WO2013132771A1 - 太陽電池製造用のスリットノズル及び薬液塗布装置 - Google Patents

太陽電池製造用のスリットノズル及び薬液塗布装置 Download PDF

Info

Publication number
WO2013132771A1
WO2013132771A1 PCT/JP2013/000982 JP2013000982W WO2013132771A1 WO 2013132771 A1 WO2013132771 A1 WO 2013132771A1 JP 2013000982 W JP2013000982 W JP 2013000982W WO 2013132771 A1 WO2013132771 A1 WO 2013132771A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
chemical
slit nozzle
chemical solution
nozzle
Prior art date
Application number
PCT/JP2013/000982
Other languages
English (en)
French (fr)
Inventor
幸浩 若元
広 永田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013132771A1 publication Critical patent/WO2013132771A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0262Coating heads with slot-shaped outlet adjustable in width, i.e. having lips movable relative to each other in order to modify the slot width, e.g. to close it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a slit nozzle and a chemical solution coating apparatus for applying a chemical solution to a glass plate used in a solar cell.
  • solar cells have been reviewed as a clean and renewable energy source that does not emit carbon dioxide, and their development, production and dissemination are rapidly expanding.
  • solar cells depending on the basic material and structure of the power generation layer, and crystalline silicon type, thin film silicon type, compound type, organic / pigment type, etc. are known. All types of solar cells aim to improve power generation efficiency, mass production, and cost reduction.
  • the photoelectric conversion efficiency of the power generation layer is of course improved, but at the same time, an antireflection film is used to suppress the reflection loss and increase the incidence efficiency.
  • a texture structure is adopted.
  • inexpensive soda lime glass is used as a cover glass for protecting the surface of the power generation layer for mass production and cost reduction.
  • coating methods such as a roll coating method, a gravure coating method, and a spin coating method are often used in a film forming process for forming an antireflection film on the surface of a cover glass.
  • the roll coating method and the gravure coating method have problems that the handling of coating jigs such as coating rolls and gravure rolls is troublesome and the productivity is low.
  • the spin coating method it is difficult to cope with an increase in the size of the glass plate, and a large amount of chemical solution is problematic in terms of productivity and cost. Therefore, in the manufacture of solar cells, it is conceivable to apply the spinless coating method using a slit nozzle to the process of applying a chemical solution for forming an antireflection film on the surface of the cover glass as described above. .
  • the spinless coating method using a slit nozzle is often used for a coating process for forming a resist film on a glass substrate in an optical photolithography process for manufacturing an LCD (liquid crystal display).
  • a small coating gap of about 100 ⁇ m is set between the glass substrate that is horizontally supported on the stage or on the conveyance path and the discharge port of the slit nozzle, and the glass substrate is made from the slit nozzle. While discharging the resist solution, the slit nozzle is moved in one horizontal direction orthogonal to the nozzle longitudinal direction.
  • the resist solution that comes out in a strip shape or a curtain shape from the discharge port of the slit nozzle extends flatly on the glass substrate, and a coating film of the resist solution is formed on the entire surface of the substrate. Since the resist coating film can be formed in a thin and uniform film thickness without overflowing the resist solution outside the glass substrate, it is excellent in productivity and cost.
  • the glass substrate for LCD has a very high flatness in order to guarantee the image quality of the LCD, and even if there is warping or undulation (or distortion) in the substrate, the range of the unevenness is usually It is several tens of ⁇ m or less.
  • the cover glass for solar cells is made of ordinary soda lime glass or texture tempered glass that also serves as a light confinement effect, and has poor flatness.
  • texture tempered glass made by the roll-out method often has large undulations that are transferred from the roll during the glass manufacturing process.
  • a cover glass for a solar cell has warpage and undulation in a range of several hundred ⁇ m or more (about 1 mm at the maximum).
  • the slit nozzle rubs the surface of the raised portion of the glass plate during coating scanning, or glass
  • the band or curtain of the chemical solution may be cut in the air (application gap), and the coating film may be missing on the glass plate.
  • a method of setting a sufficiently large coating gap (about 1 mm) from the beginning to increase the discharge flow rate is considered to be sufficient, but not only the amount of the chemical used is increased, but also the film thickness of the antireflection film is increased. It becomes impossible to control and the significance of using the slit nozzle is lost.
  • the present invention has been made in view of the current state and problems of the prior art as described above, and is a slit nozzle capable of stably and uniformly applying a chemical solution with a desired film thickness on a glass plate used in a solar cell. And a chemical application device.
  • the slit nozzle of the present invention is a slit nozzle for applying a chemical solution to a glass plate used in a solar cell by application scanning, and has a lower end surface on which a slit-like discharge port for discharging the chemical solution is formed on the substrate. And a front lip tip portion extending upward from the lower end surface on the front side in the scanning direction of the discharge port, and a rear lip tip portion extending upward from the lower end surface on the rear side in the scanning direction of the discharge port.
  • a nozzle-shaped nozzle body and a flexible chemical liquid guide member attached to the front lip tip of the nozzle body so as to guide the chemical liquid from the discharge port to the surface of the glass plate or the vicinity thereof. It has.
  • the chemical solution coating device of the present invention is a coating device for applying a chemical solution to a glass plate used in a solar cell, the slit nozzle of the present invention, a chemical solution supply unit that supplies the chemical solution to the slit nozzle, and the glass plate
  • a glass plate support portion that supports the slit nozzle in a horizontal posture, a nozzle support portion that supports the slit nozzle with the discharge port facing the glass plate supported by the glass plate support portion, and the slit nozzle is the glass plate
  • a scanning unit that performs relative horizontal movement between the glass plate support unit and the nozzle support unit so as to relatively move horizontally in a predetermined scanning direction.
  • the chemical liquid that has come out in the form of a strip or curtain from the discharge port is guided to the chemical liquid guide member and flows down to the surface of the glass plate as an extension of the chemical liquid guide member, or the tip of the chemical liquid guide member It falls on the surface of the glass plate from the (lower end) through the gap (in the air). Since the free end of the chemical solution guide member follows the height or shape (profile) of the surface of the glass plate and bends and deforms independently at each position, or does not bend and deform, a predetermined film is formed at each position on the glass plate. A thick liquid film (coating film) can be formed.
  • the chemical liquid guide member extends from the front lip tip to the bottom of the rear lip through the discharge port.
  • the chemical liquid guide member is configured such that the free end portion thereof can be flexed and deformed independently of other parts at any part in the longitudinal direction of the nozzle body.
  • the chemical liquid guide member is formed of a long thin resin piece having a length equivalent to that of the nozzle body, and a slit extending in a direction perpendicular to the longitudinal direction from the free end thereof is formed in the longitudinal direction. Many or innumerable distributions.
  • the free end portion of the chemical liquid guiding member is formed in a thin strip shape or a hair shape.
  • the chemical solution can be stably and uniformly applied with a desired film thickness on the glass plate used in the solar cell by the above-described configuration and action.
  • the slit nozzle 10 has a front lip 12 and a rear lip 14 each of which is a half body extending in parallel with the longitudinal direction of the nozzle. They are integrally connected with bolts (not shown).
  • the gap size between the slit-shaped discharge port 18 and the slit-shaped discharge passage 20 is defined by the thickness of the shim 16.
  • the front lip 12, the rear lip 14, and the shim 16 are integrated to form a nozzle body.
  • a cavity 22 is formed which is connected to the upper end of the discharge passage 20 to form a buffer portion or a manifold portion for equalizing pressure.
  • a chemical solution introduction port 24 is provided at the center in the longitudinal direction of the nozzle, and the chemical solution introduction port 24 and the cavity 22 are connected by a chemical solution introduction passage 26.
  • a chemical liquid supply pipe 28 is connected to the chemical liquid inlet 24.
  • the cavity 22, the chemical solution introduction port 24, and the chemical solution introduction passage 26 are formed on the front lip 12 in the illustrated example, but may be formed on the rear lip 14 side.
  • the front lip 12 and the rear lip 14 each have a front lip tip portion 12a and a rear lip tip portion 14a whose sizes in the width direction orthogonal to the nozzle longitudinal direction become tapered toward the discharge port 18 respectively.
  • a flexible chemical guide member 30 is detachably attached to the front lip tip 12a by, for example, a bolt 32.
  • the chemical solution guide member 30 is made of a long thin (for example, about 50 ⁇ m to several hundred ⁇ m thick) fluororesin plastic piece having a length equivalent to that of the front lip 12, and is perpendicular to the longitudinal direction from its free end.
  • the slits 34 extending in the direction to be distributed are distributed in a large number or innumerably in the longitudinal direction, and have thin strip-like or hair-like free ends 30a.
  • the crevice 34 is a space
  • the chemical liquid guide member 30 projects obliquely from the front end (lower end) of the front lip front end portion 12 a, passes through the front (lower) of the discharge port 18, and passes the front (lower side) of the rear lip front end portion 14 a. ).
  • the vertical distance (height difference) L from the discharge port 18 to the tip of the chemical liquid guide member 30 is a case where it is assumed that the glass plate G to be processed is a completely flat ideal glass plate without warping or undulation.
  • the free end portion 30a of the chemical liquid guide member 30 is slightly over the entire region from the end to the end in the nozzle longitudinal direction.
  • the glass plate G is bent and deformed upward to come into light contact with the surface of the glass plate G.
  • FIG. 5 shows a configuration of a chemical solution coating apparatus 40 for manufacturing a solar cell including the slit nozzle 10.
  • This chemical application device 40 is, for example, a chemical application process for forming the antireflection film AR on the surface of the cover glass CG in a crystalline silicon solar cell as shown in FIG.
  • a chemical coating process for forming the antireflection film AR on the surface of the cover glass CG, or in a thin-film silicon solar cell as shown in FIG. It is used for a chemical solution coating process for forming the antireflection film AR on the back surface of the glass substrate SG.
  • the cover glass CG of FIG. 6A or 6B is used as the glass plate G to be processed and the antireflection film AR is formed on the surface thereof will be described.
  • this chemical application device 40 includes a stage 42 for horizontally placing and holding a glass plate (mother glass) G, and the slit nozzle 10 in the direction of the arrow above the stage 42 during application processing. And a gantry-type scanning unit 44 that horizontally moves, that is, scans in the (X direction).
  • the slit nozzle 10 is a long nozzle body (12, 14, 16) that can cover the glass plate G from one end to the other end in the horizontal direction (Y direction) orthogonal to the scanning direction (X direction).
  • a slit-like discharge port 18, and a chemical solution guide member 30 is attached in the vicinity of the discharge port 18.
  • a chemical liquid supply unit 46 is connected to the chemical liquid inlet 24 of the slit nozzle 10 via a chemical liquid supply pipe 28.
  • the chemical solution supply unit 46 includes a chemical solution container, a discharge pump, a flow rate adjusting valve, an on-off valve, and the like.
  • the chemical solution MAR in this embodiment uses water as a solvent and a water-soluble antireflection film material (for example, SiO 2 or TiO 2 ) as a solute.
  • Water is the most desirable solvent in this embodiment in that it not only has a low environmental impact but also has a large surface tension.
  • the scanning unit 44 includes a gate-shaped support body 48 that horizontally supports the slit nozzle 10, and a scanning drive unit 50 that moves the support body 48 straight in both directions in the X direction.
  • This scanning drive part 50 may be comprised, for example with the linear motor mechanism with a guide, or a ball screw mechanism.
  • the joint portion 52 that connects the support 50 and the slit nozzle 10 is provided with a lifting mechanism (not shown) with a guide for changing or adjusting the height position of the slit nozzle 10.
  • the chemical liquid coating apparatus 40 moves the slit nozzle 10 at a constant speed by the scanning unit 44 so as to vertically cut the upper side of the stage 42 in the X direction with the glass plate G placed on the stage 42.
  • the stage 42 the liquid medicine M AR with wide strip or curtain of discharge flow extending nozzle longitudinal direction (Y direction) through a chemical guide member 30 from the discharge port 18 of the slit nozzle 10 at the agent supplying section 46 Supply to the surface of the upper glass plate G.
  • the scanning speed and the chemical solution discharge flow rate in this application scanning are selected to be predetermined values according to the film thickness setting value of the antireflection film AR formed on the glass plate G.
  • the tip (free end) 30 a of the chemical solution guide member 30 slightly touches the surface of the glass plate G and bends upward slightly.
  • the slit nozzle 10 passes (scans) thereon.
  • the glass plate G is not damaged even if the tip (free end) 30a of the chemical liquid guide member 30 rubs the surface.
  • the chemical liquid MAR that has come out in the form of a strip or a curtain from the discharge port 18 of the slit nozzle 10 is guided as it is by the chemical liquid guide member 30 and flows down to the surface of the glass plate G.
  • Membrane) FM AR is formed.
  • the glass plate G with the distal end portion (free end portion) 30 a of the chemical solution guide member 30 further bent upward.
  • the slit nozzle 10 passes (scans) over the raised portion so as to rub the surface.
  • the larger the bulge of the glass G the greater the deflection of the chemical solution guide member 30.
  • the warp or undulation of the glass plate G is within a normal range (about 1 mm)
  • the chemical solution M AR that has come out in a strip shape or a curtain shape from the discharge port 18 of the slit nozzle 10 at the place where the glass plate G is raised.
  • the glass plate G in this Example is texture tempered glass, and the fine uneven texture TX is formed in the back surface which contacts an electric power generation layer (FIGS. 7-9).
  • the discharge of the slit nozzle 10 is the same as described above.
  • the chemical solution M AR that has come out in the form of a belt or curtain from the outlet 18 is directly guided by the chemical solution guide member 30 and flows down to the surface of the glass plate G, and a liquid film (coating film) FM AR having a predetermined film thickness is formed in the vicinity of the flow-down. To do.
  • the tip of the chemical solution guide member 30 may not reach the surface of the glass plate G at that position, as shown in FIG. .
  • the chemical MAR that has come out in a strip shape or a curtain shape from the discharge port 18 of the slit nozzle 10 flows rearward obliquely downward along the chemical liquid guide member 30 and passes through the gap S from the tip (lower end) of the chemical liquid guide member 30. It passes through and falls on the surface of the glass plate G.
  • the belt-like or curtain-like chemical discharge flow is applied to the surface of the glass plate G without being disconnected at the gap S (in the air). Then, a liquid film (coating film) FM AR having a predetermined film thickness is formed.
  • the limit coating gap S L when the strip or curtain of liquid medicine discharge flow from the discharge port 18 of the slit nozzle 10 expires is proportional to the discharge flow rate and surface tension of the chemical solution M AR, the chemical solution M AR Inversely proportional to viscosity and scan speed.
  • the discharge flow rate and the scanning speed is a factor which defines the thickness of the coating film FM AR, the values or the ratio is determined depending on the film thickness setting. Therefore, the limit application gap S L mainly depends on the surface tension and viscosity of the chemical solution MAR . That is, as the surface tension of the liquid medicine M AR is larger, and the smaller the viscosity of the chemical solution M AR, limit coating gap S L increases.
  • water having a large surface tension is used as the solvent of the chemical liquid MAR .
  • Water has a relatively high viscosity (1.01 cp at 20 ° C.), but the surface tension is much larger than that (72 ⁇ 3 N / m at 20 ° C.). Therefore, for example, the limit coating gap S L is about 1 as compared with the case where toluene (thinner) having a viscosity of 0.67 cp (at 20 ° C.) and a surface tension of 28 ⁇ 3 N / m (at 20 ° C.) is used as a solvent. Can be 5 times larger.
  • the limit application gap viewed from the discharge port 18 of the slit nozzle 10 is (L + S L ) due to the chemical solution guiding function or the chemical solution holding function of the chemical solution guiding member 30 as described above. Therefore, even if the dent of the glass plate G is large, even if it is within the normal range, the strip-like or curtain-like chemical liquid discharge flow from the discharge port 18 of the slit nozzle 10 is continuously connected without being cut.
  • a liquid film (coating film) FM AR having a predetermined film thickness can be formed by landing on the surface of the glass plate G as it is.
  • the free end portion 30 a of the chemical solution guide member 30 is not affected even if the glass plate G is mixed with protrusions and depressions in the longitudinal direction (Y direction) of the slit nozzle 10.
  • Each position independently follows the surface height shape (profile) of the glass plate G and deforms or deforms independently. Therefore, a liquid film (coating film) having a predetermined thickness at each position in the longitudinal direction (Y direction).
  • An FM AR can be formed.
  • the chemical coating film FM AR for forming the antireflection film AR on the glass plate G can be uniformly applied without any problem. it can.
  • the glass plate (workpiece) G to be processed may be a glass plate having no texture.
  • the cover glass CG of the solar cell is the glass plate G to be processed and the antireflection film AR is formed on the surface thereof.
  • the slit nozzle 10 and the chemical solution coating apparatus 40 of the above-described embodiment can be applied to a chemical solution coating process for forming an antireflection film on an arbitrary glass plate (for example, a glass substrate) other than the cover glass, and antireflection.
  • the present invention can also be applied to a chemical solution coating process for forming an arbitrary functional film other than the film, such as a stain preventing film, a water repellent film, and an oil repellent film.
  • the present invention can be applied to technical fields having similar problems other than glass plates used for solar cells.
  • the slit nozzle and the chemical application device of the present invention can also be applied to a chemical application process for forming a functional film on a panel in manufacturing a touch panel.
  • the gantry-type coating scanning mechanism was used for the chemical solution coating apparatus of the above embodiment.
  • a coating scanning mechanism of a type in which a slit nozzle is fixed and a flat flow is performed and a glass plate or a workpiece is moved in a horizontal direction on a conveyance path such as a roller conveyance path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Coating Apparatus (AREA)
  • Nozzles (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、太陽電池に用いるガラス板(G)に薬液(MAR)を塗布走査によって塗布するためのスリットノズルであって、ガラス板(G)に薬液(MAR)を吐出するためのスリット状の吐出口(18)の走査方向における前方側のフロントリップ先端部(12a)及び吐出口(18)の走査方向における後方側のリアリップ先端部(14a)を有する長尺状のノズル本体(10)と、吐出口(18)から吐出された薬液(MAR)をガラス板(G)の表面またはその近傍まで案内するように、ノズル本体(10)のフロントリップ先端部(12a)に取り付けられる可撓性の薬液案内部材(30)とを具備するものである。 当該構成により、反りやうねりの大きい太陽電池用ガラス板に対して、薬液を所望の膜厚で安定かつ均一に塗布することができる。

Description

太陽電池製造用のスリットノズル及び薬液塗布装置
 本発明は、太陽電池に用いるガラス板に薬液を塗布するためのスリットノズルおよび薬液塗布装置に関する。
 近年、太陽電池が二酸化炭素を排出しないクリーンかつ再生可能なエネルギー源として見直され、その開発、生産および普及が急速に拡大している。太陽電池には、発電層の基本材料や構造等によって幾つかの種類があり、結晶シリコン系、薄膜シリコン系、化合物系、有機・色素系等が知られている。どのタイプの太陽電池も、発電効率の向上と量産化および低コスト化を目指している。
 具体的には、発電効率を向上させるために発電層の光電変換効率を改善するのはもちろんであるが、それと併せて、反射損失を低く抑えて入射効率を高めるために反射防止膜が用いられ、いったん取り込んだ太陽光を有効に閉じ込めるためにテクスチャ構造が採用されている。また、量産化および低コスト化のために、発電層の表面を保護するカバーガラスには安価なソーダライムガラスが用いられている。従来より、カバーガラスの表面に反射防止膜を形成するための成膜工程には、ロールコート法、グラビアコート法、スピンコート法等の塗布法が多く用いられている。
特開2005-142371
 しかしながら、太陽電池の製造において、ロールコート法やグラビアコート法は、コーティングロールやグラビアロール等の塗布治具の取り扱いが面倒であることや、生産性が低いことが課題となっている。一方、スピンコート法は、ガラス板の大型化への対応が難しいうえ、薬液使用量の多いことが生産性やコスト性の面で問題となっている。そこで、太陽電池の製造においても、特に上記のようにカバーガラスの表面に反射防止膜を形成するための薬液を塗布する処理にも、スリットノズルを用いるスピンレスコート法を適用することが考えられる。
 スリットノズルを用いるスピンレスコート法は、LCD(液晶ディスプレイ)製造の光フォトグラフィ工程においてガラス基板上にレジスト膜を形成する塗布処理に多く用いられている。この種のレジスト塗布処理は、ステージ上または搬送路上で水平に支持されるガラス基板とスリットノズルの吐出口との間に100μm程度の微小な塗布ギャップを設定し、ガラス基板に対してスリットノズルよりレジスト液を吐出させながら、スリットノズルをノズル長手方向と直交する水平な一方向に移動させる。そうすると、スリットノズルの吐出口から帯状またはカーテン状に出たレジスト液がガラス基板上で平坦に延びて、基板一面にレジスト液の塗布膜が形成される。ガラス基板の外にレジスト液を溢さずにレジスト塗布膜を薄くて均一な膜厚に形成できるので、生産性およびコスト性に優れている。
 もっとも、LCD用のガラス基板は、LCDの画像品質を保証するために非常に高い平坦度を有しており、基板内に反りやうねり(または歪み)があっても、その凹凸のレンジは通常数10μm以下である。これに対して、太陽電池用のカバーガラスは、普通のソーダライムガラスや光閉じ込め効果を兼ねるテクスチャ強化ガラスからなり、平坦性が良くない。たとえば、ロールアウト法によって作られるテクスチャ強化ガラスは、ガラス製造工程の際にロールから乗り移った大きなうねりを有することが多々ある。一般に、太陽電池用のカバーガラスは、数100μm以上(大きいのでは1mm程度)のレンジで反りやうねりをもっている。
 このため、従来のスリットノズルを用いて太陽電池用のカバーガラスに薬液を塗布するスピンレスの塗布処理を行うと、塗布走査中にスリットノズルがガラス板の隆起する部分の表面を擦ったり、あるいはガラス板の凹んでいる部分では薬液の帯またはカーテンが空中(塗布ギャップ)で切れて、ガラス板上で塗布膜が欠けることがある。この対策として、最初から十分大きな(1mm程度の)塗布ギャップを設定してそのぶん吐出流量を十分大きくする方法も考えられるが、薬液の使用量が増すだけでなく、反射防止膜の膜厚を制御できなくなり、スリットノズルを使用する意義が失われる。
 本発明は、上記のような従来技術の現状および問題点に鑑みてなされたものであり、太陽電池に用いるガラス板上に薬液を所望の膜厚で安定かつ均一に塗布することができるスリットノズルおよび薬液塗布装置を提供する。
 本発明のスリットノズルは、太陽電池に用いるガラス板に薬液を塗布走査によって塗布するためのスリットノズルであって、前記基板に前記薬液を吐出するためのスリット状の吐出口が形成された下端面と、前記吐出口の走査方向における前方側で前記下端面から上方に延びるフロントリップ先端部と、前記吐出口の走査方向における後方側で前記下端面から上方に延びるリアリップ先端部とを有する長尺状のノズル本体と、前記吐出口から出た前記薬液を前記ガラス板の表面またはその近傍まで案内するように、前記ノズル本体の前記フロントリップ先端部に取り付けられる可撓性の薬液案内部材とを具備する。
 本発明の薬液塗布装置は、太陽電池に用いるガラス板に薬液を塗布するための塗布装置であって、本発明のスリットノズルと、前記スリットノズルに薬液を供給する薬液供給部と、前記ガラス板を水平姿勢で支持するガラス板支持部と、前記ガラス板支持部に支持される前記ガラス板に対し前記吐出口を向けて前記スリットノズルを支持するノズル支持部と、前記スリットノズルが前記ガラス板の上を所定の走査方向に相対的に水平移動するように前記ガラス板支持部と前記ノズル支持部との間で相対的な水平移動を行わせる走査部とを有する。
 本発明のスリットノズルにおいては、その吐出口より帯状またはカーテン状に出た薬液が、薬液案内部材に案内されて、そのまま薬液案内部材の延長としてガラス板の表面に流れ落ち、あるいは薬液案内部材の先端(下端)からギャップ(空中)を通ってガラス板の表面に落ちる。薬液案内部材は、その自由端部がガラス板の表面の高さまたは形状(プロファイル)に追従して各位置で独立に撓み変形し、または撓み変形しないので、ガラス板上の各位置で所定膜厚の液膜(塗布膜)を形成することができる。
 本発明の好適な一態様によれば、薬液案内部材は、フロントリップ先端部から吐出口の下を通ってリアリップ先端部の下まで延びる。
 別の好適な一態様によれば、薬液案内部材は、ノズル本体の長手方向における任意の部位にてその自由端部が他の部位から独立して撓み変形できるように構成されている。
 別の好適な一態様によれば、薬液案内部材は、ノズル本体と同等の長さを有する長尺状の薄い樹脂片からなり、その自由端から長手方向と直交する方向に延びる裂け目が長手方向に多数または無数に分布している。
 別の好適な一態様によれば、薬液案内部材の自由端部は、細い短冊状または毛状に形成されている。
 本発明のスリットノズルおよび薬液塗布装置によれば、上記のような構成および作用により、太陽電池に用いるガラス板上に薬液を所望の膜厚で安定かつ均一に塗布することができる。
本発明の一実施形態におけるスリットノズルの構成(薬液案内部材がカラス板と接触していない状態)を示す断面図である。 上記スリットノズルの構成(薬液案内部材が平坦なガラス板と接触している状態)を示す断面図である。 上記スリットノズルの要部の構成を示す斜視図である。 上記スリットノズルにおける薬液案内部材の構成および撓み機能を示す斜視図である。 実施形態における薬液塗布装置の構成を示す斜視図である。 上記薬液塗布装置の適用可能な太陽電池の一例を模式的に示す断面図である。 実施例における上記スリットノズルおよび上記薬液塗布装置の一作用を示す断面図である。 実施例における上記スリットノズルおよび上記薬液塗布装置の一作用を示す断面図である。 実施例における上記スリットノズルおよび上記薬液塗布装置の一作用を示す正面図である。 一変形例における上記スリットノズルおよび上記薬液塗布装置の一作用を示す断面図である。 一変形例における上記スリットノズルおよび上記薬液塗布装置の一作用を示す断面図である。
 以下、添付図を参照して本発明の好適な実施形態を説明する。
 
[スリットノズルの構成]
 図1~図4に、本発明の一実施形態におけるスリットノズルの構成を示す。このスリットノズル10は、ノズル長手方向に平行に延びる各々半胴体部のフロントリップ12およびリアリップ14を有し、これら一対または1組のリップ12,14を一定板厚のシム16を挟んで突き合わせてボルト(図示せず)で一体結合している。スリット状の吐出口18およびスリット状の吐出通路20のギャップサイズはシム16の厚みで規定される。このように、フロントリップ12、リアリップ14およびシム16が一体になってノズル本体を形成している。
 スリットノズル10内の中心部には、吐出通路20の上端と接続して圧力均一化のためのバッファ部またはマニホールド部を形成するキャビティ22が形成されている。スリットノズル10の上面にはノズル長手方向の中心部に薬液導入口24が設けられ、この薬液導入口24とキャビティ22とは薬液導入通路26で結ばれている。薬液導入口24には薬液供給管28が接続される。なお、キャビティ22、薬液導入口24および薬液導入通路26は、図示の例ではフロントリップ12に形成されているが、リアリップ14側に形成されてもよい。
 フロントリップ12およびリアリップ14は、ノズル長手方向と直交する横幅方向のサイズが吐出口18に向かってテーパ状に細くなるフロントリップ先端部12aおよびリアリップ先端部14aをそれぞれ有している。この実施形態においては、フロントリップ先端部12aに可撓性の薬液案内部材30がたとえばボルト32により着脱可能に取り付けられている。
 この薬液案内部材30は、フロントリップ12と同等の長さを有する長尺状の薄い(たとえば厚さ50μm~数100μm程度の)フッ素樹脂系のプラスチック片からなり、その自由端から長手方向と直交する方向に延びる裂け目34が長手方向に多数または無数に分布していて、細い短冊状または毛状の自由端部30aを有している。ここで、裂け目34は、薬液を通さないほど小さな隙間であるのが好ましい。薬液案内部材30は、かかる構成により、図4に示すように、その長手方向における任意の部位にてその部位の自由端部30aが他の部位から独立して上方に向かって容易に撓み変形できるようになっている。
 図1および図3に示すように、薬液案内部材30は、フロントリップ先端部12aの先端(下端)から斜めに突出し、吐出口18の前(下)を通ってリアリップ先端部14aの前(下)まで延びている。吐出口18から薬液案内部材30の先端までの垂直方向の距離(高低差)Lは、処理対象のガラス板Gが反りやうねりの全くない完全に平坦な理想ガラス板であると仮定した場合の吐出口18とガラス板Gとの間の基準距離間隔D(図2)よりも適当な比で大きな値に選定される。具体的には、たとえば、D=1mm、L=1.5mmに設定される。
 したがって、ガラス板Gが平坦な理想ガラス板である場合の塗布走査においては、図2に示すように、薬液案内部材30の自由端部30aがノズル長手方向の端から端まで全域に亘って少し上方に撓み変形してガラス板Gの表面に軽く接触するようになっている。
 
[薬液塗布装置の構成]
 図5に、上記スリットノズル10を備える太陽電池製造用の薬液塗布装置40の構成を示す。この薬液塗布装置40は、たとえば、図6の(a)に示すような結晶シリコン系の太陽電池においてカバーガラスCGの表面に反射防止膜ARを形成するための薬液塗布処理、あるいは図6の(b)に示すような薄膜シリコン系の太陽電池においてカバーガラスCGの表面に反射防止膜ARを形成するための薬液塗布処理、あるいは図6の(c)に示すような薄膜シリコン系の太陽電池においてガラス基板SGの裏面に反射防止膜ARを形成するための薬液塗布処理に用いられる。以下の説明では、図6の(a)または(b)のカバーガラスCGを処理対象のガラス板Gとしてその表面に反射防止膜ARを形成する場合について説明する。
 図5に示すように、この薬液塗布装置40は、ガラス板(マザーガラス)Gを水平に載置して保持するためのステージ42と、塗布処理時にスリットノズル10をステージ42の上方で矢印方向(X方向)に水平移動つまり走査させるガントリー型の走査部44とを有している。スリットノズル10は、上記のように、走査方向(X方向)と直交する水平方向(Y方向)においてガラス板Gを一端から他端までカバーできる長尺状のノズル本体(12,14,16)とスリット状の吐出口18を有し、吐出口18の近傍に薬液案内部材30を取り付けている。スリットノズル10の薬液導入口24には薬液供給管28を介して薬液供給部46が接続されている。この薬液供給部46は、図示省略するが、薬液容器、吐出ポンプ、流量調整弁、開閉弁等を有している。
 この実施形態における薬液MARは、水を溶媒とし、水溶性の反射防止膜材料(たとえばSiO2やTiO2など)を溶質としている。水は、環境負荷が小さいだけでなく、大きな表面張力を有する点で、この実施形態では最も望ましい溶媒である。
 走査部44は、スリットノズル10を水平に支持する門型の支持体48と、この支持体48をX方向で双方向に直進移動させる走査駆動部50とを有する。この走査駆動部50は、たとえばガイド付きのリニアモータ機構またはボールねじ機構で構成されてよい。支持体50とスリットノズル10とを接続するジョイント部52には、スリットノズル10の高さ位置を変更または調節するためのガイド付きの昇降機構(図示せず)が設けられている。スリットノズル10の高さ位置を調節することで、スリットノズル10の下端面または吐出口18とステージ42上のガラス板Gの表面との間の基準距離間隔D(図2)の寸法を任意に設定または調整することができる。
 
[スリットノズル及び薬液塗布装置の作用]
 図5、図7~図9につき、この実施形態におけるスリットノズル10および薬液塗布装置40の作用を説明する。
 薬液塗布装置40は、図5に示すように、ステージ42上にガラス板Gを載置した状態で、ステージ42の上方をX方向で縦断するようにスリットノズル10を走査部44により一定の速度で走査させながら、薬液供給部46においてスリットノズル10の吐出口18より薬液案内部材30を介してノズル長手方向(Y方向)に延びる幅広の帯状またはカーテン状の吐出流で薬液MARをステージ42上のガラス板Gの表面に供給する。この塗布走査における走査速度および薬液吐出流量は、ガラス板G上に形成される反射防止膜ARの膜厚設定値に応じて所定の値に選ばれる。
 この際、ガラスGの反りやうねりの無い平坦な部分では、図2に示すように、薬液案内部材30の先端部(自由端部)30aがガラス板Gの表面に軽く触れて少し上方に撓んだ状態で、スリットノズル10がその上を通過(走査)する。ガラス板Gは、薬液案内部材30の先端部(自由端部)30aがその表面を擦っても、損傷することはない。スリットノズル10の吐出口18より帯状またはカーテン状に出た薬液MARは、そのまま薬液案内部材30に案内されてガラス板Gの表面に流れ落ち、その流れ落ちた付近で所定膜厚の液膜(塗布膜)FMARを形成する。
 ガラス板Gの反りやうねりに起因して隆起している部分では、図7に示すように、薬液案内部材30の先端部(自由端部)30aが上方に一層撓んだ状態でガラス板Gの表面を擦るようにして、スリットノズル10がその隆起部分の上を通過(走査)する。ここで、ガラスGの隆起が大きいほど、薬液案内部材30の撓みは大きくなる。しかし、ガラス板Gの反りやうねりが通常のレンジ(1mm程度)内であれば、ガラス板Gの隆起している場所でスリットノズル10の吐出口18より帯状またはカーテン状に出た薬液MARは、薬液案内部材30に当たってリアリップ先端部14aの背面側へいったん大きく回り込んでから、薬液案内部材30に沿ってガラス板Gの表面に流れ落ち、その流れ落ちた付近で所定膜厚の液膜(塗布膜)FMARを形成する。
 なお、この実施例におけるガラス板Gは、テクスチャ強化ガラスであり、発電層と接触する裏面には細かい凹凸のテクスチャTXが形成されている(図7~図9)。
 また、ガラス板Gの反りやうねりに起因して凹んでいる部分でも、薬液案内部材30の先端部30aがガラス板Gの表面に接触している限りは、上記と同様にスリットノズル10の吐出口18より帯状またはカーテン状に出た薬液MARはそのまま薬液案内部材30に案内されてガラス板Gの表面に流れ落ち、その流れ落ちた付近で所定膜厚の液膜(塗布膜)FMARを形成する。
 しかし、ガラス板Gの反りやうねりに起因して大きく凹んでいる部分があると、図8に示すように、その位置では薬液案内部材30の先端がガラス板Gの表面に届かないこともある。この場合、スリットノズル10の吐出口18より帯状またはカーテン状に出た薬液MARは、薬液案内部材30に沿って斜め下方の後方へ流れ、薬液案内部材30の先端(下端)からギャップSを通ってガラス板Gの表面に落ちる。ここで、ギャップSが所定の限界塗布ギャップSL以下であれば、帯状またはカーテン状の薬液吐出流はギャップS(空中)で切れることなく連続的に繋がったままガラス板Gの表面に着液して、所定膜厚の液膜(塗布膜)FMARを形成する。
 塗布走査中に、スリットノズル10の吐出口18からの帯状またはカーテン状の薬液吐出流が切れるときの限界塗布ギャップSLは、薬液MARの吐出流量および表面張力に比例し、薬液MARの粘度および走査速度に反比例する。上記のように、吐出流量と走査速度は、塗布膜FMARの膜厚を規定するファクタであり、それらの値ないし比は膜厚設定値に依存して決められる。したがって、限界塗布ギャップSLは、主に薬液MARの表面張力および粘度に依存する。すなわち、薬液MARの表面張力が大きいほど、そして薬液MARの粘度が小さいほど、限界塗布ギャップSLは大きくなる。
 この実施形態では、薬液MARの溶媒に表面張力の大きな水を用いている。水は、粘度も比較的大きいが(1.01cp at 20℃)、それを補って余るほど表面張力がさらに大きい(72-3N/m at 20℃)。したがって、たとえば、粘度が0.67cp(at 20℃)で表面張力が28-3N/m(at 20℃)のトルエン(シンナー)を溶媒に用いる場合よりも限界塗布ギャップSLを約1.5倍大きくすることができる。
 いずれにしても、この実施形態においては、上記のような薬液案内部材30の薬液案内機能ないし薬液保持機能により、スリットノズル10の吐出口18から見た限界塗布ギャップは(L+SL)である。したがって、ガラス板Gの凹みが大きくても、通常のレンジ内であれば、その付近でも、スリットノズル10の吐出口18からの帯状またはカーテン状の薬液吐出流を切らさずに連続的に繋げたままガラス板Gの表面に着液させ、所定膜厚の液膜(塗布膜)FMARを形成することができる。
 また、この実施形態においては、図9に示すように、スリットノズル10の長手方向(Y方向)でガラス板Gに隆起や凹みが混在していても、薬液案内部材30の自由端部30aが各位置でガラス板Gの表面高さ形状(プロファイル)に追従して各々独立に撓み変形または非撓み変形するので、長手方向(Y方向)の各位置で所定膜厚の液膜(塗布膜)FMARを形成することができる。
 このように、この実施形態においては、ガラス板Gに隆起や凹みがあっても、ガラス板G上に反射防止膜ARを形成するための薬液塗布膜FMARを隈なく均一に塗布することができる。
 
[他の実施形態又は変形例]
 上記作用の説明では、図7~図9に示すように、ガラス板Gの厚さにうねりがある場合を取り上げた。しかし、上記の実施形態においては、図10および図11に示すように、厚さの均一なガラス板Gに歪みによる凹凸がある場合も、上記と同様の作用が奏される。図示省略するが、ガラス板Gに反りがある場合も同様である。また、図10および図11に示すように、処理対象のガラス板(ワークピース)Gはテクスチャの無いガラス板であってもよい。
 上記の実施形態では、太陽電池のカバーガラスCGを処理対象のガラス板Gとしてその表面に反射防止膜ARを形成する場合について説明した。しかし、上記実施形態のスリットノズル10および薬液塗布装置40は、カバーガラス以外の任意のガラス板(たとえばガラス基板)に反射防止膜を形成するための薬液塗布処理に適用可能であるとともに、反射防止膜以外の任意の機能膜、たとえば汚れ防止膜や撥水膜、撥油膜等を形成するための薬液塗布処理にも適用可能である。さらには、太陽電池に用いるガラス板以外にも、同様の課題を抱えている技術分野に本発明は適用可能である。たとえば、タッチパネルの製造においてパネル上に機能膜を形成するための薬液塗布処理にも、本発明のスリットノズルおよび薬液塗布装置は適用可能である。
 上記実施形態の薬液塗布装置は、ガントリー型の塗布走査機構を用いた。しかし、たとえば、スリットノズルを固定して平流し搬送路たとえばコロ搬送路上でガラス板またはワークピースを水平方向に移動させる方式の塗布走査機構を用いることも可能である。
  10  スリットノズル
  12  フロントリップ
  14  リアリップ
  12a フロントリップ先端部
  18  吐出口
  30  薬液案内部材
  30a (薬液案内部材の)先端部
  34  (薬液案内部材の)裂け目
  40  薬液塗布装置
  42  ステージ
  44  走査部
  46  薬液供給部

Claims (12)

  1.  太陽電池に用いるガラス板に薬液を塗布走査によって塗布するためのスリットノズルであって、
     前記基板に前記薬液を吐出するためのスリット状の吐出口が形成された下端面と、前記吐出口の走査方向における前方側で前記下端面から上方に延びるフロントリップ先端部と、前記吐出口の走査方向における後方側で前記下端面から上方に延びるリアリップ先端部とを有する長尺状のノズル本体と、
     前記吐出口から出た前記薬液を前記ガラス板の表面またはその近傍まで案内するように、前記ノズル本体の前記フロントリップ先端部に取り付けられる可撓性の薬液案内部材と
     を具備するスリットノズル。
  2.  前記薬液案内部材は、前記フロントリップ先端部から前記吐出口の下を通って前記リアリップ先端部の下まで延びる、請求項1に記載の塗布ノズル。
  3.  前記薬液案内部材は、前記ノズル本体の長手方向における任意の部位にてその自由端部が他の部位から独立して撓み変形できるように構成されている、請求項1に記載のスリットノズル。
  4.  前記薬液案内部材は、前記ノズル本体と同等の長さを有する長尺状の薄い樹脂片からなり、その自由端から長手方向と直交する方向に延びる裂け目が長手方向に多数または無数に分布している、請求項3に記載のスリットノズル。
  5.  前記薬液案内部材の自由端部は、細い短冊状または毛状に形成されている、請求項3に記載のスリットノズル。
  6.  太陽電池に用いるガラス板に薬液を塗布するための薬液塗布装置であって、
     請求項1に記載のスリットノズルと、
     前記スリットノズルに薬液を供給する薬液供給部と、
     前記ガラス板を水平姿勢で支持するガラス板支持部と、
     前記ガラス板支持部に支持される前記ガラス板に対し前記吐出口を向けて前記スリットノズルを支持するノズル支持部と、
     前記スリットノズルが前記ガラス板の上を所定の走査方向に相対的に水平移動するように前記ガラス板支持部と前記ノズル支持部との間で相対的な水平移動を行わせる走査部と
     を有する薬液塗布装置。
  7.  前記薬液は、前記ガラス板上に機能膜を形成するための溶液である、請求項6に記載の薬液塗布装置。
  8.  前記機能膜は反射防止膜である、請求項7に記載の薬液塗布装置。
  9.  前記薬液の溶媒は水である、請求項6に記載の薬液塗布装置。
  10.  前記ガラス板は太陽電池のカバーガラスを構成する、請求項6に記載の薬液塗布装置。
  11.  前記ガラス板はソーダライムガラスである、請求項6に記載の薬液塗布装置。
  12.  前記ガラス板はテクスチャ強化ガラスである、請求項6に記載の薬液塗布装置。
PCT/JP2013/000982 2012-03-06 2013-02-21 太陽電池製造用のスリットノズル及び薬液塗布装置 WO2013132771A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049167 2012-03-06
JP2012049167A JP2013187236A (ja) 2012-03-06 2012-03-06 太陽電池製造用のスリットノズル及び薬液塗布装置

Publications (1)

Publication Number Publication Date
WO2013132771A1 true WO2013132771A1 (ja) 2013-09-12

Family

ID=49116267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000982 WO2013132771A1 (ja) 2012-03-06 2013-02-21 太陽電池製造用のスリットノズル及び薬液塗布装置

Country Status (3)

Country Link
JP (1) JP2013187236A (ja)
TW (1) TW201336591A (ja)
WO (1) WO2013132771A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511180B (zh) * 2013-09-24 2015-12-01 Univ Nat Chiao Tung 薄膜塗佈方法
CN107921461B (zh) * 2016-03-24 2019-08-20 中外炉工业株式会社 向曲面基材涂敷涂敷液的涂敷装置和涂敷方法
CN106229278B (zh) * 2016-08-17 2018-10-09 扬州杭集洗漱用品产业投资有限公司 一种太阳能电池生产工艺用硅片快速绒面装置
US10752991B2 (en) * 2017-02-06 2020-08-25 Applied Materials, Inc. Half-angle nozzle
WO2018198863A1 (ja) * 2017-04-28 2018-11-01 東京エレクトロン株式会社 塗布処理装置、塗布処理方法及び光学膜形成装置
CN109539104A (zh) * 2018-10-22 2019-03-29 扬州新思路光电科技有限公司 节能led太阳能路灯
JP7145797B2 (ja) * 2019-03-18 2022-10-03 日本碍子株式会社 ハニカム構造体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104877U (ja) * 1989-02-06 1990-08-21
JPH0474563A (ja) * 1990-07-13 1992-03-09 Fuji Photo Film Co Ltd ガラス乾板製造方法及び装置
JPH10174919A (ja) * 1996-12-18 1998-06-30 Voith Sulzer Papiermas Gmbh 特に紙またはボール紙からなる、移動する材料ウェブに液状またはペースト状塗布媒体を直接的または間接的に塗布するための装置
JPH11138749A (ja) * 1997-11-12 1999-05-25 Nippon Reinz Co Ltd スクリーンコーティング用スキージー
JPH11330508A (ja) * 1998-05-15 1999-11-30 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールおよびその製造方法
JP2007286554A (ja) * 2006-04-20 2007-11-01 Kaneka Corp 反射防止膜、反射防止基材、及び当該反射防止基材が設けられた光電変換装置
JP2011222752A (ja) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd 太陽電池モジュール及び太陽電池セル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104877U (ja) * 1989-02-06 1990-08-21
JPH0474563A (ja) * 1990-07-13 1992-03-09 Fuji Photo Film Co Ltd ガラス乾板製造方法及び装置
JPH10174919A (ja) * 1996-12-18 1998-06-30 Voith Sulzer Papiermas Gmbh 特に紙またはボール紙からなる、移動する材料ウェブに液状またはペースト状塗布媒体を直接的または間接的に塗布するための装置
JPH11138749A (ja) * 1997-11-12 1999-05-25 Nippon Reinz Co Ltd スクリーンコーティング用スキージー
JPH11330508A (ja) * 1998-05-15 1999-11-30 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールおよびその製造方法
JP2007286554A (ja) * 2006-04-20 2007-11-01 Kaneka Corp 反射防止膜、反射防止基材、及び当該反射防止基材が設けられた光電変換装置
JP2011222752A (ja) * 2010-04-09 2011-11-04 Hitachi Chem Co Ltd 太陽電池モジュール及び太陽電池セル

Also Published As

Publication number Publication date
JP2013187236A (ja) 2013-09-19
TW201336591A (zh) 2013-09-16

Similar Documents

Publication Publication Date Title
WO2013132771A1 (ja) 太陽電池製造用のスリットノズル及び薬液塗布装置
TWI579059B (zh) A carved roller for coating with a hydrophilic DLC film
US8561535B2 (en) Method of screen printing on 3D glass articles
JP6180486B2 (ja) フュージョンガラス板
CN104317110B (zh) 一种转印版
KR101085894B1 (ko) 임프린트 정렬 과정에서의 마찰 감소방법
TWI457184B (zh) Ink jet coating apparatus and method
TWI741426B (zh) 塗布裝置及塗布方法
CN101160181A (zh) 涂敷装置及涂敷方法
KR20070062904A (ko) 인쇄 방법 및 인쇄 장치
CN105983511B (zh) 涂布装置和涂布方法
KR101581985B1 (ko) 유리 시트의 반송용 액체-토출 베어링
KR100853378B1 (ko) 대면적 기판의 접촉식 세정장치
CN202166827U (zh) 一种涂布设备
WO2022185467A1 (ja) 塗布装置及び塗布方法
KR20110109946A (ko) 레지스트 도포 방법 및 레지스트 도포 장치, 및 그 레지스트 도포 방법을 이용한 포토마스크 블랭크 및 포토마스크의 제조 방법
JP2012232269A (ja) 基板浮上型搬送機構用スリットコート式塗布装置
JP4259107B2 (ja) 液滴吐出ヘッド清掃装置、液滴吐出ヘッド清掃方法および液滴吐出装置
JP2014046220A (ja) 基材への塗料コーティング方法と塗料コーティング装置
US7416758B2 (en) Slit coater
JP5570538B2 (ja) 基材への機能性コーティング剤コーティング方法とコーティング装置
JP5265291B2 (ja) 枚葉シートの塗布方法
JP2014176811A (ja) ロールコータ
CN220239108U (zh) 一种狭缝涂布装置
JP2001162201A (ja) 塗布剤の塗布装置およびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757196

Country of ref document: EP

Kind code of ref document: A1