WO2013136734A1 - デスケーリングシステム - Google Patents

デスケーリングシステム Download PDF

Info

Publication number
WO2013136734A1
WO2013136734A1 PCT/JP2013/001456 JP2013001456W WO2013136734A1 WO 2013136734 A1 WO2013136734 A1 WO 2013136734A1 JP 2013001456 W JP2013001456 W JP 2013001456W WO 2013136734 A1 WO2013136734 A1 WO 2013136734A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
descaling
dissolved oxygen
oxygen concentration
pump
Prior art date
Application number
PCT/JP2013/001456
Other languages
English (en)
French (fr)
Inventor
建太 苅部
貴史 西山
明彦 谷垣
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN1674KON2014 priority Critical patent/IN2014KN01674A/en
Priority to KR1020147026443A priority patent/KR101624448B1/ko
Priority to CN201380013987.4A priority patent/CN104169014B/zh
Publication of WO2013136734A1 publication Critical patent/WO2013136734A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically

Definitions

  • the present invention relates to a descaling system for removing scale on the surface of a steel plate.
  • the steel material rolling line In the steel material rolling line, the steel material is placed in a heating furnace in an oxidizing atmosphere, heated in a temperature range of 1100 to 1300 ° C. for several hours, and then hot-rolled. During hot rolling, a primary scale generated during heating and a secondary scale generated after extraction from the heating furnace are generated. When the steel material is rolled without such scale being removed, the scale bites into the surface of the steel plate as a product, and remains as scale wrinkles. This scale wrinkle significantly deteriorates the surface quality of the steel sheet and also has a significant effect on product quality because it becomes a starting point for cracks during bending.
  • an antioxidant is applied to the surface of the steel material (see, for example, Patent Document 1), and (2) the heating temperature of the steel material is set below the melting point (about 1170 ° C.) of the firelight (for example, refer to Patent Document 2), (3) Perform rolling in a completely oxygen-free state (for example, refer to Patent Document 3), (4) Set the temperature before rolling and the temperature during rolling to a high temperature (about 1000 ° C. or higher). (5) A proposal has been made to perform complete descaling of the generated scale (see, for example, Patent Document 4).
  • the means (1) not only increases the complicated application work, but also increases the manufacturing cost due to the cost of the treatment agent. Moreover, since the means of (2) heats steel materials at low temperature, the burden on a rolling mill increases, and there is a standard that cannot be applied from the viewpoint of securing material properties depending on the steel type. Further, the means (3) is not realistic because the equipment cost becomes enormous. Further, since the means (4) is extracted from the heating furnace at a high temperature, the fuel unit price increases, and the scale loss increases.
  • FIG. 3 shows a conventional descaling system.
  • a descaling system 101 shown in FIG. 3 includes a first descaling device 140 called a descaler installed on the outlet side (HSB) of the heating furnace 110 and the inlet side of the rough rolling mill 120 ( RSB) includes a second descaling device 150 and a third descaling device 160 installed on the entry side (FSB) of finishing mill 130.
  • HSB outlet side
  • RSB rough rolling mill 120
  • the first descaling device 140 injects water onto the front and back surfaces of the material to be rolled (steel plate) K taken out from the rough rolling mill 110, thereby removing a pair of scales formed on the front and back surfaces.
  • a descaling nozzle 141 is provided.
  • the second descaling device 150 injects water onto the front and back surfaces of the material to be rolled K that has passed through the first descaling device 140, thereby removing a pair of descales formed on the front and back surfaces.
  • a scaling nozzle 151 is provided.
  • the third descaling device 160 injects water onto the front and back surfaces of the material to be rolled K that has passed through the rough rolling mill 120, thereby a pair of descaling nozzles for removing the scale formed on the front and back surfaces. 161.
  • Each descaling nozzle 141, 151, 161 is connected to a plurality of pumps 170 and an accumulator 180 via a pipe, and the plurality of pumps 170 are connected to a water supply source 190.
  • Water from the water supply source 190 is pressurized by a plurality of pumps 170 and an accumulator 180 and stably maintained at a high pressure from each descaling nozzle 141, 151, 161 toward the front and back surfaces of the material K to be rolled. Is injected.
  • the discharge amount of the spray water is stably secured by the plurality of pumps 170 and the accumulator 180.
  • the technique described in Patent Document 4 is to review the internal structure of the descaling nozzle used in the descaling device.
  • a nozzle is disclosed.
  • the technique described in Patent Document 4 is a technique in which the internal structure of a conventional descaling nozzle is optimized, there is a limit in greatly improving the descaling capability.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a descaling system capable of removing scales more efficiently.
  • the present inventors have focused on such problems and repeatedly studied to provide a steel plate descaling system that can remove scales more efficiently.
  • the water jet discharged from the descaling nozzle becomes droplets, and the steel plate scale Attention was paid to cavitation occurring on the surface (see FIG. 4).
  • FIG. 5 the phenomenon that the pressure generated when the bubbles generated by this cavitation disappear is significantly larger than the impact force generated when the droplet collides depending on the conditions.
  • the present inventors thought that the descaling ability can be improved if cavitation can be positively imparted to the water jet. Therefore, as a result of conducting tests and diligent studies in various descaling systems (indicated by reference numeral 101 in FIG.
  • the present inventors changed the dissolved oxygen concentration contained in the jet water by setting the descaling capability when normal jet water (raw water, dissolved oxygen concentration 5 ⁇ 10 ⁇ 3 g / l) was jetted to 1.
  • the change of descaling ability when jetting water was injected was evaluated.
  • the evaluation results are shown in FIG.
  • the descaling capability is When the raw water was jetted, the descaling ability was 1, and it changed from about 0.9 times to about 2.5 times.
  • the present inventors installed a deaeration device on the inlet side of the pump 170, and improved the descaling capability by lowering the dissolved oxygen concentration contained in the jet water than the dissolved oxygen concentration contained in the raw water. And invented a descaling system that can remove scale more efficiently.
  • a descaling system is a descaling system installed in at least one position on the outlet side of a heating furnace, the inlet side of a roughing mill, and the inlet side of a finishing mill in a hot rolling line for steel sheets.
  • a descaling nozzle for spraying water onto the surface of the steel sheet and thereby removing scale formed on the surface comprising a water supply source
  • a descaling system that is connected to a pump that pressurizes water from the water and injects water pressurized by the pump onto the surface of the steel sheet, and is dissolved oxygen in water that is fed into the pump on the inlet side of the pump
  • a deaeration device is provided that lowers the concentration below the dissolved oxygen concentration in the raw water from the water supply source.
  • the degassing device converts the dissolved oxygen concentration in the water fed into the pump into the raw water from the water supply source. It is characterized by reducing the dissolved oxygen concentration to 1 ⁇ 10 -3 g / l or less greater than 0 g / l.
  • the descaling system according to the present invention is the descaling system according to (1) or (2), wherein the degassing device reduces the dissolved oxygen concentration in the water fed to the pump by a vacuum degassing method. It is characterized by letting.
  • the descaling system according to the present invention is the descaling system according to (1) or (2), wherein the degassing device lowers the dissolved oxygen concentration in the water fed to the pump by a heating degassing method. It is characterized by letting.
  • the degassing device reduces the dissolved oxygen concentration in the water fed to the pump by a nitrogen purge method. It is characterized by letting.
  • the degassing device is provided on the inlet side of the pump to lower the dissolved oxygen concentration in the water fed into the pump to be lower than the dissolved oxygen concentration in the raw water from the water supply source. .
  • the dissolved oxygen concentration in the injection water injected toward the surface of a steel plate from a descaling nozzle can be reduced, descaling capability can be improved, and a scale can be removed more efficiently.
  • the deaeration device converts the dissolved oxygen concentration in the water fed into the pump into the raw water from the water supply source.
  • the dissolved oxygen concentration is reduced to greater than 0 g / l and less than or equal to 1 ⁇ 10 ⁇ 3 g / l.
  • the dissolved oxygen concentration be larger than 0 g / l.
  • the dissolved oxygen concentration is preferably 1 ⁇ 10 ⁇ 3 g / l or less. .
  • the degassing device includes a vacuum degassing method, a heating degassing method, a nitrogen purge, respectively. It is possible to reduce the dissolved oxygen concentration in the water fed into the pump in this manner.
  • FIG. 1 is a schematic configuration diagram showing an example of a descaling system according to the present invention together with a hot rolling line.
  • FIG. 2 is an explanatory view showing a collision model of water droplets on a steel plate in scale removal by spray water.
  • FIG. 3 is a schematic configuration diagram showing a conventional descaling system together with a hot rolling line.
  • FIG. 4 is a schematic diagram showing an image of a state in which cavitation occurs when the water jet discharged from the descaling nozzle becomes droplets and collides with the steel plate scale surface.
  • FIG. 5 is a diagram showing an image of a state in which pressure is generated when bubbles generated by cavitation shown in FIG.
  • FIG. 6 shows a case in which a normal water (raw water, a dissolved oxygen concentration of 5 ⁇ 10 ⁇ 3 g / l) is sprayed with a descaling capability of 1 and a dissolved oxygen concentration contained in the water being changed. It is a graph which shows the result of having evaluated the change of the descaling capability when injecting.
  • FIG. 1 is a schematic configuration diagram showing an example of a descaling system according to the present invention together with a hot rolling line.
  • a descaling system 1 shown in FIG. 1 is provided in a hot rolling line for steel plates.
  • the hot rolling line includes a heating furnace 10 that heats the material to be rolled (steel plate) K from the upstream side toward the downstream side, and a rough rolling machine 20 that roughly rolls the material K to be rolled out from the heating furnace 10. And a finish rolling mill 30 for finish rolling the roughly rolled material K.
  • the descaling system 1 includes a first descaling device 40 called deskera installed on the outlet side (HSB) of the heating furnace 10 and the inlet side (RSB) of the rough rolling mill 20 in the hot rolling line for steel plates. ) And a third descaling device 60 installed on the entry side (FSB) of the finishing mill 30.
  • the first descaling device 40 injects water onto the front and back surfaces of the material to be rolled K taken out from the heating furnace 10, and thereby a pair of descaling nozzles 41 for removing scales formed on the front and back surfaces. It has. Further, the second descaling device 50 injects water onto the front and back surfaces of the material to be rolled K that has passed through the first descaling device 40, thereby removing a pair of scales formed on the front and back surfaces. A scaling nozzle 51 is provided. Further, the third descaling device 60 injects water onto the front and back surfaces of the material to be rolled K that has passed through the roughing mill 20, and thereby a pair of descaling nozzles for removing scales formed on the front and back surfaces. 61 is provided.
  • Each descaling nozzle 41, 51, 61 is connected to a plurality of pumps 70 and an accumulator 80 for pressurizing water from the water supply source 100 via pipes.
  • Water from the water supply source 100 is pressurized by a plurality of pumps 70 and an accumulator 80 and stably kept at a high pressure from each descaling nozzle 41, 51, 61 toward the front and back surfaces of the material K to be rolled. Be injected.
  • the discharged water discharge amount is stably secured by the plurality of pumps 70 and the accumulator 80.
  • the dissolved oxygen concentration in the water fed into the plurality of pumps 70 is determined from the dissolved oxygen concentration in the raw water from the water supply source 100.
  • a deaeration device 90 is also provided to reduce the temperature.
  • the degassing device 90 a vacuum degassing method is used, but the dissolved oxygen concentration in the water fed to the plurality of pumps 70 may be reduced using a heat degassing method or a nitrogen purge method.
  • a dissolved oxygen meter 91 is installed on the exit side of the deaerator 90.
  • the deaeration device 90 for reducing the dissolved oxygen concentration in the water sent to the plurality of pumps 70 is provided on the inlet side of the plurality of pumps 70, the dissolution in the raw water sent from the water supply source 100 is provided.
  • the oxygen concentration is lowered by the deaeration device 90, and the dissolved oxygen concentration in the water sent to the plurality of pumps 70 is lowered.
  • the concentration of dissolved oxygen in the spray water that is sprayed from each pump 70 toward the front and back surfaces of the material to be rolled K from each descaling nozzle 41, 51, 61 and from each descaling nozzle 41, 51, 61 decreases Therefore, the descaling capability can be improved and the scale can be removed more efficiently.
  • the dissolved oxygen concentration in the water sent to the plurality of pumps 70 is dissolved in the raw water from the water supply source 100.
  • the oxygen concentration (usually about 5 ⁇ 10 ⁇ 3 g / l) is preferably decreased from 0 g / l to 1 ⁇ 10 ⁇ 3 g / l or less. Reducing the dissolved oxygen concentration to the 1 ⁇ 10 -3 g / l, 2 times descaling capacity for descaling ability of state of not completely degassed (usually about 5 ⁇ 10 -3 g / l) It becomes.
  • the dissolved oxygen concentration in the spray water injected from the descaling nozzles 41, 51, 61 toward the front and back surfaces of the material K to be rolled is reduced to a suitable range. And the descaling ability can be greatly improved, and the scale can be removed more efficiently. Since it is technically difficult to make the dissolved oxygen concentration 0 g / l, it is preferable that the dissolved oxygen concentration be larger than 0 g / l. On the other hand, when the dissolved oxygen concentration is higher than 1 ⁇ 10 ⁇ 3 g / l, the degree of improvement in descaling ability is reduced. Therefore, the dissolved oxygen concentration is preferably 1 ⁇ 10 ⁇ 3 g / l or less. .
  • the dissolved oxygen concentration in the water sent to the plurality of pumps 70 is changed to the dissolved oxygen concentration in the state of the raw water from the water supply source 100.
  • the dissolved oxygen concentration in the water sent to the plurality of pumps 70 is not necessarily limited to the dissolved oxygen concentration in the raw water from the water supply source 100 (usually 5 ⁇ 10 ⁇ 3 g / 1) to greater than 0 g / l to 1 ⁇ 10 ⁇ 3 g / l or less.
  • the descaling device may be installed at at least one position on the exit side of the heating furnace 10, the entry side of the roughing mill 20, and the entry side of the finishing mill 30. , It is not necessarily required to be installed at all positions. Further, the number of pumps 70 is not necessarily plural, and may be one. Furthermore, the dissolved oxygen meter 91 may be installed not only on the outlet side of the degassing device 90 but also on the inlet side of the degassing device 90 in order to manage the dissolved oxygen concentration before degassing.
  • the degassing device 90 is a membrane vacuum degassing device using a gas separation membrane, and a dissolved oxygen meter (DO meter) 91 is installed on the outlet side of the degassing device 90. Then, the concentration of dissolved oxygen in the raw water (5 ⁇ 10 ⁇ 3 g / l) was reduced to 1 ⁇ 10 ⁇ 3 g / l by the deaerator 90.
  • the deaeration device 90 since the deaeration device 90 is not installed, water having a dissolved oxygen concentration (5 ⁇ 10 ⁇ 3 g / l) in the raw water state is sent to the plurality of pumps 70.
  • the steel material as the material to be rolled K has a standard sheet width of 1.2 m, a standard sheet thickness of the heating furnace 10 on the outlet side (HSB) 220 mm, the roughing mill 20 on the inlet side (RSB) 220 to 70 mm, and the finishing mill 30 An inlet side (FSB) of 60 to 40 mm was used.
  • FIG. 2 is a diagram illustrating a collision model of water droplets on a steel material in scale removal by jet water.
  • the total impact force (F) and the unit impact force (S) can be expressed by the following equations.
  • the degassing device 90 reduces the dissolved oxygen concentration (5 ⁇ 10 ⁇ 3 g / l) in the raw water state to 1 ⁇ 10 ⁇ 3 g / l, thereby reducing the descaling capability.
  • the water quality was improved by a factor of 2
  • the occurrence rate of quality defects due to descaling ability could be reduced to less than 10% in the inventive example compared to the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

スケールを一層効率よく除去できるデスケーリングシステムを提供する。デスケーリングシステム1におけるデスケーリング装置40、50、60は、鋼板Kの表面に水を噴射し、これにより当該表面に形成されたスケールを除去するためのデスケーリングノズル41、51、61を有する。デスケーリングノズル41、51、61は、水供給源100からの水を加圧するポンプ70に接続され、ポンプ70で加圧された水を鋼板Kの表面に噴射する。ポンプ70の入側には、ポンプ70に送り込まれる水中の溶存酸素濃度を、水供給源100からの原水中の溶存酸素濃度よりも低下させる脱気装置90が設けられている。

Description

デスケーリングシステム
 本発明は、鋼板表面のスケールを除去するためのデスケーリングシステムに関するものである。
 鋼材の圧延ラインでは、鋼材を酸化性雰囲気の加熱炉に装入し、通常1100~1300℃の温度域で数時間加熱した後に熱間圧延する。熱間圧延の際には、加熱時に生成した一次スケールおよび加熱炉から抽出後に生成する二次スケールが生じる。このようなスケールが除去されずに鋼材が圧延されると、スケールが製品である鋼板表面に食い込み、スケール疵となって残る。このスケール疵は、鋼板の表面性状を著しく損なうとともに、曲げ加工時にクラック発生の起点となるため、製品品質に重大な影響を及ぼす。
 そのため、この問題の解決手段として、(1)鋼材表面に酸化防止材を塗布する(例えば特許文献1参照)、(2)鋼材の加熱温度をファイアライトの融点(約1170℃)以下にする(例えば特許文献2参照)、(3)完全無酸素化状態で圧延を行なう(例えば特許文献3参照)、(4)圧延前の温度、圧延中の温度を高温(約1000℃以上)とする、(5)生成したスケールの完全なデスケーリングを行う(例えば特許文献4参照)、といった提案がされている。
 しかし、(1)の手段は、煩雑な塗布作業が増えるのみならず、処理剤の費用がかかるため製造コストが高くなる。また、(2)の手段は、鋼材を低温で加熱するため、圧延機の負担が増大するとともに、鋼種によっては材料特性を確保する観点から適用できない規格が存在する。また、(3)の手段は、設備コストが莫大となるので現実的ではない。また、(4)の手段は、加熱炉から高温で抽出となるため、燃料の原単価が増加し、スケールロスが増大する。
 そこで、次なる解決手段として、(5)生成したスケールを完全に除去するという、いわゆるデスケーリングを行なう方策が有効である。デスケーリングを行うデスケーリングシステムは、通常、鋼板の表面に高圧の水を噴射し、その噴射された水の衝撃力によって鋼板のスケールを剥離して除去する。図3には、従来例のデスケーリングシステムを示す。
 図3に示すデスケーリングシステム101は、鋼板の熱間圧延ラインにおいて、加熱炉110の出側(HSB)に設置されたデスケラと呼ばれる第1デスケーリング装置140と、粗圧延機120の入側(RSB)に設置された第2デスケーリング装置150と、仕上圧延機130の入側(FSB)に設置された第3デスケーリング装置160とを備えている。
 第1デスケーリング装置140は、粗圧延機110から取り出された被圧延材(鋼板)Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル141を備えている。また、第2デスケーリング装置150は、第1デスケーリング装置140を経た被圧延材Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル151を備えている。更に、第3デスケーリング装置160は、粗圧延機120を経た被圧延材Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル161を備えている。
 各デスケーリングノズル141、151、161は、複数のポンプ170及びアキュムレーター180に配管を介して接続され、複数のポンプ170が水供給源190に接続されている。水供給源190からの水は、複数のポンプ170とアキュムレーター180とによって加圧されて高圧に安定的に保たれながら各デスケーリングノズル141、151、161から被圧延材Kの表裏面に向けて噴射される。噴射水の吐出量は、複数のポンプ170とアキュムレーター180とによって安定的に確保される。
特開平1-249214号公報 特公昭58-1167号公報 特公昭60-15684号公報 特許第4084295号公報
 ところで、前述した(5)の解決手段に関し、特許文献4記載の技術は、デスケーリング装置に用いられるデスケーリングノズルの内部構造を見直すものであり、ノズル先端部のオリフィス(吐出孔)と、このオリフィスからテーパ各30~80°で延びるテーパ部と、このテーパ部に連なる径大部とを有する構成とし、オリフィスの短径D2に対する径大部の内径の割合(D1/D2)を3以上とするノズルを開示している。
 しかしながら、特許文献4に記載の技術は、従来のデスケーリングノズルの内部構造を最適化した技術なので、デスケーリング能力を大幅に向上させる上では限界があった。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、スケールを一層効率よく除去できるデスケーリングシステムを提供することにある。
 本発明者らは、このような問題点に着目し、スケールを一層効率よく除去できる鋼板のデスケーリングシステムを提供すべく検討を重ね、デスケーリングノズルから吐出した水流ジェットが液滴となり、鋼板スケール表面に発生するキャビテーションに着目した(図4参照)。そして、図5に示すように、このキャビテーションにより発生した気泡が消滅する際に発生する圧力が、条件によっては同液滴が衝突する際に発生する衝撃力に比して格段に大きくなるという事象を捉え、上記水流ジェットにキャビテーションを積極的に付与することができればデスケーリング能力を向上できると、本発明者らは考えた。そこで、種々のデスケーリングシステム(図3において、符号101で示す)において、テストを実施し、鋭意研究を行った結果、デスケーリングノズル141、151、161から噴射される噴射水に含まれる溶存酸素濃度を低くすれば、衝撃波の伝播を阻害するガス性キャビテーション(気泡が消滅しにくく、発生圧力が小さいキャビテーション)が減少し、蒸気性キャビテーション(生成と消滅を繰り返し、発生圧力が大きいキャビテーション)が増大することを見出した。
 そこで、本発明者らは、通常の噴射水(原水、溶存酸素濃度5×10-3g/l)を噴射した際のデスケーリング能力を1として、噴射水中に含まれる溶存酸素濃度を変化させた噴射水を噴射したときのデスケーリング能力の変化を評価した。評価結果を図6に示す。図6からわかるように、噴射水中に含まれる溶存酸素濃度を7×10-3g/l~0.5×10-3g/lまで変化させた噴射水を噴射したとき、デスケーリング能力は、原水を噴射した時のデスケーリング能力を1として0.9倍程度から2.5倍程度まで変化した。つまり、原水に対して噴射水中に含まれる溶存酸素濃度が低い噴射水を噴射すれば、デスケーリング能力が噴射水を原水とした場合よりも大きくなることがわかった。
 そこで、本発明者らは、ポンプ170の入側に脱気装置を設置し、噴射水に含まれる溶存酸素濃度を原水中に含まれる溶存酸素濃度よりも低下させることにより、デスケーリング能力を向上させ、スケールを一層効率よく除去できるデスケーリングシステムを発明するに至った。
 (1)本発明に係るデスケーリングシステムは、鋼板の熱間圧延ラインにおいて、加熱炉の出側、粗圧延機の入側、及び仕上圧延機入側の少なくとも一つの位置に設置されるデスケーリング装置を備え、該デスケーリング装置が、前記鋼板の表面に水を噴射し、これにより当該表面に形成されたスケールを除去するためのデスケーリングノズルを有し、該デスケーリングノズルが、水供給源からの水を加圧するポンプに接続され、該ポンプで加圧された水を前記鋼板の表面に噴射するデスケーリングシステムであって、前記ポンプの入側に、該ポンプに送り込まれる水中の溶存酸素濃度を、前記水供給源からの原水中の溶存酸素濃度よりも低下させる脱気装置を設けたことを特徴としている。
 (2)また、本発明に係るデスケーリングシステムは、(1)のデスケーリングシステムにおいて、前記脱気装置は、前記ポンプに送り込まれる水中の溶存酸素濃度を、前記水供給源からの原水中の溶存酸素濃度から0g/lよりも大きく1×10-3g/l以下まで低下させることを特徴としている。
 (3)更に、本発明に係るデスケーリングシステムは、(1)または(2)のデスケーリングシステムにおいて、前記脱気装置が、真空脱気方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴としている。
 (4)また、本発明に係るデスケーリングシステムは、(1)または(2)のデスケーリングシステムにおいて、前記脱気装置が、加熱脱気方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴としている。
 (5)加えて、本発明に係るデスケーリングシステムは、(1)または(2)のデスケーリングシステムにおいて、前記脱気装置が、窒素パージ方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴としている。
 (1)のデスケーリングシステムによれば、ポンプの入側に、ポンプに送り込まれる水中の溶存酸素濃度を、水供給源からの原水中の溶存酸素濃度よりも低下させる脱気装置を設けている。これにより、デスケーリングノズルから鋼板の表面に向けて噴射される噴射水中の溶存酸素濃度を低下させることができ、デスケーリング能力を向上でき、スケールを一層効率よく除去できる。
 また、(2)のデスケーリングシステムによれば、請求項1記載のデスケーリングシステムにおいて、前記脱気装置は、前記ポンプに送り込まれる水中の溶存酸素濃度を、前記水供給源からの原水中の溶存酸素濃度から0g/lよりも大きく1×10-3g/l以下まで低下させている。これにより、デスケーリングノズルから鋼板の表面に向けて噴射される噴射水中の溶存酸素濃度を好適範囲に低下させることができ、デスケーリング能力を大幅に向上でき、スケールをより一層効率よく除去できる。当該溶存酸素濃度が0g/lとすることは技術的に困難であるため、当該溶存酸素濃度は0g/lよりも大きくすることが好ましい。一方、当該溶存酸素濃度が1×10-3g/lよりも高いと、デスケーリング能力の向上度合いが小さくなるため、当該溶存酸素濃度を1×10-3g/l以下とすることが好ましい。
 更に、(3)、(4)及び(5)のデスケーリングシステムによれば、それぞれ、(1)のデスケーリングシステムにおいて、前記脱気装置が、真空脱気方式、加熱脱気方式、窒素パージ方式でポンプに送り込まれる水中の溶存酸素濃度を低下させることができる。
図1は、本発明に係るデスケーリングシステムの一例を熱間圧延ラインとともに示す概略構成図である。 図2は、スプレー水によるスケール除去における水滴の鋼板への衝突モデルを示す説明図である。 図3は、従来例のデスケーリングシステムを熱間圧延ラインとともに示す概略構成図である。 図4は、デスケーリングノズルから吐出した水流ジェットが液滴となり、鋼板スケール表面に衝突する際にキャビテーションが発生する様子のイメージを示す模式図である。 図5は、図4に示すキャビテーションにより発生した気泡が消滅する際に圧力が発生する様子のイメージと、消滅時気泡半径/発生時気泡半径と気泡近傍発生圧力との関係を併せて示す図である。 図6は、通常の噴射水(原水、溶存酸素濃度5×10-3g/l)を噴射した際のデスケーリング能力を1として、噴射水中に含まれる溶存酸素濃度を変化させた噴射水を噴射したときのデスケーリング能力の変化を評価した結果を示すグラフである。
 以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明に係るデスケーリングシステムの一例を熱間圧延ラインとともに示す概略構成図である。
 図1に示すデスケーリングシステム1は、鋼板の熱間圧延ラインに備えられている。熱間圧延ラインは、上流側から下流側に向けて、被圧延材(鋼板)Kを加熱する加熱炉10と、加熱炉10から取り出された被圧延材Kを粗圧延する粗圧延機20と、粗圧延された被圧延材Kを仕上圧延する仕上圧延機30とを備えている。
 ここで、デスケーリングシステム1は、鋼板の熱間圧延ラインにおいて、加熱炉10の出側(HSB)に設置されたデスケラと呼ばれる第1デスケーリング装置40と、粗圧延機20の入側(RSB)に設置された第2デスケーリング装置50と、仕上圧延機30の入側(FSB)に設置された第3デスケーリング装置60とを備えている。
 第1デスケーリング装置40は、加熱炉10から取り出された被圧延材Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル41を備えている。また、第2デスケーリング装置50は、第1デスケーリング装置40を経た被圧延材Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル51を備えている。更に、第3デスケーリング装置60は、粗圧延機20を経た被圧延材Kの表裏面に水を噴射し、これにより当該表裏面に形成されたスケールを除去するための1対のデスケーリングノズル61を備えている。
 各デスケーリングノズル41、51、61は、水供給源100からの水を加圧する複数のポンプ70及びアキュムレータ80に配管を介して接続されている。水供給源100からの水は、複数のポンプ70とアキュムレータ80とによって加圧されて高圧に安定的に保たれながら各デスケーリングノズル41、51、61から被圧延材Kの表裏面に向けて噴射される。噴射水の吐出量は、複数のポンプ70とアキュムレータ80とによって安定的に確保される。
 ここで、複数のポンプ70の入側、即ち、水供給源100の出側には、複数のポンプ70に送り込まれる水中の溶存酸素濃度を、水供給源100からの原水中の溶存酸素濃度よりも低下させる脱気装置90が設けられている。脱気装置90としては、真空脱気方式が用いられるが、加熱脱気方式や窒素パージ方式を用いて複数のポンプ70に送り込まれる水中の溶存酸素濃度を低下させてもよい。脱気装置90の出側には、溶存酸素計91が設置されている。
 このように、複数のポンプ70の入側に、複数のポンプ70に送り込まれる水中の溶存酸素濃度を低下させる脱気装置90を設けたので、水供給源100から送られてくる原水中の溶存酸素濃度を脱気装置90によって低下させ、複数のポンプ70に送り込まれる水中の溶存酸素濃度を低下させる。これにより、各ポンプ70から各デスケーリングノズル41、51、61、各デスケーリングノズル41、51、61から被圧延材Kの表裏面の表面に向けて噴射される噴射水中の溶存酸素濃度を低下させることができるので、デスケーリング能力を向上でき、スケールを一層効率よく除去できる。つまり、各デスケーリングノズル41、51、61から被圧延材Kの表裏面の表面に向けて噴射される噴射水中の溶存酸素濃度を低下させる。これにより、衝撃波(図4参照)の伝播を阻害するガス性キャビテーション(気泡が消滅しにくく、発生圧力が小さいキャビテーション)が減少し、蒸気性キャビテーション(生成と消滅を繰り返し、発生圧力が大きいキャビテーション)が増大し、気泡消滅発生時に発生する圧力を増大させることができる。これにより、デスケーリング能力を向上させることができる。
 脱気装置90によって、複数のポンプ70に送り込まれる水中の溶存酸素濃度をどれくらい低下させるかについては、複数のポンプ70に送り込まれる水中の溶存酸素濃度を、水供給源100からの原水中の溶存酸素濃度(通常は、5×10-3g/l程度)から0g/lよりも大きく1×10-3g/l以下まで低下させることが好ましい。当該溶存酸素濃度を1×10-3g/lにまで低下させると、全く脱気しない状態(通常は5×10-3g/l程度)のデスケーリング能力に対してデスケーリング能力が2倍となる。従って、当該溶存酸素濃度を上記範囲にまで低下させることにより、各デスケーリングノズル41、51、61から被圧延材Kの表裏面に向けて噴射される噴射水中の溶存酸素濃度を好適範囲に低下させることができ、デスケーリング能力を大幅に向上でき、スケールをより一層効率よく除去できる。当該溶存酸素濃度が0g/lとすることは技術的に困難であるため、当該溶存酸素濃度は0g/lよりも大きくすることが好ましい。一方、当該溶存酸素濃度が1×10-3g/lよりも高いと、デスケーリング能力の向上度合いが小さくなるため、当該溶存酸素濃度を1×10-3g/l以下とすることが好ましい。
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 例えば、複数のポンプ70に送り込まれる水中の溶存酸素濃度をどれくらい低下させるかについては、複数のポンプ70に送り込まれる水中の溶存酸素濃度を、水供給源100からの原水中の状態の溶存酸素濃度に対して少しでも低下できればよく、必ずしも、複数のポンプ70に送り込まれる水中の溶存酸素濃度を、水供給源100からの原水中の状態の溶存酸素濃度(通常は、5×10-3g/l程度)から0g/lよりも大きく1×10-3g/l以下まで低下させなくてもよい。
 また、鋼板の熱間圧延ラインにおいて、デスケーリング装置は、加熱炉10の出側、粗圧延機20の入側、及び仕上圧延機30の入側の少なくとも一つの位置に設置されていればよく、必ずしもすべての位置に設置されていなくてもよい。
 また、ポンプ70の台数は、複数台である必要はなく、1台であってもよい。
 更に、溶存酸素計91は、脱気装置90の出側だけではなく、脱気前の溶存酸素濃度を管理するため脱気装置90の入側にも設置してよい。
 本発明の効果を検証すべく、図1に示す本発明例のデスケーリングシステム1及び図3に示す比較例のデスケーリングシステム101を用いて被圧延材Kに対して水を噴射し、そのときのデスケーリング能力について評価した。
 本発明例において、脱気装置90は気体分離膜を用いた膜式真空脱気装置を用い、同脱気装置90の出側に溶存酸素計(DO計)91を設置した。そして、脱気装置90により、原水中の溶存酸素濃度(5×10-3g/l)から1×10-3g/lまで低下させた。
 一方、比較例においては、脱気装置90を設置していないので、原水の状態の溶存酸素濃度(5×10-3g/l)を有する水を複数のポンプ70に送水した。
 被圧延材Kとしての鋼材は、標準板幅1.2m、標準板厚は、加熱炉10の出側(HSB)220mm、粗圧延機20の入側(RSB)220~70mm、仕上圧延機30の入側(FSB)60~40mmを使用した。
 評価方法としては、以前に提案したデスケーリング能力評価モデル(特許第3129967号公報参照)を用いて評価した。つまり、評価結果であるデスケーリング能力は、噴射水が鋼材表面に衝突する際に発生する総衝撃力(F)及び単位衝撃力(S)で評価できる。図2は、噴射水によるスケール除去における水滴の鋼材への衝突モデルを示す図である。同図において、総衝撃力(F)及び単位衝撃力(S)は、以下の式で示すことができる。
  F=P0×a×C×(3/d)×α×t
  S=F/A
  但し、F:鋼板表面での噴射された水の総衝撃力[N],S:鋼板表面での噴射された水の単位衝撃力[Pa],P0:噴射圧力[Pa],a:オリフィス面積[m],C:音速[m/s],d:水滴の粒子径[m],α:係数,t:衝撃波が液滴中を伝わる時間[s]である。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、脱気装置90により、原水の状態の溶存酸素濃度(5×10-3g/l)から1×10-3g/lまで低下させることにより、デスケーリング能力が噴射水を原水とした場合に対して2倍に向上し、デスケーリング能力に起因する品質不良の発生率も本発明例では比較例に対して10%未満まで低減できた。
 なお、図6を参照すると、請求項1に係る発明のように、脱気装置90により、原水の状態の溶存酸素濃度(5×10-3g/l)から溶存酸素濃度を低下させると、デスケーリング能力が噴射水を原水とした場合よりも大きくなることかわかる。
 また、図6を参照すると、請求項2に係る発明のように、噴射水中の溶存酸素濃度を原水中の溶存酸素濃度(5×10-3g/l)から0g/lよりも大きく1×10-3g/l以下まで低下させると、デスケーリング能力が噴射水を原水とした場合に対して2倍以上となることがわかる。
 1 デスケーリングシステム
 10 加熱炉
 20 粗圧延機
 30 仕上圧延機
 40 第1デスケーリング装置
 41 デスケーリングノズル
 50 第2デスケーリング装置
 51 デスケーリングノズル
 60 第3デスケーリング装置
 61 デスケーリングノズル
 70 ポンプ
 80 アキュムレーター
 90 脱気装置
 100 水供給源
 K 被圧延材(鋼板)

Claims (5)

  1.  鋼板の熱間圧延ラインにおいて、加熱炉の出側、粗圧延機の入側、及び仕上圧延機の入側の少なくとも一つの位置に設置されるデスケーリング装置を備え、該デスケーリング装置が、前記鋼板の表面に水を噴射し、これにより当該表面に形成されたスケールを除去するためのデスケーリングノズルを有し、該デスケーリングノズルが、水供給源からの水を加圧するポンプに接続され、該ポンプで加圧された水を前記鋼板の表面に噴射するデスケーリングシステムであって、
     前記ポンプの入側に、該ポンプに送り込まれる水中の溶存酸素濃度を、前記水供給源からの原水中の溶存酸素濃度よりも低下させる脱気装置を設けたことを特徴とするデスケーリングシステム。
  2.  前記脱気装置は、前記ポンプに送り込まれる水中の溶存酸素濃度を、前記水供給源からの原水中の溶存酸素濃度から0g/lよりも大きく1×10-3g/l以下まで低下させることを特徴とする請求項1記載のデスケーリングシステム。
  3.  前記脱気装置が、真空脱気方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴とする請求項1又は2記載のデスケーリングシステム。
  4.  前記脱気装置が、加熱脱気方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴とする請求項1又は2記載のデスケーリングシステム。
  5.  前記脱気装置が、窒素パージ方式で前記ポンプに送り込まれる水中の溶存酸素濃度を低下させることを特徴とする請求項1又は2記載のデスケーリングシステム。
PCT/JP2013/001456 2012-03-12 2013-03-07 デスケーリングシステム WO2013136734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IN1674KON2014 IN2014KN01674A (ja) 2012-03-12 2013-03-07
KR1020147026443A KR101624448B1 (ko) 2012-03-12 2013-03-07 디스케일링 시스템
CN201380013987.4A CN104169014B (zh) 2012-03-12 2013-03-07 除氧化皮系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-054632 2012-03-12
JP2012054632A JP5739367B2 (ja) 2012-03-12 2012-03-12 デスケーリングシステム

Publications (1)

Publication Number Publication Date
WO2013136734A1 true WO2013136734A1 (ja) 2013-09-19

Family

ID=49160667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001456 WO2013136734A1 (ja) 2012-03-12 2013-03-07 デスケーリングシステム

Country Status (5)

Country Link
JP (1) JP5739367B2 (ja)
KR (1) KR101624448B1 (ja)
CN (1) CN104169014B (ja)
IN (1) IN2014KN01674A (ja)
WO (1) WO2013136734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3601623B1 (fr) 2017-03-22 2021-04-28 Fives Stein Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673578A (ja) * 1992-06-25 1994-03-15 Yoshihide Shibano ワークの表面処理方法
JPH11189886A (ja) * 1997-12-25 1999-07-13 Babcock Hitachi Kk 金属材料製造プロセスにおける表面処理装置及び表面処理方法
JP2004238727A (ja) * 2002-03-25 2004-08-26 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法
JP2007260550A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 複合ノズルおよび鋼材表面の処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182315A (ja) * 1989-01-09 1990-07-17 Sumitomo Metal Ind Ltd 熱間圧延鋼板のスケール除去方法および装置
JP3149583B2 (ja) * 1992-11-25 2001-03-26 住友金属工業株式会社 脱スケール方法
CN100411763C (zh) * 2005-12-09 2008-08-20 广东韶钢松山股份有限公司 高压水除鳞系统
KR200436513Y1 (ko) * 2006-10-31 2007-08-31 한국전력공사 일체형 용존산소 제거 장치
CN101559439A (zh) * 2009-05-26 2009-10-21 广州金关节能科技发展有限公司 多段除鳞节能控制方法及其控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673578A (ja) * 1992-06-25 1994-03-15 Yoshihide Shibano ワークの表面処理方法
JPH11189886A (ja) * 1997-12-25 1999-07-13 Babcock Hitachi Kk 金属材料製造プロセスにおける表面処理装置及び表面処理方法
JP2004238727A (ja) * 2002-03-25 2004-08-26 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法
JP2007260550A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 複合ノズルおよび鋼材表面の処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3601623B1 (fr) 2017-03-22 2021-04-28 Fives Stein Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue

Also Published As

Publication number Publication date
CN104169014A (zh) 2014-11-26
KR101624448B1 (ko) 2016-05-25
JP5739367B2 (ja) 2015-06-24
IN2014KN01674A (ja) 2015-10-23
CN104169014B (zh) 2016-03-23
KR20140127349A (ko) 2014-11-03
JP2013188756A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
KR101563206B1 (ko) 후강판의 제조 설비
JP2008110353A (ja) 熱延鋼帯の冷却方法
KR101490663B1 (ko) 열연 강판용 냉각수 제거 장치 및 제거 방법
KR101691020B1 (ko) 후강판의 제조 방법 및 제조 설비
JP3802830B2 (ja) 鋼板のデスケーリング方法および設備
JP5739367B2 (ja) デスケーリングシステム
WO2012101932A1 (ja) 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法
JP6603159B2 (ja) デスケーリング装置およびデスケーリング方法
JP3994582B2 (ja) 鋼板のデスケーリング方法
EP3195946B1 (en) Thick steel plate manufacturing method
JP5509648B2 (ja) 熱延鋼板の通板時水切り方法および装置
JP6350456B2 (ja) 熱間圧延鋼材のデスケーリング方法およびデスケーリング装置、熱間圧延鋼材の製造方法および製造装置
JP6787096B2 (ja) 熱間圧延方法
JP6702386B2 (ja) 鋼材の製造方法及び製造設備
JP2014083578A (ja) 熱間圧延鋼材のデスケ―リング用ノズル
JP6058976B2 (ja) 鋼板のデスケーリング水温の管理方法
JP2900765B2 (ja) 鋼材のデスケール方法
JP4677056B2 (ja) 熱延鋼板の製造方法
JP5987816B2 (ja) 熱間圧延のデスケーリング設備、デスケーリング方法および熱延鋼板の製造方法
EP3187275A1 (en) Thick steel plate manufacturing method
JP5686061B2 (ja) ローラレベラーによる厚鋼板の矯正方法
JP6769214B2 (ja) 鋼板の製造方法および製造設備
JP2002316206A (ja) 表面性状の優れた形鋼と該形鋼用の鋼材およびそれらの製造方法と製造装置
JP2017144442A (ja) 鋼材のデスケーリング方法及びデスケーリング装置
JP2004106003A (ja) デスケーリング装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380013987.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147026443

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13760964

Country of ref document: EP

Kind code of ref document: A1