear system, universal linear system and two wheel linear system.
  • linear system In the so-called linear system four-wheel cart is used and the feed is done by channel. This is the case of the equipment mentioned at the beginning and reach the largest irrigated areas.
  • the universal linear system is built through a structure based on the center tower of a pivot. Assuming that components of the structure of this central tower are also used in this system, the difference is that in the universal, the whole tower is placed on two beams with four tires and transmission units.
  • the two-wheel linears are hose-fed.
  • the technological solution allows the common beam base beam itself to be transformed to receive a generator set, alignment system, panel, hose coupling, cap and piping, which will feed all the remaining water. of the system.
  • a second water intake can be coupled at the end of the last flight of the system and with the help of a tractor, can be towed to an adjunct lane and restart operation.
  • a second water intake can be coupled at the end of the last flight of the system and with the help of a tractor, can be towed to an adjunct lane and restart operation.
  • sprinkler irrigation the application of water to the soil results from the fragmentation of a water jet released under pressure into the atmospheric air through simple sprinkler nozzles or nozzles.
  • irrigation systems have advantages and limitations that should be analyzed when selecting the system to be used.
  • Irrigation is a millennial technique that blends with the development and economic prosperity of the people, as many ancient civilizations developed in arid regions where production was only possible thanks to irrigation. History shows that irrigation has always been a factor of wealth, citizenship and hence safety. With the advancement of irrigation technologies and the increasing demand for water for human activities, the search for more efficient methods that consume less resources and provide better results in productivity and quality has increased.
  • the present invention is directed to "SYSTEMS OF
  • IRRIGATIONS APPLIED ON COTTON AND WHEAT which consists of an irrigation where water is applied punctually through droplets directly to the soil. These droplets, upon infiltration, form a moistening pattern called a" wet bulb. " not meeting the continuity of irrigation and forming a wet strip, and another objective to provide cannon irrigation, the range of which can reach various positions up to 100, 200, 300 or more meters.
  • an irrigation system comprising an irrigation hose made of synthetic resin, which may have one or two hoses forming elongate irrigation lines, each line comprising a separate waterway adapted for individual communication or with a water supply, and a succession of spaced irrigation holes, each hole associated with an irrigation emitter.
  • the emitters used in the irrigation hose of the present invention may be of any suitable design, for example they may be drip irrigation emitters or mini sprinklers. Drip emitters are mounted within the irrigation lines so that their irrigation points are concentric to the holes. When the line is formed by two hoses, the holes of each hose can have different diameters. The arrangement of the emitter irrigation outlet holes can be obtained in different ways.
  • An example in accordance with the present invention is forming irrigation lines with holes in the two aligned hoses, so that when one side is irrigating the other side of the plant does not receive water allowing the soil to dry out, and can also be mounted on pivot aerial spreaders. central or linear.
  • hoses (1) forming irrigation lines (2) that form water passages (3) and (4) can have any diameter, which can act in isolation or communicating, which are connected to a water supply whose valve is capable of providing water supply at predetermined time intervals, each of the irrigation lines (2) having equidistantly arranged outlet holes (5) which receive mounting of internal irrigation emitters.
  • Figure 1 shows the plantation with a central irrigation line.
  • Figure 2 shows the plantation with two central irrigation lines.
  • Figure 3 shows a view of the irrigation hose.
  • Figure 4 shows aerial irrigation
  • Figure 5 shows cannon irrigation
  • drip irrigation comprises the application of small amounts of water directly into the root zone of the plant through a point source or drip line above or below ground with operating pressures
  • dripper may also be aerial, supported by support or tied to the plant itself, or an irrigation through an air pivot that can be central (round) or linear (horizontal) with spacing can be 0.30 x 0.30, 0.40 x 0.40, 0.50 x 0.50 to 8m x 8m and up to 1.5 meters from the surface (depth) or through cannons.
  • the system allows higher yields, as it irrigates a part of the soil where the roots of the plant are located very precisely, constantly and without expelling all air from this soil.
  • roots always have readily available water, nutrients (fertigation) and oxygen as they breathe to carry out their metabolic and growth processes.
  • fertigation nutrients
  • oxygen oxygen
  • drip crops have higher root activity (root), deep roots, and therefore greater productivity and ability to be manipulated more easily, as these root in the wetland are the perfect target for hormone treatments, systemic pesticide application or induction. water stress (water deficit).
  • the main characteristic of drip irrigation reflects the efficiency gains of the previous characteristics, since a localized application of water, stimulating a dense and active root structure and a high uniformity of irrigation implies a great gain of efficiency in chemigation, which is the application of chemicals in irrigation systems.
  • the drip irrigation system (surface or underground) in maize and soybean cultivation is technically easy, economically viable and benefits in several ways:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Catching Or Destruction (AREA)

Abstract

Irrigation systems used in the growing of cotton and wheat, which comprises an irrigation hose made from synthetic resin, it being possible for said hose also to be made from other materials for conducting water, it being possible for there to be one, two or more hoses that form elongate irrigation lines, each line comprising a separate passage for water adapted for individual or collective communication with a water-supply source, and a series of spaced irrigation holes, each hole being associated with an irrigation emitter and there being a self-propelled system of winding-reel type, which is a mechanized system that irrigates areas of different formats and gradients, and the equipment is composed of a suction pipe, a motorized pump unit, a principal line, a winding reel and an irrigator carriage, containing a cannon-type sprinkler or an irrigator bar.

Description

SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE  IRRIGATION SYSTEMS APPLIED IN
ALGODÃO E TRIGO  COTTON AND WHEAT
Refere-se o presente pedido de patente de invenção a um "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO", que foi desenvolvido com a finalidade de proporcionar uma irrigação em diversas através de uma técnica que aumenta a produtividade e assegura a qualidade, principalmente em períodos sem chuva, quando o cultivo irrigado de forma tradicional tende a diminuir a produtividade, com o sistema de irrigação por gotejamento é eliminado este problema e não corre também o risco de perder da lavoura. This patent application refers to an "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP", which has been developed for the purpose of providing various irrigation through a technique that increases productivity and ensures quality, especially in periods without rain, when traditionally irrigated cultivation tends to decrease productivity, with the drip irrigation system this problem is eliminated and there is also no risk of crop loss.
A agricultura irrigada ocupava em torno de 18 % (275 milhões de hectares) da área total cultivada no planeta (1,5 bilhão de hectares), consumindo cerca de 70 % do total de água de qualidade usada, valor superior à quantidade consumida pelo setor industrial (21 %) e pelo consumo doméstico (9 %) (SANTOS, 1998). Na América Latina, a superfície irrigada é de, aproximadamente, 16 milhões de hectares, distribuída principalmente no México, Argentina, Brasil, Chile e Peru.  Irrigated agriculture occupied around 18% (275 million hectares) of the total cultivated area on the planet (1.5 billion hectares), consuming about 70% of the total quality water used, which is higher than the amount consumed by the sector. (21%) and domestic consumption (9%) (SANTOS, 1998). In Latin America, the irrigated area is approximately 16 million hectares, distributed mainly in Mexico, Argentina, Brazil, Chile and Peru.
Apesar de corresponder a uma pequena parcela do total cultivado, a área irrigada mundial contribui com 42 % da produção total. No Brasil, em particular, a área irrigada corresponde a 18 % da área cultivada, mas contribui com 42 % da produção total (CHRISTOFIDIS, 2002).  Despite accounting for a small portion of total cultivated land, the world's irrigated area contributes 42% of total production. In Brazil, in particular, the irrigated area corresponds to 18% of the cultivated area, but contributes to 42% of the total production (CHRISTOFIDIS, 2002).
A agricultura irrigada, para manter-se sustentável, em termos ambientais, precisa ser eficiente no uso da água na irrigação, bem como no uso dos agroquímicos que aplicados às plantas ou ao solo podem causar contaminação dos recursos hídricos subterrâneos. O uso eficiente da água de irrigação pode ser alcançado atuando-se: a) na estrutura de irrigação então existente, em termos de tipos de cultivo, sistemas de irrigação e gestão do uso de água; b) nos métodos de manejo da irrigação e c) nas técnicas que permitem aumento da eficiência do uso da água. Irrigated agriculture, in order to remain environmentally sustainable, needs to be efficient in using water for irrigation, as well as in the use of agrochemicals that are applied to plants or soil can cause contamination of groundwater resources. Efficient use of irrigation water can be achieved by acting on: a) the existing irrigation structure, in terms of crop types, irrigation systems and water use management; b) irrigation management methods and c) techniques that allow increased efficiency of water use.
O algodão, que é considerado a mais importante das fibras têxteis, naturais ou artificiais, é também a planta de aproveitamento mais completo e que oferece os mais variados produtos de utilidade.  Cotton, which is considered the most important natural or artificial textile fiber, is also the most complete harnessing plant and offers the most varied utility products.
No Brasil, desde que começou a tomar aspecto de cultura económica, o algodão tem sempre figurado no grupo vanguardeiro das atividades que carreiam divisas para o País.  In Brazil, since it began to take on the aspect of economic culture, cotton has always been in the leading group of activities that carry foreign currency to the country.
Embora não seja cultivado de modo generalizado em todo o território, o algodão, até 1980, estava classificado entre as sete primeiras culturas no tocante ao valor de produção.  Although not widely grown throughout the country, cotton until 1980 was ranked among the first seven crops in terms of yield.
O algodoeiro é muito susceptível à concorrência de ervas daninhas. Cotton is very susceptible to weed competition.
Por sua vez, a terra, quando escarifícada superficialmente proporciona maior arejamento às raízes da cultura. In turn, the soil, when superficially scarified, provides more air to the roots of the crop.
O algodoeiro, em sua estrutura, apresenta maior quantidade de nitrogénio e potássio que de fósforo; porém, sabe-se experimentalmente, que a necessidade de provisão desse elemento no solo é, no geral, bem maior que a dos outros.  Cotton, in its structure, has a higher amount of nitrogen and potassium than phosphorus; However, it is experimentally known that the need for the provision of this element in the soil is generally much greater than the others.
O milho {Zea m ys), também chamado abati, auati e avati, é um conhecido utilizado como alimento humano ou ração animal, devido às suas qualidades nutricionais. Todas as evidências científicas levam a crer que seja uma planta de origem americana, já que aí era cultivada desde operíodo pré-colombiano. É um dos alimentos mais nutritivos que existem, contendo quase todos os aminoácidos conhecidos, sendo exceções a lisina e o triptofano. Corn (Zea m ys), also called abati, auati and avati, is a known food or feed because of its nutritional qualities. All scientific evidence suggests that it is a plant of American origin, as it was grown there since the pre-Columbian period. It's one of the most nutritious foods out there, containing almost all known amino acids, with exceptions being lysine and tryptophan.
Das tecnologias utilizadas para a produção de alimentos a mais conhecida e importante é a irrigação. O objetivo da irrigação é suprir de água as plantas na quantidade necessária e no momento apropriado, para obter níveis adequados de produção e melhor qualidade do produto. Um adequado sistema de irrigação deverá ser capaz de propiciar ao produtor a possibilidade de fazer uso do recurso água com a máxima eficiência, aumentando a produtividade das culturas, reduzindo os custos de produção e, consequentemente, maximizando o retorno dos investimentos.  Of the technologies used for food production the most known and important is irrigation. The objective of irrigation is to supply water to the plants in the necessary quantity and at the appropriate time, to obtain adequate production levels and better product quality. An adequate irrigation system should be able to provide the producer with the possibility of making use of the water resource with maximum efficiency, increasing crop productivity, reducing production costs and thus maximizing the return on investments.
A irrigação na agricultura é um importante fator na produtividade de uma colheita. Ao controlar a irrigação, condições de crescimento mais otimizadas podem ser criadas e mantidas, deste modo aumentando a produção da colheita em uma dada quantidade de terra. A irrigação é alcançada a um preço, requerendo equipamentos de irrigação e água para suprir o equipamento de irrigação. Em algumas partes do mundo a água disponível é pouca, então é vantajoso utilizar recursos de água disponíveis da melhor maneira conservadora e de custo-benefício possível.  Irrigation in agriculture is an important factor in crop yield. By controlling irrigation, more optimized growing conditions can be created and maintained, thereby increasing crop yield on a given amount of land. Irrigation is achieved at a price, requiring irrigation equipment and water to supply irrigation equipment. In some parts of the world available water is scarce, so it is advantageous to use available water resources in the most conservative and cost-effective way possible.
A irrigação de solos que não suportam diretamente o crescimento das plantas é um desperdício de água. Outras formas de perda incluem a evaporação, a qual varia dependendo do clima, temperatura e umidade relativa. Em regiões áridas, essas perdas são substanciais, causando a elevação dos custos de irrigação.  Irrigation of soils that do not directly support plant growth is a waste of water. Other forms of loss include evaporation, which varies depending on climate, temperature and relative humidity. In arid regions, these losses are substantial, leading to increased irrigation costs.
Existe, portanto, a necessidade de um sistema de irrigação que forneça água substancialmente apenas para as plantas da colheita no campo, enquanto reduza a quantidade de água perdida pela evaporação. Diversos métodos podem ser utilizados para aplicar água às plantas, devendo sofrer adaptações para atender às diferentes situações que podem ocorrer na prática. O certo é que não existe um método ideal. Cada situação em particular deve ser estudada, sugerindo-se soluções em que as vantagens inerentes possam compensar as limitações naturais dos métodos de irrigação. There is therefore a need for an irrigation system that supplies water substantially only to crop plants in the field while reducing the amount of water lost through evaporation. Several methods can be used to apply water to plants and must be adapted to suit the different situations that may occur in practice. What is certain is that there is no ideal method. Each particular situation should be studied, suggesting solutions where the inherent advantages can outweigh the natural limitations of irrigation methods.
Portanto, a escolha adequada e criteriosa do método e sistema de aplicação de água é importante para o sucesso do empreendimento com agricultura irrigada, e nessa escolha, todos os fatores devem ser considerados.  Therefore, the appropriate and judicious choice of water application method and system is important for the success of the irrigated agriculture venture, and in this choice all factors must be considered.
Existem basicamente quatro métodos de aplicação de água às plantas, dos quais derivam os principais sistemas de irrigação: aquele que utiliza a superfície do solo para promover o escoamento e a infiltração da água; o que utiliza de aspersores para aplicar água à área total em forma de chuva; o que localiza a aplicação de água a áreas de interesse e o que utiliza o perfil do solo para a ascensão capilar da água até a zona das raízes.  There are basically four methods of applying water to plants, from which the main irrigation systems are derived: the one that uses the soil surface to promote water runoff and infiltration; which uses sprinklers to apply water to the total area in the form of rain; what locates the application of water to areas of interest and what uses the soil profile for the capillary rise of water to the root zone.
Irrigação por gotejamento é relativamente uma tecnologia nova que pode economizar água, energia e aumentar os lucros. Assim, a irrigação por gotejamento pode ajudar a resolver três dos problemas mais importantes nas culturas de algodão e milho irrigadas - escassez de água, aumento dos custos de bombeamento (energia) e queda dos lucros da fazenda.  Drip irrigation is a relatively new technology that can save water, energy and increase profits. So drip irrigation can help solve three of the most important problems in irrigated cotton and corn crops - water scarcity, increased pumping (energy) costs and falling farm profits.
Irrigação por gotejamento é definida como uma aplicação frequente, lenta e precisa de água através de emissores de linha ou ponto sobre o abaixo da superfície do em uma pressão de operação pequena (20 - 200 kPa) e a uma proporção de descarga baixa (0.6 para 20 LPH), resultando em umedecimento parcial da superfície do solo. Drip irrigation is defined as a frequent, slow and accurate application of water through line or point emitters over the below surface of the at a small operating pressure (20 - 200 kPa) and at a low discharge rate (0.6 to 20 LPH), resulting in partial wetting of the soil surface.
Na literatura, "localizado" é usado de forma cambiável com "gotejamento". As versões mais populares de gotejamento são o gotejamento de superfície e subterrâneo.  In literature, "localized" is used interchangeably with "drip". The most popular versions of drip are surface and underground drip.
Gotejamento por Superfície: A aplicação da água na superfície do solo como gotas ou fluxo pequeno através de emissores colocados em uma distância predeterminada ao longo da lateral do gotejamento é chamada de irrigação por gotejamento da superfície (Fig. 14). Pode ser de dois tipos - sistema de gotejamento de superfície on-line ou integral. A linha de gotejamento integral é recomendada para cana de açúcar.  Surface Drip: The application of water to the soil surface as drops or small flow through emitters placed at a predetermined distance along the side of the drip is called surface drip irrigation (Fig. 14). It can be of two types - online or integral surface drip system. The full drip line is recommended for sugar cane.
Gotejamento Subterrâneo (SDI): A aplicação de água abaixo da superfície através de emissores montados na parede interna da linha de gotejamento com proporção de descarga de (1.0 - 3.0 LPH) geralmente tem o mesmo alcance como irrigação por gotejamento da superfície integral. Esse método de aplicação de água é diferente e não deve ser confundido com o método onde a área da raiz é irrigada por controle de tabela de água, aqui referido como sub-irrigação. A linha de gotejamento integral (parede fina ou grossa) é instalada em uma profundidade predeterminada no solo dependendo do tipo de solo e necessidades do cultivo. Existem dois tipos principais de SDI - "mono cultivo" e "multicultivo".  Underground Drip (SDI): The application of water below the surface through emitters mounted on the inner wall of the (1.0 - 3.0 LPH) discharge ratio drip line generally has the same range as full surface drip irrigation. This method of water application is different and should not be confused with the method where the root area is irrigated by water table control, referred to herein as sub-irrigation. The integral drip line (thin or thick wall) is installed at a predetermined depth in the soil depending on soil type and crop needs. There are two main types of SDI - "mono cultivation" and "multicultural".
A adoção do sistema de irrigação por gotejamento (superfície ou subterrânea) é tecnicamente fácil, economicamente viável e beneficiai de várias formas:  Adoption of the drip irrigation system (surface or underground) is technically easy, economically viable and benefits in several ways:
- Uniformidade de aplicação de água maior. - Diminuição dos custos de energia por causa da redução do tempo de bombeamento para irrigar uma área dada; - Uniformity of application of larger water. - Decreased energy costs due to reduced pumping time to irrigate a given area;
-Economia de água de 45 a 50% contribuindo para um uso mais eficiente de água;  Water savings of 45 to 50% contributing to more efficient water use
- Economia em fertilizante (25 a 30%) por causa da fertirrigação e consequentemente eficiência do uso aperfeiçoado do fertilizante. Ex: eficiência agronómica, fisiológica e fração de recoberta aparente;  - Savings on fertilizer (25 to 30%) because of fertigation and consequently efficiency of improved fertilizer use. Ex: agronomic, physiological efficiency and apparent cover fraction;
- Crescimento menor de erva daninha e economia em trabalho por causa de menor controle de erva daninha, fertirrigação e operações de proteção da planta,  - Lower weed growth and labor savings due to lower weed control, fertigation and plant protection operations,
- Menor incidência de pestes e doenças por causa de limpeza de campo melhor;  - Lower incidence of pests and diseases because of better field clearance;
- Relações ideais de solo, água e ar contribuem para uma brotação melhor, emergência de campo uniforme e manutenção ideal da população de planta;  - Optimum soil, water and air ratios contribute to better sprouting, uniform field emergence and optimal maintenance of the plant population;
- Colheita mais cedo;  - Harvest earlier;
- Programação de irrigação dia/noite é possível;  - Day / night irrigation schedule is possible;
- Facilita o cultivo em solos marginais por causa de irrigações frequentes e fertirrigação;  - Facilitates cultivation on marginal soils because of frequent irrigation and fertigation;
- Irrigação de alta frequência, micro-lixiviação e potencial alto da água do solo permitem o uso de água salgada para irrigação.  - High frequency irrigation, micro-leaching and high soil water potential allow the use of saltwater for irrigation.
A tecnologia de gotejamento efetiva requer uma aplicação mais intensa de fatores de cultivo, solo, climáticos, engenharia, e económicos do que normalmente apresenta a irrigação por inundação. Novas perspectivas gerenciais e habilidades são requeridas para a configuração de plantio, preparação da terra, características de design do gotejamento, programação de irrigação, fertirrigação, operação & manutenção do sistema Effective drip technology requires more intensive application of crop, soil, climate, engineering, and economic factors than flood irrigation typically does. New management perspectives and skills are required for planting configuration, land preparation, drip design features, irrigation schedule, fertigation, system operation & maintenance
As novas práticas de gerenciamento induzidas com a tecnologia de gotejamento parecem ter ajudado de forma significante o aumento dos resultados do plantio. Configuração do plantio e características de design do gotejamento serão mencionadas nessa seção enquanto outras serão mencionadas em outras seções.  New management practices induced with drip technology seem to have significantly helped to increase planting results. Planting configuration and drip design characteristics will be mentioned in this section while others will be mentioned in other sections.
O sistema de filtragem é a montagem de componentes físicos controlados de forma independente, usados para remover sólidos em suspensão da água de irrigação. A filtragem de água da irrigação é vital para esquemas de irrigação por gotejamento para evitar o bloqueio de emissores uma vez que as passagens internas dos emissores são muito pequenas.  The filtration system is the assembly of independently controlled physical components used to remove suspended solids from irrigation water. Irrigation water filtration is vital for drip irrigation schemes to prevent blocking of emitters as the internal passages of the emitters are very small.
A escolha do filtro depende principalmente do tipo de impurezas encontradas na água e o nível de filtragem requerido pelo emissor. As recomendações de design do sistema de filtragem devem incluir localidade, tamanho, especificação dos tamanhos de material suspensos disponíveis, tipos de filtros, e requerimentos de manutenção.  The choice of filter depends mainly on the type of impurities found in the water and the level of filtration required by the emitter. Filtration system design recommendations should include location, size, specification of available suspended material sizes, filter types, and maintenance requirements.
• Localidade: Um filtro primário deve ser colocado depois da bomba e unidade de fertirrigação para remover partículas finas e grandes do fluxo. Filtros secundários podem ser usados do filtro primário para remover quaisquer partículas, que possam passar pelo filtro primário durante as operações normais ou de limpeza. Quando filtros secundários são usados, o tamanho das aberturas é normalmente maior que o filtro primário para minimizar a atenção necessária.  • Location: A primary filter should be placed after the pump and fertigation unit to remove fine and large particles from the stream. Secondary filters can be used from the primary filter to remove any particles that may pass through the primary filter during normal or cleaning operations. When secondary filters are used, the size of the openings is usually larger than the primary filter to minimize the attention required.
• Tamanho: As aberturas do fluxo do filtro devem ser pequenas o suficiente para prevenir a passagem de partículas indesejáveis ao sistema. O tamanho do filtro deve ser baseado no diâmetro da abertura do emissor ou o tipo e tamanho dos contaminantes a serem filtrados. A capacidade do filtro deve ser larga o suficiente para permitir uma vazão nominal sem limpeza frequente. Filtros que são limpos manualmente devem requerer mais que uma manutenção diária. Os tamanhos devem ser os mais económicos com as mais baixas perdas de fricção variando de 0.3 para 0.5 bars. • Size: The filter flow openings should be small enough to prevent unwanted particles from entering the system. The size of the filter should be based on the diameter of the emitter opening or the type and size of contaminants to be filtered. The filter capacity must be large enough to allow a nominal flow without frequent cleaning. Filters that are manually cleaned should require more than daily maintenance. Sizes should be the most economical with the lowest friction losses ranging from 0.3 to 0.5 bars.
• Tipos: A filtragem deve ser feita através do uso de tipos diferentes de filtros; tela (para impurezas inorgânicas e água de qualidade moderada ou seguindo uma filtragem primária com areia e filtros de disco) disco (para a remoção de impurezas de origem orgânica e inorgânica, algas incluídas), hidrociclones (para a separação de areia ou silte da água do poço ou rio) e filtros de areia ou média (para poços abertos, reservatórios abertos, correntes, etc).  • Types: Filtering should be done using different types of filters; screen (for inorganic impurities and water of moderate quality or following primary filtration with sand and disc filters) disc (for removal of impurities of organic and inorganic origin, algae included), hydrocyclones (for separation of sand or silt from water well or river filters) and sand or medium filters (for open wells, open reservoirs, streams, etc.).
Na maioria dos sistemas irrigados por gotejamento é conduzida da montagem do cavalete para uma linha secundária nas quais as linhas de gotejadores estão conectadas. Apesar de existirem vários tipos de linhas de gotejadores que são usados, elas estão todas desenhadas para distribuir água uniformemente por sobre toda a área do design de um bloco de campo dado. Uma variação na taxa de descarga dos emissores da linha de gotejadores que é aceitável é de ordem de 8 - 10%.  In most drip irrigation systems it is driven from the easel assembly to a secondary line to which the drip lines are connected. Although there are several types of dripperlines that are used, they are all designed to distribute water evenly over the entire design area of a given field block. A variation in the discharge rate of the dripperline emitters that is acceptable is on the order of 8 - 10%.
Linhas de gotejadores variam no design do emissor, qualidade, uniformidade de descarga e custo. De fora, a maioria das linhas de gotejadores integrais se parece. Mesmo assim existem diferenças entre produtos, particularmente emissores. Consistência e desempenho superior de uma linha de gotejadores integral dependem da qualidade do seu emissor. Vários anos de experiência têm demonstrado que os seguintes fatores devem ser considerados ao selecionar a linha de gotejadores que devem ficar na superfície ou enterradas ao longo de um ciclo de vida completo da cultura. Dripper lines vary in sender design, quality, discharge uniformity, and cost. From the outside, most lines of integral drippers look alike. Even so, there are differences between products, particularly emitters. Consistency and superior performance of an integral dripper line depend on the quality of its emitter. Several years of experience have shown that the following Factors should be considered when selecting the row of drippers that should be on the surface or buried over a complete crop life cycle.
Linhas de gotejadores vêm em uma grande variedade de espessura de parede. Construção e espessura da linha de gotejadores devem ser suficientes para reduzir o risco de o tubo ser amassado ou pego pelo tráfego no campo tais como carregadores mecânicos, maquinário da fazenda, etc.  Dripper lines come in a wide range of wall thickness. Construction and thickness of the dripperline should be sufficient to reduce the risk of the pipe being bent or caught by traffic in the field such as mechanical loaders, farm machinery, etc.
-Mecanismo de Flap para prevenir o risco de sugação de material fino de solo para os emissores da linha de gotejadores levando o entupimento.  - Flap mechanism to prevent the risk of suction of fine soil material to drip line emitters leading to clogging.
- Os diâmetros nominais são 16 mm e 22 mm. Um diâmetro maior permitirá o suprimento de água para uma extensão maior de linha de gotejadores antes que a pressão caia para baixo dos requerimentos do design. Isto resulta em economia de custo das linhas secundárias.  - Nominal diameters are 16 mm and 22 mm. A larger diameter will allow water to be supplied to a larger length of dripperline before pressure drops below design requirements. This results in cost savings of secondary lines.
- Disponibilidade de maquinário para recuperar as linhas de gotejadores no final do ciclo e usa-las para um segundo ciclo se possível depois de refurbishment.  - Availability of machinery to retrieve dripperlines at the end of the cycle and use them for a second cycle if possible after refurbishment.
Sistema de irrigação por aspersão do tipo autopropelido. O sistema de irrigação por aspersão móvel ou autopropelido é movimentado por energia hidráulica, sendo composto por um canhão hidráulico (aspersor canhão), montado sob uma plataforma, que se desloca sobre o terreno irrigando simultaneamente. Exige um motor para a propulsão, um aspersor do tipo canhão, uma mangueira de alta pressão (até 500m), um cabo de aço ou um carretel enrolado (dependendo do tipo de movimentação) e uma plataforma para instalação. Normalmente o ângulo de giro do aspersor é de 330°, para manter seca a faixa de movimentação do carro ou aspersor, como será apresentado posteriormente. Há basicamente dois tipos de autopropelido no mercado, de acordo com seu agente movimentador, os quais serão detalhados a seguir. Sistema Autopropelido Tipo Cabo de Aço O equipamento se movimenta pelo recolhimento de um cabo de aço. A água que é bombeada para irrigação gira uma turbina, que aciona um sistema de engrenagens, promovendo o deslocamento da plataforma (carrinho com aspersor) e seu recolhimento pelo cabo de aço ancorado. É utilizado principalmente em irrigação de pastagens, milho e soja. Experiências em relação a utilização deste equipamento em todo o mundo indicam que a viabilidade dele é para irrigação de regiões com déficit hídrico menos acentuado, onde as irrigações são importantes, mas não necessárias, durante um grande período do ano A principal vantagem do sistema é permitir irrigar várias áreas com apenas um equipamento. Geralmente, necessita de maquinário para enrolar a mangueira após a irrigação no local. As limitações desse tipo de equipamento resume-se principalmente, a um alto consumo de energia, devido as perdas de cargas na movimentação do equipamento, no comprimento da mangueira e no funcionamento do canhão, e a uma alta aplicação de vazão. É o mais antigo e de menor custo de aquisição, sendo sua principal limitação a baixa durabilidade da mangueira; foi bastante utilizado no passado, sendo hoje substituído pelo carretel enrolador. Self-propelled sprinkler irrigation system. The mobile or self-propelled sprinkler irrigation system is powered by hydraulic energy, consisting of a hydraulic cannon (cannon sprinkler), mounted under a platform, which moves on the ground simultaneously irrigating. It requires a propulsion engine, a cannon-type sprinkler, a high-pressure hose (up to 500m), a wire rope or a coiled spool (depending on the type of movement) and a platform for installation. Normally the turning angle of the sprinkler is 330 ° to keep the moving range of the car or sprinkler dry, as will be presented later. There are basically two types of self-propelled on the market, according to their moving agent, which will be detailed below. Self-Propelled Wire Rope System The equipment moves by retracting a wire rope. The water that is pumped for irrigation turns a turbine, which drives a gear system, promoting the displacement of the platform (trolley with sprinkler) and its withdrawal by the anchored steel cable. It is mainly used for irrigation of pastures, corn and soybeans. Experiences regarding the use of this equipment worldwide indicate that its feasibility is for irrigation of regions with less severe water deficit, where irrigation is important but not necessary for a long period of the year. The main advantage of the system is that it allows irrigate multiple areas with just one piece of equipment. Generally, you need machinery to wrap the hose after on-site irrigation. The limitations of this type of equipment mainly boil down to a high energy consumption due to the loss of loads in the movement of the equipment, the length of the hose and the operation of the cannon, and the high flow rate. It is the oldest and lowest cost of purchase, its main limitation being the low durability of the hose; It was widely used in the past and is now replaced by the winding reel.
Sistema Autopropelido tipo Carretel Enrolador é um sistema mecanizado que irriga áreas de diferentes formatos e declividades, com baixa exigência de mão-de-obra. O equipamento é composto de uma tubulação de sucção, um conjunto motobomba, uma linha principal, um carretel enrolador e um carro irrigador, contendo um aspersor do tipo canhão ou uma barra irrigadora. O carretel enrolador é formado pelo conjunto motriz e carretel com mangueira de polietileno, montados sobre chassi com duas a seis rodas e acoplamento à barra de tração do trator. O conjunto motriz consiste de uma turbina hidráulica e uma caixa de redução de velocidade, que faz o enrolamento da mangueira no carretel estando o carro irrigador na outra extremidade da mangueira, sendo que a irrigação da faixa ocorre à medida que a mangueira vai sendo enrolada. O aspersor, montado sobre duas rodas no carro irrigador, desloca-se a uma velocidade constante pré-estabelecida, em vários modelos por meio de um painel eletrônico computadorizado, irrigando, por vez, uma faixa de até 115 m de largura por até 650 m de comprimento. Após irrigar uma determinada faixa, o conjunto é facilmente deslocado para irrigar faixas adjacentes. Self-Propelled Reel Winder System is a mechanized system that irrigates areas of different shapes and slopes, with low labor requirements. The equipment consists of a suction pipe, a pump set, a main line, a winding spool and an irrigation carriage, containing a cannon-type sprinkler or a sprinkler bar. The winding spool is formed by the drive assembly and reel with polyethylene hose, mounted on two to six-wheel chassis and coupling to tractor drawbar. The drive assembly consists of a hydraulic turbine and a speed reduction box, which winds the hose to the spool with the irrigation carriage at the other end of the hose, with track irrigation occurring as the hose is coiled. The sprinkler, mounted on two wheels in the irrigation car, travels at a predetermined constant speed on various models via a computerized electronic panel, irrigating up to 115 m wide for up to 650 m at a time. of lenght. After irrigating a particular strip, the set is easily moved to irrigate adjacent strips.
O carretel enrolador autopropelido substitui com vantagens os antigos sistemas autopropelidos, onde todo o conjunto motriz se deslocava juntamente com o aspersor ao longo da faixa irrigada arrastando uma mangueira flexível. Dentre as vantagens destacam-se o melhor controle de velocidade de deslocamento do carro irrigador e o menor tamanho de gotas dos canhões atuais. A barra irrigadora pode substituir o aspersor do tipo canhão em áreas de menor declividade com a vantagem de uma melhor uniformidade de distribuição de água e gotas de menor tamanho. A barra, que pode ter comprimento superior a 50 m, é dotada de aspersores do tipo "sprays" trabalhando com pressão de serviço entre 1 e 3 kgf cm2, o que reduz o consumo de energia. Neste caso, a barra é montada sobre um carro com quatro rodas, que permite ajustar a altura da barra e utiliza o mesmo sistema de carretel enrolador.  The self-propelled winding reel advantageously replaces the old self-propelled systems, where the entire drive assembly moved along with the sprinkler along the irrigated track by dragging a flexible hose. Advantages include improved irrigation carriage speed control and smaller cannon droplet size today. The irrigation bar can replace the cannon-type sprinkler in smaller slopes with the advantage of better water distribution uniformity and smaller droplets. The boom, which can be longer than 50 m, is equipped with sprinkler sprinklers operating at working pressure between 1 and 3 kgf cm2, which reduces energy consumption. In this case, the bar is mounted on a four-wheeled carriage, which allows the height of the bar to be adjusted and uses the same reel-reel system.
Sistema de irrigação por aspersão pivo central é caracterizado pela movimentação circular, autopropelida a energia hidráulica ou elétrica. O equipamento é constituído por uma linha lateral de 200 a 800 m de extensão suspenso por uma estrutura formada por torres dotadas de rodas, triângulos e treliças, além da estação de bombeamento e emissores (aspersores). A distância entre torres variam de 24 a 76 m, sendo as mais comuns as de 30, 38, 52 e 54 m. Cada torre tem um sistema de propulsão próprio, mas existe um, central, para controle da velocidade e do alinhamento do pivô, tendo como referencia a ultima torre. O sistema de propulsão de cada torre é elétrico, com motores de 0,5 a 1,5 cv, os quais permitem melhor controle da velocidade das torres. Sua movimentação se dá por alinhamento e desalinhamento das torres, as quais, ao se desalinharem, provocam o acionamento dos relés, que por sua vez acionam os motores que movimentam as rodas por meio de sistemas de motorredutores e eixos do tipo cardan. O movimento cessa no momento que as duas torres deixam de estar desalinhada e volta a acontecer no momento em que as torres se desalinham novamente. São também instalados relés de segurança para que não haja acidentes O pivô central desloca-se há uma velocidade media em m/h, porém para facilitar o manejo do equipamento no campo, utiliza-se um "percentimetro", que fica instalado na caixa de comando da torre. A função deste dispositivo é controlar a velocidade de deslocamento do equipamento, não em termos de metros por horas, e sim de porcentagem de tempo de funcionamento. Por exemplo quando o percentimetro é regulado a 50% o movimento da ultima torre não é continuo, realizando paradas correspondente a 50% do tempo de percurso, fazendo com que o tempo de percurso neste caso seja o dobro. Esse controle de velocidade de deslocamento tem que ser criterioso e baseado em metodologias de manejo de água, pois se em vez de 100%, o equipamento for regulado para 50% a lamina será o dobro para um mesmo ponto. Na região central do Brasil, esse sistema foi o mais utilizado, nos últimos aos pelas grandes empresas agrícolas. Essa preferência se dá pelo alto nível de automação, Central pivot sprinkler irrigation system is characterized by circular movement, self-propelled to hydraulic or electric power. The equipment consists of a lateral line of 200 to 800 m of extension suspended by a structure formed by towers with wheels, triangles and trusses, besides the pumping station and emitters (sprinklers). The distance between towers ranges from 24 to 76 m, the most common being 30, 38, 52 and 54 m. Each tower has its own propulsion system, but there is a central one to control the speed and alignment of the pivot, with reference to the last tower. The propulsion system of each tower is electric, with 0.5 to 1.5 hp motors, which allow better control of the speed of the towers. Their movement occurs through alignment and misalignment of the towers, which, when misaligned, cause the relays to drive, which in turn drive the motors that move the wheels through gearmotor systems and gimbals. The movement ceases the moment the two towers are no longer misaligned and reoccurs the moment the towers are misaligned again. Safety relays are also installed to avoid accidents. The center pivot moves at an average speed in m / h, but to facilitate the handling of equipment in the field, a "percentimeter" is used, which is installed in the gearbox. tower command. The function of this device is to control the travel speed of the equipment, not in terms of meters per hour, but in percentage of uptime. For example when the centimeter is set to 50% the movement of the last tower is not continuous, making stops corresponding to 50% of the travel time, making the travel time in this case double. This travel speed control has to be judicious and based on water management methodologies, because if instead of 100% the equipment is set to 50% the blade will be double to the same point. In central Brazil, this system was the most widely used last by the large agricultural companies. This preference is given for the high level of automation,
Tornando-o bastante versátil na irrigação em formato de circulo, podendo operar na área total ou em parte dela, conforme o manejo da cultura ou da área. No Brasil a área irrigada por pivô central ocupa 21 % da área irrigada, o equivalente a 651.548 ha (IBGE 2006), esse sistema de irrigação apresenta grande versatilidade para irrigar grandes áreas, comumente maiores que 60 ha. Por isso para baixar o custo unitário por área irrigada, as vezes fica mais económico instalar unidades maiores, uma vez que a estrutura da torre (pivô) de um equipamento para irrigar pequenas áreas apresenta pouca variação no valor de aquisição se comparado com um equipamento maior. Há três modelos mais comuns de pivô centrais: - Pivô de média pressão: Utilizam aspersores rotativos; - Pivô de baixa pressão: Utilizam difusores como emissores, apresenta menor perda pelo vento, e maior intensidade de água.  Making it quite versatile in circle-shaped irrigation and can operate in all or part of the area, depending on crop or area management. In Brazil the central pivot irrigated area occupies 21% of the irrigated area, equivalent to 651,548 ha (IBGE 2006). This irrigation system has great versatility to irrigate large areas, commonly larger than 60 ha. Therefore, to lower the unit cost per irrigated area, it is sometimes more economical to install larger units, since the tower (pivot) structure of a small area irrigation equipment has little variation in acquisition value compared to larger equipment. . There are three most common center pivot models: - Medium pressure pivot: Use rotary sprinklers; - Low pressure pivot: They use diffusers as emitters, have less wind loss, and higher water intensity.
O sistema de irrigação linear, também conhecido como lateral móvel ou ainda, como alguns incorretamente o chamam, de pivô linear, pode ser definido como um sistema de irrigação por aspersão automatizada, introduzida em 1977 a partir do conceito de movimentação usado no pivô central e aproveitando partes de suas estruturas e componentes, porém com a inovação de um sistema de caminhamento, que permite mobilidade de todo o equipamento em um sentido transversal sobre a cultura que se deseja irrigar. Hoje, esta tecnologia é responsável pela irrigação de aproximadamente 600 mil hectares de lavouras de grãos, forrageiras, verduras, cana-de-açúcar, café e frutíferas em todo o mundo.  The linear irrigation system, also known as the movable lateral or even, as some incorrectly call it, the linear pivot, can be defined as an automated sprinkler irrigation system, introduced in 1977 from the concept of movement used in the center pivot and taking advantage of parts of its structures and components, but with the innovation of a walking system, which allows mobility of all equipment in a transverse direction on the crop to be irrigated. Today, this technology is responsible for irrigating approximately 600,000 hectares of grain crops, fodder, vegetables, sugar cane, coffee and fruit worldwide.
O carro de comando é o principal componente que diferencia os lineares dos demais sistemas de irrigação automatizada por aspersão. Pode localizar-se no centro do equipamento e dele irradiar, perpendicularmente, tubulações áreas para irrigar simultaneamente os dois lados, ou localizar-se na lateral da área irrigada, no caso de irrigar somente por um lado. Em ambas as situações o deslocamento se dá ao longo da área junto com todo o sistema. The control car is the main component that differentiates the linear ones from the other sprinkler automated irrigation systems. Can be located in the center of the equipment and at the same time irradiate piping areas to simultaneously irrigate both sides, or be located on the side of the irrigated area if only one side irrigates. In both situations the displacement occurs along the area along with the whole system.
O cart consiste numa torre de comando, formado por vigas transversais onde se acoplam rodas com redutores ligados por eixo de transmissão a pequenos motorredutores que transmitem torque suficiente para girá-las pelo terreno e impulsionar a estrutura. Nele está localizado o painel de controle, por onde os principais parâmetros de funcionamento são comandados.  The cart consists of a control tower, formed by transverse beams where wheels with gearbox-linked reducers are coupled to small gearmotors that transmit sufficient torque to rotate them across the ground and propel the structure. In it is located the control panel, where the main operating parameters are controlled.
Podem conter, no caso de alimentação por canal, sucção flutuante, motor, bomba e gerador, estes três quando acoplados em um único conjunto denomina-se conjunto 3x1. No caso de alimentação por mangueira a operação é feita por um barrilhete de alimentação de água no lugar da sucção flutuante e motor acoplado num gerador que se denomina, grupo gerador.  They may contain, in the case of channel feed, floating suction, motor, pump and generator, these three when coupled in a single set is called a 3x1 set. In the case of hose feeding the operation is done by a water supply cap in place of the floating suction and motor coupled to a generator called a generator set.
Em ambos tem-se um tanque de combustível, tubulação de ligação entre a entrada de água e sua saída para abastecimento dos tubos da parte aérea do sistema e posterior aspersão na lavoura.  In both there is a fuel tank, a connection pipe between the water inlet and its outlet to supply the pipes of the overhead system and subsequent sprinkling in the crop.
De acordo com o tipo de cart e alimentação, pode-se dividir os sistemas lineares em sistema linear, sistema universal linear e sistema linear duas rodas.  According to the type of cart and power, linear systems can be divided into linear system, universal linear system and two wheel linear system.
No chamado sistema linear usa-se cart de quatro rodas e a alimentação é feita por canal. É o caso dos equipamentos citados no início e alcançam as maiores áreas irrigadas. O sistema universal linear é construído através de uma estrutura baseada na torre central de um pivô. Parte do princípio de que componentes da estrutura dessa torre central também são utilizadas neste sistema, a diferença é que no universal, toda a torre é colocada em cima de duas vigas com quatro pneus e unidades de transmissão. In the so-called linear system four-wheel cart is used and the feed is done by channel. This is the case of the equipment mentioned at the beginning and reach the largest irrigated areas. The universal linear system is built through a structure based on the center tower of a pivot. Assuming that components of the structure of this central tower are also used in this system, the difference is that in the universal, the whole tower is placed on two beams with four tires and transmission units.
Consegue irrigar uma faixa e, ao final do curso, realizar o pivotamento, ou seja, fazer com que toda a estrutura aérea gire 180o em torno do cart como se fosse um pivô central e voltar irrigando uma faixa adjacente. Desta forma, com a mesma quantidade de lances (torres móveis) irriga o dobro da área, economizando substancialmente na aquisição do sistema. Sua alimentação é feita por canal.  It can irrigate a lane and at the end of the course pivot, that is, cause the entire aerial structure to rotate 180 ° around the cart as if it were a center pivot and back irrigate an adjacent lane. Thus, with the same amount of moves (mobile towers) irrigates twice the area, saving substantially on system acquisition. Its feeding is done by channel.
Os lineares de duas rodas são alimentados por mangueira. Neste caso, a solução tecnológica permite que a própria viga-base de um lance comum seja transformada para receber um grupo gerador, o sistema de alinhamento, o painel, o acoplamento de mangueiras, o barrilhete e tubulação, que alimentará com água todo o restante do sistema.  The two-wheel linears are hose-fed. In this case, the technological solution allows the common beam base beam itself to be transformed to receive a generator set, alignment system, panel, hose coupling, cap and piping, which will feed all the remaining water. of the system.
Ele não terá que succionar água e aspergíla por toda a tubulação, pois neste caso a motobomba que conduz a água na linha de adutora já pressuriza todo o sistema, não requer grande motorização nem de bomba acoplada, somente de um grupo gerador para movimentar as unidades de transmissão o que diminui sensivelmente o peso no cart, possibilitando esta solução de duas únicas rodas, que confere ao sistema maior versatilidade e diminuição de custo.  It will not have to suck water and spray it throughout the piping, because in this case the pump that conducts water in the water line already pressurizes the entire system, does not require large motorization or coupled pump, only a generator set to move the units which significantly reduces the weight on the cart, enabling this two-wheeled solution, which gives the system greater versatility and cost savings.
Além de pivotável, pode também ser rebocável, ou seja, pode ser acoplada uma segunda tomada de água no final do último lance do sistema e com a ajuda de um trator, pode ser rebocado para uma faixa adjcente e reiniciar a operação. Na irrigação por aspersão a aplicação de água ao solo resulta da fragmentação de um jato de água lançado sobpressão no ar atmosférico, por meio de simples orifícios ou bocais de aspersores. De forma geral, os sistemas de irrigação apresentam vantagens e limitações que devem ser analisadas quando da seleção do sistema a ser utilizado. In addition to being pivotable, it can also be towable, that is, a second water intake can be coupled at the end of the last flight of the system and with the help of a tractor, can be towed to an adjunct lane and restart operation. In sprinkler irrigation the application of water to the soil results from the fragmentation of a water jet released under pressure into the atmospheric air through simple sprinkler nozzles or nozzles. In general, irrigation systems have advantages and limitations that should be analyzed when selecting the system to be used.
Vantagens da irrigação por aspersão:  Advantages of sprinkler irrigation:
- dispensa o preparo ou sistematização do terreno;  - does not require the preparation or systematization of the land;
- permite um bom controle da lâmina de água a ser aplicada;  - allows good control of the water slide to be applied;
- possibilita a economia de mão-de-obra;  - enables the saving of labor;
- possibilita a economia de água (maior eficiência);  - enables water saving (higher efficiency);
- permite a aplicação de fertilizantes e tratamentos fitossanitários. Limitações da irrigação por aspersão:  - allows the application of fertilizers and phytosanitary treatments. Limitations of sprinkler irrigation:
- elevados custos iniciais, de operação e manutenção;  - high initial costs of operation and maintenance;
- distribuição de água muito afetada pelos fatores climáticos, principalmente, o vento;  - water distribution greatly affected by climatic factors, especially wind;
- favorece o desenvolvimento de algumas doenças;  - favors the development of some diseases;
- risco de selamento da superfície do solo;  - risk of soil surface sealing;
- imprópria para água com alto teor de sais.  - unsuitable for water with high salt content.
A irrigação é uma técnica milenar que se confunde com o desenvolvimento e prosperidade económica dos povos, pois muitas civilizações antigas se desenvolveram em regiões áridas onde a produção só era possível graças à irrigação. A história demonstra que a irrigação sempre foi um fator de riqueza, prosperidade e, consequentemente, de segurança. Com o avanço das tecnologias de irrigação e a demanda cada vez maior de água pelas atividades humanas, acentuou-se a busca por métodos mais eficientes, que consumam menos recursos e forneçam melhores resultados em produtividade e qualidade. Irrigation is a millennial technique that blends with the development and economic prosperity of the people, as many ancient civilizations developed in arid regions where production was only possible thanks to irrigation. History shows that irrigation has always been a factor of wealth, prosperity and hence safety. With the advancement of irrigation technologies and the increasing demand for water for human activities, the search for more efficient methods that consume less resources and provide better results in productivity and quality has increased.
A presente invenção tem por objetivo "SISTEMAS DE The present invention is directed to "SYSTEMS OF
IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" que consiste em uma irrigação onde a água é aplicada de forma pontual através de gotas diretamente ao solo. Estas gotas, ao infiltrarem, formam um padrão de umedecimento denominado "bulbo úmido". Estes bulbos podem ou não se encontrar com a continuidade da irrigação e formar uma faixa úmida, e outro objetivo proporcionar uma irrigação através de canhão, cujo alcance do jato pode atingir varias posições a até 100, 200, 300 ou mais metros de distancia. IRRIGATIONS APPLIED ON COTTON AND WHEAT "which consists of an irrigation where water is applied punctually through droplets directly to the soil. These droplets, upon infiltration, form a moistening pattern called a" wet bulb. " not meeting the continuity of irrigation and forming a wet strip, and another objective to provide cannon irrigation, the range of which can reach various positions up to 100, 200, 300 or more meters.
De acordo com a presente invenção, é proporcionado um sistema de irrigação que compreende uma mangueira de irrigação feita de resina sintética, podendo ter uma ou duas mangueiras que formam linhas de irrigação alongadas, cada linha compreendendo uma passagem de água separada adaptada para comunicação individual ou coletiva com uma fonte de abastecimento de água, e uma sucessão de furos espaçados de irrigação, cada furo associado com um emissor de irrigação.  According to the present invention there is provided an irrigation system comprising an irrigation hose made of synthetic resin, which may have one or two hoses forming elongate irrigation lines, each line comprising a separate waterway adapted for individual communication or with a water supply, and a succession of spaced irrigation holes, each hole associated with an irrigation emitter.
Os emissores usados na mangueira de irrigação da presente invenção pode ter qualquer concepção apropriada, por exemplo eles podem ser emissores de irrigação por gotejamento ou mini-aspersores. Os emissores para gotejamento são montados dentro das linhas de irrigação, de modo a ter os seus pontos de irrigação concêntricos aos furos. Podendo quando a linha for formada por duas mangueiras os furos de cada mangueira possuírem diâmetros diferentes. As disposições dos furos das saídas de irrigação dos emissores podem ser obtidos de diferentes maneiras. Um exemplo de acordo com a presente invenção é formando linhas de irrigação com furos nas duas mangueiras alinhados, de modo que quando um lado estiver irrigando o outro lado da planta não recebe agua permitindo o solo secar, podendo ser também monatdos em dispersores aéreos com pivo central ou linear. The emitters used in the irrigation hose of the present invention may be of any suitable design, for example they may be drip irrigation emitters or mini sprinklers. Drip emitters are mounted within the irrigation lines so that their irrigation points are concentric to the holes. When the line is formed by two hoses, the holes of each hose can have different diameters. The arrangement of the emitter irrigation outlet holes can be obtained in different ways. An example in accordance with the present invention is forming irrigation lines with holes in the two aligned hoses, so that when one side is irrigating the other side of the plant does not receive water allowing the soil to dry out, and can also be mounted on pivot aerial spreaders. central or linear.
De acordo com a presente invenão esta carcaterizado por uma ou mais mangueiras (1) formando linhas de irrigação (2) que formam passagnes de agua (3) e (4) pode ter qualquer diâmetro, que podem atuar de forma isolada ou comunicantes, que são ligadas a uma fonte de abastecimento de água, cuja válvula é capaz de promover o fornecimento de água com intervalos de tempo predeterminado, sendo cada uma das linhas de irrigação (2) dotadas de furos de saída (5) dispostos de forma equidistantes, que recebem a montagem dos emissores de irrigação internos.  According to the present invention it is characterized by one or more hoses (1) forming irrigation lines (2) that form water passages (3) and (4) can have any diameter, which can act in isolation or communicating, which are connected to a water supply whose valve is capable of providing water supply at predetermined time intervals, each of the irrigation lines (2) having equidistantly arranged outlet holes (5) which receive mounting of internal irrigation emitters.
Para que se possa obter uma perfeita compreensão do que fora desenvolvido são apensos desenhos aos quais fazem-se referências numéricas em conjunto com uma descrição pormenorizada, sendo que a:  In order to obtain a perfect understanding of what has been developed, drawings are attached to which numerical references are made together with a detailed description:
Figura 1 mostra a plantação com uma linha de irrigação central.  Figure 1 shows the plantation with a central irrigation line.
Figura 2 mostra a plantação com duas linhas de irrigação central. Figure 2 shows the plantation with two central irrigation lines.
Figura 3 mostra uma vista da mangueira de irrigação. Figure 3 shows a view of the irrigation hose.
Figura 4 mostra da irrigação aérea.  Figure 4 shows aerial irrigation.
Figura 5 mostra da irrigação por canhão.  Figure 5 shows cannon irrigation.
Diante do descrito e ilustrado podemos verificar que a "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" traz enormes vantagens, pois a irrigação por gotejamento compreende a aplicação de pequenas quantidades de água diretamente na zona radicular da planta , através de fonte pontual ou linha de gotejadores sobre ou abaixo do solo, com pressões de operação, gotejador também pode ser aéreo, apoiado por suporte ou amarrado na própria planta, ou uma irrigação através de um pivô aéreo que pode ser central (redondo) ou linear ( horizontal), com espaçamento pode ser de 0,30 x0,30, 0,40 x 0,40 , 0,50 x 0,50 até 8m x 8m e até 1,5 metros da superfície (profundidade ) ou ainda através de canhões. Given the described and illustrated we can see that the "IRRIGATION SYSTEMS APPLIED IN COTTON AND WHEAT CROP" brings huge advantages, since drip irrigation comprises the application of small amounts of water directly into the root zone of the plant through a point source or drip line above or below ground with operating pressures, dripper may also be aerial, supported by support or tied to the plant itself, or an irrigation through an air pivot that can be central (round) or linear (horizontal) with spacing can be 0.30 x 0.30, 0.40 x 0.40, 0.50 x 0.50 to 8m x 8m and up to 1.5 meters from the surface (depth) or through cannons.
O sistema permite se obter maiores produtividades, pois irriga uma parte do solo onde estão as raízes da planta de forma muito precisa, constante e sem expulsar todo o ar deste solo. Assim, as raízes têm sempre água facilmente disponível, nutrientes (fertirrigação) e oxigénio, pois estas respiram para realizar seus processos metabólicos e de crescimento. No local da faixa úmida/bulbo, há então um grande aumento do volume e atividade das radicelas, raízes finas cuja única função é absorver água e nutrientes. O gotejamento praticamente não afeta as raízes de sustentação, que são grossas e suberinizadas, ou seja, são impermeáveis e não absorvem água e nutrientes.  The system allows higher yields, as it irrigates a part of the soil where the roots of the plant are located very precisely, constantly and without expelling all air from this soil. Thus, roots always have readily available water, nutrients (fertigation) and oxygen as they breathe to carry out their metabolic and growth processes. At the wetland / bulb site, there is then a large increase in the volume and activity of rootlets, thin roots whose sole function is to absorb water and nutrients. The drip practically does not affect the supporting roots, which are thick and suberinized, that is, they are impermeable and do not absorb water and nutrients.
Assim, plantas cultivadas com gotejamento têm maior atividade radicular (radicelas), raízes profundas e, portanto, maior produtividade e capacidade de serem manipuladas mais facilmente, pois estas radicelas na área úmida são o alvo perfeito para tratamentos hormonais, aplicação de defensivos sistémicos ou indução de stress hídrico (déficit hídrico).  Thus, drip crops have higher root activity (root), deep roots, and therefore greater productivity and ability to be manipulated more easily, as these root in the wetland are the perfect target for hormone treatments, systemic pesticide application or induction. water stress (water deficit).
A característica principal da irrigação por gotejamento traduz os ganhos de eficiência das características anteriores, pois uma aplicação localizada de água, estimulando uma estrutura densa e ativa de radicelas e uma uniformidade alta de irrigação implica em um grande ganho de eficiência na quimigação, que é a aplicação de produtos químicos em sistemas de irrigação. The main characteristic of drip irrigation reflects the efficiency gains of the previous characteristics, since a localized application of water, stimulating a dense and active root structure and a high uniformity of irrigation implies a great gain of efficiency in chemigation, which is the application of chemicals in irrigation systems.
Esta eficiência é observada primeiramente nos ganhos com o uso da fertirrigação, pois o parcelamento melhora a racionalidade da aplicação versus necessidade da planta, diminui perdas por lixiviação/fixação e melhora a uniformidade de aplicação, já que esta é determinada pela uniformidade do próprio sistema de irrigação.  This efficiency is first observed in the gains with the use of fertigation, since the installment improves the rationality of the application versus the need of the plant, decreases the leaching / fixation losses and improves the application uniformity, since it is determined by the uniformity of the system itself. irrigation.
O sistema de irrigação por gòtejamento (superfície ou subterrânea) no cultivo de milho e soja é tecnicamente fácil, economicamente viável e beneficiai de várias formas:  The drip irrigation system (surface or underground) in maize and soybean cultivation is technically easy, economically viable and benefits in several ways:
- Uniformidade de aplicação de água maior;  - Uniformity of application of larger water;
- Diminuição dos custos de energia por causa da redução do tempo de bombeamento para irrigar uma área dada;  - Decreased energy costs due to reduced pumping time to irrigate a given area;
- Economia de água de 45 a 50% contribuindo para um uso mais eficiente de água;  - Water savings of 45 to 50% contributing to more efficient water use;
- Economia em fertilizante (25 a 30%) por causa da fertirrigação e consequentemente eficiência do uso aperfeiçoado do fertilizante. Ex: eficiência agronómica, fisiológica e fiação de recoberta aparente;  - Savings on fertilizer (25 to 30%) because of fertigation and consequently efficiency of improved fertilizer use. Ex: agronomic, physiological efficiency and apparent covering wiring;
- Crescimento menor de erva daninha e economia em trabalho por causa de menor controle de erva daninha, fertirrigação e operações de proteção da planta;  - Lower weed growth and labor savings due to less weed control, fertigation and plant protection operations;
- Menor incidência de pestes e doenças por causa de limpeza de campo melhor.  - Lower incidence of pests and diseases because of better field clearance.
- Relações ideais de solo, água e ar contribuem para uma brotação melhor, emergência de campo uniforme e manutenção ideal da população de planta; - Programação de irrigação dia/noite é possível; - Optimum soil, water and air ratios contribute to better sprouting, uniform field emergence and optimal maintenance of the plant population; - Day / night irrigation schedule is possible;
- Facilita o cultivo em solos marginais por causa de irrigações frequentes e fertirrigação;  - Facilitates cultivation on marginal soils because of frequent irrigation and fertigation;

Claims

REIVIDICAÇÃO CLAIM
1 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" caracterizado por um sistema de irrigação em cultura de milho e soja, que compreende uma mangueira de irrigação feita de resina sintética, podendo ser ainda de outros materiais de condução de água, podendo ter uma, duas ou mais mangueiras que formam linhas de irrigação alongadas, cada linha compreendendo uma passagem de água separada adaptada para comunicação individual ou coletiva com uma fonte de abastecimento de água, e uma sucessão de furos espaçados de irrigação, cada furo associado com um emissor de irrigação. 1 - "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP" characterized by a corn and soybean crop irrigation system, which comprises an irrigation hose made of synthetic resin, and may also be of other water conduction materials, and may have one, two or more hoses forming elongate irrigation lines, each line comprising a separate waterway adapted for individual or collective communication with a water supply, and a succession of spaced irrigation holes, each hole associated with a irrigation emitter.
2 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" caracterizado por uma, duas ou mais mangueiras (1) formando linhas de irrigação (2) que formam passagnes de agua (3) e (4) pode ter qualquer diâmetro, que podem atuar de forma isolada ou comunicantes, que são ligadas a uma fonte de abastecimento de água, cuja válvula é capaz de promover o fornecimento de água com intervalos de tempo predeterminado, sendo cada uma das linhas de irrigação (2) dotadas de furos de saída (5) dispostos de forma equidistantes, que recebem a montagem dos emissores de irrigação internos.  2 - "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP" characterized by one, two or more hoses (1) forming irrigation lines (2) that form water passages (3) and (4) can have any diameter, which they can act in isolation or communicating, which are connected to a water supply, whose valve is capable of promoting water supply at predetermined time intervals, each of the irrigation lines (2) having outlet holes (5) Equidistantly arranged, which receive the mounting of the internal irrigation emitters.
3 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" caracterizado pela irrigação ser efetuada pelo sistema de aspersão móvel ou autopropelido.  3 - "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP" characterized by irrigation being carried out by the mobile or self-propelled sprinkler system.
4 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO 4 - "IRRIGATION SYSTEMS APPLIED ON THE CROP
DE ALGODÃO E TRIGO" caracterizado pela irrigação ser efetuada pelo sistema autopropelido, tipo carretel enrolador que é um sistema mecanizado que irriga áreas de diferentes formatos e declividades, o equipamento é composto de uma tubulação de sucção, um conjimto motobomba, uma linha principal, um carretel enrolador e um carro irrigador, contendo um aspersor do tipo canhão ou uma barra irrigadora. COTTON AND WHEAT "characterized by irrigation being carried out by the self-propelled winding reel Mechanized that irrigates areas of different shapes and slopes, the equipment consists of a suction pipe, a pump set, a main line, a reel spool and an irrigation carriage, containing a cannon-type sprinkler or a sprinkler bar.
5 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO 5 - "IRRIGATION SYSTEMS APPLIED ON THE CROP
DE ALGODÃO E TRIGO" caracterizado pela irrigação ser efetuada pelo sistema de aspersão com pivo central, utilizando diversos tipos de bicos, aplicado sobre a linha do plantio. COTTON AND WHEAT "characterized by irrigation being performed by the central pivot sprinkler system, using various types of nozzles, applied over the planting line.
6 - "SISTEMAS DE IRRIGAÇÕES APLICADOS NO CULTIVO DE ALGODÃO E TRIGO" caracterizado pela irrigação ser efetuada pelo sistema de aspersão linear de duas ou quatro rodas.  6 - "IRRIGATION SYSTEMS APPLIED ON COTTON AND WHEAT CROP" characterized by irrigation being carried out by the linear sprinkler system of two or four wheels.
PCT/BR2012/000080 2012-03-23 2012-03-23 Irrigation systems used in the growing of cotton and wheat WO2013138881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2012/000080 WO2013138881A1 (en) 2012-03-23 2012-03-23 Irrigation systems used in the growing of cotton and wheat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2012/000080 WO2013138881A1 (en) 2012-03-23 2012-03-23 Irrigation systems used in the growing of cotton and wheat

Publications (1)

Publication Number Publication Date
WO2013138881A1 true WO2013138881A1 (en) 2013-09-26

Family

ID=49221720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000080 WO2013138881A1 (en) 2012-03-23 2012-03-23 Irrigation systems used in the growing of cotton and wheat

Country Status (1)

Country Link
WO (1) WO2013138881A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350930A (en) * 2014-11-26 2015-02-18 新疆农垦科学院 Water-saving high-yield water-fertilizer management method for use in drip irrigation of spring wheat
CN104472201A (en) * 2014-12-30 2015-04-01 石河子大学 Construction method of drip irrigation spring wheat super-high-yield population structure
CN104904562A (en) * 2015-05-28 2015-09-16 山东农业大学 Method for irrigating winter wheat according to root distribution
CN104938200A (en) * 2015-07-09 2015-09-30 新疆农业科学院经济作物研究所 Water-saving seedling protection method for continuous cropping drip irrigation cotton field without winter irrigation and spring irrigation before sowing in cotton region of South Xinjiang
CN105191636A (en) * 2015-10-12 2015-12-30 石河子大学 Northern Xinjiang drop irrigation spring wheat planting method
CN110741908A (en) * 2019-10-09 2020-02-04 中科星图(深圳)数字技术产业研发中心有限公司 Irrigated area data acquisition method based on digital earth platform
CN115486349A (en) * 2022-07-05 2022-12-20 北京国垦节水科技有限公司 Wide-narrow row large-flow drip irrigation planting technology for wheat planting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726478A (en) * 1971-03-29 1973-04-10 Irrigation Power Equip Inc Moving pivot sprinkler irrigation system
US5333793A (en) * 1993-07-21 1994-08-02 T-Systems International, Inc. Drip irrigation hose with pressure compensation and method for its manufacture
WO1997008941A1 (en) * 1995-09-06 1997-03-13 Hansinger Irrigation Systems Ltd. Automatic sprinkler
US6085999A (en) * 1998-11-18 2000-07-11 Valmont Industries, Inc. Corner irrigation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726478A (en) * 1971-03-29 1973-04-10 Irrigation Power Equip Inc Moving pivot sprinkler irrigation system
US5333793A (en) * 1993-07-21 1994-08-02 T-Systems International, Inc. Drip irrigation hose with pressure compensation and method for its manufacture
WO1997008941A1 (en) * 1995-09-06 1997-03-13 Hansinger Irrigation Systems Ltd. Automatic sprinkler
US6085999A (en) * 1998-11-18 2000-07-11 Valmont Industries, Inc. Corner irrigation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOOD AND AGRICULTURE ORGANIZATION (FAO).: "Small Scale Irrigation arid zones", 1997, Retrieved from the Internet <URL:http://www.fao.ora/docreplW3094EIW3094E00.htm> [retrieved on 20120413] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350930A (en) * 2014-11-26 2015-02-18 新疆农垦科学院 Water-saving high-yield water-fertilizer management method for use in drip irrigation of spring wheat
CN104472201A (en) * 2014-12-30 2015-04-01 石河子大学 Construction method of drip irrigation spring wheat super-high-yield population structure
CN104904562A (en) * 2015-05-28 2015-09-16 山东农业大学 Method for irrigating winter wheat according to root distribution
CN104904562B (en) * 2015-05-28 2017-03-08 山东农业大学 The method irrigated according to winter wheat root distribution
CN104938200A (en) * 2015-07-09 2015-09-30 新疆农业科学院经济作物研究所 Water-saving seedling protection method for continuous cropping drip irrigation cotton field without winter irrigation and spring irrigation before sowing in cotton region of South Xinjiang
CN104938200B (en) * 2015-07-09 2017-03-01 新疆农业科学院经济作物研究所 Xinjiang South Sinkiang cotton region broadcast before non-winter irrigation or non-spring irrigation continuous cropping Cotton Field under Drip Irrigation water-saving seedling method
CN105191636A (en) * 2015-10-12 2015-12-30 石河子大学 Northern Xinjiang drop irrigation spring wheat planting method
CN110741908A (en) * 2019-10-09 2020-02-04 中科星图(深圳)数字技术产业研发中心有限公司 Irrigated area data acquisition method based on digital earth platform
CN115486349A (en) * 2022-07-05 2022-12-20 北京国垦节水科技有限公司 Wide-narrow row large-flow drip irrigation planting technology for wheat planting

Similar Documents

Publication Publication Date Title
WO2013138881A1 (en) Irrigation systems used in the growing of cotton and wheat
KR100963328B1 (en) Underground Root Margin Even Irrigation Apparatus and Method Thereof
CN107295954A (en) It is a kind of from pendulum-type irrigation sprinkler
CN204031996U (en) Intelligent remote water pump controller and magnetic valve regulator control system
US4660775A (en) Means for seeding through a center pivot irrigation system
RU2621079C2 (en) Integrated method to create microclimate for growing and protecting vineyards, and stationary technological system of transporting air pipelines to create microclimate in vineyards
Benami Sprinkler irrigation
WO2013138878A1 (en) Irrigation systems used in the growing of corn and soybean
CN105875362A (en) An intelligent remote water pump controller and solenoid valve control system
RU2664834C1 (en) Integrated method of creation of microclimate for growing and protection of vineyards and stationary technological system of transport air pipelines for the creation of microclimate on vineyards
WO2013138879A1 (en) Irrigation systems used in sugar-cane plantations
Farooq et al. Increase Water Use Efficiency through Micro-Irrigation
WO2019112458A1 (en) System for creating micro-climate in fruit farms and vineyards
WO2013138882A1 (en) Irrigation systems used in the growing of beans and rice
WO2013138880A1 (en) Irrigation systems in coffee-growing
WO2013138883A1 (en) Irrigation systems used in the growing of sorghum and citrus crops
Howell Drops of life in the history of irrigation
CN204070009U (en) Root fills with water-saving temp control digital signal device
WO2013138884A1 (en) Irrigation systems used in fruit-growing, cereal-growing, horticulture and cotton-growing
Derbala Development and evaluation of mobile drip irrigation with center pivot irrigation machines
Trout et al. On‐farm system design and operation and land management
Almusaed et al. Introduction on irrigation systems
CN105875361A (en) A water saving and temperature control digital signal device for root irrigation
RU2796493C1 (en) Modular-combined irrigation system
CN214676984U (en) Ecological agriculture planting system with irrigation and oxygen supplementation dual-purpose pipe network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872067

Country of ref document: EP

Kind code of ref document: A1