WO2013134994A1 - 一种自然续流的交流斩波主电路结构 - Google Patents

一种自然续流的交流斩波主电路结构 Download PDF

Info

Publication number
WO2013134994A1
WO2013134994A1 PCT/CN2012/075228 CN2012075228W WO2013134994A1 WO 2013134994 A1 WO2013134994 A1 WO 2013134994A1 CN 2012075228 W CN2012075228 W CN 2012075228W WO 2013134994 A1 WO2013134994 A1 WO 2013134994A1
Authority
WO
WIPO (PCT)
Prior art keywords
main circuit
capacitor
chopping
chopper
diode
Prior art date
Application number
PCT/CN2012/075228
Other languages
English (en)
French (fr)
Inventor
韩亚兰
Original Assignee
Han Yalan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Han Yalan filed Critical Han Yalan
Priority to US14/362,819 priority Critical patent/US9118248B2/en
Priority to DE112012005629.9T priority patent/DE112012005629T5/de
Priority to JP2014561252A priority patent/JP6027145B2/ja
Publication of WO2013134994A1 publication Critical patent/WO2013134994A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power

Definitions

  • the invention relates to the field of mains AC chopper voltage regulation technology, and is a natural freewheeling AC chopping main circuit.
  • AC chopping is one of the best technical forms for realizing the mains voltage conversion.
  • the load connected after AC chopping is inductive, due to the inductive reactance, it must be switched on the chopper switch. Freewheeling at break.
  • the current freewheeling scheme is to realize the freewheeling by adopting the structural form of the electronic switch that is connected in parallel to the freewheeling action after the AC chopper switch; that is, regardless of the specific structure of the chopper switching circuit, Less is required to connect the flow switch 2 to the circuit after the chopper switch 1; both the chopping switch and the freewheeling switch use the IGBT switching element, and it takes time to turn the IGBT switching element on and off, and to prevent the freewheeling switch 2 Conduction may cause a short circuit to the post-chopper circuit.
  • the object of the present invention is to overcome the shortcomings of the current AC chopper main circuit structure, and to provide an AC chopper main circuit structure capable of realizing natural freewheeling without requiring a dedicated freewheeling switching element, and the main power of the present invention
  • the circuit structure is realized by the connection of two inductor coils and two diodes to realize the natural freewheeling loop, realizing the timely freewheeling when the chopper electronic switch is turned off, and is the natural freewheeling AC without any control. Wave main circuit structure.
  • a natural freewheeling AC chopper main circuit structure comprising an AC chopper main circuit connected to a mains power supply and an inductive load
  • the AC chopping main circuit comprises a chopper switching element component and an inductor L1 L2, diodes D1, D2 and capacitor C, one end of each of the two inductor coils L1, L2 is connected to form a connection point, the connection point is connected to one end of the capacitor C, and the other end of the inductor L1 is connected in series with the cathode of the diode D1, the inductance
  • the other end of the coil L2 is connected in series with the anode of the diode D2, and the output end of the chopper switching element assembly is connected to the anode of the diode D1 and the cathode of the diode D2, and the input end of the chopper switching element assembly and the other end of the capacitor are respectively
  • the mains power line is connected, and the two ends of the load are connected with the two ends of the capacitor
  • connection of the inductors L1 and L2 and the two diodes D1 and D2 form a clockwise loop circuit, and the loop loop is realized.
  • the inductor coils L1, L2 are air-core coils or core coils or core coils.
  • the input end of the chopping switching element assembly and the other end of the capacitor are respectively connected to the phase line and the neutral line of the single-phase circuit.
  • the AC chopping main circuit comprises a chopper switching element component, an inductor L1-1, Ll-2, L2-l, L2-l, L3, diodes D1, D2, and capacitors Cl, C2, C3, C4, diode Dl
  • the anode of the diode D1 is connected to the cathode of the diode D2, and the cathode of the diode D1 is connected in series with the inductors L1-1, L1-2.
  • the anode of the pole tube D2 is connected in series with the inductor coils L2-l, L2-2, and one end of the two inductor coils Ll-2, L2-2 is connected to form a connection point to be connected to the end of the capacitor C3, and one end of the inductor coil L3 is connected to the capacitor C3.
  • the other end is connected, the other end is connected to one end of the capacitor C4, the connection point between the inductor coils Ll-1 and L1-2 is connected to one end of the capacitor C1, and the connection point between the inductor coils Ll-2 and L2-2 and the capacitor C2 are Connected to the terminal, the output terminal of the chopper switching element component 3 is connected to the anode of the diode D1 and the cathode of the diode D2, and the input end of the chopper switching element component and the other ends of the capacitors C1, C2, C3, and C4 are respectively
  • the mains power line is connected, and both ends of the load are connected to both ends of the capacitor C4.
  • the AC chopper main circuit is applied to a three-phase circuit.
  • the chopper switching element assembly is composed of an IGBT transistor and a rectifier bridge.
  • the chopping switching element assembly is composed of two IGBT transistors.
  • the structure of the chopper main circuit is simpler. Compared with the prior art, the present invention saves the electronic switching element serving as a freewheeling function and improves the reliability of the chopper circuit operation.
  • a low-voltage large-current generating device in which the output current can be widely adjusted can be produced.
  • Figure 1 is a circuit diagram of a prior art of the present invention.
  • Fig. 2 is a circuit diagram of the first embodiment of the present invention.
  • Fig. 3 is a waveform diagram showing a current i formed by the commercial power passing through the AC chopper switching element in the first embodiment of the present invention.
  • Fig. 4 is a waveform diagram of the chopping current il flowing through the diode D1 and the inductor L1 in the first embodiment of the present invention.
  • Fig. 5 is a waveform diagram of the freewheeling current il2 flowing through the inductor L1 in the first embodiment of the present invention.
  • Fig. 6 is a waveform diagram of the chopping current i2 flowing through the diode D2 and the inductor L2 in the first embodiment of the present invention.
  • Fig. 7 is a waveform diagram of the freewheeling current i21 of the inductor L2 in the first embodiment of the present invention.
  • Figure 8 is a circuit diagram of a second embodiment of the present invention.
  • Fig. 9 is a circuit diagram of a third embodiment of the present invention.
  • Fig. 10 is a view showing an AC voltage waveform of a third embodiment of the present invention.
  • Figure 11 is a circuit diagram of a fourth embodiment of the present invention.
  • a natural freewheeling AC chopper main circuit structure includes an AC chopper main circuit 1 and an inductive load 2 connected to a mains power supply, wherein the AC chopper main
  • the circuit 1 includes a chopper switching element component 3, an inductor coil L1, L2, diodes D1 and D2, and a capacitor C.
  • the respective ends of the two inductor coils L1 and L2 are connected to form a connection point, and the connection point is connected to one end of the capacitor C, and the inductor coil
  • the other end of L1 is connected in series with the cathode of diode D1, and the other end of inductor L2 is positive with diode D2.
  • the output end of the chopper switching element component is connected to the anode of the diode D1 and the cathode of the diode D2, and the input end of the chopper switching element component 3 and the other end of the capacitor are respectively connected to the mains power line, the load
  • the two ends of the two are connected to the two ends of the capacitor C;
  • the connection of the inductors L1, L2 and the diodes D1, D2 forms a clockwise loop circuit, which realizes two inductors when the chopping switch element is turned off. Natural freewheeling of the coil;
  • the inductor coils L1, L2 are air-core coils or core coils or core coils.
  • the input terminal of the chopping switching element assembly and the other end of the capacitor are respectively connected to the phase and neutral lines of the single-phase circuit.
  • the second embodiment is similar to the first embodiment, except that the present embodiment is applied to a circuit structure of three-phase chopper voltage regulation, that is, after the chopper switch of each phase line Connect a natural freewheeling AC chopper main circuit, which is not detailed.
  • a third embodiment of the present invention as shown in FIG. 9 to FIG.
  • the AC chopping main circuit 1 includes a chopper switching element component 3, an inductance coil L1-1, L1-2, L2-l, L2-l, L3, diodes D1, D2, and capacitors Cl, C2, C3, C4, the anode of the diode D1 is connected to the cathode of the diode D2, the cathode of the diode D1 is connected in series with the inductors L1-1, L1-2, and the anode of the diode D2 is connected in series with the inductors L2-l, L2-2, the two inductors One ends of the coils Ll-2 and L2-2 are connected to form a connection point to be connected to the C3 terminal of the capacitor, one end of the inductor L3 is connected to the other end of the capacitor C3, and the other end is connected to one end of the capacitor C4, and the inductance coils Ll-1, L1- The connection point between 2 is connected to one end of the capacitor C1, the connection point between the inductance coils Ll-2,
  • the voltage sine wave on the inductive load is more perfect, and it can also be in the natural freewheeling AC chopping main circuit, or in the natural freewheeling AC chopping main circuit.
  • Adding a filter component to the load, dividing each inductor coil into two segments, adding a filter capacitor in the middle of the two segments, and also serially connecting the LC circuit in the line of the natural freewheeling AC chopping main circuit and the load ( Cl, C2, and L3 are composed.
  • UA and UB of FIG. 10 are AC voltage waveforms corresponding to points A and B in the circuit of FIG. 9, respectively.
  • the edges of the waveform are jagged. After filtering by the LC circuit, the edge of the UB waveform becomes more rounded and is close to the normal sinusoidal waveform. If the voltage waveform on the load is to be further improved, more stages of LC circuits can be cascaded in the natural freewheeling AC chopper main circuit and the load line for multi-stage filtering.
  • the first-stage LC circuit filter is serially connected to the three-phase AC in the line of the natural freewheeling AC chopper main circuit and the load.
  • the main circuit structure of chopping is not detailed here.
  • the chopper switching element assembly (3) is composed of an IGBT transistor and a rectifier bridge; or a chopper switching element assembly
  • 3 is composed of two IGBT transistors.

Abstract

一种自然续流的交流斩波主电路结构包括与单相电路或三相电路连接的交流斩波主电路(1)和感性负载(2)。交流斩波主电路包括斩波开关元件组件(3)、两个电感线圈(L1、L2)、两个二极管(D1、D2)以及电容(C)。两个电感线圈和两个二极管的连接形成了一顺时针方向的环流回路,环流回路实现了在斩波开关元件组件关断时两个电感线圈中斩波电流的自然续流。

Description

技术领域
本发明涉及市电交流斩波调压技术领域,是一种自然续流的交流斩波主电路 背景技术
见图 1, 交流斩波是实现市电调压变换的一种最好的技术形式, 当交流斩波 后所接负载是电感性时,由于感抗的作用,就必须要在斩波开关关断时进行续流。 目前采取的续流方案是,均是采用在交流斩波开关后并联连接承担续流作用的电 子开关的结构形式来实现续流; 就是说, 无论斩波开关电路的具体结构如何, 都 必不可少的要在斩波开关 1后的电路上并接续流开关 2; 斩波开关和续流开关都 是采用 IGBT开关元件, IGBT开关元件的开通和关断需要时间, 而为了防止续 流开关 2导通可能造成对斩波后电路的短路,必需对斩波电子开关和续流电子开 关的控制信号进行非常精确的控制,而且还必须在斩波电子开关关断时刻和续流 电子开关开通时刻之间设置一个间隔时间,俗称"死区时间",有了"死区时间", 所以会造成在斩波电子开关在关断时的续流不及时, 而且由于需要设置 "死区时 间", 使得交流斩波的频率进一步提高受到了限制。 在进行三相交流斩波时, 还 需要对斩波电子开关和续流电子开关的控制信号的相位进行更为精确和复杂的 控制。 发明内容
本发明的目的就是克服现今交流斩波主电路结构的不足, 提供了一种不需 要专设续流开关元件, 而能实现自然续流的交流斩波主电路结构, 本发明的主电 路结构由两只电感线圈和两只二极管的连接实现自然续流的环路,实现了在斩波 电子开关关断瞬间就进行的及时续流,是不需要任何控制的自然续流的交流斩波 主电路结构。
本发明解决其技术问题所采用的技术方案是:
一种自然续流的交流斩波主电路结构,包括与市电电源连接的交流斩波主电 路和感性负载, 其特征是, 所述交流斩波主电路包括斩波开关元件组件、 电感线 圈 Ll、 L2、 二极管 Dl、 D2以及电容 C, 两电感线圈 Ll、 L2的各自一端相连构 成连结点, 该连结点与电容 C一端相接, 电感线圈 L1的另一端与二极管 D1的 负极串接, 电感线圈 L2的另一端与二极管 D2的正极串接, 斩波开关元件组件 的输出端与二极管 D1的正极和二极管 D2的负极连结点相接, 斩波开关元件组 件的输入端和电容另一端分别与市电电源线相接, 负载的两端与电容 C 两端并 接; 电感线圈 Ll、 L2和两只二极管 Dl、 D2的连接形成了一顺时针方向的环流 回路,这环流回路实现了在斩波开关元件关断时两只电感线圈中斩波电流的自然 续流;
本发明还可以采用以下技术措施解决: 所述电感线圈 Ll、 L2为空心线圈或磁芯线圈或铁心线圈。 所述斩波开关元件组件的输入端和电容另一端分别与单相电路的相线和中 性线相接。 所述交流斩波主电路包括斩波开关元件组件、 电感线圈 Ll-1、 Ll-2、 L2-l、 L2-l、 L3、 二极管 Dl、 D2以及电容 Cl、 C2、 C3、 C4, 二极管 Dl的正极与二 极管 D2的负极相连接, 二极管 D1的负极与电感线圈 Ll-1、 L1-2串联连接, 二 极管 D2的正极与电感线圈 L2-l、 L2-2串联连接, 两电感线圈 Ll-2、 L2-2的一 端相连构成连结点与电容 C3—端相接, 电感线圈 L3的一端与电容 C3另一端相 连, 另一端与电容 C4一端相连, 电感线圈 Ll-1、 L1-2之间的连结点与电容 C1 一端相连, 电感线圈 Ll-2、 L2-2之间的连结点与电容 C2—端相连, 斩波开关元 件组件 3的输出端与二极管 D1的正极和二极管 D2的负极连结点相接, 斩波开 关元件组件的输入端和电容 Cl、 C2、 C3、 C4各自的另一端分别与市电电源线相 接, 负载的两端与电容 C4两端并接。 所述交流斩波主电路应用于三相电路上。
斩波开关元件组件为一个 IGBT晶体管和一个整流桥构成。
斩波开关元件组件为两个 IGBT晶体管构成。
本发明的有益效果是:
( 1 )、 由于实现了自然续流, 从而使斩波开关关断时的续流得以及时, 比采 用专设续流开关元件的续流的效果更好。
( 2 )、 斩波主电路的结构更为简单, 对比与此前的技术, 本发明节省了担任 续流作用的电子开关元件, 提高了斩波电路工作的可靠性。
( 3 )、 由于负载上不再有电流突变截止的状况, 负载上的交流电压波形已很 接近于正弦波了。 因此可以应用由于任何性质负载的交流斩波调压, 生产出通用 的交流斩波器。
( 4 )、 采用本发明可以生产出输出电流可大范围调整的低压大电流发生装 置。
( 5 )、 采用本发明还可以生产出具有自动稳压功能的交、 直流电源。 附图说明
图 1是本发明现有技术的电路图。
图 2是本发明第一实施方式的电路图。
图 3是本发明第一实施方式中市电通过交流斩波开关元件后形成的电流 i的 波形图。
图 4是本发明第一实施方式中流过二极管 Dl、 电感线圈 L1的斩波电流 il 的波形图。
图 5是本发明第一实施方式中流过电感线圈 L1的续流电流 il2的波形图。 图 6是本发明第一实施方式中流过二极管 D2、 电感线圈 L2的斩波电流 i2 的波形图。
图 7是本发明第一实施方式中电感线圈 L2的续流电流 i21的波形图。
图 8是本发明第二实施方式的电路图。
图 9是本发明第三实施方式的电路图。
图 10是本发明第三实施方式交流电压波形图。
图 11是本发明第四实施方式的电路图。
本发明的具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明第一实施方式:
如图 2至图 7所示, 一种自然续流的交流斩波主电路结构, 包括与市电电源 连接的交流斩波主电路 1和感性负载 2, 其特征是, 所述交流斩波主电路 1包括 斩波开关元件组件 3、 电感线圈 Ll、 L2、 二极管 Dl、 D2以及电容 C, 两电感线 圈 Ll、 L2的各自一端相连构成连结点, 该连结点与电容 C一端相接, 电感线圈 L1的另一端与二极管 D1的负极串接, 电感线圈 L2的另一端与二极管 D2的正 极串接, 斩波开关元件组件的输出端与二极管 D1的正极和二极管 D2的负极连 结点相接, 斩波开关元件组件 3的输入端和电容另一端分别与市电电源线相接, 负载 2的两端与电容 C两端并接; 电感线圈 Ll、 L2和二极管 Dl、 D2的连接形 成了一顺时针方向的环流回路,这环流回路实现了在斩波开关元件关断时两只电 感线圈的自然续流;
由于有二极管 D1和 D2的作用,电感线圈 L1上只允许对应于市电正半周的 斩波电流 il通过, 在市电正半周期内的每次的斩波开关元件关断时, 电感线圈 L1是通过电感线圈 L2、 二极管 D2和 D1的通路完成续流;
还是由于二极管 D1和 D2的作用,电感线圈 L2上只允许对应于市电负半周 的斩波电流 ί2通过, 在市电负半周期内的每次的斩波开关元件关断时, 电感线 圈 L2是通过二极管 D2、 Dl和电感线圈 L1的通路完成续流。
所述电感线圈 Ll、 L2为空心线圈或磁芯线圈或铁心线圈。 所述斩波开关元件组件的输入端和电容另一端分别与单相电路的相线和中 性线相接。 本发明第二实施方式:
如图 8所示, 所述第二实施方式与第一实施方式相似, 不同之处在于, 本实 施方式应用于三相斩波调压的电路结构,即每一相线的斩波开关后都连接一个自 然续流的交流斩波主电路, 具体不详述。 本发明第三实施方式: 如图 9至图 10所示, 所述交流斩波主电路 1包括斩波开关元件组件 3、 电 感线圈 Ll-1、 Ll-2、 L2-l、 L2-l、 L3、 二极管 Dl、 D2以及电容 Cl、 C2、 C3、 C4, 二极管 Dl的正极与二极管 D2的负极相连接, 二极管 D1的负极与电感线 圈 Ll-1、 L1-2串联连接, 二极管 D2的正极与电感线圈 L2-l、 L2-2串联连接, 两电感线圈 Ll-2、 L2-2 的一端相连构成连结点与电容 C3—端相接, 电感线圈 L3的一端与电容 C3另一端相连, 另一端与电容 C4一端相连, 电感线圈 Ll-1、 L1-2之间的连结点与电容 C1一端相连, 电感线圈 Ll-2、 L2-2之间的连结点与 电容 C2—端相连, 斩波开关元件组件 3的输出端与二极管 D1的正极和二极管 D2的负极连结点相接, 斩波开关元件组件 3的输入端和电容 Cl、 C2、 C3、 C4 各自的另一端分别与市电电源线相接, 负载 2的两端与电容 C4两端并接。
为了使得感性负载 2上交流电压波形的边沿更加顺滑,感性负载上的电压正 弦波更加完美, 还可以在自然续流的交流斩波主电路中, 或在自然续流的交流斩 波主电路与负载间增加滤波元件, 将每个电感线圈分成了两段, 两段的中间又增 加了滤波电容, 且还在自然续流的交流斩波主电路与负载的线路中串接了 LC电 路(Cl、 C2以及 L3组成) , 附图 10的 UA、 UB分别是对应于图 9电路中 A点 和 B点的交流电压波形, UA波形虽然已接近了正弦波, 但波形的边沿呈现锯齿 状, 再经过 LC 电路的滤波, UB 的波形边沿变得更为圆滑, 已接近于正常的正 弦波形。如果要使得负载上的电压波形再进一步得到改善, 还可以在自然续流的 交流斩波主电路与负载的线路中串接更多级的 LC电路进行多级的滤波。
本发明第四实施方式:
如图 11所示, 与第三实施方式相似, 不同之处在于, 本实施例是在自然续 流的交流斩波主电路与负载的线路中串接了一级 LC电路滤波应用于三相交流斩 波的主电路结构, 在此不在详述。 上述的四个实施方式, 作为斩波开关元件组件 (3 ) 的具体实施方式, 斩波 开关元件组件 3为一个 IGBT晶体管和一个整流桥构成; 或者斩波开关元件组件
3为两个 IGBT晶体管构成。
以上所述的具体实施方式例, 仅为本发明较佳的实施例而已, 举凡依本发明 专利范围所做的等同设计, 均应为本发明的技术所涵盖。

Claims

权 利 要 求 书
1.一种自然续流的交流斩波主电路结构,包括与市电电源连接的交流斩波 主电路(1 )和感性负载 (2 ) , 其特征是, 所述交流斩波主电路 (1 )包括斩波 开关元件组件 (3 )、 电感线圈 Ll、 L2、 二极管 Dl、 D2以及电容 C, 两电感线 圈 Ll、 L2的各自一端相连构成连结点, 该连结点与电容 C一端相接, 电感线 圈 L1的另一端与二极管 D1 的负极串接, 电感线圈 L2的另一端与二极管 D2 的正极串接,斩波开关元件组件的输出端与二极管 D1的正极和二极管 D2的负 极连结点相接, 斩波开关元件组件(3 )的输入端和电容另一端分别与市电电源 线相接, 负载 (2 ) 的两端与电容 C两端并接。
2. 根据权利要求 1所述自然续流的交流斩波主电路结构, 其特征是, 所述 电感线圈 Ll、 L2为空心线圈或磁芯线圈或铁心线圈。
4. 根据权利要求 1所述自然续流的交流斩波主电路结构, 其特征是, 所述 斩波开关元件组件的输入端和电容另一端分别与单相电路的相线和中性线相 接。
5. 根据权利要求 1所述自然续流的交流斩波主电路结构, 其特征是, 所述 交流斩波主电路(1 )包括斩波开关元件组件(3 )、 电感线圈 Ll-1、 Ll-2、 L2-l、 L2-l、 L3、 二极管 Dl、 D2以及电容 Cl、 C2、 C3、 C4, 二极管 Dl的正极与 二极管 D2的负极相连接, 二极管 D1的负极与电感线圈 Ll-1、 L1-2串联连接, 二极管 D2的正极与电感线圈 L2-l、 L2-2 串联连接, 两电感线圈 Ll-2、 L2-2 的一端相连构成连结点与电容 C3—端相接, 电感线圈 L3的一端与电容 C3另 一端相连, 另一端与电容 C4一端相连, 电感线圈 Ll-1、 L1-2之间的连结点与 电容 C1一端相连, 电感线圈 Ll-2、 L2-2之间的连结点与电容 C2—端相连, 斩波开关元件组件 (3 ) 的输出端与二极管 D1的正极和二极管 D2的负极连结 点相接, 斩波开关元件组件 (3 ) 的输入端和电容 Cl、 C2、 C3、 C4各自的另 一端分别与市电电源线相接, 负载 (2 ) 的两端与电容 C4两端并接。
6. 根据权利要求 1或 5所述自然续流的交流斩波主电路结构, 其特征是, 所述交流斩波主电路 (1 ) 应用于三相电路上。
7. 根据权利要求 1或 5所述自然续流的交流斩波主电路结构, 其特征是, 斩波开关元件组件 (3 ) 为一个 IGBT晶体管和一个整流桥构成。
8. 根据权利要求 1或 5所述自然续流的交流斩波主电路结构, 其特征是, 斩波开关元件组件 (3 ) 为两个 IGBT晶体管构成。
PCT/CN2012/075228 2012-03-12 2012-05-09 一种自然续流的交流斩波主电路结构 WO2013134994A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/362,819 US9118248B2 (en) 2012-03-12 2012-05-09 Naturally freewheeling alternating current chopper main circuit structure
DE112012005629.9T DE112012005629T5 (de) 2012-03-12 2012-05-09 Hauptstromkreis-Anordnung für einen Wechselstrom-Chopper mit natürlichem Freilauf
JP2014561252A JP6027145B2 (ja) 2012-03-12 2012-05-09 自然続流可能な交流チョッパ主電気回路構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210062805.XA CN102545643B (zh) 2012-03-12 2012-03-12 一种自然续流的交流斩波主电路结构
CN201210062805.X 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013134994A1 true WO2013134994A1 (zh) 2013-09-19

Family

ID=46351763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075228 WO2013134994A1 (zh) 2012-03-12 2012-05-09 一种自然续流的交流斩波主电路结构

Country Status (5)

Country Link
US (1) US9118248B2 (zh)
JP (1) JP6027145B2 (zh)
CN (1) CN102545643B (zh)
DE (1) DE112012005629T5 (zh)
WO (1) WO2013134994A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467448A (zh) * 2014-12-12 2015-03-25 韩亚兰 一种二极管续流的交流斩波主电路结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715960A (ja) * 1993-06-28 1995-01-17 Sansha Electric Mfg Co Ltd 電源装置
EP0905871A2 (en) * 1997-09-25 1999-03-31 Oy Helvar A.C. to A.C. line frequency power converter
JP2003348843A (ja) * 2002-05-27 2003-12-05 Kyoto Denkiki Kk 交流電力調整器
CN1967994A (zh) * 2006-10-23 2007-05-23 南京航空航天大学 双向交流斩波器
CN101056065A (zh) * 2007-03-12 2007-10-17 安徽工业大学 脉冲阻塞式斩波控制的交交变频装置
US20090224738A1 (en) * 2005-12-30 2009-09-10 Microgen Energy Limited Switching Controller

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2043370B (en) * 1979-02-28 1983-03-09 Chloride Group Ltd Converters
DK382687A (da) * 1987-07-22 1989-04-14 Scanpower Stroemforsyningskredsloeb
FR2682829B1 (fr) * 1991-10-16 1994-01-14 Trailigaz Cie Gle Ozone Dispositif perfectionne d'alimentation en energie electrique d'un ozoneur.
GB9818878D0 (en) * 1998-08-28 1998-10-21 Switched Reluctance Drives Ltd Switched reluctance drive with high power factor
JP2000156971A (ja) * 1998-11-18 2000-06-06 Fuji Electric Co Ltd 半導体電力変換器
JP2001008443A (ja) * 1999-06-22 2001-01-12 Tdk Corp 電流駆動回路
JP2001298948A (ja) * 2000-04-13 2001-10-26 Cosel Co Ltd シングルフォワードコンバータの平滑回路
JP4161253B2 (ja) * 2002-08-30 2008-10-08 富士電機ホールディングス株式会社 多相交流電圧調整装置
CN1585250B (zh) * 2003-08-21 2010-06-23 哈利盛东芝照明株式会社 放电灯点亮装置
US20060103365A1 (en) * 2004-11-17 2006-05-18 Compulite Systems (2000) Ltd. Method and converter circuitry for improved-performance AC chopper
CN201138788Y (zh) * 2008-01-03 2008-10-22 冬雷 串联交流调压节能装置
DE102009052461A1 (de) * 2009-11-09 2011-05-26 Sma Solar Technology Ag Wechselrichter-Schaltungsanordnung
CN101795061B (zh) * 2010-03-03 2012-01-11 哈尔滨工业大学 适用于电流源型隔离全桥升压拓扑的无源无损缓冲电路
TWI435536B (zh) * 2010-11-18 2014-04-21 Univ Nat Formosa 低雜訊的交流截波電路
CN102694460B (zh) * 2011-03-24 2014-12-17 南京博兰得电子科技有限公司 三相升降压功率因数校正变换器
CN202513831U (zh) * 2012-03-12 2012-10-31 韩亚兰 自然续流的交流斩波主电路结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715960A (ja) * 1993-06-28 1995-01-17 Sansha Electric Mfg Co Ltd 電源装置
EP0905871A2 (en) * 1997-09-25 1999-03-31 Oy Helvar A.C. to A.C. line frequency power converter
JP2003348843A (ja) * 2002-05-27 2003-12-05 Kyoto Denkiki Kk 交流電力調整器
US20090224738A1 (en) * 2005-12-30 2009-09-10 Microgen Energy Limited Switching Controller
CN1967994A (zh) * 2006-10-23 2007-05-23 南京航空航天大学 双向交流斩波器
CN101056065A (zh) * 2007-03-12 2007-10-17 安徽工业大学 脉冲阻塞式斩波控制的交交变频装置

Also Published As

Publication number Publication date
DE112012005629T5 (de) 2014-10-30
US20150028833A1 (en) 2015-01-29
CN102545643A (zh) 2012-07-04
US9118248B2 (en) 2015-08-25
JP2015510208A (ja) 2015-04-02
CN102545643B (zh) 2014-08-06
JP6027145B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
US10958180B2 (en) DC-DC converter for wide input voltage
JP6367520B2 (ja) 三相ソフトスイッチング力率改善整流器
CN106685231B (zh) 一种原边钳位型软开关全桥变换器及其不对称控制方法
US11139754B1 (en) Inverter circuit for realizing high-efficiency control of single-phase power of single-phase three-wire power supply
WO2018141283A1 (zh) 一种无桥pfc电路
TW201308853A (zh) 電力轉換器之箝位電路
CN104104252B (zh) 单级可升降压双Boost逆变器及其控制方法
CN106505894A (zh) 一种改进型三电平变流器拓扑结构及其调制方法
CN103107728A (zh) 电压电流混源型并网逆变器拓扑
CN103795237A (zh) 无桥降压apfc电路
CN113746361A (zh) 具高电压增益的交流-直流电源变换系统
WO2019242128A1 (zh) 一种三相逆变器及其控制方法
CN103765754B (zh) 具有耦合电感的逆变器
CN212726850U (zh) 一种交错并联图腾柱无桥pfc电路及电源转换装置
CN205051573U (zh) 一种全桥单相功率因数校正电路
CN110537320B (zh) 一个相断开或短路时操作基于矩阵转换器的整流器的装置和方法
CN202513831U (zh) 自然续流的交流斩波主电路结构
CN104578750B (zh) 一种补偿型电源
CN103891123A (zh) 逆变器装置
CN206602458U (zh) 一种全桥谐振变换器
CN107482919B (zh) 基于Boost全桥隔离变换器的控制方法
WO2013134994A1 (zh) 一种自然续流的交流斩波主电路结构
CN108683345A (zh) 一种基于SiC二极管的三相改进型双Buck/Boost变流器
WO2018157797A1 (zh) 一种全桥谐振变换器
Choi et al. A Novel Switching Algorithm to improve Efficiency at light load conditions for Three-Phase DAB Converter in LVDC Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012005629

Country of ref document: DE

Ref document number: 1120120056299

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2014561252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362819

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12870988

Country of ref document: EP

Kind code of ref document: A1