WO2013137347A1 - 焼結軸受およびその製造方法 - Google Patents

焼結軸受およびその製造方法 Download PDF

Info

Publication number
WO2013137347A1
WO2013137347A1 PCT/JP2013/057079 JP2013057079W WO2013137347A1 WO 2013137347 A1 WO2013137347 A1 WO 2013137347A1 JP 2013057079 W JP2013057079 W JP 2013057079W WO 2013137347 A1 WO2013137347 A1 WO 2013137347A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
sintered
sintered bearing
aluminum
sintering
Prior art date
Application number
PCT/JP2013/057079
Other languages
English (en)
French (fr)
Inventor
誠 神納
夏比古 森
容敬 伊藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013044224A external-priority patent/JP2013217493A/ja
Priority claimed from JP2013044227A external-priority patent/JP6026319B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US14/384,844 priority Critical patent/US20150064045A1/en
Priority to EP13760718.0A priority patent/EP2826876B1/en
Priority to IN7929DEN2014 priority patent/IN2014DN07929A/en
Priority to CN201380014056.6A priority patent/CN104204247B/zh
Publication of WO2013137347A1 publication Critical patent/WO2013137347A1/ja
Priority to US15/944,271 priority patent/US11351608B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium

Definitions

  • the present invention relates to a sintered bearing having excellent corrosion resistance and wear resistance and high strength, and a method for producing the same.
  • motor fuel pumps are used in engines that use gasoline or light oil as fuel.
  • engines equipped with motor-type fuel pumps using fuels such as gasoline and light oil have been widely used in various parts of the world, and the quality of gasoline and light oil used is different in each region of the world.
  • gasoline is used.
  • Gasoline containing organic acids is known as a kind of poor gasoline, but when copper-based sintered bearings are used in motor-type fuel pumps, copper-based sintering is caused by organic acids contained in such bad gasoline. The bearing is corroded.
  • the fuel pump is also required to be small and light
  • the sintered bearing incorporated therein is also required to be compact.
  • fuel such as gasoline taken into the fuel pump has a narrow gap flow passage.
  • the sintered bearing is required to be compact and have higher strength and wear resistance.
  • the conventional copper-based sintered bearing has high strength but is not sufficient in terms of wear resistance.
  • Patent Document 1 discloses a Cu—Ni—Sn—C—P based sintered bearing as a sintered bearing used for such applications.
  • Patent Document 2 discloses a technique relating to a mixed powder for a sintered aluminum-containing copper alloy and a method for producing the same in order to improve the above problem.
  • Patent Document 1 The Cu—Ni—Sn—C—P based sintered bearing described in Patent Document 1 improves strength and wear resistance, but is not sufficient in terms of corrosion resistance. Further, since Ni which is a rare metal is contained, there is a problem in terms of cost.
  • the aluminum-containing copper alloy powder described in Patent Document 2 is excellent in formability and sinterability, but as an aluminum bronze-based sintered bearing using the aluminum-containing copper alloy powder, stable mechanical properties, Further studies are necessary to obtain a product suitable for mass production that satisfies compactness and low cost.
  • an object of the present invention is to provide a method for manufacturing an aluminum bronze sintered bearing that is good at low cost and suitable for mass production.
  • the present inventor has made effective use of expansion due to sintering in order to improve the bearing function and reduce the size and cost of an aluminum bronze sintered bearing.
  • As a new concept of manufacturing aluminum sintered bronze bearings a new method of effectively utilizing expansion due to sintering in order to realize a manufacturing method with good productivity, low cost, and suitable for mass production. Led to a new idea.
  • the present invention contains 3 to 12% by mass of aluminum and 0.05 to 0.5% by mass of phosphorus, with the balance being copper as the inevitable impurity.
  • the sintered bearing has a structure in which the aluminum-copper alloy is sintered by the sintering aid added to the raw material powder, and has pores in the surface layer portion of the sintered bearing. It is characterized by being smaller than the internal pores.
  • the present invention as a method for manufacturing a sintered bearing contains 3 to 12% by mass of aluminum and 0.05 to 0.5% by mass of phosphorus, with the balance being copper as the main component and inevitable impurities.
  • a method for producing a sintered bearing which comprises at least a green compact step of forming a green compact obtained by adding a sintering aid to a raw material powder, and an aluminum-copper alloy sintered from the green compact. It includes a sintering process for obtaining a sintered body having a bonded structure, and a sizing process for dimensioning the sintered body.
  • the sintered bearing thus manufactured can improve mechanical properties such as corrosion resistance, strength, and wear resistance, oil film formation, and oil retention, and can be made compact.
  • the aluminum content is preferably 3 to 12% by mass. If the aluminum content is less than 3% by mass, the effects of corrosion resistance and wear resistance as an aluminum bronze sintered bearing cannot be obtained, and the expansion of the sintered body is small. This is not preferable because the strength of the sintered body is reduced and the expansion of the sintered body becomes too large.
  • the blending amount of phosphorus is preferably 0.05 to 0.5% by mass. If it is less than 0.05% by mass, the effect of promoting the sintering between the solid and liquid phases is poor. On the other hand, if it exceeds 0.5% by mass, the sintering proceeds so much that the aluminum is segregated and the precipitation of the ⁇ phase increases. Is not preferable because it becomes brittle. This is an alloy phase of copper and aluminum, and the ⁇ phase is transformed into a ⁇ phase at the eutectoid temperature (565 ° C.).
  • the blending amount of silicon is preferably 1 to 4% by mass. If the amount is less than 1% by mass, the amount of generated liquid phase is small, and the effect of promoting liquid phase sintering at low temperatures becomes insufficient, and a dense sintered body having an appropriate hardness cannot be obtained. On the other hand, if it exceeds 4% by mass, the obtained sintered body is hard and brittle, which is not preferable.
  • the tin content is preferably 0.5 to 2% by mass. If the amount is less than 0.5% by mass, the powder density cannot be increased by adding tin powder. On the other hand, if the amount exceeds 2% by mass, high-concentration tin is precipitated at the grain boundaries, resulting in a deterioration in the appearance quality of the sintered body. This is undesirable.
  • aluminum fluoride and calcium fluoride are added in a total amount of 0.05 to a total of 100% by mass of aluminum, phosphorus, raw material powder having copper as the main component and the inevitable impurities. By adding 0.2 mass%, it can react with the aluminum oxide produced
  • the total amount of aluminum fluoride and calcium fluoride is preferably 0.05 to 0.2% by mass. If it is less than 0.05% by weight, the effect as a sintering aid is insufficient, and a dense sintered body having an appropriate hardness cannot be obtained. On the other hand, if it exceeds 0.2% by mass, the effect as a sintering aid will reach its peak even if it is added more, and it is preferable to keep it to 0.2% by mass or less from the viewpoint of cost.
  • Zinc has a low melting point, promotes the sintering of copper and aluminum, and promotes the diffusion of aluminum. Furthermore, it is excellent in corrosion resistance. If the blending amount of zinc is less than 2% by mass, the effect of promoting the sintering of copper and aluminum and the effect of promoting the diffusion of aluminum cannot be obtained. On the other hand, if it exceeds 4% by mass, zinc evaporates during sintering and the sintering furnace is fouled, and aluminum is segregated and diffusion is hindered.
  • silicon generates a copper silicon-based liquid phase for the sintering progress-inhibiting phase formed in the sintering process and promotes the sintering. Since silicon increases the diffusion of aluminum during the sintering process, the amount of aluminum can be reduced and the ⁇ phase can be reduced.
  • the blending amount of silicon is preferably 0.5 to 3% by mass. If it is less than 0.5% by mass, the effect of enhancing the diffusion of aluminum in the sintering process is insufficient, and accordingly, the effect of reducing the ⁇ phase becomes insufficient. On the other hand, if it exceeds 3% by mass, silicon reacts when the temperature rises during sintering, and aluminum is oxidized black, resulting in a discoloration defect.
  • the copper raw material powder is mainly composed of electrolytic copper powder. Since the electrolytic copper powder has a dendritic shape, aluminum can be sufficiently diffused into copper, and the moldability, sinterability, and sliding properties are excellent.
  • graphite 1-5% by mass of graphite can be added to the total of 100% by mass of the above raw material powder and inevitable impurities. Thereby, it exists as a free graphite in the pores distributed and distributed, and imparts excellent lubricity to the sintered bearing, thereby further improving the wear resistance.
  • the amount of graphite is preferably 1 to 5% by mass. If it is less than 1% by mass, the effect of improving the lubricity and wear resistance by adding graphite cannot be obtained. On the other hand, if it exceeds 5% by mass, the strength decreases, which is not preferable.
  • the surface layer of the sintered bearing has a compression layer.
  • the density ratio ⁇ 1 of the compression layer is higher than the internal density ratio ⁇ 2, and the density ratio ⁇ 1 is 80% ⁇ ⁇ 1 ⁇ 95%.
  • the ratio T / D1 between the average depth T and the inner diameter D1 of the bearing surface is preferably 1/100 ⁇ T / D1 ⁇ 1/15.
  • the pores on the bearing surface are preferably set larger than the pores on the other outer surfaces.
  • the above-mentioned sintered bearing as an oil-impregnated bearing, a better lubrication state can be obtained than at the start of operation.
  • the lubricant mineral oil, polyalphaolefin (PAO), ester, liquid grease and the like can be used.
  • the aluminum content is preferably 8 to 9% by mass. This suppresses sulfidation corrosion and organic acid corrosion due to poor gasoline, and is excellent in performance such as initial familiarity and durability.
  • the die for the above sizing process is composed of a die, a pair of punches and a core, and is compressed from both the axial side and the outer diameter side of the sintered body by the punch and the die. It is preferable to shape the inner diameter side of the sintered body with a core. Thereby, the expansion
  • the pore size on the surface of the sintered body is increased. Can be set. Thereby, the size of the pores on the surface of the sintered bearing can be easily controlled.
  • the load of the mesh belt type continuous furnace is reduced by setting the sintering temperature in the sintering step to 850 to 950 ° C., the sintering atmosphere to a reducing atmosphere, and the sintering time to 10 to 60 minutes. Stable quality, manufacturing method can be realized.
  • the sintered bearing according to the present invention can improve mechanical properties such as corrosion resistance, strength and wear resistance, oil film formation and oil retention, and can be made compact and low in cost. Moreover, the manufacturing method of the sintered bearing by this invention can implement
  • FIG. 5 is a longitudinal sectional view of a sintered bearing according to the first to third embodiments of the sintered bearing of the present invention and a sintered bearing based on the manufacturing method according to the first to third embodiments of the manufacturing method of the present invention.
  • It is the schematic diagram which expanded the metal structure of the A section of FIG.
  • It is the schematic diagram which expanded the metal structure of the B section of FIG.
  • It is the schematic diagram which expanded the metal structure of the C section of FIG.
  • It is a figure explaining the manufacturing process of the said sintered bearing.
  • It is a schematic diagram of the raw material powder mixer.
  • It is a schematic diagram of a mesh belt type continuous furnace. It is a figure explaining a sizing process. It is a figure explaining a sizing process.
  • FIGS. 3 to 8 show a first embodiment of a manufacturing method.
  • the sintered bearing 1 according to the first embodiment of the sintered bearing is formed in a cylindrical shape having a bearing surface 1a on the inner periphery.
  • the lubricating oil retained in the countless holes of the sintered bearing 1 oozes into the bearing surface 1a as the temperature rises. put out.
  • the oil that has oozed out forms an oil film in the bearing gap between the outer peripheral surface of the shaft 2 and the bearing surface 1 a, and the shaft 2 is supported by the bearing 1 so as to be relatively rotatable.
  • the sintered bearing 1 according to the present embodiment is formed by filling raw material powder mixed with various powders in a mold, compressing this to form a green compact, and then sintering the green compact.
  • the raw material powder is copper powder, powder composed of copper, aluminum and aluminum copper alloy composition, mixed powder containing silicon powder, tin powder, phosphorus alloy powder, and graphite powder as main components. Details of each powder are described below.
  • Copper powder As the copper powder, spherical or dendritic copper powder that is widely used for sintered bearings can be used. For example, reduced powder, electrolytic powder, water atomized powder, and the like are used. The particle size is 100 mesh passing powder and 350 mesh passing powder ratio is 40% or less.
  • a powder composed of copper, aluminum and aluminum copper alloy composition (40 to 60% by mass of aluminum alloy powder and copper powder as the balance, heat-treated in a reducing or inert atmosphere, pulverized, and adjusted in particle size)
  • aluminum-copper alloy powder A powder composed of copper, aluminum and aluminum copper alloy composition (40 to 60% by mass of aluminum alloy powder and copper powder as the balance, heat-treated in a reducing or inert atmosphere, pulverized, and adjusted in particle size
  • the preferred particle size of the aluminum-copper alloy powder is 80 mesh powder and 350 mesh powder ratio is 60% or less.
  • the composition of the aluminum-copper alloy powder is preferably in the range of 40-60 mass% aluminum.
  • Powder containing aluminum of less than 40% by mass is a copper-silicon liquid phase under low-temperature sintering due to a reduction in green compact density during pressure forming due to a decrease in the copper powder mixing ratio and an alloy phase with a high melting point. The generation amount is reduced, and the effect of adding the sintering promoting element is reduced.
  • the powder containing aluminum exceeding 60% by mass the unreacted aluminum particles are scattered due to the increase of the copper particles and the unreacted aluminum particles, which causes a problem in handling.
  • the aluminum content is 3 to 10% by mass
  • silicon is 1 to 4% by mass
  • tin is 0.5 to 2% by mass
  • phosphorus is 0.05 to 0.
  • a copper powder, an aluminum-copper alloy powder, and a phosphorus alloy powder, silicon powder, and tin powder, which will be described later, are mixed in such a ratio that the remaining main component is copper.
  • the graphite powder is mixed so that the blending amount of graphite is 1 to 5% by mass to obtain a raw material powder.
  • the amount of phosphorus is preferably 0.05 to 0.5% by mass. If it is less than 0.05% by mass, the effect of promoting the sintering between the solid and liquid phases is poor. On the other hand, if it exceeds 0.5% by mass, the sintering proceeds so much that the aluminum segregates and the ⁇ phase increases and the sintered body becomes brittle. .
  • Silicon is added as a sintering aid. Silicon generates a copper silicon-based liquid phase for the sintering progress-inhibiting phase formed in the sintering process and promotes the sintering.
  • the amount of silicon is preferably 1 to 4% by mass. If the amount is less than 1% by mass, the amount of generated liquid phase is small, and the effect of promoting liquid phase sintering at low temperatures becomes insufficient, and a dense sintered body having an appropriate hardness cannot be obtained. On the other hand, if it exceeds 4% by mass, the sintering proceeds too much, so that aluminum is segregated and the ⁇ phase increases and the sintered body becomes brittle.
  • Tin powder Tin is added as a sintering aid. Tin compensates for the decrease in moldability associated with the addition of silicon powder, and has the effect of lowering the liquid phase generation temperature produced by the addition of silicon powder, as with phosphorus.
  • the amount of tin is preferably 0.5-2% by mass. If the amount is less than 0.5% by mass, the powder density cannot be increased by adding tin powder. On the other hand, if the amount exceeds 2% by mass, high-concentration tin is precipitated at the grain boundaries, resulting in a deterioration in the appearance quality of the sintered body. This is undesirable.
  • Graphite powder Graphite exists mainly as free graphite in pores dispersed and distributed in the base material, imparts excellent lubricity to the sintered bearing, and contributes to improvement of wear resistance.
  • the blending amount of graphite is preferably 1 to 5% by mass with respect to 100% by mass in total of aluminum, silicon, tin, phosphorus, copper and inevitable impurities. If it is less than 1% by mass, the effect of improving the lubricity and wear resistance by adding graphite cannot be obtained. On the other hand, if it exceeds 5% by mass, the strength decreases, which is not preferable.
  • FIG. 2 shows a schematic diagram of a metal structure of a cross section of the sintered bearing according to the present embodiment.
  • FIG. 2A is an enlarged view of part A in FIG.
  • FIG. 2B is an enlarged view of the portion B in FIG. 1
  • FIG. 2C is an enlarged view of the portion C in FIG. 2A shows the metal structure of the surface layer portion of the bearing surface on the inner diameter side
  • FIG. 2B shows the metal structure of the inner surface
  • FIG. 2C shows the metal structure of the surface layer portion of the outer diameter surface.
  • hatched 3 is an aluminum-copper alloy structure, and an aluminum oxide film 4 exists around the surface and internal pores.
  • the grain boundary portion of the aluminum-copper alloy structure 3 contains a lot of tin and phosphorus, and silicon is scattered. Since the free graphite 5 is distributed in the pores, it is excellent in lubricity and wear resistance.
  • an open pore db1 formed in the bearing surface on the inner diameter side and an internal pore db2 in the surface layer of the bearing surface are formed.
  • pores di are formed inside the bearing.
  • open pores do1 formed on the outer diameter surface and internal pores formed on the surface layer of the outer diameter surface. do2 is formed.
  • the open pore db1 formed on the bearing surface, the internal pore db2 on the surface of the bearing surface, the pore di inside the bearing, the release pore do1 formed on the outer diameter surface, and the internal pore do2 formed on the outer surface of the outer diameter surface Each communicates.
  • the sintered bearing 1 is sized in the outer diameter surface 1b of the bearing and the bearing surface 1a on the inner diameter side after sintering in the manufacturing method (see FIG. 7) described later. Since the aluminum bronze-based sintered bearing expands by sintering, the outer diameter surface 1b of the bearing is sized in a larger amount than the bearing surface 1a on the inner diameter side. Therefore, the pores do (see FIG. 2C) of the surface layer portion on the outer diameter surface 1b side are crushed more than the pores db (see FIG. 2A) of the surface layer portion on the bearing surface 1a side.
  • the pores do, db, di of the sintered bearing 1 are impregnated with lubricating oil. Thereby, a better lubrication state can be obtained than at the start of operation.
  • lubricating oil mineral oil, polyalphaolefin (PAO), ester, liquid grease, and the like can be used. However, it is not always necessary to impregnate the lubricating oil for the intended use of the bearing.
  • FIG. 1 shows the surface compression layer of the sintered bearing 1 by hatching. Hatching is given only to the upper half of the bearing 1 in the radial direction, and the lower half is not shown.
  • the surface layer of the sintered bearing 1 has a compression layer.
  • the density ratio ⁇ o of the outer compression surface Po on the outer diameter surface 1b side and the density ratio ⁇ b of the outer compression layer Pb on the bearing surface 1a side are both higher than the internal density ratio ⁇ i, and both density ratios ⁇ o and ⁇ b are present.
  • ⁇ i the density ratios ⁇ o and ⁇ b are present.
  • the average value of the depth of the compression layer Po of the surface layer on the outer diameter surface 1b side is To
  • the average value of the depth of the compression layer Pb of the surface layer on the bearing surface 1a side is Tb
  • the inner diameter dimension D1 of the bearing surface When the ratios are To / D1 and Tb / D1, respectively, it is preferable to set 1/100 ⁇ To / D1 and Tb / D1 ⁇ 1/15.
  • the density ratio ⁇ is expressed by the following equation.
  • ⁇ (%) ( ⁇ 1 / ⁇ 0) ⁇ 100
  • ⁇ 1 the density of the porous body
  • ⁇ 0 the density To / D1 and Tb / D1 when the porous body is assumed to have no pores are less than 1/100, the collapse of the pores is insufficient, If it exceeds 1/15, the pores are too crushed, which is not preferable.
  • To and Tb are collectively referred to as T.
  • the raw material powder preparation step S1 In the raw material powder preparation step S1, the raw material powder of the sintered bearing 1 is prepared and generated.
  • the raw material powder was 81% by mass of copper powder, 12% by mass of aluminum-copper alloy powder, 12% by mass of silicon powder, 3% by mass of silicon powder, 1% by mass of tin powder, 3% by mass of phosphorus-copper alloy powder.
  • 3 mass% of graphite powder and 0.5 mass% of a lubricant such as zinc stearate and calcium stearate were added to facilitate moldability.
  • a lubricant such as zinc stearate and calcium stearate were added to facilitate moldability.
  • the raw material powder M is charged into the can body 11 of the V-type mixer 10 shown in FIG. 4, and the can body 11 is rotated and mixed uniformly.
  • a compact 1 ' (see FIG. 7) having the shape of the sintered bearing 1 is formed by compacting the raw material powder.
  • the green compact 1 ′ is compression molded so that the density ratio ⁇ of the sintered body 1 ′′ formed by heating at a sintering temperature or higher is 70% or more and 80% or less.
  • the green compact is labeled 1 'and the sintered body is labeled 1 ".
  • a molding die that defines a cavity that follows the shape of a green compact is set in a CNC press using a servo motor as a drive source, and the above-mentioned raw material powder filled in the cavity is added to 200 to
  • the green compact 1 ′ is formed by compressing with a pressure of 700 MPa.
  • the molding die may be heated to 70 ° C. or higher.
  • the use of aluminum-copper alloy powder as the aluminum source improves the problem of insufficient strength of the green compact due to a decrease in formability due to fluidity. There is no problem in handling associated with scattering of small aluminum single particles. In addition, it has good production efficiency and is suitable for mass production.
  • the green compact 1 ′ is heated at a sintering temperature to sinter-bond adjacent raw material powders to form a sintered body 1 ′′.
  • a mesh belt type continuous furnace 15 shown in FIG. In order to prevent the oxidation as much as possible, in order to prevent the oxidation as much as possible, a reducing gas atmosphere or a mixed gas atmosphere of hydrogen gas or a nitrogen gas atmosphere is used. Then, the green compact 1 ′ is heated at 850 to 950 ° C. (eg, 900 ° C.) for 10 to 60 minutes to form a sintered body 1 ′′. Thereby, the load of a mesh belt type continuous furnace is reduced, and stable quality and a manufacturing method can be realized.
  • Aluminum-copper alloy powder generates various liquid phases when the eutectic temperature is 548 ° C or higher.
  • the liquid phase expands, and a sintered neck is formed by the generated liquid phase, leading to densification and shrinking of dimensions.
  • the surface of the sintered body 1 " is oxidized, and the size is kept expanded without being densified by inhibiting the sintering.
  • the strength of the sintered body 1" can be sufficiently secured. Since the mesh belt type continuous furnace 15 is used, the green compact is used. Sintering time can be shortened and mass-produced from 1 'input to take-out, cost can be reduced, and sufficient strength can be secured in terms of the function of the sintered bearing.
  • the added phosphorus alloy powder, tin powder, silicon powder, and graphite powder exhibit a synergistic effect described below, whereby a high-quality sintered body can be formed.
  • phosphorus has the effect of increasing the wettability between the solid and liquid phases during sintering and shifting the liquid phase generation temperature generated by the addition of silicon powder to the low temperature side, so that a good sintered body can be obtained.
  • the amount of phosphorus is preferably 0.05 to 0.5% by mass. If it is less than 0.05% by mass, the effect of promoting the sintering between the solid and liquid phases is poor, whereas if it exceeds 0.5% by mass, the obtained sintered body becomes brittle.
  • silicon as a sintering aid generates a copper silicon-based liquid phase and promotes sintering with respect to the sintering progress-inhibiting phase formed in the sintering process.
  • the amount of silicon is preferably 1 to 4% by mass. If the amount is less than 1% by mass, the amount of generated liquid phase is small, and the effect of promoting liquid phase sintering at low temperatures becomes insufficient, and a dense sintered body having an appropriate hardness cannot be obtained. On the other hand, when it exceeds 4 mass%, the obtained sintered body becomes hard and brittle.
  • tin as a sintering aid compensates for the decrease in moldability associated with the addition of silicon powder, and also exhibits the effect of lowering the liquid phase generation temperature produced by the addition of silicon powder, similar to phosphorus.
  • the amount of tin is preferably 0.5-2% by mass. If the amount is less than 0.5% by mass, an effect of increasing the density of the compact by adding tin powder cannot be obtained. On the other hand, if the amount exceeds 2% by mass, high concentration of tin precipitates at the grain boundaries, which is not preferable because it inhibits aluminum diffusion. .
  • a sintered body 1 ′′ having a structure in which an aluminum-copper alloy is sintered can be obtained, and the strength and corrosion resistance are improved. be able to.
  • graphite is present as free graphite mainly in the pores distributed and distributed in the base material, imparts excellent lubricity to the sintered bearing, and contributes to improvement of wear resistance.
  • the blending amount of graphite is preferably 1 to 5% by mass with respect to 100% by mass in total of aluminum, silicon, tin, phosphorus, copper and inevitable impurities. If it is less than 1% by mass, the effect of improving the lubricity and wear resistance by adding graphite powder cannot be obtained. On the other hand, if it exceeds 5% by mass, the strength decreases, which is not preferable.
  • FIG. 6 shows details of the sizing step S4.
  • the sintered body 1 is set on the lower punch 22 with the core 23 and the upper punch 21 retracted upward.
  • the core 23 first enters the inner diameter of the sintered body 1 ′′, and then the upper body 21 turns the sintered body 1 ′′ into the die 20 as shown in FIG. 6C. It is pushed in and compressed by the upper and lower punches 21 and 22. Thereby, the surface of the sintered body 1 ′′ is dimensionally shaped.
  • pores in the surface layer of the expanded sintered body 1 ′′ are crushed, and a density difference is generated between the inside of the product and the surface layer portion.
  • FIG. 7 shows a state in which the sintered body 1 ′′ is compressed by sizing.
  • the sintered body 1 ′′ before sizing is indicated by a two-dot chain line
  • the product 1 after sizing is indicated by a solid line.
  • the sintered body 1 ′′ expands in the radial direction and the width direction. For this reason, the sintered body 1 ′′ compresses the outer diameter surface 1b more than the bearing surface 1a on the inner diameter side.
  • the surface layer pores do (see FIG. 2C) on the outer diameter surface 1b side are crushed more than the surface layer pores db (see FIG. 2A) on the inner diameter side bearing surface 1b and are not crushed.
  • a die for the above sizing process is composed of a die 20, a pair of punches 21, 22 and a core 23, and is compressed from both sides in the axial direction and the outer diameter side of the sintered body 1 '' by the punches 21, 22 and the die 20.
  • the size of the pores on the surface of the bonded body 1 ′′ can be set. Thereby, the size of the pores on the surface of the sintered bearing 1 can be easily controlled.
  • the oil impregnation step S5 is a step in which the product 1 (sintered bearing) is impregnated with lubricating oil.
  • FIG. 8 shows an oil retaining device. The product 1 is put into the tank 26 of the oil impregnating device 25, and then the lubricating oil 27 is injected into the tank 26. Then, by reducing the pressure in the tank 26, the lubricating oil 27 is impregnated in the pores do, db, di (see FIG. 2) of the product 1. Thereby, a better lubrication state can be obtained than at the start of operation.
  • As the lubricating oil mineral oil, polyalphaolefin (PAO), ester, liquid grease, and the like can be used. However, what is necessary is just to implement according to the use application of a bearing, and it does not necessarily need to implement.
  • the sintered bearing 1 of the present embodiment manufactured by the process as described above improves mechanical properties such as corrosion resistance, strength, and wear resistance, oil film formation, and oil retention, as well as compactness and cost reduction. Can be planned.
  • the sintered bearing and manufacturing method of this embodiment differ in that the sintering aids are aluminum fluoride and calcium fluoride.
  • the raw material powder in the sintered bearing and manufacturing method of the present embodiment includes the copper powder, aluminum-copper alloy powder, phosphorus alloy powder and graphite powder used in the first embodiment, aluminum fluoride and This is a mixed powder mainly composed of calcium fluoride.
  • the contents of the copper powder, the aluminum-copper alloy powder, the phosphorus alloy powder, and the graphite powder are the same as those in the first embodiment, and a duplicate description is omitted.
  • copper powder, aluminum-copper are used in such a proportion that the aluminum content is 7 to 12% by mass, phosphorus is 0.05 to 0.5% by mass, and the remaining main component is copper.
  • the mixed alloy powder and the phosphorus alloy powder are mixed, and the total amount of aluminum fluoride and calcium fluoride as sintering aids is 0.05 to 0.2% by mass, and the graphite is 1 to 100% by mass. 5% by mass is mixed to obtain a raw material powder.
  • the aluminum-containing copper-based alloy powder has an aluminum oxide film formed on its surface during sintering that significantly inhibits the sintering, but aluminum fluoride and calcium fluoride as sintering aids are aluminum-containing copper-based alloy powders. It gradually evaporates while melting at a sintering temperature of 850 to 900 ° C., protects the surface of the aluminum-containing copper-based alloy powder and suppresses the formation of aluminum oxide, thereby promoting sintering and diffusion of aluminum. Improve. Aluminum fluoride and calcium fluoride evaporate and volatilize during sintering, and therefore hardly remain in the finished product of the sintered bearing.
  • Aluminum fluoride and calcium fluoride as sintering aids are 0.05 to 0.2 in total with respect to a total of 100% by mass of aluminum, phosphorus, raw material powder having copper as a main component and the inevitable impurities. It is preferable to add at about mass%. If it is less than 0.05% by weight, the effect as a sintering aid is insufficient, and a dense sintered body having an appropriate hardness cannot be obtained. On the other hand, if it exceeds 0.2% by mass, the effect as a sintering aid will reach its peak even if it is added more, and it is preferable to keep it to 0.2% by mass or less from the viewpoint of cost.
  • the metal structure of the cross section of the sintered bearing according to this embodiment is the same as that of the first embodiment shown in the schematic diagram of FIG. 2, only the main part will be described, and the other parts will not be described repeatedly. Omitted.
  • the sintered bearing 1 of the present embodiment has an aluminum-copper alloy structure with hatched 3 and aluminum oxide around the surface and internal pores. Film 4 is present. For this reason, it is excellent in corrosion resistance and abrasion resistance. Although illustration is omitted, phosphorus exists in the grain boundary portion of the aluminum-copper alloy structure 3. Since the free graphite 5 is distributed in the pores, it is excellent in lubricity and wear resistance.
  • both the outer diameter surface 1b and the inner bearing surface 1a of the bearing are sized after sintering.
  • swells by sintering the outer-diameter surface 1b of a bearing is sized in a bigger quantity than the bearing surface 1a of an internal diameter side. Therefore, the pores do (see FIG. 2C) of the surface layer portion on the outer diameter surface 1b side are crushed more than the pores db (see FIG. 2A) of the surface layer portion on the bearing surface 1a side.
  • the state of the compression layer of the surface layer of the sintered bearing 1 of the second embodiment is the same as that of the sintered bearing of the first embodiment shown in FIG. That is, also in the sintered bearing 1 of this embodiment, as shown in FIG. 1, the surface layer of the sintered bearing 1 has a compression layer with hatching.
  • the density ratio ⁇ o of the surface compression layer Po on the outer diameter surface 1b side and the density ratio ⁇ b of the surface compression layer Pb on the bearing surface 1a side are both internal density ratio ⁇ i.
  • the density ratios ⁇ o and ⁇ b are both set in the ranges of 80% ⁇ ⁇ o and ⁇ b ⁇ 95%.
  • the average value of the depth of the compression layer Po of the surface layer on the outer diameter surface 1b side is To
  • the average value of the depth of the compression layer Pb of the surface layer on the bearing surface 1a side is Tb
  • the inner diameter dimension D1 of the bearing surface If the ratios are To / D1 and Tb / D1, respectively, they are set to 1/100 ⁇ To / D1 and Tb / D1 ⁇ 1/15.
  • the second embodiment of the manufacturing method is the same as the method of manufacturing the sintered bearing of the first embodiment shown in FIG. 3, the specific contents in the raw material powder preparation step S1 and the sintering step S3 are as follows. Only the differences will be described.
  • the raw material powder is 100% by mass with the remaining mass% of copper powder, 40 to 60% by mass of aluminum-copper alloy powder 14 to 20% by mass, and 8% by mass of phosphorus-copper alloy powder 2 to 4% by mass.
  • a sintering aid a total of 0.05 to 0.2% by weight of aluminum fluoride and calcium fluoride, 1 to 5% by weight of graphite powder, zinc stearate, 0.5% by mass of a lubricant such as calcium phosphate was added.
  • the added phosphorus alloy powder, aluminum fluoride, and calcium fluoride exhibit the effects described below, whereby a high-quality sintered body can be formed.
  • phosphorus has an effect of improving the wettability between the solid and liquid phases during sintering, a good sintered body can be obtained.
  • the amount of phosphorus is preferably 0.05 to 0.5% by mass. If it is less than 0.05% by mass, the effect of promoting the sintering between the solid and liquid phases is poor, whereas if it exceeds 0.5% by mass, the obtained sintered body becomes brittle.
  • aluminum fluoride and calcium fluoride as a sintering aid gradually evaporate while melting at a sintering temperature of 850 to 900 ° C. of the aluminum-containing copper-based alloy powder, and the surface of the aluminum-containing copper-based alloy powder. Sintering is possible by protecting the aluminum and suppressing the formation of aluminum oxide.
  • Aluminum fluoride and calcium fluoride evaporate and volatilize during sintering, and therefore hardly remain in the finished product of the sintered bearing. Since it evaporates and volatilizes, the green compact is placed in a case or the like and sintered.
  • Aluminum fluoride and calcium fluoride as sintering aids are 0.05 to 0.2 in total with respect to a total of 100% by mass of aluminum, phosphorus, raw material powder having copper as a main component and the inevitable impurities. It is preferable to add at about mass%.
  • both sides of the sintered body 1 ′′ in the axial direction and outside are formed by punches 21 and 22 and a die 20 in the sizing process.
  • the inner diameter side of the sintered body 1 ′′ is shaped by the core 23, so that the expansion due to the sintering of the aluminum bronze sintered bearing can be effectively utilized, and the desired size of the sintered bearing 1 can be shaped. Pores can be formed.
  • the size of the pores on the surface of the bonded body 1 ′′ can be set. Thereby, the size of the pores on the surface of the sintered bearing 1 can be easily controlled.
  • the sintered bearing according to the present embodiment is specialized for a fuel pump of an automobile engine, suppresses sulfidation corrosion and organic acid corrosion due to poor gasoline, and is excellent in performance such as initial familiarity and durability.
  • FIG. 9 shows an example of a fuel pump for an automobile engine incorporating the sintered bearing of the third embodiment.
  • the sintered bearing 1 is provided on the rotation side.
  • a casing 41 having a liquid inlet 41 a and a liquid outlet 41 b, a fixed shaft 2 fixed to the casing 41 and protruding into the internal space of the casing 41, and an impeller provided rotatably with respect to the fixed shaft 2 42, a motor 43, a magnet 44 attached to the impeller 42, and a magnet 45 attached to the rotating shaft of the motor 43 and facing the magnet 44 on the impeller 42 side in the radial direction.
  • the sintered bearing 1 is fixed to the inner peripheral surface of the impeller 42, and the inner peripheral surface (bearing surface 1a, see FIG. 1) of the sintered bearing 1 and the outer peripheral surface of the fixed shaft 2 are slidably fitted in the rotation direction. Match.
  • the impeller 42 rotates due to the attractive force between the magnet 45 on the motor 43 side and the magnet 44 on the impeller 42 side. Thereby, the fuel that has flowed into the internal space of the casing 41 from the liquid inlet 41a is sent out from the liquid outlet 42a.
  • the sintered bearing and manufacturing method of the present embodiment has an aluminum content. 8-9% by mass, 0.05-0.5% by mass of phosphorus, 0.5-3% by mass of silicon, 2-4% by mass of zinc, and the remaining main component being copper. Copper powder, aluminum-copper alloy powder, phosphorus alloy powder, silicon powder and zinc alloy powder are mixed, and 0.05 to 0.2 mass in total of aluminum fluoride and calcium fluoride with respect to the total 100 mass%. %, And 1 to 5% by mass of graphite are mixed to obtain a raw material powder.
  • the raw material powder has the same parts as those in the first and second embodiments described above, but details of each powder will be described below.
  • Copper powder includes atomized powder, electrolytic powder, and pulverized powder. Dendritic electrolytic powder is effective for sufficiently diffusing aluminum into copper, and is excellent in moldability, sinterability, and sliding characteristics. Therefore, in this embodiment, electrolytic powder was used as copper powder.
  • the particle size is 100 mesh passing powder, and 350 mesh passing powder ratio is 40% or less.
  • Aluminum-copper alloy powder 50% by mass aluminum-copper alloy powder was pulverized to adjust the particle size.
  • the preferable particle size of the aluminum copper alloy powder is 145 mesh passing powder and the ratio of 350 mesh passing powder is 60% or more.
  • the aluminum phase has the most excellent corrosion resistance and initial familiarity with the ⁇ phase in the sulfide corrosion and organic acid corrosion.
  • 50 mass% aluminum-copper alloy powder strength can be obtained even when graphite is added, and a sintered bearing can be manufactured.
  • the wear resistance is excellent, but the corrosion resistance and initial familiarity deteriorate.
  • phosphorus alloy powder, zinc alloy powder, fluoride (aluminum fluoride, calcium fluoride) is added to promote sintering of copper and aluminum.
  • fluoride aluminum fluoride, calcium fluoride
  • Phosphor alloy powder 8 mass% phosphorus-copper alloy powder was used as in the first and second embodiments described above.
  • Phosphorus has the effect of increasing the wettability between the solid and liquid phases during sintering and shifting the liquid phase generation temperature generated by the addition of silicon powder to the low temperature side.
  • the amount of phosphorus is preferably 0.05 to 0.5% by mass. If the amount is less than 0.05% by mass, the effect of promoting the sintering between the solid and liquid phases is poor. On the other hand, if the amount exceeds 0.5% by mass, the sintering proceeds too much, so that the aluminum is segregated and the ⁇ phase is precipitated, resulting in a sintered body. It becomes brittle.
  • Zinc alloy powder zinc-copper alloy powder was used.
  • Zinc has a low melting point, promotes the sintering of copper and aluminum, and promotes the diffusion of aluminum. Furthermore, it is excellent in corrosion resistance.
  • the blending amount of zinc is preferably 1% by mass to 5% by mass. If it is less than 1% by mass, the effect of promoting the sintering of copper and aluminum and the effect of promoting the diffusion of aluminum cannot be obtained. On the other hand, if it exceeds 5% by mass, zinc evaporates during sintering and the sintering furnace is fouled, and sintering progresses too much, so that aluminum is segregated and diffusion of aluminum is inhibited.
  • Silicon is added as a sintering aid. Silicon generates a copper silicon-based liquid phase for the sintering progress-inhibiting phase formed in the sintering process and promotes the sintering. Since silicon increases the diffusion of aluminum during the sintering process, the amount of aluminum can be reduced and the ⁇ phase can be reduced.
  • the blending amount of silicon is preferably 0.5 to 3% by mass. If it is less than 0.5% by mass, the effect of enhancing the diffusion of aluminum in the sintering process is insufficient, and accordingly, the effect of reducing the ⁇ phase becomes insufficient. On the other hand, if it exceeds 3% by mass, silicon reacts when the temperature rises during sintering, and aluminum is oxidized black, resulting in a discoloration defect.
  • Graphite powder Graphite exists mainly as free graphite in pores dispersed and distributed in the base material, imparts excellent lubricity to the sintered bearing, and contributes to improvement of wear resistance.
  • the blending amount of graphite is preferably 1 to 5% by mass with respect to 100% by mass in total of aluminum, silicon, tin, phosphorus, copper and inevitable impurities. If it is less than 1% by mass, the effect of improving the lubricity and wear resistance by adding graphite cannot be obtained. On the other hand, if it exceeds 5% by mass, the strength decreases, which is not preferable.
  • the metal structure of the cross section of the sintered bearing according to the third embodiment is the same as that of the first and second embodiments shown in the schematic view of FIG. 2, only the main part will be described, and the other parts. The duplicate description is omitted.
  • the sintered bearing 1 of the present embodiment has an aluminum-copper alloy structure with hatched 3 and aluminum oxide around the surface and internal pores. Film 4 is present. For this reason, it is excellent in corrosion resistance and abrasion resistance. Although illustration is omitted, phosphorus exists in the grain boundary portion of the aluminum-copper alloy structure 3. Since the free graphite 5 is distributed in the pores, it is excellent in lubricity and wear resistance.
  • both the outer diameter surface 1b and the inner bearing surface 1a of the bearing are sized after sintering.
  • swells by sintering the outer-diameter surface 1b of a bearing is sized in a bigger quantity than the bearing surface 1a of an internal diameter side. Therefore, the pores do (see FIG. 2C) of the surface layer portion on the outer diameter surface 1b side are crushed more than the pores db (see FIG. 2A) of the surface layer portion on the bearing surface 1a side.
  • the state of the compression layer of the surface layer of the sintered bearing 1 of the third embodiment is the same as that of the sintered bearing of the first and second embodiments shown in FIG. That is, also in the sintered bearing 1 of this embodiment, as shown in FIG. 1, the surface layer of the sintered bearing 1 has a compression layer with hatching.
  • the density ratio ⁇ o of the surface compression layer Po on the outer diameter surface 1b side and the density ratio ⁇ b of the surface compression layer Pb on the bearing surface 1a side are both internal density ratio ⁇ i.
  • the density ratios ⁇ o and ⁇ b are both set in the ranges of 80% ⁇ ⁇ o and ⁇ b ⁇ 95%.
  • the average value of the depth of the compression layer Po of the surface layer on the outer diameter surface 1b side is To
  • the average value of the depth of the compression layer Pb of the surface layer on the bearing surface 1a side is Tb
  • the inner diameter dimension D1 of the bearing surface If the ratios are To / D1 and Tb / D1, respectively, they are set to 1/100 ⁇ To / D1 and Tb / D1 ⁇ 1/15.
  • the third embodiment of the manufacturing method is the same as the method of manufacturing the sintered bearing of the first and second embodiments shown in FIG. 3, the raw material powder preparation step S1, the sintering step S3, and the sizing step Only the differences in the specific contents in S4 will be described.
  • the raw material powders are electrolytic copper powder remaining mass%, 40 to 60 mass% aluminum-copper alloy powder 14 to 20 mass%, 8 mass% phosphorus-copper alloy powder 2 to 4 mass%, silicon powder 1 to 3% by mass and 20 to 40% by mass of zinc-copper alloy powder of 6 to 8% by mass in total of 100% by mass, and as a sintering aid, aluminum fluoride and calcium fluoride in total of 0.05 to 0.2% by mass, 1 to 5% by mass of graphite powder, and 0.5% by mass of a lubricant such as zinc stearate and calcium stearate were added to facilitate moldability.
  • a lubricant such as zinc stearate and calcium stearate were added to facilitate moldability.
  • the sintering temperature is preferably 900 to 950 ° C., and more preferably 900 to 920 ° C. (for example, 920 ° C.) as the sintered bearing for the fuel pump.
  • the atmosphere gas is hydrogen gas, nitrogen gas or a mixed gas thereof, and the longer the sintering time, the better the corrosion resistance.
  • 20 to 60 minutes for example, 30 minutes Is preferred.
  • the dimensional difference between the inner diameter dimension of the die 20 and the outer diameter dimension of the sintered body 1 ′′ and the dimensional difference between the outer diameter dimension of the core 23 and the inner diameter dimension of the sintered body 1 ′′ It is possible to set the size of the pores on the surface of the bonded body 1 ′′. Thereby, the size of the pores on the surface of the sintered bearing 1 can be easily controlled. By rotating and sizing the surface 1a (see FIG. 7), the pores of the bearing surface 1a can be reduced.
  • the sintered bearing based on the manufacturing method of the third embodiment it is possible to improve mechanical properties such as corrosion resistance, strength, and wear resistance, oil film formation, and oil retention, and to achieve compactness and cost reduction. it can.
  • a sintered bearing for a fuel pump it suppresses sulfidation corrosion and organic acid corrosion due to poor gasoline, and is excellent in performance such as initial familiarity and durability.
  • the fuel pump is illustrated as an application of the sintered bearing according to the above embodiment, the invention is not limited to this, and for example, an application requiring corrosion resistance such as an exhaust gas recirculation device (EGR) or a fishing reel. It can be applied to a bearing as appropriate.
  • EGR exhaust gas recirculation device
  • the present invention is not limited to a perfect circle bearing, but the bearing surface 1a and the shaft 2 are also illustrated.
  • the present invention can be similarly applied to a fluid dynamic pressure bearing in which a dynamic pressure generating portion such as a herringbone groove, a spiral groove, or the like is provided on the outer peripheral surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 3~12質量%のアルミニウムおよび0.05~0.5質量%の燐を含有し、残部の主成分を銅とし、不可避不純物を含んだ焼結軸受1であって、この焼結軸受1が、原料粉末に添加した焼結助剤によりアルミニウム-銅合金が焼結された組織を有し、かつ焼結軸受1の表層部の気孔db、doを内部の気孔diより小さくしたことを特徴とする。

Description

焼結軸受およびその製造方法
 本発明は、耐食性および耐摩耗性に優れ、高強度を有する焼結軸受およびその製造方法に関する。
 従来、例えば、燃料としてガソリンや軽油などを用いるエンジンにはモータ式燃料ポンプが使用されている。近年、ガソリンや軽油などの燃料を用いるモータ式燃料ポンプを備えたエンジンは、世界各地で広く使用されており、使用されるガソリンや軽油などの品質は世界の各地域で異なっており、粗悪なガソリンが使用されている地域も多い。粗悪なガソリンの一種として有機酸を含むガソリンが知られているが、モータ式燃料ポンプに銅系焼結軸受を使用した場合、このような粗悪ガソリンに含まれている有機酸により、銅系焼結軸受が腐食される。この腐食は、軸受表面に開口する気孔の開口部周辺およびこの気孔の内面、さらには軸受の内部に内在し、かつ表面から内部に連通している気孔の内面などに進行して軸受の強度を低下させ、銅系焼結軸受の寿命が短くなる。
 さらに、近年、自動車などのエンジンの小型化、軽量化はめざましく、これに伴って、燃料ポンプにも小型化および軽量化が求められ、これに組込まれる焼結軸受もコンパクト化が求められる。例えば、モータ式燃料ポンプでは、吐出性能を確保しつつ小型化するには、回転数を高める必要があり、これに伴い、燃料ポンプ内に取り込まれたガソリンなどの燃料が狭い隙間の流通路を高圧かつ高速で通過することになり、このような条件下では、焼結軸受にコンパクト化と共に一層の高強度と耐摩耗性が要求されることになる。このため、従来の銅系焼結軸受は、高強度を有するが、耐摩耗性については十分ではない。
 このような用途に使用する焼結軸受として、例えば、特許文献1には、Cu-Ni-Sn-C-P系の焼結軸受が公開されている。
 一方、機械的特性と耐食性に優れた焼結軸受として、アルミニウム青銅系の焼結軸受が知られている。この焼結軸受では、焼結時に生成されるアルミニウム含有銅合金粉末の表面を被覆する酸化アルミニウムが焼結を阻害するために十分な強度を有する焼結体を容易に得ることができないという問題がある。特許文献2には、前記問題を改良するために、焼結アルミニウム含有銅合金用混合粉末およびその製造方法に関する技術が公開されている。
特許第4521871号公報 特開2009-7650号公報
 特許文献1に記載されたCu-Ni-Sn-C-P系の焼結軸受では、強度や耐摩耗性は向上するが、耐食性の面では十分なものとはいえない。また、希少金属であるNiを含有するので、コスト面でも問題がある。
 特許文献2に記載されたアルミニウム含有銅合金粉末は成形性および焼結性に優れたものであるが、当該アルミニウム含有銅合金粉末を用いたアルミニウム青銅系焼結軸受として、安定した機械的特性、コンパクト化、低コスト化を満たす多量生産に適した製品を得るためには、更なる検討が必要である。
 従来の問題に鑑み、本発明は、耐食性および強度、耐摩耗性などの機械的特性を向上させると共に、コンパクト化、低コスト化を図ったアルミニウム青銅系焼結軸受を提供すること、および生産性がよく、低コストで、多量生産に好適なアルミニウム青銅系焼結軸受の製造方法を提供することを目的とする。
 本発明者は、上記の目的を達成するために種々検討した結果、アルミニウム青銅系焼結軸受において、軸受機能の向上と共に、コンパクト化、低コスト化を図るために、焼結による膨張を有効利用するという新規な着想、およびアルミニウム青銅系焼結軸受の製造方法として、生産性がよく、低コストで、多量生産に好適な製造方法を実現するために、焼結による膨張を有効利用するという新規な着想に至った。
 前述の目的を達成するための技術的手段として、本発明は、3~12質量%のアルミニウムおよび0.05~0.5質量%の燐を含有し、残部の主成分を銅とし、不可避不純物を含んだ焼結軸受であって、この焼結軸受が、原料粉末に添加した焼結助剤によりアルミニウム-銅合金が焼結された組織を有し、かつ焼結軸受の表層部の気孔を内部の気孔より小さくしたことを特徴とする。これにより、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化、低コスト化を図ることができる。
 また、焼結軸受の製造方法としての本発明は、3~12質量%のアルミニウムおよび0.05~0.5質量%の燐を含有し、残部の主成分を銅とし、不可避不純物を含んだ焼結軸受の製造方法であって、この製造方法が、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する圧粉工程と、前記圧粉体からアルミニウム-銅合金が焼結された組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とする。これにより、生産性がよく、低コストで、多量生産に好適なアルミニウム青銅系焼結軸受の製造方法を実現することができる。これにより製造された焼結軸受は、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化を図ることができる。
 アルミニウムの含有量は3~12質量%が好ましい。アルミニウムの含有量が3質量%未満では、アルミニウム青銅系焼結軸受としての耐食性、耐摩耗性の効果が得られず、焼結体の膨張も小さく、一方、12質量%を越えると、焼結しにくくなり強度が低下し、焼結体の膨張が大きくなりすぎるので好ましくない。
 燐の配合量は、0.05~0.5質量%が好ましい。0.05質量%未満では固液相間の焼結促進効果が乏しく、一方、0.5質量%を越えると、焼結が進み過ぎてアルミニウムが偏析しγ相の析出が増大し焼結体が脆くなるので好ましくない。銅とアルミニウムの合金相で、β相が共析温度(565℃)でγ相に変態する。
 上記の焼結助剤として、原料粉末に1~4質量%の珪素および0.5~2質量%の錫を添加することにより、焼結を促進させ、強度を向上させることができる。
 珪素の配合量は1~4質量%が好ましい。1質量%未満では、発生する液相量が少なく低温下での液相焼結促進効果が不十分となり、緻密で適宜の硬さを有する焼結体が得られない。一方、4質量%を越えると、得られた焼結体は硬くて脆くなるので好ましくない。
 錫の配合量は0.5~2質量%が好ましい。0.5質量%未満では錫粉末添加による圧粉密度の上昇効果が得られず、一方、2質量%を越えると、粒界に高濃度の錫が析出し、焼結体の外観品質の低下をきたし好ましくない。
 また、上記の焼結助剤として、アルミニウム、燐、残部の主成分を銅とする原料粉末および不可避不純物の合計100質量%に対して、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05~0.2質量%添加することにより、焼結の昇温時に生成する酸化アルミニウムと反応して酸化アルミニウム皮膜を破壊し焼結を促進させることができる。フッ化アルミニウムおよびフッ化カルシウムの合計配合量は0.05~0.2質量%が好ましい。0.05量%未満では、焼結助剤としての効果が不十分となり、緻密で適宜の硬さを有する焼結体が得られない。一方、0.2質量%を越えると、それ以上添加しても焼結助剤としての効果は頭打ちとなり、コスト的な観点から0.2質量%以下に止めることが好ましい。
 上記のフッ化アルミニウムおよびフッ化カルシウムを焼結助剤とした場合、亜鉛が2~4質量%添加されていることが好ましい。亜鉛は、融点が低く、銅、アルミニウムの焼結を促進、また、アルミニウムの拡散を促進する。さらに、耐食性に優れる。亜鉛の配合量は2質量%未満では、銅、アルミニウムの焼結促進やアルミニウムの拡散促進の効果が得られない。一方、4質量%を越えると、焼結時に亜鉛が蒸発し焼結炉を汚すと共に、アルミニウムが偏析し、拡散が阻害され好ましくない。
 さらに、珪素が0.5~3質量%添加されていることが好ましい。珪素は、焼結過程で形成された焼結進行阻害相に対して、銅珪素系液相を発生させ、焼結を促進させる。珪素は、焼結過程でアルミニウムの拡散を増進するので、アルミニウム量を減らし、γ相を削減できる。珪素の配合量は0.5~3質量%が好ましい。0.5質量%未満では、焼結過程でアルミニウムの拡散を増進効果が不十分であり、これに伴いγ相の削減効果が不十分となる。一方、3質量%を越えると、焼結の昇温時に珪素が反応しアルミニウムが黒く酸化し、変色不具合が生じる。
 上記の銅の原料粉末が電解銅粉を主体とすることが好ましい。電解銅粉は、樹枝状であるので、銅にアルミニウムを十分に拡散させることができ、成形性、焼結性、摺動特性に優れる。
 上記の原料粉末および不可避不純物の合計100質量%に対して、1~5質量%の黒鉛を添加することができる。これにより、分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の一段の向上を図ることができる。黒鉛の配合上は1~5質量%が好ましい。1質量%未満では黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、5質量%を越えると、強度が低下し好ましくない。
 上記の焼結軸受の表層に圧縮層を有し、この圧縮層の密度比α1が内部の密度比α2より高く、密度比α1を80%≦α1≦95%とすると共に、上記の圧縮層の深さの平均値Tと前記軸受面の内径寸法D1との比T/D1を1/100≦T/D1≦1/15とすることが好ましい。ここで、密度比αは次式で表される。
α(%)=(ρ1/ρ0)×100
ただし、ρ1:多孔質体の密度、ρ0:その多孔質体に細孔がないと仮定した場合の密度
 上記の構成により、コンパクトな設計の中で、強度、耐摩耗性などの機械的特性を向上させると共に、耐食性、油膜形成性、保油性を向上することができる。
 上記の焼結軸受の外表面のうち、軸受面の気孔をその他の外表面の気孔より大きく設定することが好ましい。これにより、内径面側の軸受面では、耐食性、油膜形成性を向上させることができ、一方、封孔状態に近い外径面や端面では、耐食性、保油性を向上することができる。
 上記の焼結軸受を含油軸受とすることにより、運転開始時より良好な潤滑状態を得ることができる。潤滑剤としては鉱油、ポリαオレフィン(PAO)、エステル、液状グリース等を使用することができる。
 燃料ポンプ用焼結軸受として、アルミニウムの含有量が8~9質量%であることが好ましい。これにより、粗悪なガソリンによる硫化腐食および有機酸腐食を抑制し、かつ、初期なじみ、耐久性等の性能に優れる。
 上記の焼結軸受の製造方法として、上記のサイジング工程の金型をダイス、一対のパンチおよびコアから構成し、パンチとダイスにより焼結体の軸方向両側と外径側から圧縮することにより、焼結体の内径側をコアにより整形することが好ましい。これにより、アルミニウム銅系焼結軸受の焼結による膨張を有効利用し、焼結軸受の寸法整形と共に所望の気孔を形成することができる。
 上記のダイスの内径寸法と焼結体の外径寸法との寸法差およびコアの外径寸法と焼結体の内径寸法との寸法差を加減することにより、焼結体の表面の気孔の大きさを設定することができる。これにより、焼結軸受の表面の気孔の大きさを容易にコントロールすることができる。
 また、上記の焼結工程にメッシュベルト式連続炉を適用したことにより、一層の生産性の向上、コスト低減が図れると共に焼結軸受の機能面では、強度は十分確保することができる。
 具体的には、焼結工程における焼結温度を850~950℃とし、焼結雰囲気を還元雰囲気とし、焼結時間を10~60分としたことにより、メッシュベルト式連続炉の負荷が軽減され、安定した品質、製造方法を実現することができる。
 本発明による焼結軸受は、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化、低コスト化を図ることができる。また、本発明による焼結軸受の製造方法は、生産性がよく、低コストで、多量生産に好適なアルミニウム青銅系焼結軸受の製造方法を実現することができる。
本発明の焼結軸受についての第1~3の実施形態に係る焼結軸受および本発明の製造方法についての第1~3の実施形態に係る製造方法に基づく焼結軸受の縦断面図である。 図1のA部の金属組織を拡大した模式図である。 図1のB部の金属組織を拡大した模式図である。 図1のC部の金属組織を拡大した模式図である。 上記焼結軸受の製造工程を説明する図である。 原料粉末の混合機の概要図である。 メッシュベルト式連続炉の概要図である。 サイジング工程を説明する図である。 サイジング工程を説明する図である。 サイジング工程を説明する図である。 サイジング工程における製品の圧縮状態を示す図である。 含油装置の概要図である。 燃料ポンプの縦断面図である。
 以下、本発明の焼結軸受についての第1の実施形態および製造方法についての第1の実施形態を添付図面に基づいて説明する。焼結軸受についての第1の実施形態を図1および図2に示し、製造方法についての第1の実施形態を図3~8に示す。
 図1に示すように、焼結軸受についての第1の実施形態に係る焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。焼結軸受1の内周に軸2を挿入し、その状態で軸2を回転させと、焼結軸受1の無数の空孔に保持された潤滑油が温度上昇に伴って軸受面1aに滲み出す。この滲み出した潤滑油によって、軸2の外周面と軸受面1aの間の軸受隙間に油膜が形成され、軸2が軸受1によって相対回転可能に支持される。
 本実施形態の焼結軸受1は、各種粉末を混合した原料粉末を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。
 原料粉末は、銅粉末、銅、アルミニウムおよびアルミニウム銅合金組成からなる粉末、珪素粉末、錫粉末、燐合金粉末、黒鉛粉末を主成分とする混合粉末である。各粉末の詳細を以下に述べる。
 [銅粉末]
 銅粉末は、焼結軸受用として汎用されている球状や樹枝状の銅粉が使用可能であり、例えば、還元粉、電解粉、水アトマイズ粉等が用いられる。粒度は、100mesh通過粉末で350mesh通過粉末比率が40%以下である。
 [銅、アルミニウムおよびアルミニウム銅合金組成からなる粉末]
 40~60質量%のアルミニウム合金粉末と残部を銅粉末とした混合粉末を還元性又は不活性雰囲気中において加熱処理した後、粉砕し、粒度調整した銅、アルミニウムおよびアルミニウム銅合金組成からなる粉末(以下、アルミニウム-銅合金粉末という)である。アルミニウム-銅合金粉末の好ましい粒度は、80mesh通過粉末で350mesh通過粉末比率が60%以下である。アルミニウム-銅合金粉末を用いることにより、粉末の硬さに起因する成形性の低下による圧粉体の強度不足の問題が改善され、比重の小さいアルミニウム単体粒子の飛散に伴う取り扱い上の問題はない。
 アルミニウム-銅合金粉末の組成は40~60質量%のアルミニウムの範囲が好ましい。40質量%未満のアルミニウムを含有する粉末は、銅粉末混合比率の減少による加圧成形時の圧粉体密度の低下と融点の高い合金相生成による低温焼結下での銅珪素系液相の発生量を減少させ、焼結促進元素の添加効果が小さくなる。一方、60質量%を越えるアルミニウムを含有する粉末は、銅粒子と未反応のアルミニウム粒子の増加により、未反応アルミニウム粒子が飛散し、これに対する取り扱い上の問題が生じる。
 本実施形態の焼結軸受および後述する製造方法では、アルミニウム含有量が3~10質量%、珪素が1~4質量%、錫が0.5~2質量%および燐が0.05~0.5質量%で、残部の主成分が銅となるような割合で、銅粉末、アルミニウム-銅合金粉末、および後述する燐合金粉末、珪素粉末、錫粉末を混合し、この合計100質量%に対して、黒鉛の配合量が1~5質量%になるように黒鉛粉末を混合して原料粉末とする。
 [燐合金粉末]
 燐は、焼結時の固液相間の濡れ性を高め、珪素粉末添加により生ずる液相発生温度を低温側へ移行させる窒化物被膜生成を抑制する。燐の配合量は、0.05~0.5質量%が好ましい。0.05質量%未満では固液相間の焼結促進効果が乏しく、一方、0.5質量%を越えると、焼結が進み過ぎてアルミニウムが偏析しγ相が増え焼結体が脆くなる。
 [珪素粉末]
 珪素は焼結助剤として添加する。珪素は、焼結過程で形成された焼結進行阻害相に対して、銅珪素系液相を発生させ、焼結を促進させる。珪素の配合量は1~4質量%が好ましい。1質量%未満では、発生する液相量が少なく低温下での液相焼結促進効果が不十分となり、緻密で適宜の硬さを有する焼結体が得られない。一方、4質量%を越えると、焼結が進み過ぎてアルミニウムが偏析しγ相が増え焼結体が脆くなる。
 [錫粉末]
 錫は焼結助剤として添加する。錫は、珪素粉末添加に伴う成形性の低下を補い、さらに燐と同様に珪素粉末添加により生成される液相発生温度を低下させる効果がある。錫の配合量は0.5~2質量%が好ましい。0.5質量%未満では錫粉末添加による圧粉密度の上昇効果が得られず、一方、2質量%を越えると、粒界に高濃度の錫が析出し、焼結体の外観品質の低下をきたし好ましくない。
 [黒鉛粉末]
 黒鉛は、主として素地に分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の向上に寄与する。黒鉛の配合量は、アルミニウム、珪素、錫、燐、銅および不可避不純物の合計100質量%に対して、1~5質量%が好ましい。1質量%未満では黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、5質量%を越えると、強度が低下し好ましくない。
 図2に本実施形態に係る焼結軸受の断面の金属組織の模式図を示す。図2(a)は図1のA部を拡大した図である。同様に、図2(b)は図1のB部を、図2(c)は図1のC部を、それぞれ、拡大した図である。すなわち、図2(a)は内径側の軸受面の表層部の金属組織を示し、図2(b)は内部の金属組織を示し、図2(c)は外径面の表層部の金属組織を示す。図2(a)、(b)、(c)に示すように、ハッチングを付した3がアルミニウム-銅合金組織で、表面および内部気孔の周りに酸化アルミニウム皮膜4が存在する。このため、耐食性および耐摩耗性に優れる。図示は省略するが、アルミニウム-銅合金組織3の粒界部には錫、燐が多くあり、珪素は点在している。気孔内には遊離黒鉛5が分布しているので、潤滑性、耐摩耗性に優れる。
 図2(a)に示すように、内径側の軸受面に形成された開放気孔db1と軸受面の表層の内部気孔db2が形成されている。図2(b)に示すように軸受内部には気孔diが形成され、図2(c)に示すように外径面に形成された解放気孔do1と外径面の表層に形成された内部気孔do2が形成されている。軸受面に形成された開放気孔db1、軸受面の表層の内部気孔db2、軸受内部には気孔di、外径面に形成された解放気孔do1および外径面の表層に形成された内部気孔do2は、それぞれ連通している。
 焼結軸受1は、後述する製造方法(図7参照)において、焼結後に軸受の外径面1bと内径側の軸受面1aの両方がサイジング加工されている。そして、アルミニウム青銅系焼結軸受は、焼結することにより膨張するので、軸受の外径面1bが内径側の軸受面1aよりも大きな量でサイジングされる。そのため、外径面1b側の表層部の気孔do(図2(c)参照)は、軸受面1a側の表層部の気孔db(図2(a)参照)よりも多くつぶされる。外径面1b側の表層部の気孔do、軸受面1a側の表層部の気孔dbおよびつぶされない軸受内部の気孔di(図2(b)参照)の大きさを比較すると、do<db<diの関係になる。このような関係になっているので、軸受面1a側では、耐食性、油膜形成性を向上させることができ、一方、封孔状態に近い外径面1b側や端面1c側では、耐食性、保油性を向上させることができる。
 焼結軸受1の気孔do、db、di内には、潤滑油が含浸されている。これにより、運転開始時より良好な潤滑状態を得ることができる。潤滑油としては鉱油、ポリαオレフィン(PAO)、エステル、液状グリース等を使用することができる。ただし、軸受の使用用途にとっては、必ずしも潤滑油を含浸する必要はない。
 図1に焼結軸受1の表層の圧縮層をハッチングで示す。ハッチングは、軸受1の半径方向の上側半分にだけに付して、下側半分は図示を省略する。焼結軸受1の表層は圧縮層を有する。外径面1b側の表層の圧縮層Poの密度比αoおよび軸受面1a側の表層の圧縮層Pbの密度比αbは、いずれも内部の密度比αiより高く、密度比αo、αbのいずれもが80%≦αoおよびαb≦95%の範囲に設定されている。密度比αoおよびαbが80%未満では軸受強度が不十分となり、一方、95%を越えると含油量が不足し、好ましくない。本明細書では、αoおよびαbを総称してαという。
 そして、外径面1b側の表層の圧縮層Poの深さの平均値をTo、軸受面1a側の表層の圧縮層Pbの深さの平均値をTbとし、軸受面の内径寸法D1との比をそれぞれTo/D1およびTb/D1とすると、1/100≦To/D1およびTb/D1≦1/15に設定することが好ましい。ここで、密度比αは次式で表される。
α(%)=(ρ1/ρ0)×100
ただし、ρ1:多孔質体の密度、ρ0:その多孔質体に細孔がないと仮定した場合の密度
To/D1およびTb/D1が1/100未満では気孔のつぶれが不十分となり、一方、1/15を越えると気孔がつぶれ過ぎて好ましくない。なお、本明細書ではToおよびTbを総称してTという。
 次に、焼結軸受の製造方法についての第1の実施形態を説明する。図3に示すような原料粉末準備工程S1、圧粉工程S2、焼結工程S3、サイジング工程S4、含油工程S5を経て製造される。
 [原料粉末準備工程S1]
 原料粉末準備工程S1では、焼結軸受1の原料粉末が準備・生成される。原料粉末は、銅粉末を81質量%、50質量%アルミニウム-銅合金粉末を12質量%、珪素粉末を3質量%、錫粉末を1質量%、8質量%燐-銅合金粉末を3質量%とする合計100質量%に対して、黒鉛粉末を3質量%、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.5質量%添加した。潤滑剤を添加することにより、後述する圧粉体をスムーズに離型することができ、離型に伴う圧粉体の形状の崩れを回避することができる。具体的には、上記の原料粉末Mを、例えば、図4に示すV型混合機10の缶体11に投入し、缶体11を回転させて均一に混合する。
 [圧粉工程S2]
 圧粉工程S2では、上記の原料粉末を圧粉することにより、焼結軸受1の形状をなした圧粉体1’(図7参照)を形成する。圧粉体1’は、焼結温度以上で加熱することにより形成される焼結体1”の密度比αが70%以上で80%以下となるように圧縮成形される。図7では、簡便的に、圧粉体には符号1’、焼結体には符号1”を併記している。
 具体的には、例えばサーボモータを駆動源としたCNCプレス機に圧粉体形状に倣ったキャビティを画成してなる成形金型をセットし、キャビティ内に充填した上記の原料粉末を200~700MPaの加圧力で圧縮することにより圧粉体1’を成形する。圧粉体1’の成形時において、成形金型は70℃以上に加温してもよい。
 本実施形態の焼結軸受1の製造方法では、アルミニウム源として、アルミニウム-銅合金粉末を用いることにより、流動性に起因する成形性の低下による圧粉体の強度不足の問題が改善され、比重の小さいアルミニウム単体粒子の飛散に伴う取り扱い上の問題はない。また、生産効率がよく多量生産に好適である。
 [焼結工程S3]
 焼結工程S3では、圧粉体1’を焼結温度で加熱し、隣接する原料粉末同士を焼結結合させることによって焼結体1”を形成する。図5に示すメッシュベルト式連続炉15を使用し、メッシュベルト16に圧粉体1’を多量に投入し、酸化を可及的に防止するために還元雰囲気である窒素ガスおよび水素ガスの混合ガス雰囲気下、あるいは、窒素ガス雰囲気下で、圧粉体1’を850~950℃(例えば900℃)で10~60分間加熱することにより焼結体1”を形成する。これにより、メッシュベルト式連続炉の負荷が軽減され、安定した品質、製造方法を実現することができる。
 アルミニウム-銅合金粉末は、共晶温度548℃以上になると様々な液相が発生する。液相が発生すると膨張し、発生した液相により焼結ネックが形成され、緻密化に至り、寸法が収縮していく。本実施形態では、メッシュベルト式連続炉15で焼結することにより、焼結体1”の表面が酸化され、焼結が阻害されることにより緻密化に至らず、寸法が膨張したままとなる。ただし、焼結体1”の内部は、酸化されず焼結されるため、焼結体1”の強度は十分確保することができる。メッシュベルト式連続炉15を使用したので、圧粉体1’の投入から取出しまで焼結時間を短く多量生産でき、コスト低減を図ることができる。また、焼結軸受の機能面では、強度は十分確保することができる。
 上記の焼結工程においては、添加された燐合金粉末、錫粉末、珪素粉末、黒鉛粉末が以下に述べる相乗効果を発揮することにより、良質の焼結体を形成することができる。まず、燐により、焼結時の固液相間の濡れ性を高め、珪素粉末添加により生ずる液相発生温度を低温側へ移行させる効果があるので、良好な焼結体が得られる。燐の配合量としては、0.05~0.5質量%が好ましい。0.05質量%未満では固液相間の焼結促進効果が乏しく、一方、0.5質量%を越えると、得られた焼結体が脆くなる。また、焼結助剤としての珪素は、焼結過程で形成された焼結進行阻害相に対して、銅珪素系液相を発生させ、焼結を促進させる。珪素の配合量は1~4質量%が好ましい。1質量%未満では、発生する液相量が少なく低温下での液相焼結促進効果が不十分となり、緻密で適宜の硬さを有する焼結体が得られない。一方、4質量%を越えると、得られた焼結体は硬くて脆くなる。
 加えて、焼結助剤としての錫は、珪素粉末添加に伴う成形性の低下を補い、さらに燐と同様に珪素粉末添加により生成される液相発生温度を低下させる効果を発揮する。錫の配合量は0.5~2質量%が好ましい。0.5質量%未満では錫粉末添加による圧粉密度の上昇効果が得られず、一方、2質量%を越えると、粒界に高濃度の錫が析出し、アルミニウムの拡散を阻害し好ましくない。
 上記のように原料粉末Mに焼結助剤が添加されているので、アルミニウム-銅合金が焼結された組織を有する焼結体1”を得ることができ、強度と耐腐蝕性を向上させることができる。
 さらに、黒鉛は、主として素地に分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の向上に寄与する。黒鉛の配合量は、アルミニウム、珪素、錫、燐、銅および不可避不純物の合計100質量%に対して、1~5質量%が好ましい。1質量%未満では黒鉛粉末添加による潤滑性、耐摩耗性の向上効果が得られない。一方、5質量%を越えると、強度が低下し好ましくない。
 [サイジング工程S4]
 サイジング工程S4では、焼結により圧粉体1’と比較して膨張した焼結体1”の寸法整形する。図6にサイジング工程S4の詳細を示す。サイジング加工の金型は、ダイス20、上パンチ21、下パンチ22およびコア23とからなる。図6(a)に示すように、コア23と上パンチ21が上方に後退した状態で、下パンチ22上に焼結体1”をセットする。図6(b)に示すように、最初にコア23が焼結体1”の内径に入り、その後、図6(c)に示すように、上パンチ21により焼結体1”がダイス20に押し込まれ、上下パンチ21、22により圧縮される。これにより、焼結体1”の表面が寸法整形される。サイジング加工により、膨張した焼結体1”の表層の気孔をつぶし、製品内部と表層部に密度差が生じる。
 図7にサイジング加工により焼結体1”が圧縮される状態を示す。サイジング加工前の焼結体1”を2点鎖線で示し、サイジング加工後の製品1を実線で示す。2点鎖線で示すように、焼結体1”は径方向および幅方向に膨張している。このため、焼結体1”は、外径面1bを内径側の軸受面1aより多く圧縮される。その結果、外径面1b側の表層の気孔do(図2(c)参照)は、内径側の軸受面1bの表層の気孔db(図2(a)参照)よりも多く潰され、潰されない軸受内部の気孔di(図2(b)参照)に対して、do<db<diの関係になる。このような関係になっているので、内径側の軸受面1aでは、耐食性、油膜形成性を向上させることができる。一方、封孔状態に近い外径面1bや端面1cでは、耐食性、保油性を向上させることができる。
 上記のサイジング工程の金型をダイス20、一対のパンチ21、22およびコア23から構成し、パンチ21、22とダイス20により焼結体1”の軸方向両側と外径側から圧縮することにより、焼結体1”の内径側をコア23により整形することにより、アルミニウム青銅系焼結軸受の焼結による膨張を有効利用し、焼結軸受1の寸法整形と共に所望の気孔を形成することができる。
 また、上記のダイス20の内径寸法と焼結体1”の外径寸法との寸法差およびコア23の外径寸法と焼結体1”の内径寸法との寸法差を加減することにより、焼結体1”の表面の気孔の大きさを設定することができる。これにより、焼結軸受1の表面の気孔の大きさを容易にコントロールすることができる。
 [含油工程S5]
 含油工程S5は、製品1(焼結軸受)に潤滑油を含浸する工程である。図8に含油装置を示す。含油装置25のタンク26内に製品1を投入し、その後、潤滑油27をタンク26内に注入する。そして、タンク26内を減圧することにより、製品1の気孔do、db、di(図2参照)内に潤滑油27を含浸する。これにより、運転開始時より良好な潤滑状態を得ることができる。潤滑油としては鉱油、ポリαオレフィン(PAO)、エステル、液状グリース等を使用することができる。ただし、軸受の使用用途に応じて実施すればよく、必ずしも実施する必要はない。
 以上のような工程で製造された本実施形態の焼結軸受1は、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化、低コスト化を図ることができる。
 次に本発明に係る焼結軸受についての第2の実施形態および製造方法についての第2の実施形態を説明する。第1の実施形態における焼結助剤が珪素および錫であるに対して、本実施形態の焼結軸受および製造方法では焼結助剤をフッ化アルミニウムおよびフッ化カルシウムとした点が異なる。
 本実施形態の焼結軸受および製造方法における原料粉末は、第1の実施形態で用いた銅粉末、アルミニウム-銅合金粉末、燐合金粉末および黒鉛粉末に、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを主成分とする混合粉末である。銅粉末、アルミニウム-銅合金粉末、燐合金粉末および黒鉛粉末の内容については、第1の実施形態と同じであるので重複説明を省略する。
 第2の実施形態においては、アルミニウム含有量が7~12質量%、燐が0.05~0.5質量%で、残部の主成分が銅となるような割合で、銅粉末、アルミニウム-銅合合金粉末および燐合金粉末を混合し、この合計100質量%に対して、焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムを合計で0.05~0.2質量%、黒鉛を1~5質量%混合して原料粉末とする。
 [フッ化アルミニウムおよびフッ化カルシウム]
 アルミニウム含有銅系合金粉末は、焼結時にその表面に生成する酸化アルミニウムの皮膜が焼結を著しく阻害するが、焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム含有銅系合金粉末の焼結温度である850~900℃で溶融しながら徐々に蒸発し、アルミニウム含有銅系合金粉末の表面を保護して酸化アルミニウムの生成を抑制することにより、焼結を促進しアルミニウムの拡散を増進させる。フッ化アルミニウムおよびフッ化カルシウムは、焼結時に蒸発、揮散するので、焼結軸受の完成品には殆ど残らない。
 焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム、燐、残部の主成分を銅とする原料粉末および不可避不純物の合計100質量%に対して、合計で0.05~0.2質量%程度で添加することが好ましい。0.05量%未満では、焼結助剤としての効果が不十分となり、緻密で適宜の硬さを有する焼結体が得られない。一方、0.2質量%を越えると、それ以上添加しても焼結助剤としての効果は頭打ちとなり、コスト的な観点から0.2質量%以下に止めることが好ましい。
 本実施形態に係る焼結軸受の断面の金属組織は、図2の模式図で示した第1の実施形態と同様であるので、主な部分のみを説明し、その他の部分については重複説明を省略する。本実施形態の焼結軸受1は、図2(a)、(b)、(c)に示すように、ハッチングを付した3がアルミニウム-銅合金組織で、表面および内部気孔の周りに酸化アルミニウム皮膜4が存在する。このため、耐食性および耐摩耗性に優れる。図示は省略するが、アルミニウム-銅合金組織3の粒界部には燐が存在する。気孔内には遊離黒鉛5が分布しているので、潤滑性、耐摩耗性に優れる。
 また、本実施形態の焼結軸受1においても、図7に示すように、焼結後に軸受の外径面1bと内径側の軸受面1aの両方がサイジング加工されている。そして、アルミニウム銅系焼結軸受は、焼結することにより膨張するので、軸受の外径面1bが内径側の軸受面1aよりも大きな量でサイジングされる。そのため、外径面1b側の表層部の気孔do(図2(c)参照)は、軸受面1a側の表層部の気孔db(図2(a)参照)よりも多くつぶされる。外径面1b側の表層部の気孔do、軸受面1a側の表層部の気孔dbおよびつぶされない軸受内部の気孔di(図2(b)参照)の大きさを比較すると、do<db<diの関係になる。このような関係になっているので、軸受面1a側では、耐食性、油膜形成性を向上させることができ、一方、封孔状態に近い外径面1b側や端面1c側では、耐食性、保油性を向上させることができる。焼結軸受1の気孔do、db、di内には、潤滑油が含浸されている。これにより、運転開始時より良好な潤滑状態を得ることができる。潤滑油としては鉱油、ポリαオレフィン(PAO)、エステル、液状グリース等を使用することができる。ただし、軸受の使用用途にとっては、必ずしも潤滑油を含浸する必要はない。
 さらに、第2の実施形態の焼結軸受1の表層の圧縮層の状態も、図1に示す第1の実施形態の焼結軸受と同様である。すなわち、本実施形態の焼結軸受1においても図1に示すように、焼結軸受1の表層はハッチングを付した圧縮層を有する。前述した密度比αの式で表すと、外径面1b側の表層の圧縮層Poの密度比αoおよび軸受面1a側の表層の圧縮層Pbの密度比αbは、いずれも内部の密度比αiより高く、密度比αo、αbのいずれもが80%≦αoおよびαb≦95%の範囲に設定されている。
 そして、外径面1b側の表層の圧縮層Poの深さの平均値をTo、軸受面1a側の表層の圧縮層Pbの深さの平均値をTbとし、軸受面の内径寸法D1との比をそれぞれTo/D1およびTb/D1とすると、1/100≦To/D1およびTb/D1≦1/15に設定されている。
 製造方法についての第2の実施形態ついても、図3に示す第1の実施形態の焼結軸受の製造方法と同様であるので、原料粉末準備工程S1および焼結工程S3における具体的な内容で相違するところのみを説明する。
 [原料粉末準備工程S1]
 原料粉末は、銅粉末を残質量%、40~60質量%アルミニウム-銅合金粉末を14~20質量%、8質量%燐-銅合金粉末を2~4質量%とする合計100質量%に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05~0.2質量%、黒鉛粉末を1~5質量%、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.5質量%添加した。
 [焼結工程S3]
 焼結工程において、添加された燐合金粉末、フッ化アルミニウムおよびフッ化カルシウムが以下に述べる効果を発揮することにより、良質の焼結体を形成することができる。まず、燐により、焼結時の固液相間の濡れ性を高める効果があるので、良好な焼結体が得られる。燐の配合量としては、0.05~0.5質量%が好ましい。0.05質量%未満では固液相間の焼結促進効果が乏しく、一方、0.5質量%を越えると、得られた焼結体が脆くなる。また、焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム含有銅系合金粉末の焼結温度である850~900℃で溶融しながら徐々に蒸発し、アルミニウム含有銅系合金粉末の表面を保護して酸化アルミニウムの生成を抑制することにより、焼結を可能にする。フッ化アルミニウムおよびフッ化カルシウムは、焼結時に蒸発、揮散するので、焼結軸受の完成品には殆ど残らない。尚、蒸発、揮散するので、圧粉体をケース等に入れて焼結する。焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム、燐、残部の主成分を銅とする原料粉末および不可避不純物の合計100質量%に対して、合計で0.05~0.2質量%程度で添加することが好ましい。
 本実施形態の焼結軸受の製造方法においても、第1の実施形態と同様、図6に示すように、サイジング工程でパンチ21、22とダイス20により焼結体1”の軸方向両側と外径側から圧縮することにより、焼結体1”の内径側をコア23により整形することにより、アルミニウム青銅系焼結軸受の焼結による膨張を有効利用し、焼結軸受1の寸法整形と共に所望の気孔を形成することができる。また、上記のダイス20の内径寸法と焼結体1”の外径寸法との寸法差およびコア23の外径寸法と焼結体1”の内径寸法との寸法差を加減することにより、焼結体1”の表面の気孔の大きさを設定することができる。これにより、焼結軸受1の表面の気孔の大きさを容易にコントロールすることができる。
 本実施形態の製造方法に基づく焼結軸受においても、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化、低コスト化を図ることができる。
 本発明に係る焼結軸受についての第3の実施形態および製造方法についての第3の実施形態を説明する。本実施形態に係る焼結軸受は、自動車エンジンの燃料ポンプ用に特化したもので、粗悪なガソリンによる硫化腐食および有機酸腐食を抑制し、かつ、初期なじみ、耐久性等の性能に優れる。
 第3の実施形態の焼結軸受を組み込んだ自動車エンジンの燃料ポンプの一例を図9に示す。この燃料ポンプ40では、焼結軸受1が回転側に設けられる。具体的には、液体入口41a及び液体出口41bを有するケーシング41と、ケーシング41に固定され、ケーシング41の内部空間に突出した固定軸2と、固定軸2に対して回転自在に設けられたインペラ42と、モータ43と、インペラ42に取り付けられたマグネット44と、モータ43の回転軸に取り付けられ、インペラ42側のマグネット44と半径方向に対向したマグネット45とを備える。焼結軸受1は、インペラ42の内周面に固定され、焼結軸受1の内周面(軸受面1a、図1参照)と固定軸2の外周面とが回転方向に摺動自在に嵌合している。モータ43を回転駆動すると、モータ43側のマグネット45とインペラ42側のマグネット44との間の吸引力により、インペラ42が回転する。これにより、液体入口41aからケーシング41の内部空間に流入した燃料を、液体出口42aから送り出す。
 上記のような常にガソリン34と接触する環境下において、粗悪なガソリンによる硫化腐食および有機酸腐食を抑制し、かつ、初期なじみ、耐久性等の性能を確保するために、種々の検討と試験評価を行い、以下の知見により本実施形態に至った。
(1)アルミニウム配合量と耐腐食性の関係では、アルミニウムの量が増えると銅へ拡散が増進し耐腐食性効果が大きい。
(2)焼結温度と耐腐食性の関係では、焼結温度を高くするとアルミニウムの拡散が増進し耐腐食性効果が大きい。
(3)焼結軸受の密度と耐腐食性の関係では、密度を高くすると耐腐食性効果が僅かに向上する。
(4)添加剤(燐、亜鉛、珪素)は、焼結過程でのアルミニウムの拡散の促進で、アルミニウム量を減らすことができ耐腐食性と初期なじみを劣化するアルミニウム組織のγ相の析出を削減できる。
 燃料ポンプ用焼結軸受として、硫化腐食および有機酸腐食を抑制し、かつ、初期なじみ、耐久性等の性能を向上させるため、本実施形態の焼結軸受および製造方法においては、アルミニウム含有量が8~9質量%、燐が0.05~0.5質量%、珪素が0.5~3質量%、亜鉛が2~4質量%で、残部の主成分が銅となるような割合で、銅粉末、アルミニウム-銅合金粉末、燐合金粉末、珪素粉末および亜鉛合金粉末を混合し、この合計100質量%に対して、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05~0.2質量%、黒鉛を1~5質量%混合して原料粉末とする。原料粉末については、前述した第1および第2の実施形態と同様の部分もあるが、各粉末の詳細を以下に述べる。
 [銅粉末]
 銅粉末は、アトマイズ粉、電解粉、粉砕粉があるが、銅にアルミニウムを十分に拡散させるには、樹枝状の電解粉が有効であり、成形性、焼結性、摺動特性に優れる。そのため、本実施形態では、銅粉として電解粉を用いた。粒度は、100mesh通過粉末で350mesh通過粉末比率が40%以下とする。
 [アルミニウム-銅合金粉末]
 50質量%アルミニウム-銅合金粉末を粉砕し、粒度調整した。アルミニウム銅合金粉末の好ましい粒度は145mesh通過粉末で350mesh通過粉末比率が60%以上である。アルミニウム-銅合金粉末を用いることで、黒鉛、燐、亜鉛等の添加剤の効果を引き出し、焼結軸受材として耐腐食性、強度、摺動特性等に優れる。また、合金化されているので、比重の小さいアルミニウム単体粉体の飛散に伴う取り扱い上の問題はない。
 アルミニウム組織は、α相が最も硫化腐食、有機酸腐食に対する耐腐食性および初期なじみに優れる。50質量%アルミニウム-銅合金粉末を用いることで、黒鉛が添加されても強度が得られ焼結軸受が製造可能となる。組織がγ相になると、耐摩耗性には優れるが、耐腐食性および初期なじみが劣化する。
 そして、銅とアルミニウムの焼結を促進させるために、燐合金粉末、亜鉛合金粉末、フッ化物(フッ化アルミニウム、フッ化カルシウム)を添加する。これにより、液相焼結、固相焼結において銅に対するアルミニウムの拡散を増進する。アルミニウムの拡散が増進すると、耐腐食性が向上する。
 [燐合金粉末]
 燐合金粉末は、前述した第1および第2の実施形態と同様、8質量%燐-銅合金粉末を用いた。燐は、焼結時の固液相間の濡れ性を高め、珪素粉末添加により生ずる液相発生温度を低温側へ移行させる効果がある。燐の配合量は、0.05~0.5質量%が好ましい。0.05質量%未満では固液相間の焼結促進効果が乏しく、一方、0.5質量%を越えると、焼結が進み過ぎてアルミニウムが偏析しγ相の析出が増え焼結体が脆くなる。
 [亜鉛合金粉末]
 亜鉛合金粉末として、亜鉛-銅合金粉末を用いた。亜鉛は、融点が低く、銅、アルミニウムの焼結を促進、また、アルミニウムの拡散を促進する。さらに、耐食性に優れる。
亜鉛の配合量は、1質量%~5質量%が好ましい。1質量%未満では、銅、アルミニウムの焼結促進やアルミニウムの拡散促進の効果が得られない。一方、5質量%を越えると、焼結時に亜鉛が蒸発し焼結炉を汚すと共に、焼結が進み過ぎてアルミニウムが偏析しアルミニウムの拡散が阻害される。
 [珪素粉末]
 珪素は焼結助剤として添加する。珪素は、焼結過程で形成された焼結進行阻害相に対して、銅珪素系液相を発生させ、焼結を促進させる。珪素は、焼結過程でアルミニウムの拡散を増進するので、アルミニウム量を減らし、γ相を削減できる。珪素の配合量は0.5~3質量%が好ましい。0.5質量%未満では、焼結過程でアルミニウムの拡散を増進効果が不十分であり、これに伴いγ相の削減効果が不十分となる。一方、3質量%を越えると、焼結の昇温時に珪素が反応しアルミニウムが黒く酸化し、変色不具合が生じる。
 [黒鉛粉末]
 黒鉛は、主として素地に分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の向上に寄与する。黒鉛の配合量は、アルミニウム、珪素、錫、燐、銅および不可避不純物の合計100質量%に対して、1~5質量%が好ましい。1質量%未満では黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、5質量%を越えると、強度が低下し好ましくない。
 [フッ化アルミニウムおよびフッ化カルシウム]
 フッ化アルミニウムおよびフッ化カルシウムは、前述した第2の実施形態と同様であるので、重複説明を省略する。
 第3の実施形態に係る焼結軸受の断面の金属組織も、図2の模式図で示した第1および第2の実施形態と同様であるので、主な部分のみを説明し、その他の部分については重複説明を省略する。本実施形態の焼結軸受1は、図2(a)、(b)、(c)に示すように、ハッチングを付した3がアルミニウム-銅合金組織で、表面および内部気孔の周りに酸化アルミニウム皮膜4が存在する。このため、耐食性および耐摩耗性に優れる。図示は省略するが、アルミニウム-銅合金組織3の粒界部には燐が存在する。気孔内には遊離黒鉛5が分布しているので、潤滑性、耐摩耗性に優れる。
 また、本実施形態の焼結軸受1においても、図7に示すように、焼結後に軸受の外径面1bと内径側の軸受面1aの両方がサイジング加工されている。そして、アルミニウム銅系焼結軸受は、焼結することにより膨張するので、軸受の外径面1bが内径側の軸受面1aよりも大きな量でサイジングされる。そのため、外径面1b側の表層部の気孔do(図2(c)参照)は、軸受面1a側の表層部の気孔db(図2(a)参照)よりも多くつぶされる。外径面1b側の表層部の気孔do、軸受面1a側の表層部の気孔dbおよびつぶされない軸受内部の気孔di(図2(b)参照)の大きさを比較すると、do<db<diの関係になる。このような関係になっているので、軸受面1a側では、耐食性、油膜形成性を向上させることができ、一方、封孔状態に近い外径面1b側や端面1c側では、耐食性、保油性を向上させることができる。焼結軸受1の気孔do、db、di内には、潤滑油が含浸されている。これにより、運転開始時より良好な潤滑状態を得ることができる。潤滑油としては鉱油、ポリαオレフィン(PAO)、エステル、液状グリース等を使用することができる。ただし、軸受の使用用途にとっては、必ずしも潤滑油を含浸する必要はない。
 さらに、第3の実施形態の焼結軸受1の表層の圧縮層の状態も、図1に示す第1および第2の実施形態の焼結軸受と同様である。すなわち、本実施形態の焼結軸受1においても図1に示すように、焼結軸受1の表層はハッチングを付した圧縮層を有する。前述した密度比αの式で表すと、外径面1b側の表層の圧縮層Poの密度比αoおよび軸受面1a側の表層の圧縮層Pbの密度比αbは、いずれも内部の密度比αiより高く、密度比αo、αbのいずれもが80%≦αoおよびαb≦95%の範囲に設定されている。
 そして、外径面1b側の表層の圧縮層Poの深さの平均値をTo、軸受面1a側の表層の圧縮層Pbの深さの平均値をTbとし、軸受面の内径寸法D1との比をそれぞれTo/D1およびTb/D1とすると、1/100≦To/D1およびTb/D1≦1/15に設定されている。
 製造方法についての第3の実施形態についても、図3に示す第1および第2の実施形態の焼結軸受の製造方法と同様であるので、原料粉末準備工程S1、焼結工程S3およびサイジング工程S4における具体的な内容で相違するところのみを説明する。
 [原料粉末準備工程S1]
 原料粉末は、電解銅粉末を残質量%、40~60質量%アルミニウム-銅の合金粉末を14~20質量%、8質量%燐-銅合金粉末を2~4質量%、珪素粉末を1~3質量%および20~40質量%亜鉛-銅合金粉末を6~8質量%とする合計100質量%に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05~0.2質量%、黒鉛粉末を1~5質量%、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.5質量%添加した。
 [焼結工程S3]
 焼結工程において重要なことは、銅にアルミニウムを十分拡散させ耐腐食性を向上させることと、アルミニウム組織をα相にすることで、耐腐食性と軸受性能(初期なじみ)を向上させることである。γ相になると硬くなり、耐摩耗性には優れるが、耐腐食性は低下する。そのため、できる限りγ相の析出は抑えるようにアルミニウム量を減らすことが必要であることが判明した。
 上記を満足する焼結条件として、焼結温度は900~950℃が好ましく、さらに、燃料ポンプ用焼結軸受としては、900~920℃(例えば、920℃)が好ましい。また、雰囲気ガスは、水素ガス、窒素ガスあるいはこれらの混合ガスとし、焼結時間は、長くした方が耐腐食性に良く、燃料ポンプ用焼結軸受では20~60分(例えば、30分)が好ましい。
 [サイジング工程S4]
 本実施形態の焼結軸受の製造方法においても、第1および第2の実施形態と同様、図6に示すように、サイジング工程でパンチ21、22とダイス20により焼結体1”の軸方向両側と外径側から圧縮することにより、焼結体1”の内径側をコア23により整形することにより、アルミニウム青銅系焼結軸受の焼結による膨張を有効利用し、焼結軸受1の寸法整形と共に所望の気孔を形成することができる。また、上記のダイス20の内径寸法と焼結体1”の外径寸法との寸法差およびコア23の外径寸法と焼結体1”の内径寸法との寸法差を加減することにより、焼結体1”の表面の気孔の大きさを設定することができる。これにより、焼結軸受1の表面の気孔の大きさを容易にコントロールすることができる。さらに、図示は省略するが、軸受面1a(図7参照)を回転サイジングすることで、軸受面1aの気孔を小さくすることができる。
 第3の実施形態の製造方法に基づく焼結軸受においても、耐食性および強度、耐摩耗性などの機械的特性や油膜形成性、保油性を向上させると共に、コンパクト化、低コスト化を図ることができる。特に、燃料ポンプ用焼結軸受として、粗悪なガソリンによる硫化腐食および有機酸腐食を抑制し、かつ、初期なじみ、耐久性等の性能に優れる。
 以上の実施形態に係る焼結軸受の用途として、燃料ポンプを例示したが、これに限られず、例えば、排気ガス再循環装置(EGR)や釣具のリールなどの耐腐食性が要求される用途の軸受に適宜適用することができる。
 以上の各実施形態の説明では、本発明を、軸受面1aを真円形状とした真円軸受に適用する場合を例示したが、本発明は真円軸受に限らず、軸受面1aや軸2の外周面にヘリングボーン溝、スパイラル溝等の動圧発生部を設けた流体動圧軸受にも同様に適用することができる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1    焼結軸受
1’   圧粉体
1”   焼結体
1a   軸受面
1b   外径面
1c   端面
2    軸
3    アルミニウム銅合金組織
4    酸化アルミニウム皮膜
5    遊離黒鉛
15   メッシュベルト式連続炉
20   ダイス
21   上パンチ
22   下パンチ
23   コア
40   燃料ポンプ
D1   軸受面の内径寸法
db   気孔
di   気孔
do   気孔
Ti   圧縮層
To   圧縮層

Claims (20)

  1.  3~12質量%のアルミニウムおよび0.05~0.5質量%の燐を含有し、残部の主成分を銅とし、不可避不純物を含んだ焼結軸受であって、この焼結軸受が、原料粉末に添加した焼結助剤によりアルミニウム-銅合金が焼結された組織を有し、かつ前記焼結軸受の表層部の気孔を内部の気孔より小さくしたことを特徴とする焼結軸受。
  2.  前記焼結助剤として、原料粉末に1~4質量%の珪素および0.5~2質量%の錫が添加されていることを特徴とする請求項1に記載の焼結軸受。
  3.  前記焼結助剤として、前記アルミニウム、燐、残部の主成分を銅とする原料粉末および不可避不純物の合計100質量%に対して、フッ化アルミニウムおよびフッ化カルシウムが合計で0.05~0.2質量%添加されていることを特徴とする請求項1に記載の焼結軸受。
  4.  請求項3に記載の焼結軸受に亜鉛が2~4質量%添加されていることを特徴とする焼結軸受。
  5.  請求項3又は請求項4に記載の焼結軸受に珪素が0.5~3質量%添加されていることを特徴とする焼結軸受。
  6.  前記銅の原料粉末が電解銅粉を主体とすることを特徴とする請求項1および請求項3~5のいずれか一項に記載の焼結軸受。
  7.  前記原料粉末および不可避不純物の合計100質量%に対して、1~5質量%の黒鉛が添加されていることを特徴とする請求項1~6のいずれか1項に記載の焼結軸受。
  8.  前記焼結軸受の表層に圧縮層を有し、この圧縮層の密度比(α1)が内部の密度比(α2)より高く、前記密度比(α1)が80%≦α1≦95であると共に、前記圧縮層の深さの平均値(T)と前記軸受面の内径寸法(D1)との比(T/D1)が1/100≦T/D1≦1/15であることを特徴とする請求項1~7のいずれか1項に記載の焼結軸受。
  9.  前記焼結軸受の外表面のうち、軸受面の気孔がその他の外表面の気孔より大きいことを特徴とする請求項1~8のいずれか一項に記載の焼結軸受。
  10.  前記焼結軸受が含油軸受であることを特徴とする請求項1~9のいずれか一項に記載の焼結軸受。
  11.  請求項1および請求項3~9のいずれか一項に記載の焼結軸受が燃料ポンプに使用され、アルミニウムの含有量を8~9質量%としたことを特徴とする焼結軸受。
  12.  3~12質量%のアルミニウムおよび0.05~0.5質量%の燐を含有し、残部の主成分を銅とし、不可避不純物を含んだ焼結軸受の製造方法であって、この製造方法が、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する圧粉工程と、前記圧粉体からアルミニウム-銅合金が焼結された組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とする焼結軸受の製造方法。
  13.  前記焼結助剤として、前記アルミニウム、燐、残部の主成分を銅とする原料粉末および不可避不純物の合計100質量%に対して、フッ化アルミニウムおよびフッ化カルシウムが合計で0.05~0.2質量%添加されていることを特徴とする請求項12に記載の焼結軸受の製造方法。
  14.  前記銅の原料粉末が電解銅粉を主体とすることを特徴とする請求項12又は請求項13に記載の焼結軸受の製造方法。
  15.  前記原料粉末および不可避不純物の合計100質量%に対して、1~5質量%の黒鉛が添加されていることを特徴とする請求項12~15のいずれか1項に記載の焼結軸受の製造方法。
  16.  前記サイジング工程の金型がダイス、一対のパンチおよびコアから構成され、前記パンチとダイスにより焼結体の軸方向両側と外径側から圧縮されることにより、前記焼結体の内径側がコアにより整形されることを特徴とする請求項12~15のいずれか1項に記載の焼結軸受の製造方法。
  17.  前記ダイスの内径寸法と前記焼結体の外径寸法との寸法差および前記コアの外径寸法と前記焼結体の内径寸法との寸法差を加減することにより、前記焼結体の表面の気孔の大きさを設定することを特徴とする請求項12~16のいずれか1項に記載の焼結軸受の製造方法。
  18.  前記焼結工程にメッシュベルト式連続炉を適用したことを請求項12~15のいずれか1項に記載の焼結軸受の製造方法。
  19.  前記焼結工程における焼結温度が850~950℃であることを特徴とする請求項12~15および請求項18のいずれか1項に記載の焼結軸受の製造方法。
  20.  前記焼結工程における焼結雰囲気を還元雰囲気とし、焼結時間を10~60分としたことを特徴とする請求項12~15、請求項18および請求項19のいずれか1項に記載の焼結軸受の製造方法。
     
PCT/JP2013/057079 2012-03-13 2013-03-13 焼結軸受およびその製造方法 WO2013137347A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/384,844 US20150064045A1 (en) 2012-03-13 2013-03-13 Sintered bearing and manufacturing method for same
EP13760718.0A EP2826876B1 (en) 2012-03-13 2013-03-13 Sintered bearing and manufacturing method for same
IN7929DEN2014 IN2014DN07929A (ja) 2012-03-13 2013-03-13
CN201380014056.6A CN104204247B (zh) 2012-03-13 2013-03-13 烧结轴承及其制造方法
US15/944,271 US11351608B2 (en) 2012-03-13 2018-04-03 Sintered bearing and manufacturing method for same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-055709 2012-03-13
JP2012055711 2012-03-13
JP2012-055711 2012-03-13
JP2012055709 2012-03-13
JP2013044224A JP2013217493A (ja) 2012-03-13 2013-03-06 焼結軸受
JP2013044227A JP6026319B2 (ja) 2012-03-13 2013-03-06 焼結軸受の製造方法
JP2013-044227 2013-03-06
JP2013-044224 2013-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/384,844 A-371-Of-International US20150064045A1 (en) 2012-03-13 2013-03-13 Sintered bearing and manufacturing method for same
US15/944,271 Division US11351608B2 (en) 2012-03-13 2018-04-03 Sintered bearing and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2013137347A1 true WO2013137347A1 (ja) 2013-09-19

Family

ID=52088170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057079 WO2013137347A1 (ja) 2012-03-13 2013-03-13 焼結軸受およびその製造方法

Country Status (5)

Country Link
US (2) US20150064045A1 (ja)
EP (1) EP2826876B1 (ja)
CN (1) CN104204247B (ja)
IN (1) IN2014DN07929A (ja)
WO (1) WO2013137347A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037668A1 (ja) * 2013-09-13 2015-03-19 Ntn株式会社 Egrバルブ用焼結軸受およびその製造方法
JP2019112719A (ja) * 2013-09-13 2019-07-11 Ntn株式会社 Egrバルブ用焼結軸受
WO2021002197A1 (ja) 2019-07-02 2021-01-07 Ntn株式会社 焼結軸受および焼結軸受の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425943B2 (ja) * 2013-08-27 2018-11-21 Ntn株式会社 燃料ポンプ用焼結軸受およびその製造方法
JP6523682B2 (ja) * 2014-12-26 2019-06-05 Ntn株式会社 焼結軸受
JP6812113B2 (ja) * 2016-02-25 2021-01-13 Ntn株式会社 焼結含油軸受及びその製造方法
JP6769007B2 (ja) 2017-06-29 2020-10-14 株式会社ダイヤメット モータ式燃料ポンプ用焼結軸受及びその製造方法
CN112589110A (zh) * 2020-12-08 2021-04-02 北京飞利信信息安全技术有限公司 一种石墨烯增强型合金复合材料及其制备方法
CN215733875U (zh) * 2021-08-18 2022-02-01 北京森汉科技有限公司 一种舵机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152902A (en) * 1980-04-28 1981-11-26 Fukuda Kinzoku Hakufun Kogyo Kk Powder for sintered copper alloy containing aluminum
JPS643322A (en) * 1987-06-24 1989-01-09 Mitsubishi Metal Corp Oil impregnated metal powder sintered bearing
JP2002122142A (ja) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp 焼結含油軸受およびその製造方法およびモータ
JP2006258185A (ja) * 2005-03-16 2006-09-28 Mitsubishi Materials Pmg Corp 焼結含油軸受及びその製造方法
JP2008240910A (ja) * 2007-03-27 2008-10-09 Ntn Corp 焼結含油軸受
JP2009007650A (ja) 2007-06-29 2009-01-15 Fukuda Metal Foil & Powder Co Ltd 焼結アルミニウム含有銅合金用混合粉末及びその製造方法
JP2009114486A (ja) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd 焼結助剤及び焼結用アルミニウム含有銅系合金粉末並びに該焼結用アルミニウム含有銅系合金粉末を焼結してなる焼結体
JP4521871B2 (ja) 2005-01-18 2010-08-11 株式会社ダイヤメット 耐食性、耐摩耗性および高強度を有するモータ式燃料ポンプの軸受

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225155A (en) * 1991-07-22 1993-07-06 Corning Incorporated Methods and apparatus for firing extruded metals
JP3607478B2 (ja) 1997-12-18 2005-01-05 Ntn株式会社 動圧型多孔質含油軸受
US6132486A (en) * 1998-11-09 2000-10-17 Symmco, Inc. Powdered metal admixture and process
JP4424810B2 (ja) * 2000-03-27 2010-03-03 株式会社小松製作所 焼結材料
US6663344B2 (en) * 2001-03-28 2003-12-16 Mitsubishi Materials Corporation Copper-based sintered alloy bearing and motor fuel pump
JP2004018941A (ja) 2002-06-17 2004-01-22 Oiles Ind Co Ltd 銅系焼結摺動部材
JP4385618B2 (ja) * 2002-08-28 2009-12-16 オイレス工業株式会社 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
JP2004100851A (ja) 2002-09-10 2004-04-02 Mitsubishi Materials Corp 焼結軸受とその製造方法
JP5371182B2 (ja) * 2006-06-27 2013-12-18 株式会社ダイヤメット 耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金およびその合金からなる軸受材
JP2008180295A (ja) * 2007-01-25 2008-08-07 Nippon Densan Corp 軸受部材の製造方法並びにそれによって製造された軸受部材を用いる流体動圧軸受装置及びスピンドルモータ、記録ディスク駆動装置
JP4545162B2 (ja) * 2007-02-19 2010-09-15 株式会社小松製作所 複合焼結摺動部材とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152902A (en) * 1980-04-28 1981-11-26 Fukuda Kinzoku Hakufun Kogyo Kk Powder for sintered copper alloy containing aluminum
JPS643322A (en) * 1987-06-24 1989-01-09 Mitsubishi Metal Corp Oil impregnated metal powder sintered bearing
JP2002122142A (ja) * 2000-08-09 2002-04-26 Mitsubishi Materials Corp 焼結含油軸受およびその製造方法およびモータ
JP4521871B2 (ja) 2005-01-18 2010-08-11 株式会社ダイヤメット 耐食性、耐摩耗性および高強度を有するモータ式燃料ポンプの軸受
JP2006258185A (ja) * 2005-03-16 2006-09-28 Mitsubishi Materials Pmg Corp 焼結含油軸受及びその製造方法
JP2008240910A (ja) * 2007-03-27 2008-10-09 Ntn Corp 焼結含油軸受
JP2009007650A (ja) 2007-06-29 2009-01-15 Fukuda Metal Foil & Powder Co Ltd 焼結アルミニウム含有銅合金用混合粉末及びその製造方法
JP2009114486A (ja) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd 焼結助剤及び焼結用アルミニウム含有銅系合金粉末並びに該焼結用アルミニウム含有銅系合金粉末を焼結してなる焼結体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826876A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037668A1 (ja) * 2013-09-13 2015-03-19 Ntn株式会社 Egrバルブ用焼結軸受およびその製造方法
JP2015078432A (ja) * 2013-09-13 2015-04-23 Ntn株式会社 Egrバルブ用焼結軸受およびその製造方法
JP2019112719A (ja) * 2013-09-13 2019-07-11 Ntn株式会社 Egrバルブ用焼結軸受
US11306778B2 (en) 2013-09-13 2022-04-19 Ntn Corporation Sintered bearing for an EGR valve and manufacturing method thereof
WO2021002197A1 (ja) 2019-07-02 2021-01-07 Ntn株式会社 焼結軸受および焼結軸受の製造方法

Also Published As

Publication number Publication date
EP2826876A4 (en) 2016-08-31
CN104204247B (zh) 2017-06-09
CN104204247A (zh) 2014-12-10
IN2014DN07929A (ja) 2015-05-01
US11351608B2 (en) 2022-06-07
EP2826876A1 (en) 2015-01-21
EP2826876B1 (en) 2020-05-06
US20180221956A1 (en) 2018-08-09
US20150064045A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2013137347A1 (ja) 焼結軸受およびその製造方法
JP2013217493A (ja) 焼結軸受
JP6741730B2 (ja) 焼結軸受およびその製造方法
JP6425943B2 (ja) 燃料ポンプ用焼結軸受およびその製造方法
JP6026319B2 (ja) 焼結軸受の製造方法
JP6523682B2 (ja) 焼結軸受
JP5496380B2 (ja) 耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金とその製造方法およびその合金からなる軸受材
JP6522301B2 (ja) Egrバルブ用焼結軸受およびその製造方法
JP6745760B2 (ja) 燃料ポンプ用焼結軸受およびその製造方法
WO2015050200A1 (ja) 焼結軸受、およびその製造方法
JP6858807B2 (ja) 焼結軸受
CN108883472B (zh) Cu基烧结滑动材料及其制造方法
JP6548952B2 (ja) 焼結軸受及びその製造方法
JP6720362B2 (ja) Egrバルブ用焼結軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14384844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013760718

Country of ref document: EP