WO2013137304A1 - セメント製造装置 - Google Patents

セメント製造装置 Download PDF

Info

Publication number
WO2013137304A1
WO2013137304A1 PCT/JP2013/056980 JP2013056980W WO2013137304A1 WO 2013137304 A1 WO2013137304 A1 WO 2013137304A1 JP 2013056980 W JP2013056980 W JP 2013056980W WO 2013137304 A1 WO2013137304 A1 WO 2013137304A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
conduit
cement
material supply
cyclone
Prior art date
Application number
PCT/JP2013/056980
Other languages
English (en)
French (fr)
Inventor
大輔 坂庭
俊柱 王
裕和 島
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US14/383,274 priority Critical patent/US9587881B2/en
Priority to CN201380012827.8A priority patent/CN104159864B9/zh
Priority to KR1020147028289A priority patent/KR20140134317A/ko
Priority to EP13761224.8A priority patent/EP2826758B1/en
Priority to IN7427DEN2014 priority patent/IN2014DN07427A/en
Publication of WO2013137304A1 publication Critical patent/WO2013137304A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/32Arrangement of devices for charging
    • F27B7/3205Charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D2017/009Cyclone for separating fines from gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/121Energy efficiency measures, e.g. improving or optimising the production methods

Definitions

  • the present invention relates to an apparatus for producing a cement clinker by firing with a kiln while supplying a cement raw material to a preheater.
  • This application claims priority based on Japanese Patent Application No. 2012-57517 for which it applied to Japan on March 14, 2012, and uses the content here.
  • the cement manufacturing apparatus is provided with a preheater for preheating the cement raw material.
  • This pre-heater has a plurality of cyclones connected in the vertical direction, and the lowermost cyclone is connected to the kiln bottom of the cement kiln.
  • the cement raw material is pulverized by a mill, and then supplied to the preheater from a conduit connecting the uppermost cyclone and the lower cyclone at an intermediate position of the preheater.
  • the cement raw material is guided to the uppermost cyclone on the flow of exhaust gas rising from the cement kiln, and then preheated by receiving the heat of the exhaust gas while descending each cyclone sequentially. Supplied to cement kiln from cyclone.
  • pipe since a some cyclone is installed above it, in order to equalize the preheating in these cyclones, it is necessary to supply a raw material equally.
  • Patent Document 1 As apparatuses for supplying powders such as cement raw materials, there are apparatuses described in Patent Document 1 to Patent Document 3, each of which has been devised to improve dispersibility.
  • a chevron-shaped convex portion protruding in a probability curve shape is provided on the upper surface of the lower end portion of the bottom plate of a raw material supply pipe (inclined chute) for supplying cement raw material powder.
  • This convex part is formed so that the lower end side is the highest and the height on the upstream side becomes zero, and when the supplied raw material hits the convex part, it is distributed to the left and right and supplied into the conduit.
  • Patent Document 2 the joint between the raw material supply pipe (input chute) and the conduit (duct) is angularly displaced around the horizontal axis, and can be projected up to 1 ⁇ 2 of the inner diameter of the input chute.
  • a powder material dispersing apparatus provided with a plate has been proposed.
  • the apparatus described in Patent Document 3 discloses a device in which a raw material slide surface is formed in a direction substantially orthogonal to the gas flow at a joint portion between a raw material supply pipe (raw material chute) and a conduit (hot gas conduit). ing.
  • a raw material is collided with a dispersion plate or a raw material slide surface protruding into the conduit, so that the raw material is dispersed and supplied.
  • the present invention has been made in view of such circumstances.
  • the raw material is uniformly supplied to each cyclone above the conduit, the preheating is made uniform, the heat exchange efficiency is increased, the pressure loss is low, and the energy consumption is low. It aims at providing the cement manufacturing apparatus which can be operated.
  • the exhaust gas from the lower cyclone rises as a swirl flow in the conduit of the cement production equipment, but when multiple distribution outlets to the upper cyclone are provided, the exhaust gas corresponding to the number of distribution outlets is provided in the conduit.
  • a flow (swirl flow) is generated. Therefore, when the number of raw material supply pipes is one as in the prior art, and the connection port to the conduit of the raw material supply pipe is installed flush with the inner wall surface of the conduit, the cement flowing out from the raw material supply pipe to the conduit Most of the raw material flows out of the distribution outlet at the upper part of the conduit along the swirling flow flowing in the vicinity of the connection port of the raw material supply pipe in the swirling flow of the exhaust gas.
  • the outflow amount of the cement raw material at each distribution outlet provided in the upper part of the conduit is not uniform and uneven.
  • the temperature difference of the exhaust gas at each distribution outlet varies greatly, and the heat exchange efficiency decreases.
  • Patent Document 2 even if a dispersion plate is provided under the connection port of the raw material supply pipe, if the length of the dispersion plate inserted into the conduit is not long enough to be installed, Usually, it flows on the swirl flow that flows near the inner wall of the conduit and flows out to one distribution outlet. Therefore, the present invention has the following solutions.
  • a plurality of cyclones for circulating exhaust gas generated in a cement kiln are connected in the vertical direction, and between a plurality of upper-stage cyclones and a lower-stage cyclone disposed below the cyclones.
  • a conduit is provided that distributes the exhaust gas derived from the lower cyclone upward and distributes the exhaust gas to each upper cyclone, and is disposed below the distributor to the plurality of upper cyclones in the conduit.
  • the same number of raw material supply pipes as the number of distribution outlets to the upper cyclone are provided, and the connection ports of the raw material supply pipes to the conduits are the individual flows of the swirling flow of the exhaust gas flowing into the respective distribution outlets.
  • One by one is arranged at a position corresponding to.
  • the number of distribution outlets to the upper cyclone and the number of raw material supply pipes are made to coincide with each other, and the raw material supply pipe connection ports are arranged at positions corresponding to the flow of each swirl flow generated in the conduit.
  • the cement raw material can be evenly discharged to each distribution outlet and the cement raw material can be preheated uniformly, so that the heat exchange efficiency between the exhaust gas and the cement raw material can be increased.
  • there is no need to install a dispersion plate or the like in the conduit it is possible to perform an operation with low pressure loss and low energy consumption.
  • each connection port of the raw material supply pipe is shifted by 360 ° / n around the axis of the conduit. Or a configuration in which n pieces are spaced apart from each other on one side of the conduit and arranged at a predetermined interval.
  • the raw material supply pipe may be provided at an angle of 20 ° to 50 ° with respect to the axis of the conduit.
  • the connection port of the raw material supply pipe may be installed flush with the inner wall surface of the conduit.
  • two upper-stage cyclones may be installed, and the raw material supply pipes may be connected to positions 180 degrees apart around the conduit.
  • a vertical distance between a horizontal plane passing through the center of each distribution outlet of the upper cyclone and a horizontal plane passing through the center of each connection port of the raw material supply pipe is H, and the diameter of the conduit is When D, the ratio H / D is preferably set to 1.1 to 3.0.
  • the preheating can be made uniform and the heat exchange efficiency can be increased. Further, since there is no need to install a dispersion plate or the like in the conduit, it is possible to perform an operation with low pressure loss and low energy consumption.
  • the cement manufacturing apparatus according to the first embodiment is a raw material storage 1 for individually storing limestone, clay, silica, iron raw materials and the like as cement raw materials, and crushes and dries these cement raw materials.
  • the raw material mill and dryer 2, the preheater 3 for preheating the powdery cement raw material obtained by the raw material mill, the cement kiln 4 for firing the cement raw material preheated by the preheater 3, and the cement kiln 4 were fired. And a cooler 5 or the like for cooling the cement clinker later.
  • the cement kiln 4 is a cylindrical rotary kiln that is slightly inclined in the horizontal direction.
  • the cement raw material supplied from the preheater 3 to the kiln bottom 6 is sent to the kiln front part 7 while
  • a cement clinker is produced by heating and firing to about 1450 ° C. by the burner 8 of the kiln front part 7, and the cement clinker is sent from the kiln front part 7 to the cooler 5.
  • the cement clinker is cooled to a predetermined temperature by the cooler 5 and then sent to the finishing process.
  • the exhaust gas generated in the cement kiln 4 is introduced into the raw material mill and dryer 2 through the exhaust pipe 9 after passing through the preheater 3 from below to the raw material mill and dryer 2.
  • the cement raw material is pulverized and dried simultaneously.
  • An exhaust gas line 12 including a dust collector 10 and a chimney 11 is connected to the raw material mill and dryer 2.
  • the preheater 3 is constructed by connecting a plurality of cyclones 13 for circulating the exhaust gas generated in the cement kiln 4 in the vertical direction, and the cyclone 13D at the lowermost portion is a kiln bottom portion 6 of the cement kiln 4. It is connected to the.
  • FIG. 3 the configuration of the preheater 3 is shown in a simplified manner.
  • the preheater 3 is configured by four upper and lower cyclones 13.
  • two cyclones 13A (in the present invention, the upper cyclone in the present invention) are connected in parallel to the fourth stage which is the uppermost stage with respect to one cyclone 13B of the third stage, and the third stage Since the two cyclones 13B are provided side by side, two cyclones 13A in the uppermost stage are provided, for a total of four.
  • the preheater 3 may have a configuration different from this configuration.
  • a tube 22 is connected.
  • the conduit 21 extends vertically upward from the third-stage cyclone 13B, and then branches to the left and right via the distribution unit 23.
  • the distribution outlets 21a are connected to the two upper-stage cyclones 13A, respectively.
  • FIG. 1 shows only the lower cyclone 13B, the upper part of the conduit 21 shows up to the distribution outlet 21a, and the upper cyclone 13A is omitted.
  • the raw material supply pipes 22 are connected to positions below the distribution part 23 of the conduit 21 and are provided in the same number as the distribution outlets 21a to the upper cyclone 13A. Further, one connection position is arranged at a position corresponding to each flow of the swirling flow of the exhaust gas flowing into each distribution outlet 21a. And each connection port 22a of the raw material supply pipe 22 is arranged at a position shifted by 360 ° / n around the axis C1 of the conduit 21 when the number of distribution outlets 21a of the upper cyclone 13A is n. Yes. In the preheater 3 shown in FIG. 1, two raw material supply pipes 22 are connected corresponding to the two cyclones 13A on the uppermost side.
  • tube 22 is connected to the position which mutually faces. Further, the connection port 22 a of each raw material supply pipe 22 that opens into the conduit 21 is installed flush with the inner wall surface of the conduit 21. Note that the connection port 22a may slightly protrude even if it is not exactly flush with the inner wall surface of the conduit 21.
  • the distribution portion 23 is an intersection portion between the axis C1 of the conduit 21 and a line C2 connecting the centers of the distribution outlets 21a to both the cyclones 13A on the upper stage side (see FIG. 1). In FIG.
  • connection port 22a of both raw material supply pipes 22 is installed at an angle of about 90 ° with respect to the line C2 connecting the centers of the distribution outlets 21a.
  • this angle is limited to this. Instead, even if the angle is set to an arbitrary angle, the cement raw material can be supplied to the individual flows of the swirling flow by arranging the connection ports 22a of the raw material supply pipes 22 at positions shifted by 360 ° / n. it can.
  • the raw material supply pipe 22 is formed to be inclined at an appropriate angle ⁇ of 20 ° to 50 ° with respect to the axis of the conduit 21, and the cement raw material is dropped through the raw material supply pipe 22 while being dropped by a certain amount. .
  • the cement raw material when cement raw material is supplied from the raw material storage 1, the cement raw material is pulverized and dried by the raw material mill and dryer 2, and then supplied to the preheater 3 through the raw material supply pipe 22. Then, it is supplied to the lower cement kiln 4 while falling in the preheater 3.
  • the exhaust gas from the cement kiln 4 circulates in the cyclone 13 sequentially from the bottom in the direction opposite to the cement raw material, and the cement raw material 4 passes through the cyclone 13 when the cement raw material passes through the cyclone 13.
  • the preheated cement raw material is supplied to the kiln bottom 6 of the cement kiln 4 from the lowermost cyclone 13D.
  • the swirling flow has a circumferential velocity vector that increases in the vicinity of the inner wall surface 21 b of the conduit 21, and gradually increases in the circumferential direction toward the central portion C of the conduit 21.
  • the component becomes smaller and the vertically upward velocity vector becomes larger.
  • the swirl flow is distributed into two by the distribution unit 23 from the lower cyclone 13B via the conduit 21 and divided into two upper cyclones 13A. Circulate. A flow flowing on one side of the two cyclones 13A is indicated by a black arrow, and a flow flowing on the other side is indicated by a white arrow. In the conduit 21, they rise while being twisted spirally.
  • the cement manufacturing apparatus of the present invention is located below the distributor 23 of the conduit 21 that distributes the exhaust gas derived from the lower stage (third stage) cyclone 13B and guides it to the two upper stage (fourth stage) cyclones 13A.
  • the same number of raw material supply pipes 22 for supplying cement raw materials as the number of distribution outlets 21a to the upper cyclone 13A are provided, and the connection ports 22a to the conduits 21 of the respective raw material supply pipes 22 are connected to the distribution outlets 21a.
  • the load of both cyclones can be balanced and the preheating state of the cement raw material supplied to each can be made uniform.
  • the calorific value is increased by at least 3 kcal / kg-cli.
  • the connection port 22a of the raw material supply pipe 22 is installed flush with the inner wall surface of the conduit 21, there is no resistance to the flow of the swirling flow rising from below, the pressure loss is low, and energy consumption is reduced. Less operations can be performed.
  • the dropped raw material is disposed by arranging one connection port 22a to the conduit 21 of the raw material supply pipe 22 at a position corresponding to each flow of the swirling flow of the exhaust gas flowing into each distribution outlet 21a.
  • it is equally supplied to the upper cyclone from each distribution outlet 21a along the flow of each swirl flow.
  • the cement raw material is supplied to each of the three swirl flow flows from the respective raw material supply pipes 22 arranged at positions shifted by 120 °, and the upper stage from each distribution outlet 21a rides on the flow. Evenly supplied to the side cyclone.
  • cement raw material is supplied to each of the four swirl flows from the respective raw material supply pipes 22 arranged at positions shifted by 90 °, and each distribution outlet 21a rides on the flow.
  • the raw material supply pipe 22 is arranged at a position shifted by 360 ° / n in accordance with the number n of the distribution outlets 21a to the upper cyclone so that the cement raw material is placed on the flow of each swirl flow. Can be supplied evenly to the cyclone.
  • FIG. 4 shows a second embodiment of the cement production apparatus of the present invention.
  • two connection ports 22a of the raw material supply pipe 22 are spaced apart from each other on one side of the conduit 21 at a predetermined interval, so that the swirling flow of the exhaust gas can be reduced.
  • the cement raw material can be supplied from each raw material supply pipe 22 to each of the two flows. And the cement raw material supplied to these two flows is supplied to each upper stage cyclone 13A on the flow.
  • the cement raw material can be evenly discharged to the respective distribution outlets 21a to the upper cyclone 13A, and the heat exchange efficiency can be improved by equalizing the preheating.
  • the raw material supply pipe 22 is separated from the upper and lower sides of one side of the conduit in accordance with the number n of the distribution outlets to the upper cyclone. By arranging them at a predetermined interval, one piece can be placed at a position corresponding to each flow of the swirl flow.
  • connection port of the raw material supply pipe that should be arranged corresponds to the individual flow of the swirling flow by changing the connection position of the raw material supply pipe while observing the temperature difference at the distribution outlet.
  • a connection position is determined.
  • the result of having simulated the connection position of the raw material supply pipe which can drop a cement raw material into the flow of two swirling flows is demonstrated. As shown in FIG.
  • the simulation conduit model includes two distribution outlets 21 a to the uppermost cyclone, and the connection port 22 a of the raw material supply pipe 22 is disposed so as to be shifted by 180 ° around the axis of the conduit 21.
  • the configuration Further, the ratio H / D of the vertical distance H between the horizontal plane P1 passing through the center of each distribution outlet 21a of the upper cyclone and the horizontal plane P2 passing through the center of each connection port 22a of the raw material supply pipe 22 to the diameter D of the conduit.
  • the distribution outlet temperature difference As is apparent from the results shown in Table 1 and FIG. 5, the smaller the distribution outlet temperature difference, the smaller the difference in the ratio of the outflow raw material at each distribution outlet, and the cement raw material can be preheated evenly.
  • the distribution outlet temperature difference can be made within about 50 ° C.
  • the exhaust gas temperature difference between the left and right distribution outlets should be within 20 ° C. The difference in the proportion of raw materials can be kept small, which is preferable.
  • each connection port of the raw material supply pipe is arranged at a position where the ratio H / D is set to 1.5 to 2.4, the exhaust gas temperature difference between the left and right distribution outlets should be within 10 ° C.
  • the ratio difference of the raw materials can be kept small, which is more preferable.
  • this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
  • the raw material supply to the conduit connected to the uppermost cyclone 13A has been described.
  • a plurality of conduits to the cyclone installed in each stage, the lowermost cyclone 13D and the cement kiln bottom 6 The present invention can also be applied to the case where raw materials are supplied to a rising duct 25 (see FIG. 3) that connects the two.
  • the present invention can be applied not only to raw materials sent from the mill as cement raw materials, but also to supplying raw materials in the middle of preheating guided to the lower cyclone after passing through the upper cyclone to the conduit.
  • the cement raw material is uniformly supplied from each raw material supply pipe 22 and is put on the flow of each swirl flow, but the upstream of each raw material supply pipe 22 is connected to each raw material supply pipe 22. It is good also as a structure which provides the supply amount controller which adjusts the supply amount of a cement raw material. In this case, the supply amount of the cement raw material supplied to each raw material supply pipe 22 can be controlled and distributed, and the temperature of the cement raw material supplied to each distribution outlet 21a can be preheated more evenly.
  • It can be used in a cement manufacturing apparatus for manufacturing a cement clinker by firing with a kiln while supplying a cement raw material to a preheater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

導管上方の各サイクロンに原料を均等に供給し、予熱を均等にして熱交換効率を高めるとともに、圧力損失が低く、エネルギー消費の少ない操業を行わせることができるセメント製造装置を提供する。 セメント製造装置は、複数の上段側サイクロン13Aとその下方に配置される下段側サイクロン13Bとの間に、下段側サイクロン13Bから導出される排ガスを上方に流通させ分配して各上段側サイクロン13Aに導く導管21が設けられ、導管21における複数の上段側サイクロン13Aへの分配部23よりも下方位置に、セメント原料を供給する原料供給管22が上段側サイクロン13Aへの分配出口21aの数と同数設けられており、各原料供給管22の導管21への接続口22aは、各分配出口21aに流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置されている。

Description

セメント製造装置
 本発明は、プレヒータにセメント原料を供給しながらキルンで焼成してセメントクリンカを製造する装置に関する。
本願は、2012年3月14日に日本に出願された特願2012-57517号に基づいて優先権を主張し、その内容をここに援用する。
 セメント製造装置には、セメント原料を予熱するためのプレヒータが設けられている。このプレヒータは、複数のサイクロンが上下方向に連結状態とされたものであり、その最下段のサイクロンがセメントキルンの窯尻部に接続されている。セメント原料は、ミルにより粉体にされた後、このプレヒータの途中位置で最上段のサイクロンとその下段のサイクロンとの間を連結している導管からプレヒータに供給される。プレヒータ内においては、セメント原料は、セメントキルンから上昇してくる排ガスの流れに乗って最上段のサイクロンに導かれた後、各サイクロンを順次下降しながら排ガスの熱を受けて予熱され、最下段のサイクロンからセメントキルンに供給される。
 このセメント原料を導管に供給する場合、その上方に複数のサイクロンが設置されている関係上、これらサイクロンでの予熱を均等にするために均等に原料を供給する必要がある。
 このセメント原料のような粉体を供給する装置として、特許文献1から特許文献3に記載の装置があり、それぞれ分散性を向上させる工夫がなされている。
 特許文献1記載の装置は、セメント原料の粉体を供給する原料供給管(傾斜シュート)の底板の下端部上面に、確率曲線状に隆起した山形の凸部が設けられている。この凸部は下端側がもっとも高く上流側の高さが零になるように形成されており、供給した原料が凸部に当たると、左右に分散して導管内に供給されるようになっている。
 一方、特許文献2においては、原料供給管(投入シュート)と導管(ダクト)との連結部に、水平軸線まわりに角変位し、最大限で投入シュートの内径の1/2まで突出可能な分散板が設けられた粉末材料の分散装置が提案されている。また、特許文献3記載の装置は、原料供給管(原料シュート)と導管(熱ガス導管)との接合部に、ガス流に対してほぼ直交する方向に原料スライド面を形成したものが開示されている。
 これら特許文献2又は3記載の装置では、導管内に突出させた分散板や原料スライド面に原料を衝突させることにより、導管内に分散させて供給するようにしている。
特開平6‐191615号公報 特開平9‐262452号公報 実公昭62‐29919号公報
 しかしながら、これら特許文献記載の装置では、原料供給管の下端部あるいは導管の内部に分散のための凸部や分散板が配置されるので、閉塞等の原因となり易いとともに、導管内に分散板を配置する場合は、下方から上昇してくる排ガス流通の抵抗となり、安定した操業を阻害するおそれがある。
 本発明は、このような事情に鑑みてなされたもので、導管上方の各サイクロンに原料を均等に供給し、予熱を均等にして熱交換効率を高めるとともに、圧力損失が低く、エネルギー消費の少ない操業を行わせることができるセメント製造装置を提供することを目的とする。
 セメント製造装置の導管内では、下段側サイクロンからの排ガスが旋回流となって上昇するが、上段側サイクロンへの分配出口を複数設けた場合、導管内ではその分配出口の数に応じた排ガスの流れ(旋回流)が生じる。そのため、従来のように原料供給管の数が1個で、その原料供給管の導管への接続口を導管の内壁面に面一に設置した際には、原料供給管から導管に流出するセメント原料の大部分は、排ガスの旋回流のうちの原料供給管の接続口付近を流れる旋回流に乗って導管上部の分配出口から流出することになる。したがって、導管上部に設けられた各分配出口におけるセメント原料の流出量は均等にはならず、偏りが生じる。この場合、各分配出口における排ガスの温度差が大きくばらつき、熱交換効率が低下することになる。
 また、特許文献2のように、原料供給管の接続口の下に分散板を設けたとしても、導管内への分散板の差し込み長さを十分に長くして設置しなければ、セメント原料の大部分は、導管の内壁付近を流れる旋回流に乗って、1つの分配出口に偏って流出することとなる。
 そこで、本発明は以下の解決手段とした。
 本発明のセメント製造装置は、セメントキルンで発生した排ガスを流通させる複数のサイクロンが上下方向に連結状態とされるとともに、複数の上段側サイクロンとその下方に配置される下段側サイクロンとの間に、下段側サイクロンから導出される前記排ガスを上方に流通させ分配して各上段側サイクロンに導く導管が設けられ、前記導管における前記複数の上段側サイクロンへの分配部よりも下方位置に、セメント原料を供給する原料供給管が前記上段側サイクロンへの分配出口の数と同数設けられており、各原料供給管の前記導管への接続口は、各分配出口に流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置されていることを特徴とする。
 このように、上段側サイクロンへの分配出口の数と、原料供給管の数とを一致させるとともに、導管内に生じる各旋回流の流れに対応する位置に原料供給管の接続口を配置することで、各分配出口にセメント原料を均等に流出させてセメント原料を均等に予熱することができるので、排ガスとセメント原料との熱交換効率を高めることができる。また、導管に分散板等を設置する必要がないため、圧力損失が低く、エネルギー消費の少ない操業を行わせることができる。
 本発明のセメント製造装置においては、前記上段側サイクロンへの分配出口の数をnとした場合に、前記原料供給管の各接続口が、前記導管の軸線回りに360°/nずつずれた位置に配置されている構成、あるいは、導管の一側面の上下に離間してn個所定の間隔で配置されている構成を採用することができる。
 また、本発明のセメント製造装置において、以下の形態とすることができる。
前記原料供給管は、前記導管の軸線に対して20°~50°の角度で傾斜して設けられているとよい。
 また、前記原料供給管の接続口は、前記導管の内壁面に面一に設置されているとよい。
 本発明のセメント製造装置において、前記上段側サイクロンが2基設置され、前記原料供給管は、前記導管の回りの180°離れた位置にそれぞれ接続されているものとすることができる。
 本発明のセメント製造装置において、前記上段側サイクロンの各分配出口の中心を通る水平面から前記原料供給管の各接続口の中心を通る水平面との間の垂直距離をHとし、前記導管の直径をDとしたときに、その比率H/Dが1.1~3.0に設定されているとよい。
 本発明によれば、分配出口にセメント原料を均等に流出させることができるので、その予熱を均等にして熱交換効率を高めることができる。また、導管に分散板等を設置する必要がないため、圧力損失が低く、エネルギー消費の少ない操業を行わせることができる。
本発明のセメント製造装置の第1実施形態における導管内の排ガスの流れを立体的に示した模式図である。 導管内の横断面方向におけるガスの流れの速度ベクトルを示した模式図である。 セメント製造装置の全体を示す概略構成図である。 本発明のセメント製造装置の第2実施形態における導管内の排ガスの流れを立体的に示した模式図である。 導管の内径に対する分配部を含む平面から原料供給管の先端までの垂直距離の比率H/Dと各分配出口の排ガス温度差との関係を解析した結果を示すグラフである。 本発明のセメント製造装置の他の実施形態における導管内の排ガスの流れを立体的に示した模式図であり、分配出口を3個備える導管の例を示している。 本発明のセメント製造装置のさらに他の実施形態における導管内の排ガスの流れを立体的に示した模式図であり、分配出口を4個備える導管の例を示している。
 以下、本発明に係るセメント製造装置の実施形態を、図面を参照しながら説明する。
 第1実施形態のセメント製造装置は、図3に全体を示したように、セメント原料として石灰石、粘土、珪石、鉄原料等を個別に貯蔵する原料貯蔵庫1と、これらセメント原料を粉砕、乾燥する原料ミル及びドライヤ2と、この原料ミルで得られた粉体状のセメント原料を予熱するプレヒータ3と、プレヒータ3によって予熱されたセメント原料を焼成するセメントキルン4と、セメントキルン4で焼成された後のセメントクリンカを冷却するためのクーラー5等とを備えている。
 セメントキルン4は、横向きで若干傾斜した円筒状のロータリーキルンであり、軸芯回りに回転することにより、その窯尻部6にプレヒータ3から供給されるセメント原料を窯前部7に送りながら、その送る過程で窯前部7のバーナー8によって1450℃程度に加熱焼成してセメントクリンカを生成し、このセメントクリンカを窯前部7からクーラー5に送り出すようになっている。セメントクリンカは、クーラー5で所定温度まで冷却された後、仕上げ工程へ送られることになる。
 また、セメントキルン4で発生する排ガスは、プレヒータ3を下方から上方に経由した後、排気管9を通って原料ミル及びドライヤ2に導入されるようになっており、原料ミル及びドライヤ2は、セメントキルン4からの排ガスが導入されることにより、セメント原料の粉砕と乾燥を同時に行うようになっている。この原料ミル及びドライヤ2には、集塵機10、煙突11等を備える排ガスライン12が接続されている。
 プレヒータ3は、セメントキルン4で発生した排ガスを流通させる複数のサイクロン13が上下方向に連結状態とされて構築されたものであり、その最下段部分のサイクロン13Dがセメントキルン4の窯尻部6に接続されている。
 なお、図3においては、プレヒータ3の構成を簡略化して示したものであり、本実施形態ではプレヒータ3は上下4段のサイクロン13により構成されている。この場合、3段目の一つのサイクロン13Bに対して最上段である4段目に2基のサイクロン13A(本発明で言う、上段側サイクロン。)が並列状態に接続されており、3段目のサイクロン13Bが2基並んで設けられていることにより、最上段のサイクロン13Aは2基ずつ、合計4基設けられている。プレヒータ3は、この構成と異なる構成のものとしてもよい。
 そして、プレヒータ3の最上段側の2基の並列したサイクロン13Aと、3段目の一つのサイクロン13Bとの間を連結する導管21に、原料ミル及びドライヤ2からの原料が供給される原料供給管22が接続されている。この導管21は、3段目のサイクロン13Bから垂直上方に延びた後、分配部23を介して左右に分岐され、上段側の2基のサイクロン13Aに分配出口21aがそれぞれ接続されている。図1には、下段側のサイクロン13Bのみ示し、導管21の上部は分配出口21aまでを示し、上段側サイクロン13Aは省略している。
 原料供給管22は、この導管21の分配部23よりも下方位置に接続され、上段側のサイクロン13Aへの分配出口21aの数と同数設けられている。また、その接続位置は、各分配出口21aに流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置されている。そして、原料供給管22の各接続口22aは、上段側のサイクロン13Aの分配出口21aの数をnとした場合に、導管21の軸線C1回りに360°/nずつずれた位置に配置されている。
 図1に示すプレヒータ3では、最上段側の2基のサイクロン13Aに対応して原料供給管22が2個接続されている。そして、導管21の軸線C1の回りに180°回転させた位置、すなわち、各原料供給管22の接続口22aが、互いに向かい合わせとなる位置に接続されている。また、導管21内に開口する各原料供給管22の接続口22aは、導管21の内壁面に面一に設置されている。なお、接続口22aは、導管21の内壁面に厳密に面一でなくとも、若干突出してもよい。また、分配部23は、導管21の軸線C1と上段側の両サイクロン13Aへの分配出口21a中心間を結ぶ線C2との交点部分とする(図1参照)。なお、図1では、分配出口21a中心間を結ぶ線C2に対して、両原料供給管22の接続口22aが略90°の角度で設置されているが、この角度はこれに限定されるものではなく、任意の角度に設定しても、各原料供給管22の接続口22aを360°/nずつずれた位置に配置することで、旋回流の個々の流れにセメント原料を供給することができる。
 また、原料供給管22は、導管21の軸線に対して20°~50°の適宜の角度θで傾斜して形成され、この原料供給管22を通してセメント原料が一定量ずつ落下しながら投入される。
 このように構成したセメント製造装置において、原料貯蔵庫1からセメント原料が供給されると、このセメント原料は、原料ミル及びドライヤ2で粉砕、乾燥された後、原料供給管22よりプレヒータ3に投入され、プレヒータ3内を落下しながら下方のセメントキルン4に供給される。このプレヒータ3では、セメントキルン4からの排ガスが、サイクロン13内をセメント原料とは反対方向に下方から順次上方に流通しており、セメント原料は、これらサイクロン13内を通過する際にセメントキルン4からの排ガスによって所定温度(例えば900℃)まで予熱される。そして、予熱されたセメント原料が最下段のサイクロン13Dからセメントキルン4の窯尻部6に供給される。
 原料供給管22からのセメント原料の供給についてさらに詳述すると、この原料供給管22が接続されている導管21には、下段側(3段目)のサイクロン13Bから上昇してくる排ガスが流通しており、セメント原料は、その流れに乗って上段側(4段目)のサイクロン13Aに導かれる。一方、セメントキルン4での燃焼により発生した排ガスは、各サイクロン13によって旋回流となってプレヒータ3内を上昇する。原料供給管22から供給されるセメント原料は、この旋回流の中に投下されることになる。
 この旋回流は、図2の横断面方向の速度ベクトルにより示されるように、導管21の内壁面21b近傍では周方向の速度ベクトルが大きくなり、導管21の中心部Cに向けて徐々に周方向成分が小さくなり、垂直上向きの速度ベクトルが大きくなる。
 また、この旋回流は、図1の模式図に示すように、下段側のサイクロン13Bから導管21を経由して分配部23で2つに分配され、上段側の2基のサイクロン13Aに分かれて流通する。2基のサイクロン13Aのうちの一方側に流れる流れを黒塗り矢印で示し、他方側に流れる流れを白抜き矢印で示しており、導管21内ではこれらが螺旋状にねじれながら上昇する。そして、導管21内を上昇して分配部23まで到達し、この分配部23から分岐した状態で分配出口21aからそれぞれのサイクロン13Aに導出される。
 このように、導管21内が2つの流れがねじれながら上昇する旋回流となることから、セメント原料がそのいずれか一方の流れにのみ投下されてしまうと、上段側の2基のサイクロン13Aのうちの一方にのみ偏って供給され、その一方のサイクロン13Aのみ負荷が増大することになる。
 本発明のセメント製造装置は、下段側(3段目)サイクロン13Bから導出される排ガスを分配して2基の上段側(4段目)サイクロン13Aに導く導管21の分配部23よりも下方位置に、セメント原料を供給する原料供給管22を上段側サイクロン13Aへの分配出口21aの数と同数設け、各原料供給管22の導管21への接続口22aを、各分配出口21aに流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置することで、投下された原料が、この旋回流の流れに乗せて上昇しながら分配部23から上段側の両サイクロン13Aに均等に供給される。図1に示す例では、180°対向して配置された各原料供給管22から、2つの流れのそれぞれにセメント原料が供給される。そして、これら2つの流れのそれぞれに供給されたセメント原料は、その流れに乗って各上段側サイクロン13Aに供給される。
 したがって、両サイクロンの負荷が均衡し、それぞれに供給されたセメント原料の予熱状態を均等にすることができる。プレヒータ最上段のサイクロン出口におけるガス温度差が例えば100℃以上になると、熱量原単位が少なくとも3kcal/kg-cli以上増大するが、本発明の装置のように予熱状態を均等にすることにより、その温度差を小さくして、熱量原単位を低減させることができる。しかも、原料供給管22の接続口22aは、導管21の内壁面に面一に設置されているので、下方から上昇してくる旋回流の流れに対する抵抗がなく、圧力損失が低く、エネルギー消費の少ない操業を行わせることができる。
 なお、3基以上のサイクロンを設けた場合には、図6及び図7に示すように、導管21内に、分配出口21aの数に合わせて旋回流の流れが生じる。この場合には、原料供給管22の導管21への接続口22aを、各分配出口21aに流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置することで、投下された原料が、各旋回流の流れに乗って各分配出口21aから上段側サイクロンに均等に供給される。図6に示す例では、120°ずつずれた位置に配置された各原料供給管22から、3つの旋回流の流れのそれぞれにセメント原料が供給され、その流れに乗って各分配出口21aから上段側サイクロンに均等に供給される。また、図7に示す例では、90°ずつずれた位置に配置された各原料供給管22から、4つの旋回流の流れのそれぞれにセメント原料が供給され、その流れに乗って各分配出口21aから上段側サイクロンに均等に供給される。
 すなわち、原料供給管22を、上段側サイクロンへの分配出口21aの数nに合わせて、360°/nずつずれた位置に配置することで、セメント原料を各旋回流の流れに乗せて上段側サイクロンに均等に供給することができる。
 図4は、本発明のセメント製造装置の第2実施形態を示している。
 この図4に示すセメント原料装置のように、原料供給管22の各接続口22aを、導管21の一側面の上下に離間して2個所定の間隔で配置することにより、排ガスの旋回流の2つの流れに対応する位置に1個ずつ配置する構成としてもよい。この場合も、各原料供給管22から2つの流れのそれぞれにセメント原料を供給できる。そして、これら2つの流れに供給されたセメント原料は、その流れに乗って各上段側サイクロン13Aに供給される。したがって、上段側のサイクロン13Aへの各分配出口21aにセメント原料を均等に流出させることができ、その予熱を均等にして熱交換効率を高めることができる。
 また、3基以上のサイクロンに分配して原料を供給する場合には、原料供給管22を、上段側サイクロンへの分配出口の数nに合わせて、導管の一側面の上下に離間してn個所定の間隔で配置することで、旋回流の個々の流れに対応する位置に1個ずつ配置することができる。
 実際に原料供給管の接続口を導管のどの位置に配置すればよいかは、分配出口の温度差を見ながら原料供給管の接続位置を変更することで、旋回流の個々の流れに対応する接続位置が決定される。具体的には、コンピュータシミュレーションを用いる方法や、冷間試験装置を用いる方法、実機において分配出口の温度差を見ながら接続位置を変更する方法が挙げられる。以下では、2つの旋回流の流れにセメント原料を投下できる原料供給管の接続位置をシミュレーションした結果について説明する。
 シミュレーションの導管モデルは、図1に示すように、最上段のサイクロンへの分配出口21aを2個備え、原料供給管22の接続口22aを導管21の軸線回りに180°ずらして対向配置させた構成とした。また、上段側サイクロンの各分配出口21aの中心を通る水平面P1から原料供給管22の各接続口22aの中心を通る水平面P2の間の垂直距離Hと、導管の直径Dとの比率H/Dを、1.07,1.47,1.84,2.22,2.68に設定した5種類の導管モデルを構成し、これらの導管について熱流体シミュレーションを行った。そして、分配部を経由した後の導管の左右の分配出口温度を計算し、その温度差を求めた。また、導管の左右の分配出口から流出するセメント原料の割合を計算し、その割合差を求めた。
 また、シミュレーションの条件としては、クリンカ生産量200ton/hのセメントキルンのプレヒータを想定し、3段目のサイクロンに風量14300Nm/h、温度640℃のガスを供給し、原料供給管に風量1400Nm/h、温度80℃のガスを供給するものとした。なお、原料供給管22の傾斜角度θは35°に設定した。結果を、表1及び図5に示す。図5の縦軸は、左右の分配出口間の排ガス温度差である。
Figure JPOXMLDOC01-appb-T000001
 表1及び図5に示される結果より明らかなように、分配出口温度差が小さいほど、各分配出口における流出原料の割合差も小さく、セメント原料の予熱状態を均等に行うことができる。なお、実用的な比率H/Dの範囲(1.1~3.0)では、分配出口温度差を概ね50℃以内にできる。
 また、比率H/Dが1.4~2.7に設定される位置に原料供給管の各接続口を配置した場合は、左右の分配出口間の排ガス温度差を20℃以内にして、流出原料の割合差を小さく抑えることができ、好ましい。
 さらに、比率H/Dが1.5~2.4に設定される位置に原料供給管の各接続口を配置した場合は、左右の分配出口間の排ガス温度差を10℃以内にして、流出原料の割合差を小さく抑えることができ、より好ましい。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、最上段のサイクロン13Aに接続されている導管への原料供給についてのみ説明したが、各段で複数設置されるサイクロンへの導管や、最下段のサイクロン13Dとセメントキルンの窯尻部6との間を接続するライジングダクト25(図3参照))に原料を供給する場合にも本発明を適用することもできる。
 また、セメント原料としてミルから送られる生原料だけでなく、上部のサイクロンを経由した後に下部のサイクロンに導かれる予熱途中の原料を導管に供給する場合にも、本発明を適用することができる。
 また、上記実施形態においては、各原料供給管22から均等にセメント原料を供給し、各旋回流の流れに乗せることとしていたが、各原料供給管22の上流に、各原料供給管22へのセメント原料の供給量を調整する供給量制御器を設ける構成としてもよい。この場合、各原料供給管22に供給されるセメント原料の供給量を制御して振り分けることができ、各分配出口21aに供給されるセメント原料の温度をより均等に予熱することができる。
プレヒータにセメント原料を供給しながらキルンで焼成してセメントクリンカを製造するセメント製造装置に利用することができる。
 3 プレヒータ
 4 セメントキルン
 6 窯尻部
 13,13A~13D サイクロン
 21 導管
 21b 内壁面
 22 原料供給管
 23 分配部
 24 上端
 25 ライジングダクト

Claims (7)

  1.  セメントキルンで発生した排ガスを流通させる複数のサイクロンが上下方向に連結状態とされるとともに、複数の上段側サイクロンとその下方に配置される下段側サイクロンとの間に、下段側サイクロンから導出される前記排ガスを上方に流通させ分配して各上段側サイクロンに導く導管が設けられ、前記導管における前記複数の上段側サイクロンへの分配部よりも下方位置に、セメント原料を供給する原料供給管が前記上段側サイクロンへの分配出口の数と同数設けられており、各原料供給管の前記導管への接続口は、各分配出口に流れ込む排ガスの旋回流の個々の流れに対応する位置に1個ずつ配置されていることを特徴とするセメント製造装置。
  2.  前記上段側サイクロンへの分配出口の数をnとした場合に、前記原料供給管の各接続口が、前記導管の軸線回りに360°/nずつずれた位置に配置されていることを特徴とする請求項1記載のセメント製造装置。
  3.  前記上段側サイクロンへの分配出口の数をnとした場合に、前記原料供給管の各接続口が、前記導管の一側面の上下に離間してn個所定の間隔で配置されていることを特徴とする請求項1記載のセメント製造装置。
  4.  前記原料供給管は、前記導管の軸線に対して20°~50°の角度で傾斜して設けられていることを特徴とする請求項1記載のセメント製造装置。
  5.  前記原料供給管の接続口は、前記導管の内壁面に面一に設置されていることを特徴とする請求項1記載のセメント製造装置。
  6.  前記上段側サイクロンが2基設置され、前記原料供給管は、前記導管の回りの180°離れた位置にそれぞれ接続されていることを特徴とする請求項2記載のセメント製造装置。
  7.  前記上段側サイクロンの各分配出口の中心を通る水平面から前記原料供給管の各接続口の中心を通る水平面との間の垂直距離をHとし、前記導管の直径をDとしたときに、その比率H/Dが1.1~3.0に設定されていることを特徴とする請求項2記載のセメント製造装置。
PCT/JP2013/056980 2012-03-14 2013-03-13 セメント製造装置 WO2013137304A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/383,274 US9587881B2 (en) 2012-03-14 2013-03-13 Cement production apparatus
CN201380012827.8A CN104159864B9 (zh) 2012-03-14 2013-03-13 水泥制造装置
KR1020147028289A KR20140134317A (ko) 2012-03-14 2013-03-13 시멘트 제조 장치
EP13761224.8A EP2826758B1 (en) 2012-03-14 2013-03-13 Device for producing cement
IN7427DEN2014 IN2014DN07427A (ja) 2012-03-14 2013-03-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012057517A JP5316663B2 (ja) 2012-03-14 2012-03-14 セメント製造装置
JP2012-057517 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137304A1 true WO2013137304A1 (ja) 2013-09-19

Family

ID=49161209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056980 WO2013137304A1 (ja) 2012-03-14 2013-03-13 セメント製造装置

Country Status (7)

Country Link
US (1) US9587881B2 (ja)
EP (1) EP2826758B1 (ja)
JP (1) JP5316663B2 (ja)
KR (1) KR20140134317A (ja)
CN (1) CN104159864B9 (ja)
IN (1) IN2014DN07427A (ja)
WO (1) WO2013137304A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737761A (zh) * 2018-12-13 2019-05-10 杨柱 一种有色金属熔炼设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541406B2 (ja) 2012-08-28 2014-07-09 三菱マテリアル株式会社 セメント製造装置
CN115325817A (zh) * 2022-08-10 2022-11-11 习水赛德水泥有限公司 一种水泥生产用窖体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191526A (en) * 1977-04-07 1980-03-04 Polysius Ag Suspension gas preheater
JPS6229919Y2 (ja) 1983-04-22 1987-07-31
JPH06191615A (ja) 1992-12-25 1994-07-12 Mitsubishi Materials Corp 粉体分散装置
JPH08119694A (ja) * 1994-10-20 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd セメント原料焼成装置
JPH09262452A (ja) 1996-03-28 1997-10-07 Kawasaki Heavy Ind Ltd 粉末原料の分散装置
JP2012214309A (ja) * 2011-03-31 2012-11-08 Mitsubishi Materials Corp セメント製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063875A (en) * 1976-05-28 1977-12-20 Allis-Chalmers Corporation Cement making apparatus including preheater, kiln, cooler and auxiliary furnace
CN102219410B (zh) * 2011-03-24 2012-10-24 西安建筑科技大学 一种悬浮态外循环式高固气比分解反应器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191526A (en) * 1977-04-07 1980-03-04 Polysius Ag Suspension gas preheater
JPS6229919Y2 (ja) 1983-04-22 1987-07-31
JPH06191615A (ja) 1992-12-25 1994-07-12 Mitsubishi Materials Corp 粉体分散装置
JPH08119694A (ja) * 1994-10-20 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd セメント原料焼成装置
JPH09262452A (ja) 1996-03-28 1997-10-07 Kawasaki Heavy Ind Ltd 粉末原料の分散装置
JP2012214309A (ja) * 2011-03-31 2012-11-08 Mitsubishi Materials Corp セメント製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826758A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737761A (zh) * 2018-12-13 2019-05-10 杨柱 一种有色金属熔炼设备

Also Published As

Publication number Publication date
CN104159864A (zh) 2014-11-19
EP2826758B1 (en) 2017-06-14
IN2014DN07427A (ja) 2015-04-24
JP5316663B2 (ja) 2013-10-16
US9587881B2 (en) 2017-03-07
EP2826758A1 (en) 2015-01-21
KR20140134317A (ko) 2014-11-21
US20150020400A1 (en) 2015-01-22
JP2013189349A (ja) 2013-09-26
EP2826758A4 (en) 2015-11-11
CN104159864B9 (zh) 2016-08-10
CN104159864B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN106241826A (zh) 一种处理高铁低铝煤系高岭土的流态化煅烧装置及方法
JP5316663B2 (ja) セメント製造装置
JP5541406B2 (ja) セメント製造装置
CN1030309C (zh) 制作水泥熟料的方法及装备
JP5560469B2 (ja) セメント製造装置
CN100431957C (zh) 煤系高岭土的流态化瞬间煅烧工艺
CN106029600A (zh) 流动煅烧炉
JP5316731B1 (ja) セメント製造装置
CN106090918A (zh) 一种烧结点火炉用预热器
JP6642059B2 (ja) 流動仮焼炉
TWI721782B (zh) 可燃性廢棄物吹入裝置及其運轉方法
JP5919911B2 (ja) セメント製造設備の排ガス処理方法及び排ガス処理装置
CN104930502A (zh) 一种适用多床体系循环物料平衡控制的多通道分配装置
JP2000329470A (ja) 仮焼方法及び仮焼設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380012827.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761224

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013761224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14383274

Country of ref document: US

Ref document number: 2013761224

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147028289

Country of ref document: KR

Kind code of ref document: A