KR101691020B1 - 후강판의 제조 방법 및 제조 설비 - Google Patents

후강판의 제조 방법 및 제조 설비 Download PDF

Info

Publication number
KR101691020B1
KR101691020B1 KR1020157025725A KR20157025725A KR101691020B1 KR 101691020 B1 KR101691020 B1 KR 101691020B1 KR 1020157025725 A KR1020157025725 A KR 1020157025725A KR 20157025725 A KR20157025725 A KR 20157025725A KR 101691020 B1 KR101691020 B1 KR 101691020B1
Authority
KR
South Korea
Prior art keywords
cooling
steel sheet
water
temperature
steel plate
Prior art date
Application number
KR1020157025725A
Other languages
English (en)
Other versions
KR20150122186A (ko
Inventor
유타 다무라
켄지 아다치
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20150122186A publication Critical patent/KR20150122186A/ko
Application granted granted Critical
Publication of KR101691020B1 publication Critical patent/KR101691020B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0071Levelling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

재질 불균일이 적은 고품질의 후강판을 확보할 수 있는 후강판의 제조 방법 및 제조 설비를 제공하는 것을 목적으로 한다. 열간 압연 공정, 형상 교정 공정 및 가속 냉각 공정의 순서로 후강판을 제조하는 방법에 있어서, 상기 형상 교정 공정과 상기 가속 냉각 공정과의 사이에, 후강판 표면 온도를 Ar3 변태점 미만으로 공랭함으로써, 혹은, 후강판의 상하면에 냉각수를 수량 밀도 0.3∼2.2㎥/(㎡·min)으로 공급하여 수랭함으로써, 후강판 표면을 변태시키는 온도 조정 공정 및, 상기 온도 조정 공정의 후에 또한 상기 가속 냉각 공정의 전에 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 디스케일링 공정을 갖는 후강판의 제조 방법.

Description

후강판의 제조 방법 및 제조 설비{METHOD AND FACILITY FOR MANUFACTURING STEEL PLATE}
본 발명은, 후강판의 제조 방법 및 제조 설비에 관한 것이다.
열간 압연에 의해 후강판을 제조하는 프로세스에서는, 냉각 제어의 적용이 확대되고 있다. 예를 들면, 도 1에 나타내는 바와 같이, 가열로(1)에서 후강판(도시하지 않음)을 재가열한 후, 디스케일링 장치(descaling apparatus; 2)에 있어서 후강판이 디스케일링된다. 그리고, 후강판은 압연기(3)에 의해 압연되고 나서, 형상 교정 장치(4)에 의해 교정된 후, 가속 냉각 장치(5)에 있어서 수랭 또는 공랭에 의한 제어 냉각이 행해진다. 또한, 도면 중의 화살표는 후강판의 진행 방향이다.
후강판을 가속 냉각 장치로 수랭하는 경우, 도 2와 같이 후강판 표면의 스케일(scale)이 두꺼워질수록 냉각 시간이 짧아지기 때문에, 냉각 속도가 커지는 것이 알려져 있다. 그러나, 스케일 두께에 편차가 있으면 냉각 속도가 불균일해지기 때문에, 강도나 경도 등의 재질이 불균일해진다는 문제가 있다.
또한, 스케일 두께가 불균일한 경우, 전술한 바와 같이 냉각 속도가 불균일해진다. 이러한 경우, 후강판 폭방향에 있어서의 가속 냉각 정지시의 후강판 표면 온도(이하, 「냉각 정지 온도」라고 칭함)의 분포는, 예를 들면 도 3과 같이 불균일해지는 것이 알려져 있다. 이와 같이 후강판의 냉각 정지 온도가 불균일해지기 때문에, 균일한 재질을 얻을 수 없다는 문제가 있다. 구체예를 나타내면, 후강판 폭방향에 스케일 두께가 40㎛와 20㎛의 개소가 혼재하는 경우, 판두께 25㎜의 후강판을 800℃에서 목표 온도 500℃까지 냉각할 때의 냉각 정지 온도는, 40㎛의 개소에서 460℃, 20㎛의 개소에서 500℃가 된다. 40㎛의 개소에서는, 냉각 정지 온도가 목표 온도에서 40℃ 하회해 버리고, 그 결과, 균일한 재질을 얻을 수 없다.
그래서, 특허문헌 1에서는, 스케일 두께를 제어하여 냉각 속도의 균일화를 행하고, 냉각 정지 온도의 균일화를 달성하는 방법이 개시되어 있다. 특허문헌 1에서는, 압연 중에 압연기의 전후에 구비된 디스케일링 장치를 이용하여, 후강판의 미단(tail end)이 선단(front end)에 비해 냉각 정지 온도가 낮아지는 경우에, 미단측의 디스케일링의 분사수량(amount of jetted water)을 선단측의 분사수량보다 많아지도록 제어하고, 후강판의 길이 방향에서 스케일 제거율, 잔존 두께를 제어함으로써, 제어 냉각시의 강판 표면의 열전달 계수(heat transfer coefficient)를 변화시켜, 후강판의 길이 방향의 냉각 정지 온도의 균일화를 행하고 있다.
일본공개특허공보 평6-330155호
종래의 기술에서는, 냉각수량이나 반송(conveyance) 속도를 조정함으로써 냉각 정지 온도의 균일화를 도모해왔다. 그러나, 이 방법에서는, 스케일 두께의 편차에 의해 냉각 속도가 불균일해지기 때문에, 냉각 속도의 균일화뿐만 아니라, 냉각 정지 온도의 균일화도 어렵다.
또한, 특허문헌 1의 방법에서는, 온라인으로 스케일 제거율이나 잔존 두께를 제어할 수 없으면 열전달 계수도 제어할 수 없기 때문에, 고(高)정밀도의 냉각 속도의 균일화를 실현할 수 없다. 또한, 스케일 제거율을 변화시키는 경우, 스케일 잔존 개소와 박리 개소에서 냉각 정지 온도가 상이하기 때문에, 재질에 불균일이 발생한다.
본 발명은, 상기의 문제를 해결하여, 재질 불균일이 적은 고품질의 후강판을 확보할 수 있는 후강판의 제조 방법 및 제조 설비를 제공하는 것을 목적으로 한다.
본 발명은, 상기의 종래의 문제점을 해결하기 위해 이루어진 것이며, 그 요지는 하기와 같다.
[1] 열간 압연 공정, 형상 교정 공정 및 가속 냉각 공정의 순서로 후강판을 제조하는 방법에 있어서, 상기 형상 교정 공정과 상기 가속 냉각 공정과의 사이에, 후강판 표면 온도를 Ar3 변태점 미만으로 공랭함으로써, 혹은, 후강판의 상하면에 냉각수를 수량 밀도(water amount density) 0.3∼2.2㎥/(㎡·min)으로 공급하여 수랭함으로써, 후강판 표면을 변태시키는 온도 조정 공정 및, 상기 온도 조정 공정의 후에 또한 상기 가속 냉각 공정의 전에 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 디스케일링 공정을 갖는 것을 특징으로 하는 후강판의 제조 방법.
[2] 상기 디스케일링 공정에 있어서, 상기 고압수의 분사 압력을 10㎫ 이상으로 하는 것을 특징으로 하는 [1]에 기재된 후강판의 제조 방법.
[3] 열간 압연 장치, 형상 교정 장치, 온도 조정 장치, 디스케일링 장치 및 가속 냉각 장치를 이 순서로 반송 방향 상류측으로부터 배치하고, 상기 온도 조정 장치에서는, 후강판 표면 온도를 Ar3 변태점 미만으로 공랭하고, 혹은, 후강판의 상하면에 냉각수를 수량 밀도 0.3∼2.2㎥/(㎡·min)으로 공급함으로써 수랭하여, 후강판 표면을 변태시킴과 함께, 상기 디스케일링 장치에서는, 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 것을 특징으로 하는 후강판의 제조 설비.
[4] 상기 디스케일링 장치에 있어서, 상기 고압수의 분사 압력을 10㎫ 이상으로 하는 것을 특징으로 하는 [3]에 기재된 후강판의 제조 설비.
본 발명에 의하면, 형상 교정 공정과 가속 냉각 공정과의 사이에, 후강판 표면 온도를 Ar3 변태점 미만으로 내려 후강판 표면을 변태시키는 온도 조정 공정 및, 온도 조정 공정의 후에 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 디스케일링 공정을 가짐으로써, 냉각 속도 및 냉각 정지 온도의 균일화를 도모할 수 있다. 그 결과, 재질 불균일이 적은 고품질의 후강판의 제조가 가능해진다.
도 1은 종래의 후강판의 제조 설비를 나타내는 개략도이다.
도 2는 가속 냉각시에 있어서의, 스케일 두께와, 냉각 시간과, 후강판 표면 온도와의 관계를 나타내는 도면이다.
도 3은 가속 냉각 후의, 후강판의 폭방향 위치와 냉각 정지 온도와의 관계를 나타내는 도면이다.
도 4는 본 발명의 일 실시 형태인 후강판의 제조 설비를 나타내는 개략도이다.
도 5는 후강판 표면의 변태의 유무와, 고압수의 에너지 밀도와, 스케일 박리율과의 관계를 나타내는 도면이다.
도 6은 압연 종료 후의 후강판 표면의 온도와, 스케일이 파괴되기 위해 필요한 분사 압력과의 관계를 나타내는 도면이다.
도 7은 온도 조정 공정으로부터 디스케일링 공정 개시 전의 후강판 표면의 온도차를 정의하는 도면이다.
도 8은 후강판 표면의 온도 강하량과 냉각 정지 온도의 편차와의 관계를 나타내는 도면이다.
도 9는 본 발명의 일 실시 형태에 따른 냉각 장치의 측면도이다.
도 10은 본 발명의 일 실시 형태에 따른 다른 냉각 장치의 측면도이다.
도 11은 본 발명의 일 실시 형태에 따른 격벽(partition wall)의 노즐(nozzle) 배치예를 설명하는 도면이다.
도 12는 격벽 상의 냉각 배수의 흐름을 설명하는 도면이다.
도 13은 격벽 상의 냉각 배수의 다른 흐름을 설명하는 도면이다.
도 14는 종래의 가속 냉각 장치에 있어서의 냉각수의 흐름을 설명하는 도면이다.
도 15는 가속 냉각 장치에 있어서의 냉각수의 흐름을 설명하는 도면이다.
도 16은 가속 냉각 장치에 있어서의 격벽 상의 냉각 배수와의 비간섭(non-interference)을 설명하는 도면이다.
(발명을 실시하기 위한 형태)
이하, 본 발명을 실시하기 위한 형태를, 도면을 참조하여 본 발명을 설명한다.
도 4는, 본 발명의 일 실시 형태인, 후강판의 제조 설비를 나타내는 개략도이다. 도 4에 있어서, 화살표는 후강판의 반송 방향이다. 후강판의 반송 방향 상류측으로부터, 가열로(1), 디스케일링 장치(2), 압연기(3), 형상 교정 장치(4), 온도 조정 장치(6), 디스케일링 장치(7), 가속 냉각 장치(5)의 순서로 배치되어 있다. 도 4에 있어서, 가열로(1)에서 후강판(도시하지 않음)을 재가열한 후, 디스케일링 장치(2)에 있어서 1차 스케일 제거를 위해 후강판이 디스케일링된다. 그리고, 후강판은 압연기(3)에 의해 열간 압연되고, 형상 교정 장치(4)에 의해 교정된 후, 온도 조정 장치(6)로 후강판 표면 온도를 내린 후, 추가로 디스케일링 장치(7)에 있어서 스케일을 완전 제거하는 디스케일링이 행해진다. 그리고, 가속 냉각 장치(5)에 있어서 수랭 또는 공랭에 의한 제어 냉각이 행해진다.
본 발명에서는, 형상 교정 장치(4)와 가속 냉각 장치(5)와의 사이에, 온도 조정 장치(6) 및 디스케일링 장치(7)가 배치된다. 그리고, 온도 조정 장치(6)에 있어서, 후강판 표면 온도를 Ar3 변태점 미만으로 내려 후강판 표면을 변태시킨다. 그 후, 디스케일링 장치(7)에 있어서 에너지 밀도가 0.05J/㎟ 이상의 고압수를 후강판에 분사하는 디스케일링을 행하는 것을 특징으로 한다.
온도 조정 장치(6)는, 형상 교정 장치(4)와 디스케일링 장치(7)와의 사이에 배치된다. 온도 조정 장치(6)에서의 온도 조정 공정에 있어서, 후강판 표면 온도를 Ar3 변태 온도 미만으로 내려 후강판 표면을 변태시킴으로써, 그 후의 디스케일링 공정에 있어서, 스케일을 제거하기 쉽게 한다.
온도 조정 공정에서, 후강판 표면 온도를 Ar3 변태점 미만으로 내려 후강판 표면을 변태시킴으로써, 지철(base iron)의 변태가 일어나 스케일과 지철과의 계면(interface)에 어긋남(displacement)이 발생하여 스케일의 밀착력이 저하된다. 이것은, 다음과 같은 기구(mechanism)에 의한 것이라고 생각된다. 후강판의 표면이 Ar3 변태점 미만으로 냉각되면, 지철이 오스테나이트(austenite)에서 페라이트(ferrite)로 변태한다. 이때에 지철이 팽창하기 때문에, 스케일과 지철과의 계면에 힘이 가해져, 계면에 크랙(crack)이 발생한다. 그 결과, 스케일의 밀착력이 저하된다고 생각된다. 따라서, 후강판 표면 온도를 Ar3 변태점 미만으로 내려 후강판 표면을 변태시킴으로써, 디스케일링 장치(7)에서의 디스케일링 공정시, 스케일 제거가 용이해진다. 또한, Ar3 변태점은, 하기식(*)에 의해 산출할 수 있다.
Ar3=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo…(*)
단, 원소 기호는 각 원소의 강(鋼) 중 함유량(mass%)을 나타낸다.
다음으로, 후강판 표면 온도를 Ar3 변태점 미만으로 내려 후강판 표면을 변태시킨 후강판은, 디스케일링 장치(7)에 있어서, 스케일 제거하는 디스케일링을 행한다. 이때, 에너지 밀도가 0.05J/㎟ 이상의 고압수(본 발명에서는, 분사 압력이 5㎫ 이상인 경우를 고압수로 함)를 후강판에 분사함으로써, 스케일을 완전하게 제거할 수 있다. 이 디스케일링 공정에 있어서, 스케일을 완전하게 제거함으로써, 그 후의 가속 냉각 장치(5)에서의 가속 냉각 공정에 있어서, 냉각 제어가 가능해진다. 그 결과, 고정밀도의 냉각 속도의 균일화 및 냉각 정지 온도의 균일화를 도모할 수 있다. 또한, 고압수는 후강판 전체 길이에 걸쳐 분사하면 좋다.
본 발명자들은, 어느 강종을 이용하여, 디스케일링 공정 전의 후강판 표면의 변태의 유무의 영향에 대해서, 고압수의 에너지 밀도와 스케일 박리율(스케일이 박리된 면적과 후강판 면적의 비율)과의 관계를 조사했다. 그 결과, 도 5에 나타내는 바와 같은 인식을 얻었다. 도 5로부터, 에너지 밀도가 크면 스케일 박리율이 커지는 것, 그리고, 후강판 표면을 변태시킴으로써, 에너지 밀도가 작아도 스케일 박리가 가능해지는 것을 알 수 있었다. 또한, 도 5로부터, 변태 후에 디스케일링을 행하는 경우, 에너지 밀도가 0.05J/㎟보다 작은 경우, 스케일 박리율이 낮은 점에서, 후강판의 일부에 스케일이 잔존하여, 냉각 정지 온도가 불균일해지고 재질이 불균일해진다고 말할 수 있다. 따라서, 고압수의 에너지 밀도는 0.05J/㎟ 이상으로 한다. 바람직하게는, 0.10J/㎟ 이상이다. 또한, 고압수를 공급하는 펌프의 소비 에너지의 관점에서, 고압수의 에너지 밀도는 0.60J/㎟ 이하가 바람직하다.
본 발명에서는, 디스케일링 공정에 있어서, 분사 압력 10㎫ 이상의 고압수를 분사하는 것이 바람직하다. 분사 압력을 10㎫ 이상으로 함으로써, 스케일을 완전하게 제거할 수 있다. 따라서, 가속 냉각 공정에 있어서의 냉각 속도 및 냉각 정지 온도의 균일화를 실현할 수 있다. 스케일을 파괴하기 위해서는, 고압수의 액적(droplet)이 후강판에 충돌할 때의 압력이, 스케일의 경도를 초과할 필요가 있다. 본 발명자들은, 압연 종료 후의 후강판 표면의 온도와, 스케일이 파괴되기 위해 필요한 고압수의 분사 압력과의 관계에 대해서 조사한 결과, 도 6의 인식을 얻었다. 본 발명과 같이, 제어 냉각이 필요한 후강판을 제조하는 경우, 압연 종료 후의 후강판 표면의 온도는, 높아도 900℃ 전후인 것이 일반적이다. 따라서, 본 발명에 있어서, 스케일을 파괴하기 위해, 고압수의 분사 압력을 10㎫ 이상으로 하는 것이 바람직하다.
여기에서, 후강판에 분사되는 냉각수의 에너지 밀도 E(J/㎟)란, 디스케일링에 의해 스케일을 제거하는 능력의 지표이며, 다음의 (1)식과 같이 정의된다.
E=Q/(d×W)×ρv2/2×t…(1)
단, Q: 디스케일링 수(水)의 분사 유량[㎥/s], d: 플랫(flat) 노즐의 스프레이 분사 두께[mm], W: 플랫 노즐의 스프레이 분사폭[mm], 유체 밀도 ρ[kg/㎥], 후강판 충돌시의 유체 속도 v[m/s], 충돌 시간 t[s](t=d/1000/V, 반송 속도 V[m/s])이다.
그러나, 후강판 충돌시의 유체 속도 v의 측정은 반드시 용이한 것은 아니기 때문에, (1)식으로 정의되는 에너지 밀도 E를 엄밀하게 구하고자 하면, 큰 노력을 필요로 한다.
그래서, 본 발명자들은, 추가로 검토를 더한 결과, 후강판에 분사되는 냉각수의 에너지 밀도 E(J/㎟)의 간편한 정의로서, 수량 밀도×분사 압력×충돌 시간을 채용하면 좋은 것을 발견했다. 여기에서, 수량 밀도(㎥/(㎡·min))는, 「냉각수의 분사 유량÷냉각수 충돌 면적」으로 계산되는 값이다. 분사 압력(㎫)은, 냉각수의 토출 압력으로 정의된다. 충돌 시간(s)은, 「냉각수의 충돌 두께÷후강판의 반송 속도」로 계산되는 값이다. 또한, 이 간편한 정의로 산출되는 본 발명의 고압수의 에너지 밀도와 스케일 박리율과의 관계도, 도 5와 동일하다.
온도 조정 공정에 있어서, 공랭 또는 수랭에 의해, 후강판 표면 온도를 Ar3 변태점 미만으로 내린다. 또한, 공랭하는 경우, 후강판을 반송하는 테이블 롤러 상에서 적절하게 Ar3 변태점 미만까지 공랭하면 좋다.
본 발명에서는, 온도 조정 공정에 있어서, 수랭을 실시하는 경우에는, 후강판의 상하면에 냉각수를 수량 밀도 0.3∼2.2㎥/(㎡·min)으로 공급한다. 수량 밀도가 0.3㎥/(㎡·min)보다 작으면, 후강판 표면 온도를 Ar3 변태점 미만으로 내릴 수 없어, 후강판 표면을 변태시킬 수 없다. 그 결과, 후강판에 스케일이 잔존하여, 그 후의 가속 냉각 공정에서 냉각 제어해도, 냉각 정지 온도가 불균일해져 재질이 불균일해진다. 또한, 수량 밀도가 2.2㎥/(㎡·min)보다 크면, 후술하는 온도 조정 공정에 있어서의 온도 강하량 ΔT가 200℃를 초과해 버려, 냉각 정지 온도가 불균일해져 재질이 불균일해진다.
온도 조정 장치(6)에 있어서 후강판 표면을 변태시키는 경우, 후강판에 스케일이 부착된 상태에서 후강판 표면을 냉각하게 된다. 본 발명자들은, 온도 조정 장치(6)에 있어서의 냉각에서의 온도 강하량이 큰 경우, 스케일의 부착 상황이 냉각 정지 온도의 균일화에 영향을 주고, 냉각 정지 온도의 편차(가속 냉각 공정 후의 목표로 하는 강판 표면 온도와, 가속 냉각 후의 실제의 강판 표면 온도와의 차)가 커져 버린다는 인식을 얻었다. 여기에서, 온도 조정 장치(6)에 있어서의 후강판 표면의 온도 강하량 ΔT를, 도 7에 나타내는 바와 같이, 냉각 개시시의 후강판 표면 온도에서 후강판 표면의 최저 도달 온도의 차로서 정의한다.
본 발명자들은, 압연기에서의 압연 종료 후의 표면 온도가 800℃, 판두께 25㎜의 후강판을 이용하여, 온도 조정 공정, 디스케일링 공정 및 가속 냉각 공정의 순서로 후강판을 제조했다. 여기에서, 디스케일링시의 강판 표면이 변태 전이거나 변태 후라도 스케일을 전(全)면적으로 제거할 수 있는 조건으로서, 디스케일링시의 에너지 밀도는 0.2J/㎟로 했다. 또한, 가속 냉각 공정에서는 후강판 표면 온도가 500℃가 되도록 냉각했다. 그 결과, 온도 조정 공정의 온도 강하량 ΔT와 냉각 정지 온도의 편차와의 관계는, 도 8과 같이 되는 것을 알 수 있었다. 도 8로부터, 균일한 재질을 얻기 위해서는, 냉각 정지 온도의 편차는 25℃ 이하, 온도 조정 공정의 온도 강하량 ΔT는 200℃ 이하로 하는 것이 바람직하다.
본 발명의 가속 냉각 장치(5)에 대해서는, 도 9에 나타내는 바와 같이, 후강판(10)의 상면에 냉각수를 공급하는 상 헤더(upper header; 11)와, 당해 상 헤더(11)로부터 현수되는(suspended) 막대 형상의(rod-like) 냉각수를 분사하는 냉각수 분사 노즐(13)과, 후강판(10)과 상 헤더(11)와의 사이에 설치되는 격벽(15)을 구비함과 함께, 격벽(15)에는, 냉각수 분사 노즐(13)의 하단부가 내삽되는(inserted) 급수구(16)와, 후강판(10)의 상면에 공급된 냉각수를 격벽(15) 상으로 배수하는 배수구(17)가, 다수 형성되어 있는 것이 바람직하다.
구체적으로는, 상면 냉각 설비는, 후강판(10)의 상면에 냉각수를 공급하는 상 헤더(11)와, 당해 상 헤더(11)로부터 현수한 냉각수 분사 노즐(13)과, 상 헤더(11)와 후강판(10)과의 사이에 후강판 폭방향에 걸쳐 수평으로 설치되어 다수의 관통공(급수구(16)와 배수구(17))을 갖는 격벽(15)을 구비하고 있다. 그리고, 냉각수 분사 노즐(13)은 막대 형상의 냉각수를 분사하는 원관 노즐(circular tube nozzle; 13)로 이루어지고, 그 선단이 상기 격벽(15)에 형성된 관통공(급수구(16))에 내삽되어 격벽(15)의 하단부보다 상방이 되도록 설치되어 있다. 또한, 냉각수 분사 노즐(13)은, 상 헤더(11) 내의 저부의 이물을 흡입하여 막히는 것을 방지하기 위해, 그 상단이 상 헤더(11)의 내부로 돌출하도록, 상 헤더(11) 내에 관입(penetrate into)시키는 것이 바람직하다.
여기에서, 본 발명에 있어서의 막대 형상 냉각수란, 원형 형상(타원이나 다각의 형상도 포함함)의 노즐 분출구로부터 어느 정도 가압된 상태로 분사되는 냉각수로서, 노즐 분출구로부터의 냉각수의 분사 속도가 6m/s 이상, 바람직하게는 8m/s이상이며, 노즐 분출구로부터 분사된 수류의 단면이 거의 원형으로 유지된 연속성과 직진성이 있는 수류의 냉각수를 말한다. 즉, 원관 라미나 노즐(laminar nozzle)로부터의 자유 낙하류나, 스프레이와 같은 액적 상태로 분사되는 것과는 상이하다.
냉각수 분사 노즐(13)의 선단이 관통공에 내삽되어 격벽(15)의 하단부보다 상방이 되도록 설치되어 있는 것은, 가령 선단이 상방으로 휜 후강판이 진입해 온 경우라도 격벽(15)에 의해 냉각수 분사 노즐(13)이 손상되는 것을 방지하기 위함이다. 그에 따라 냉각수 분사 노즐(13)이 양호한 상태로 장기간에 걸쳐 냉각을 행할 수 있기 때문에, 설비 보수 등을 행하는 일 없이, 후강판의 온도 편차의 발생을 방지할 수 있다.
또한, 원관 노즐(13)의 선단이 관통공에 내삽되어 있기 때문에, 도 16에 나타내는 바와 같이, 격벽(15)의 상면을 흐르는 점선 화살표의 배출수(19)의 폭방향 흐름과 간섭하는 일이 없다. 따라서, 냉각수 분사 노즐(13)로부터 분사된 냉각수는, 폭방향 위치에 상관없이 동일하게 후강판 상면에 도달할 수 있어, 폭방향에 균일한 냉각을 행할 수 있다.
격벽(15)의 일 예를 나타내면, 도 11에 나타내는 바와 같이 격벽(15)에는 직경 10㎜의 관통공이 후강판 폭방향으로 80㎜, 반송 방향으로 80㎜의 피치(pitch)로 크로스 컷 형상으로(in a grid) 다수 뚫려 있다. 그리고, 급수구(16)에는 외경 8㎜, 내경 3㎜, 길이 140㎜의 냉각수 분사 노즐(13)이 삽입되어 있다. 냉각수 분사 노즐(13)은 지그재그 격자 형상으로(in a staggered manner) 배열되고, 냉각수 분사 노즐(13)이 통하고 있지 않는 관통공은 냉각수의 배수구(17)로 되어 있다. 이와 같이, 본 발명의 가속 냉각 장치의 격벽(15)에 형성된 다수의 관통공은, 거의 동(同)수의 급수구(16)와 배수구(17)로 이루어지고 있으며, 각각에 역할, 기능을 분담하고 있다.
이때, 배수구(17)의 총 단면적은, 냉각수 분사 노즐(13)의 원관 노즐(13)의 내부의 총 단면적보다도 충분히 넓고, 원관 노즐(13)의 내부의 총 단면적의 11배 정도가 확보되어 있고, 도 9에 나타내는 바와 같이 후강판 상면에 공급된 냉각수는, 후강판 상면과 격벽(15)과의 사이에 충만하고, 배수구(17)를 통하여, 격벽(15)의 상방으로 유도되어, 신속하게 배출된다. 도 12는 격벽 상의 후강판 폭방향 단부 부근의 냉각 배수의 흐름을 설명하는 정면도이다. 배수구(17)의 배수 방향이 냉각수 분사 방향과 반대의 상방향으로 되어 있고, 격벽(15)의 상방으로 빠진 냉각 배수는, 후강판 폭방향 외측으로 방향을 바꾸어, 상 헤더(11)와 격벽(15)과의 사이의 배수 유로를 흘러 배수된다.
한편, 도 13에 나타내는 예는, 배수구(17)를 후강판 폭방향으로 경사시켜 배수 방향이 후강판 폭방향 외측을 향하도록 폭방향 외측을 향한 경사 방향으로 한 것이다. 이와 같이 함으로써, 격벽(15) 상의 배출수(19)의 후강판 폭방향 흐름이 원활해져, 배수가 촉진되기 때문에 바람직하다.
여기에서, 도 14에 나타내는 바와 같이 배수구와 급수구가 동일한 관통공에 설치되어 있으면, 냉각수는, 후강판에 충돌한 후, 격벽(15)의 상방으로 빠지기 어려워져, 후강판(10)과 격벽(15)의 사이를 후강판 폭방향 단부를 향하여 흐르게 된다. 그렇게 되면 후강판(10)과 격벽(15)의 사이의 냉각 배수의 유량은, 판폭 방향의 단부에 가까워질수록 많아지기 때문에, 분사 냉각수(18)가 체류수막(film of stagnant water)을 관통하여 후강판에 도달하는 힘이 판폭 방향 단부만큼 저해되게 된다.
박판의 경우에는 판폭이 고작 2m 정도이기 때문에 그 영향은 한정적이다. 그러나, 특히 판폭이 3m 이상의 후판의 경우에는, 그 영향은 무시할 수 없다. 따라서, 후강판 폭방향 단부의 냉각이 약해지고, 이 경우의 후강판 폭방향의 온도 분포는, 불균일한 온도 분포가 된다.
이에 대하여, 본 발명의 가속 냉각 장치(5)는, 도 15에 나타내는 바와 같이 급수구(16)와 배수구(17)는 별개로 형성되어 있고, 급수와 배수를 역할 분담하고 있기 때문에, 냉각 배수는 격벽(15)의 배수구(17)를 통과하여 격벽(15)의 상방으로 원활하게 흘러가게 된다. 따라서, 냉각 후의 배수가 신속하게 후강판 상면으로부터 배제되기 때문에, 후속으로 공급되는 냉각수는, 용이하게 체류수막을 관통할 수 있어, 충분한 냉각 능력을 얻을 수 있다. 이 경우의 후강판 폭방향의 온도 분포는, 균일한 온도 분포가 되어, 폭방향으로 균일한 온도 분포를 얻을 수 있다.
덧붙여, 배수구(17)의 총 단면적은, 원관 노즐(13)의 내부의 총 단면적의 1.5배 이상이면, 냉각수의 배출이 신속하게 행해진다. 이것은, 예를 들면, 격벽(15)에는 원관 노즐(13)의 외경보다도 큰 구멍을 뚫어, 배수구의 수를 급수구의 수와 동일하거나, 그 이상으로 하면 실현될 수 있다.
배수구(17)의 총 단면적이 원관 노즐(13)의 내부의 총 단면적의 1.5배보다 작으면, 배수구의 유동 저항이 커져, 체류수가 배수되기 어려워지는 결과, 체류수막을 관통하여 후강판 표면에 도달할 수 있는 냉각수량이 대폭으로 줄어, 냉각능이 저하되기 때문에 바람직하지 않다. 보다 바람직하게는 4배 이상이다. 한편, 배수구가 지나치게 많거나, 배수구의 단면 지름이 지나치게 커지면, 격벽(15)의 강성이 작아져, 후강판이 충돌했을 때에 손상되기 쉬워진다. 따라서, 배수구의 총 단면적과 원관 노즐(13)의 내부의 총 단면적의 비는 1.5 내지 20의 범위가 적합하다.
또한, 격벽(15)의 급수구(16)에 내삽된 원관 노즐(13)의 외주면과 급수구(16)의 내면과의 극간(clearance)은 3㎜ 이하로 하는 것이 바람직하다. 이 극간이 크면, 원관 노즐(13)로부터 분사되는 냉각수의 수반류(accompanying flow)의 영향에 의해, 격벽(15)의 상면으로 배출된 냉각 배수가 급수구(16)의 원관 노즐(13)의 외주면과의 극간으로 인입되고, 재차 후강판 상에 공급되게 되기 때문에, 냉각 효율이 나빠진다. 이것을 방지하려면, 원관 노즐(13)의 외경을 급수구(16)의 크기와 거의 동일하게 하는 것이 보다 바람직하다. 그러나, 공작 정밀도나 부착 오차를 고려하여, 실질적으로 영향이 적은 3㎜까지의 극간은 허용한다. 보다 바람직하게는 2㎜ 이하로 한다.
또한, 냉각수가 체류수막을 관통하여 후강판에 도달할 수 있도록 하기 위해서는, 원관 노즐(13)의 내경, 길이, 냉각수의 분사 속도나 노즐 거리도 최적으로 할 필요가 있다.
즉, 노즐 내경은 3∼8㎜가 적합하다. 3㎜보다 작으면 노즐로부터 분사하는 물줄기가 가늘어져 기세(momentum)가 약해진다. 한편 노즐 지름이 8㎜를 초과하면 유속이 느려져, 체류수막을 관통하는 힘이 약해진다.
원관 노즐(13)의 길이는 120∼240㎜가 적합하다. 여기에서 말하는 원관 노즐(13)의 길이란, 헤더 내부로 어느 정도 관입한 노즐 상단의 유입구로부터, 격벽의 급수구에 내삽된 노즐의 하단까지의 길이를 의미한다. 원관 노즐(13)이 120㎜보다 짧으면, 헤더 하면과 격벽 상면과의 거리가 지나치게 짧아지기(예를 들면, 헤더 두께 20㎜, 헤더 내로의 노즐 상단의 돌출량 20㎜, 격벽으로의 노즐 하단의 삽입량 10㎜로 하면, 70㎜ 미만이 됨) 때문에, 격벽보다 상측의 배수 스페이스(drainage space)가 작아져, 냉각 배수가 원활하게 배출될 수 없게 된다. 한편, 240㎜보다 길면 원관 노즐(13)의 압력 손실이 커져, 체류수막을 관통하는 힘이 약해진다.
노즐로부터의 냉각수의 분사 속도는, 6m/s 이상, 바람직하게는 8m/s 이상이 필요하다. 6m/s 미만에서는, 체류수막을 냉각수가 관통하는 힘이 극단적으로 약해지기 때문이다. 8m/s 이상이면, 보다 큰 냉각 능력을 확보할 수 있기 때문에 바람직하다. 또한, 상면 냉각의 냉각수 분사 노즐(13)의 하단으로부터 후강판(10)의 표면까지의 거리는, 30∼120㎜로 하는 것이 좋다. 30㎜ 미만에서는, 후강판(10)이 격벽(15)에 충돌하는 빈도가 극단적으로 많아져 설비 보전이 어려워진다. 120㎜ 초과에서는, 냉각수가 체류수막을 관통하는 힘이 극단적으로 약해진다.
후강판 표면의 냉각에서는, 냉각수가 후강판 길이 방향으로 확장되지 않도록, 상 헤더(11)의 전후에 수절 롤(draining roll; 20)을 설치하는 것이 좋다. 이에 따라, 냉각존 길이가 일정해져, 온도 제어가 용이해진다. 여기에서 수절 롤(20)에 의해 후강판 반송 방향의 냉각수의 흐름은 막히기 때문에 냉각 배수는 후강판 폭방향 외측으로 흐르게 된다. 그러나, 수절 롤(20)의 근방은 냉각수가 체류하기 쉽다.
그래서 도 10에 나타내는 바와 같이, 후강판 폭방향으로 나열된 원관 노즐(13)의 열 중, 후강판 반송 방향의 최상류측 열의 냉각수 분사 노즐은, 후강판 반송 방향의 상류 방향으로 15∼60도 기울이고, 후강판 반송 방향의 최하류측 열의 냉각수 분사 노즐은, 후강판 반송 방향의 하류 방향으로 15∼60도 기울이는 것이 바람직하다. 이렇게 함으로써, 수절 롤(20)에 가까운 위치에도 냉각수를 공급할 수 있어, 수절 롤(20) 근방에 냉각수가 체류하는 일이 없이, 냉각 효율이 올라가기 때문에 적합하다.
상 헤더(11) 하면과 격벽(15) 상면의 거리는, 헤더 하면과 격벽 상면으로 둘러싸인 공간 내에서의 후강판 폭방향 유로 단면적이 냉각수 분사 노즐 내경의 총 단면적의 1.5배 이상이 되도록 형성되고, 예를 들면 100㎜ 정도 이상이다. 이 후강판 폭방향 유로 단면적이 냉각수 분사 노즐 내경의 총 단면적의 1.5배 이상이 아닌 경우, 격벽에 형성된 배수구(17)로부터 격벽(15) 상면으로 배출된 냉각 배수가 원활하게 후강판 폭방향으로 배출될 수 없다.
본 발명의 가속 냉각 장치에 있어서, 가장 효과를 발휘하는 수량 밀도의 범위는, 1.5㎥/(㎡·min) 이상이다. 수량 밀도가 이보다도 낮은 경우에는 체류수막이 그만큼 두꺼워지지 않아, 막대 형상 냉각수를 자유 낙하시켜 후강판을 냉각하는 공지의 기술을 적용해도, 폭방향의 온도 편차는 그만큼 커지지 않는 경우도 있다. 한편, 수량 밀도가 4.0㎥/(㎡·min)보다도 높은 경우라도, 본 발명의 기술을 이용하는 것은 유효하지만, 설비 비용이 높아지는 등 실용화상에서의 문제가 있기 때문에, 1.5∼4.0㎥/(㎡·min)가 가장 실용적인 수량 밀도이다.
본 발명의 냉각 기술을 적용하는 것은, 냉각 헤더의 전후에 수절 롤을 배치하는 경우가 특히 효과적이다. 그러나, 수절 롤이 없는 경우에도 적용하는 것은 가능하다. 예를 들면, 헤더가 길이 방향으로 비교적 길고(2∼4m 정도 길이인 경우), 그 헤더의 전후로 퍼지용(for purging)의 물 스프레이를 분사하여, 비수랭존(non-water cooling zone)으로의 누수를 방지하는 냉각 설비에 적용하는 것도 가능하다.
또한, 본 발명에 있어서, 후강판 하면측의 냉각 장치에 대해서는, 특별히 한정되는 것은 아니다. 도 9, 10에 나타내는 실시 형태에서는, 상면측의 냉각 장치와 동일한 원관 노즐(14)을 구비한 냉각 하 헤더(lower cooling header; 12)의 예를 나타냈다. 그러나, 후강판 하면측의 냉각에서는, 분사된 냉각수는 후강판에 충돌한 후에 자유 낙하하기 때문에, 상면측 냉각과 같은 냉각 배수를 후강판 폭방향으로 배출하는 격벽(15)은 없어도 좋다. 또한, 막 형상 냉각수나 분무 형상의 스프레이 냉각수 등을 공급하는 공지의 기술을 이용해도 좋다.
또한, 본 발명의 가열로(1) 및 디스케일링 장치(2)에 대해서는, 특별히 제한되지 않고, 종래의 장치를 이용할 수 있다. 디스케일링 장치(2)에 대해서는, 본 발명의 디스케일링 장치(7)와 동일한 구성일 필요는 없다.
실시예 1
이하, 본 발명의 실시예를 설명한다. 이하의 설명에서, 강판 온도는 모두 강판 표면의 온도이다.
도 4에 나타내는 바와 같은 후강판의 제조 설비를 이용하여, 본 발명의 후강판을 제조했다. 가열로(1)에서 슬래브(slab)를 재가열한 후, 디스케일링 장치(2)에 있어서 1차 스케일을 제거하고, 압연기(3)로 열간 압연하고, 형상 교정 장치(4)로 형상 교정했다. 형상 교정 후, 온도 조정 장치(6)로 후강판 표면의 온도를 조정 후, 디스케일링 장치(7)로 디스케일링을 행했다. 디스케일링 장치(7)는, 분사 거리(디스케일링 장치(7)의 분사 노즐과 후강판의 표면 거리)를 130㎜, 노즐 분사 각도를 32°, 노즐 영각(nozzle angle of attack)을 15°로 했다. 디스케일링 장치(7)로의 디스케일링 후, 가속 냉각 장치(5)로 500℃까지 냉각했다. 여기에서, 온도 조정 공정 및 온도 조정 후의 디스케일링 공정에 대해서는, 표 1에 나타내는 조건으로 행했다. 또한, 온도 조정 장치(6)의 냉각 길이는 1m로 했다. 또한, 이용한 후강판의 Ar3 변태점은 780℃였다. 압연기(3)로의 압연 종료 후의 판두께는 25㎜, 후강판 온도는 830℃였다. 온도 조정 공정의 온도 강하량 ΔT는, 온도 조정 공정에서 수랭을 채용한 경우에 대해서만 측정했다. 이것은, 공랭으로 온도 조정을 실시한 경우, 온도 강하에 과대하게 기인하는 문제가 발생하지 않기 때문이다.
얻어진 후강판에 대해서, 재질 불균일이 적은 후강판을 얻기 위해, 도 8의 관계에 기초하여, 냉각 정지 온도의 편차가 25℃ 이내의 후강판을 합격으로 했다.
제조 조건 및 결과를 표 1에 나타낸다.
Figure 112015091155416-pct00018
발명예 1에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서 공랭에 의해, 후강판 표면 온도를 770℃까지 내렸다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.08J/㎟, 분사 압력 15㎫, 노즐 1개당의 분사 유량이 40L/min(=6.7×10-4㎥/s)로, 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 후강판 표면이 오스테나이트에서 페라이트로 변태한 후에 디스케일링을 행했기 때문에, 스케일을 완전하게 제거할 수 있어, 냉각 정지 온도의 격차(이하, 단순히 온도 편차라고 칭함)는 10℃가 되었다.
발명예 2에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서, 후강판의 상하면에 수량 밀도 1.0㎥/(㎡·min)으로 냉각수를 공급하고 후강판 표면 온도를 750℃까지 내렸다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.08J/㎟로 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 온도 조정 장치(6)에 있어서 수랭하기 위한 수량 밀도가 1.0㎥/(㎡·min)이었기 때문에, 디스케일링시의 후강판 온도는 750℃가 되어, 후강판 표면이 오스테나이트에서 페라이트로 변태한 후에 디스케일링을 행할 수 있었다. 온도 조정 공정의 온도 강하량 ΔT도 120℃였기 때문에, 온도 편차는 19℃가 되었다.
발명예 3에서는, 압연 종료 후, 공랭에 의해, 후강판 표면 온도를 770℃까지 내렸다. 그 후, 디스케일링 장치(7)에 있어서, 분사 압력 15㎫, 노즐 1개당의 분사 유량이 40L/min(=6.7×10-4㎥/s), 에너지 밀도 0.13J/㎟로, 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 후강판 표면이 오스테나이트에서 페라이트로 변태한 후에 디스케일링을 행했다. 이 때문에, 스케일을 완전하게 제거할 수 있어, 온도 편차는 10℃가 되었다.
발명예 4에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서 후강판 표면 온도를 770℃까지 내렸다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.13J/㎟, 분사 압력 8㎫로, 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치로 냉각하여 제조했다. 분사 압력이 8㎫로, 본 발명에서 바람직하다고 하는 범위 외의 값이었기 때문에, 스케일을 파괴하지 못하고 근소하게 잔존했다고 생각되어, 온도 편차가 23℃가 되었다. 발명예 4의 분사 압력은, 본 발명의 바람직한 범위 내인 발명예 3의 경우에 비해 작아지기는 했지만, 그 외는 본 발명에서 필수로 여겨지는 조건을 만족했기 때문에, 목표로 하는 25℃ 이내는 달성되었다.
비교예 1에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서 공랭에 의해 후강판 표면 온도를 770℃까지 내렸다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.04J/㎟, 분사 압력 12㎫로, 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 에너지 밀도가 0.04J/㎟인 점에서, 후강판의 일부에 스케일이 잔존했다고 생각되어, 온도 편차가 36℃가 되었다. 또한, 실온까지 냉각한 비교예 1의 후강판의 표면을 육안으로 관찰한 결과, 표면의 색조(color tone)에 불균일이 확인되었기 때문에, 온도 편차의 원인이, 후강판의 일부에 스케일이 잔존하고 있던 것에 기인하는 것이라고 추정된다.
비교예 2에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서 후강판 표면의 온도를 내리지 않고, 후강판 표면 온도 800℃의 후강판을, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.08J/㎟, 분사 압력 15㎫로, 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 에너지 밀도는 본 발명의 범위 내였다. 그러나, 후강판 표면이 변태하고 있지 않은 상태에서 디스케일링을 행했기 때문에, 후강판의 일부에 스케일이 잔존했다고 생각되어, 온도 편차가 40℃가 되었다. 또한, 실온까지 냉각한 비교예 2의 후강판의 표면을 육안으로 관찰한 결과, 표면의 색조에 불균일이 확인되었기 때문에, 온도 편차의 원인이, 후강판의 일부에 스케일이 잔존하고 있던 것에 기인하는 것이라고 추정된다.
비교예 3에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서, 후강판의 상하면에 수량 밀도 0.2㎥/(㎡·min)으로 냉각수를 공급했다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.08J/㎟로 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 수량 밀도가 0.2㎥/(㎡·min)으로 작기 때문에, 후강판 온도는 785℃까지밖에 내려가지 않고, 후강판 표면이 변태하고 있지 않은 상태에서 디스케일링을 행했다. 이 때문에, 후강판의 일부에 스케일이 잔존했다고 생각되어, 온도 편차가 41℃가 되었다. 실온까지 냉각한 비교예 3의 후강판의 표면을 육안으로 관찰한 결과, 표면의 색조에 불균일이 확인되었기 때문에, 온도 편차의 원인이, 후강판의 일부에 스케일이 잔존하고 있던 것에 기인하는 것이라고 추정된다.
비교예 4에서는, 압연 종료 후, 온도 조정 장치(6)에 있어서, 후강판의 상하면에 수량 밀도 2.4㎥/(㎡·min)으로 냉각수를 공급했다. 그 후, 디스케일링 장치(7)에 있어서, 에너지 밀도 0.08J/㎟로 고압수를 후강판 전체 길이에 걸쳐 분사한 후, 가속 냉각 장치(5)로 냉각하여 제조했다. 수량 밀도가 2.4㎥/(㎡·min)으로 크기 때문에, 디스케일링 전 냉각시의 ΔT가 220℃가 되고, 온도 편차가 27℃가 되었다. 실온까지 냉각한 비교예 4의 후강판의 표면을 육안으로 관찰한 결과, 표면의 색조에 불균일이 확인되었기 때문에, 온도 편차의 원인이, 후강판의 일부에 스케일이 잔존하고 있던 것에 기인하는 것이라고 추정된다.
1 : 가열로
2 : 디스케일링 장치
3 : 압연기
4 : 형상 교정 장치
5 : 가속 냉각 장치
6 : 온도 조정 장치
7 : 디스케일링 장치
10 : 후강판
11 : 상 헤더
12 : 하 헤더
13 : 상 냉각수 분사 노즐(원관 노즐)
14 : 하 냉각수 분사 노즐(원관 노즐)
15 : 격벽
16 : 급수구
17 : 배수구
18 : 분사 냉각수
19 : 배출수
20 : 수절 롤
21 : 수절 롤

Claims (4)

  1. 열간 압연 공정, 형상 교정 공정 및 가속 냉각 공정의 순서로 후강판을 제조하는 방법에 있어서, 상기 형상 교정 공정과 상기 가속 냉각 공정과의 사이에, 후강판 표면 온도를 Ar3 변태점 초과에서 Ar3 변태점 미만으로 공랭함으로써, 혹은, 후강판의 상하면에 냉각수를 수량 밀도 0.3∼2.2㎥/(㎡·min)으로 공급하여 수랭함으로써, 후강판 표면을 변태시키는 온도 조정 공정 및, 상기 온도 조정 공정의 후에 또한 상기 가속 냉각 공정의 전에 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 디스케일링 공정을 갖는 것을 특징으로 하는 후강판의 제조 방법.
  2. 제1항에 있어서,
    상기 디스케일링 공정에 있어서, 상기 고압수의 분사 압력을 10㎫ 이상으로 하는 것을 특징으로 하는 후강판의 제조 방법.
  3. 열간 압연 장치, 형상 교정 장치, 온도 조정 장치, 디스케일링 장치 및 가속 냉각 장치를 이 순서로 반송 방향 상류측으로부터 배치하고, 상기 온도 조정 장치에서는, 후강판 표면 온도를 Ar3 변태점 초과에서 Ar3 변태점 미만으로 공랭하고, 혹은, 후강판의 상하면에 냉각수를 수량 밀도 0.3∼2.2㎥/(㎡·min)으로 공급함으로써 수랭하여, 후강판 표면을 변태시킴과 함께, 상기 디스케일링 장치에서는, 후강판의 표면에 에너지 밀도가 0.05J/㎟ 이상의 고압수를 분사하는 것을 특징으로 하는 후강판의 제조 설비.
  4. 제3항에 있어서,
    상기 디스케일링 장치에 있어서, 상기 고압수의 분사 압력을 10㎫ 이상으로 하는 것을 특징으로 하는 후강판의 제조 설비.
KR1020157025725A 2013-03-27 2014-03-20 후강판의 제조 방법 및 제조 설비 KR101691020B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-065341 2013-03-27
JP2013065341A JP5720714B2 (ja) 2013-03-27 2013-03-27 厚鋼板の製造方法および製造設備
PCT/JP2014/001613 WO2014156085A1 (ja) 2013-03-27 2014-03-20 厚鋼板の製造方法および製造設備

Publications (2)

Publication Number Publication Date
KR20150122186A KR20150122186A (ko) 2015-10-30
KR101691020B1 true KR101691020B1 (ko) 2016-12-29

Family

ID=51623099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157025725A KR101691020B1 (ko) 2013-03-27 2014-03-20 후강판의 제조 방법 및 제조 설비

Country Status (6)

Country Link
EP (1) EP2979769B1 (ko)
JP (1) JP5720714B2 (ko)
KR (1) KR101691020B1 (ko)
CN (1) CN105073293B (ko)
TW (1) TWI569898B (ko)
WO (1) WO2014156085A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6518948B2 (ja) * 2016-03-31 2019-05-29 Jfeスチール株式会社 鋼板の製造方法および製造設備
KR101940872B1 (ko) * 2016-12-21 2019-01-21 주식회사 포스코 유정관용 열연강판, 이를 이용한 강관 및 이들의 제조방법
CN112007963B (zh) * 2019-05-31 2022-08-12 宝山钢铁股份有限公司 带钢表面动态可调整除鳞压力控制方法和系统
FR3112297B1 (fr) * 2020-07-07 2024-02-09 Constellium Neuf Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
BR112022023731A2 (pt) 2020-06-04 2023-04-11 Constellium Muscle Shoals Llc Processo e equipamento de resfriamento sobre um laminador reversível a quente

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330155A (ja) 1993-05-26 1994-11-29 Kawasaki Steel Corp 厚鋼板の冷却方法
US6068887A (en) * 1997-11-26 2000-05-30 Kawasaki Steel Corporation Process for producing plated steel sheet
JP2001300627A (ja) * 2000-04-18 2001-10-30 Nippon Steel Corp 厚鋼板冷却方法
KR100496607B1 (ko) * 2000-12-27 2005-06-22 주식회사 포스코 열연코일의 제조방법 및 그 장치
JP2003220401A (ja) * 2000-12-28 2003-08-05 Jfe Steel Kk 熱間圧延方法および熱間圧延ライン
BRPI0809301B1 (pt) * 2007-03-27 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Chapa de aço laminada a quente de alta resistência livre de descascamento e método de produção da mesma
EP2910317B1 (en) * 2008-07-16 2017-09-06 JFE Steel Corporation Cooling equipment for hot steel plate
CN101456034B (zh) * 2009-01-06 2011-02-16 北京科技大学 一种生产x80级抗大变形管线钢中厚板的方法
JP5614040B2 (ja) * 2009-03-25 2014-10-29 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
AT507663B1 (de) * 2009-04-09 2010-07-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum aufbereiten von warmwalzgut
JP5440203B2 (ja) * 2010-01-22 2014-03-12 Jfeスチール株式会社 高炭素熱延鋼板の製造方法

Also Published As

Publication number Publication date
WO2014156085A1 (ja) 2014-10-02
JP5720714B2 (ja) 2015-05-20
EP2979769A1 (en) 2016-02-03
EP2979769A4 (en) 2016-03-02
TW201446353A (zh) 2014-12-16
JP2014188543A (ja) 2014-10-06
CN105073293A (zh) 2015-11-18
TWI569898B (zh) 2017-02-11
KR20150122186A (ko) 2015-10-30
CN105073293B (zh) 2017-03-15
EP2979769B1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP5614040B2 (ja) 厚鋼板の製造設備及び製造方法
KR101691020B1 (ko) 후강판의 제조 방법 및 제조 설비
JP4774887B2 (ja) 鋼板の冷却設備および製造方法
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
AU2016381035B2 (en) Process and device for cooling a metal substrate
JP5962849B2 (ja) 厚鋼板の製造設備および製造方法
JP2010247227A (ja) 厚鋼板の製造設備及び製造方法
JP6264464B2 (ja) 厚鋼板の製造設備および製造方法
JP5387093B2 (ja) 熱鋼板の冷却設備
KR101940429B1 (ko) 후강판의 제조 방법
JP5347781B2 (ja) 熱鋼板の冷却設備および冷却方法
JP5228720B2 (ja) 厚鋼板の冷却設備
JP5246075B2 (ja) 熱鋼板の冷却設備および冷却方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 4