WO2013129380A1 - 車両検出装置及び車両検出方法 - Google Patents

車両検出装置及び車両検出方法 Download PDF

Info

Publication number
WO2013129380A1
WO2013129380A1 PCT/JP2013/054911 JP2013054911W WO2013129380A1 WO 2013129380 A1 WO2013129380 A1 WO 2013129380A1 JP 2013054911 W JP2013054911 W JP 2013054911W WO 2013129380 A1 WO2013129380 A1 WO 2013129380A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
vehicle
waveform
vehicle detection
pixel output
Prior art date
Application number
PCT/JP2013/054911
Other languages
English (en)
French (fr)
Inventor
光範 中村
佐藤 宏
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/380,011 priority Critical patent/US9081086B2/en
Priority to JP2014502240A priority patent/JP5930019B2/ja
Priority to CN201380011960.1A priority patent/CN104145193B/zh
Priority to EP13754138.9A priority patent/EP2821810B1/en
Publication of WO2013129380A1 publication Critical patent/WO2013129380A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a vehicle detection device and a vehicle detection method for detecting a vehicle on a road surface by receiving an electromagnetic wave radiated from an object.
  • Patent Document 1 is disclosed as an example.
  • the vehicle is detected by detecting the shape of the windshield and the hood of the vehicle from the received radio wave.
  • the present invention has been proposed in view of the above-described circumstances, and provides a vehicle detection device and a vehicle detection method capable of accurately detecting a vehicle using electromagnetic waves radiated from an object. Objective.
  • a vehicle detection apparatus includes an antenna that detects an electromagnetic wave radiated from an object, an image generation unit that generates a radio wave image based on the electromagnetic wave received by the antenna, and an electromagnetic wave received by the antenna.
  • a road surface area detection unit that detects a road surface area from a radio wave image based on the image, and a symmetry axis setting unit that sets a part having a length equal to or greater than a predetermined value in the horizontal direction at a boundary part of the road surface area as a first symmetry axis;
  • a road center area that sets a horizontal center line at the center of the radio image in the vertical direction and sets the area between the center line and the first axis of symmetry as a road surface reflection area; and a pixel output in the road surface reflection area
  • a vehicle detection unit that detects the road surface reflection area as a vehicle when the characteristics of the waveform are approximated.
  • the vehicle detection method generates a radio wave image based on the electromagnetic wave received by the antenna, detects a road surface area from the radio wave image based on the electromagnetic wave received by the antenna, and detects the road surface area.
  • a portion having a length equal to or greater than a predetermined value in the horizontal direction at the boundary portion is set as a first symmetry axis, a horizontal center line is set at the image center in the vertical direction of the radio wave image, and the first symmetry with this center line
  • the road surface reflection area is set as the road surface reflection area
  • the waveform of the pixel output in the road surface reflection area is compared with the waveform of the pixel output in the road surface area.
  • a vehicle detection apparatus includes an antenna that detects an electromagnetic wave radiated from an object, an image generation unit that generates a radio wave image based on the electromagnetic wave received by the antenna, and a pixel output of the radio wave image.
  • the vehicle detects the inflection point of the pixel output from the pixel output waveform generated by scanning the radio wave image in the vertical direction, and determines the symmetry of the pixel output waveform with the inflection point as the second symmetry axis.
  • the vehicle detection part which detects this is provided.
  • FIG. 1 is a block diagram showing a configuration of a vehicle detection device according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a flowchart showing a processing procedure of vehicle detection processing by the vehicle detection device according to the first embodiment.
  • FIG. 3 is a plan view illustrating an example of a radio wave image generated by the image generation unit 3.
  • FIG. 4 is a side view of the relationship between the vehicle 31 and the host vehicle shown in FIG.
  • FIG. 5 is a graph showing a pixel output waveform detected by the vehicle detection device according to the first embodiment.
  • FIG. 6 is a graph showing the result of frequency analysis performed on the pixel output waveform of FIG.
  • FIG. 7 is a view for explaining the operation of the vehicle detection apparatus according to the second embodiment to which the present invention is applied, and
  • FIG. 7A is a plan view showing a scanning axis on the radio wave image.
  • (B) is a graph showing the relationship between the pixel output on the operation axis and the scanning position.
  • the vehicle detection apparatus 1 includes an antenna 2 that detects an electromagnetic wave radiated from an object, an image generation unit 3 that generates a radio wave image based on the electromagnetic wave received by the antenna 2, and an electromagnetic wave that is received by the antenna 2.
  • a road surface area detection unit 4 for detecting a road surface area from a radio wave image, a symmetry axis setting unit 5 for setting a first symmetry axis on the radio wave image, and a road surface for setting a road surface reflection area on the radio wave image
  • a reflection region setting unit 6 and a vehicle detection unit 7 that detects a vehicle by comparing the waveform of the pixel output in the road surface reflection region with the waveform of the pixel output in the road surface region.
  • the vehicle detection device 1 uses the fact that a metal vehicle reflects an electromagnetic wave emitted from a road surface, and the waveform and characteristics of the electromagnetic wave emitted from the road surface are approximated on a radio wave image. Is recognized as a vehicle. And in this embodiment, the case where the vehicle detection apparatus 1 is mounted in a vehicle is shown as an example, and the case where a vehicle existing in the traveling direction of the host vehicle is detected by directing the antenna 2 in the traveling direction of the host vehicle. explain.
  • the antenna 2 is composed of an array antenna in which a plurality of antennas are arrayed, a mechanical scan mechanism, and a lens.
  • the antenna 2 includes an array antenna having the number of elements of one column ⁇ 20 rows, and detects electromagnetic waves having a frequency of 100 to 300 GHz. It is set to be.
  • a plurality of array antennas may be provided to acquire a two-dimensional image at the same time, and the mechanical scan mechanism may be omitted.
  • the image generation unit 3 generates a two-dimensional radio wave image based on the received electromagnetic wave amount of the electromagnetic wave received by the antenna 2 and may be configured by a radio wave camera together with the antenna 2.
  • the road surface area detection unit 4 extracts an area where the change in received power of the electromagnetic wave received by the antenna 2 is within a predetermined value (for example, 5%) from the radio wave image, and detects this area as a road surface area. This utilizes the feature that the received power of electromagnetic waves radiated from a flat object such as a road surface changes within a certain range. Further, the road surface area may be detected by other methods. For example, the antenna 2 may receive horizontal polarization and vertical polarization and detect the road area based on the polarization ratio.
  • the symmetry axis setting unit 5 detects a horizontal portion from the detected boundary portion of the road surface area, and sets it as the first symmetry axis when the length of the horizontal portion is a predetermined value or more.
  • the road surface reflection area setting unit 6 sets a horizontal center line at the center of the image in the vertical direction of the radio wave image, and sets between the center line and the first symmetry axis as a road surface reflection area.
  • the vehicle detection unit 7 compares the waveform of the pixel output in the road surface reflection region with the waveform of the pixel output in the road surface region, and detects the road surface reflection region as a vehicle when the waveform characteristics are approximate.
  • step S101 the antenna 2 is scanned to receive electromagnetic waves radiated from the surroundings of the host vehicle, and the image generator 3 generates a radio wave image.
  • An example of the generated radio wave image is shown in FIG.
  • a vehicle 31 traveling in the same direction as the host vehicle is captured in front of the host vehicle.
  • the road surface area detection unit 4 detects a road surface area from the radio wave image. For example, an area where the change in received power of the electromagnetic wave received by the antenna 2 is within a predetermined value (5%) is detected as a road surface area. In the radio wave image shown in FIG. 3, a hatched area 32 is detected as a road surface area.
  • the method for detecting the road surface area may be a known method, and is not limited to the method described above.
  • the symmetry axis setting unit 5 detects a horizontal portion from the boundary portion of the road surface area, excluding the horizon and the edge of the image, and when the length of the horizontal portion is a predetermined value or more. Set as the first axis of symmetry.
  • the portion 33 in contact with the vehicle 31 in the boundary portion of the road surface region 32 is horizontal.
  • the length of the horizontal portion is compared with a predetermined value set in advance. If the length is equal to or greater than the predetermined value, the horizontal portion is set as the first symmetry axis 33.
  • step S104 the road surface reflection area setting unit 6 sets a horizontal center line at the center of the image in the vertical direction of the radio wave image, and the area between the center line and the first symmetry axis 33 is used as the road surface reflection area.
  • the center line 34 is set at the center of the radio wave image, and the area between the center line 34 and the first symmetry axis 33 is set as the road surface reflection region 35.
  • the center of the radio wave image corresponds to the height at which the antenna 2 is installed, and the influence of reflection from the road surface is only below the center line 34. Therefore, the center line 34 is set, and the road surface reflection area 35 is set below the center line 34.
  • the road surface reflection area setting unit 6 changes the position of the center line 34 according to the behavior of the host vehicle. For example, when there is vehicle vibration, an expected vibration angle is set in advance, and the position of the center line 34 is corrected in accordance with the vibration angle to correct the displacement of the ground plane. Furthermore, the position of the center line 34 is corrected according to the acceleration detected by the sensor when the vehicle decelerates or accelerates, and the tilt due to rolling is corrected when the vehicle turns.
  • step S105 the vehicle detection unit 7 compares the pixel output waveform in the road surface reflection region 35 with the pixel output waveform in the road surface region 32 to detect the vehicle.
  • FIG. 4 is a side view of the relationship between the vehicle 31 and the host vehicle shown in FIG.
  • the center line 34 is at the height H position of the vehicle 31.
  • the first axis of symmetry 33 is a position on the road surface of the vehicle 31, and when the distance from the antenna 2 is D, the distance D can be obtained as follows.
  • the angle ⁇ can be obtained from the position of the target axis 33 on the radio wave image, it can be expressed by Expression (1) using the installation height H of the antenna 2.
  • the pixel IR obtained from Expression (2) is a pixel at a position that is symmetric with respect to the pixel IV with respect to the first symmetry axis 33. Therefore, when the pixel IV reflects the electromagnetic wave from the road surface at a point on the vehicle, the electromagnetic wave radiated from the pixel IR is reflected. Therefore, the positions of the pixels IR that are symmetric with respect to the first symmetry axis 33 are obtained for all the pixels in the road surface reflection region 35, and the waveform of the pixel output at each point is compared.
  • FIG. 5 compares the pixel output waveform of the pixel IV with the pixel output waveform of the pixel IR when the position of the pixel IV is changed.
  • the pixel output of the pixel IV is lower than the pixel output of the pixel IR because it reflects the electromagnetic wave radiated from the pixel IR, but the shape of the pixel output waveform of the pixel IV is the waveform of the pixel output of the pixel IR. Approximate to the shape.
  • FIG. 6 shows an analysis result when Fourier transform is performed as frequency analysis, and the frequency bands are the same although the intensities are different.
  • the vehicle detection unit 7 determines whether the frequency band of the pixel IV and the pixel IR is within a predetermined value, for example, within 10%. If the frequency band is within the predetermined value, the detection result of the road surface reflection region 35 is It is determined that the electromagnetic wave radiated from the road surface region 32 is reflected. Accordingly, the vehicle detection unit 7 determines that the road surface reflection region 35 is the vehicle 31 and detects the vehicle 31 from the radio wave image.
  • the radio wave image may be acquired as a moving image, and pixel outputs at a plurality of time points may be accumulated to compare waveforms.
  • the resolution of the radio wave image is improved, so that the waveforms can be compared with high resolution.
  • the vehicle detection unit 7 calculates the distance D to the first symmetry axis 33 according to the equation (1), and outputs the pixels at a plurality of time points only when the variation of the distance D is within a predetermined value, for example, 10%. Compare waveforms.
  • the detection result becomes unstable even if the pixel output is accumulated at a plurality of times. Therefore, the vehicle is detected by accumulating pixel outputs at a plurality of time points only when the variation in the distance D is small.
  • the waveform of the pixel output in the road surface area 32 may be compared at a plurality of points in time, and the waveform comparison for detecting the vehicle may be performed only when the fluctuation becomes a predetermined value or less. This is because when the road surface state is changed and the waveform of the pixel output in the road surface region 32 is greatly changed at a plurality of time points, the vehicle cannot be accurately detected even if the vehicle is detected.
  • the vehicle detection unit 7 may immediately detect the road surface reflection area 35 as a traveling vehicle when the distance D to the first symmetry axis 33 changes by a predetermined value or more at a plurality of time points. Since the change of the distance D can be determined as an object having a relative speed, the object is determined as a vehicle.
  • the vehicle detection processing by the vehicle detection device 1 according to the present embodiment ends.
  • the waveform characteristics are approximated by comparing the pixel output waveform in the road surface reflection region with the pixel output waveform in the road surface region.
  • the vehicle since the road surface reflection area is detected as a vehicle, the vehicle can be accurately detected by utilizing the fact that a metal vehicle reflects electromagnetic waves from the road surface.
  • the characteristics of the waveform are compared using frequency analysis, the characteristics of the waveform can be compared regardless of the brightness, and the vehicle is detected more accurately. be able to.
  • the pixel outputs at a plurality of time points are accumulated and the waveforms are compared, so that the resolution of the radio wave image can be improved and the waveforms can be compared with high resolution. .
  • the vehicle detection device 1 when the variation of the distance D to the first symmetry axis 33 is within a predetermined value, the pixel output waveforms are compared at a plurality of time points, so that it is stable.
  • the vehicle detection can be executed only when the vehicle can be detected.
  • the waveform of the pixel output in the road surface region 32 is compared at a plurality of time points, and the waveform comparison is performed to detect the vehicle when the fluctuation is equal to or less than a predetermined value. Therefore, it is possible to prevent the detection of the vehicle from becoming unstable when the road surface state is changing.
  • the vehicle detection device 1 when the distance D to the first symmetry axis 33 changes by a predetermined value or more at a plurality of time points, the road surface reflection area 35 is detected as a traveling vehicle. A traveling vehicle can be easily detected.
  • the position of the center line 34 is changed according to the behavior of the host vehicle, so that the vehicle can be detected stably regardless of the behavior of the host vehicle.
  • the vehicle detection apparatus uses a metal vehicle that reflects an electromagnetic wave emitted from a road surface, and generates a pixel output generated by scanning a pixel output of a radio wave image in a vertical direction of the radio wave image.
  • the vehicle is detected by determining the symmetry of the waveform.
  • the case where the vehicle detection device is mounted on a vehicle is shown as an example, and the case where a vehicle existing in the traveling direction of the host vehicle is detected by directing the antenna 2 in the traveling direction of the host vehicle. Will be described.
  • the vehicle detection apparatus 1 includes an antenna 2 that detects an electromagnetic wave radiated from an object and an image generation unit 3 that generates a radio wave image based on the electromagnetic wave received by the antenna 2 in the configuration illustrated in FIG. And the vehicle detection part 7 should just be provided at least. That is, the vehicle detection apparatus according to the second embodiment may not include the road surface area detection unit 4, the symmetry axis setting unit 5, and the road surface reflection area setting unit 6.
  • the vehicle detection unit 7 in the present embodiment detects an inflection point of the pixel output from the waveform of the pixel output generated by scanning the pixel output of the radio wave image in the vertical direction of the radio wave image, and sets the inflection point to the second inflection point.
  • the vehicle is detected by determining the symmetry of the waveform of the pixel output with the symmetry axis.
  • the antenna 2 and the image generation unit 3 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the vehicle detection unit 7 generates a pixel output waveform by scanning the pixel output of the radio wave image in the vertical direction of the radio wave image. Specifically, as shown in FIG. 7A, the pixel output of the radio wave image is continuously output along each of the plurality of scanning axes Ax1, Ax2, and Ax3 on the radio wave image, and FIG. The pixel output waveforms PAx1 to PAx3 as shown in FIG. In FIG. 7B, the horizontal axis indicates the pixel output, and the vertical axis indicates the scanning position on the scanning axes Ax1, Ax2, and Ax3.
  • the pixel output waveform PAx1 is a waveform along the scanning axis Ax1
  • the pixel output waveform PAx2 is a waveform along the scanning axis Ax2
  • the pixel output waveform PAx3 is a waveform along the scanning axis Ax3.
  • the vehicle detection unit 7 detects the pixel output inflection points CP from the pixel output waveforms PAx1 to PAx3 shown in FIG. For example, the vehicle detection unit 7 detects a scanning position on the scanning axes Ax1 to Ax3 where the pixel output becomes a maximum value or a minimum value as the inflection point CP of the pixel output.
  • the vehicle detection unit 7 may detect the inflection points CP for each of the pixel output waveforms PAx1 to PAx3, or may use the average value of the inflection points detected for each of the waveforms PAx1 to PAx3 as the inflection point CP. Good.
  • the vehicle detection unit 7 detects the vehicle by determining the symmetry of the waveform PAx1 to PAx3 of the pixel output with the detected inflection point CP as the second symmetry axis. For example, the vehicle detection unit 7 determines whether or not the waveforms PAx1 to PAx3 of the pixel outputs are symmetric with respect to the second symmetry axis, with a straight line passing through the inflection point CP as the second symmetry axis. If the pixel output waveforms PAx1 to PAx3 are symmetrical, it is determined that the vehicle is on the scanning axes Ax1 to Ax3.
  • the second symmetry axis corresponds to the first symmetry axis 33 shown in FIG.
  • the pixel IR (see FIG. 4) obtained from the equation (2) is a pixel that is symmetric with the pixel IV with respect to the first symmetry axis 33, and the pixel IV emits an electromagnetic wave emitted from the pixel IR. Because it is reflected. Accordingly, when the symmetry about the inflection point CP is recognized in the waveform PAx1 to PAx3 of the pixel output, it can be determined that the inflection point CP on the scanning axes Ax1 to Ax3 has the first symmetry axis 33.
  • the vehicle 31 is on the scanning axes Ax1 to Ax3. Specifically, it can be determined that the vehicle 31 is above the inflection point CP on the scanning axes Ax1 to Ax3. More specifically, when the vehicle detection apparatus according to the second embodiment sets the center line 34, it is determined that the vehicle 31 is between the inflection point CP on the scanning axes Ax1 to Ax3 and the center line 34. can do.
  • pixel outputs at a plurality of time points may be accumulated to compare waveforms.
  • the vehicle may be detected by accumulating pixel outputs at a plurality of time points only when the variation in the distance D is small.
  • the vehicle detection device includes the road surface area detection unit 4
  • only the waveform of the pixel output in the road surface area 32 is compared at a plurality of points in time, and the fluctuation becomes a predetermined value or less.
  • a waveform comparison for detecting a vehicle only may be performed.
  • the inflection point CP is detected from the waveforms PAx1 to PAx3 of the pixel outputs obtained by scanning the radio wave image in the vertical direction, and the inflection point CP is obtained.
  • the vehicle 31 is detected by discriminating the symmetry of the waveform PAx1 to PAx3 of the pixel output having the second axis of symmetry. Therefore, the vehicle can be accurately detected by utilizing the fact that the metal vehicle reflects electromagnetic waves from the road surface.
  • the road surface reflection region is determined when the waveform characteristics are approximated by comparing the pixel output waveform in the road surface reflection region with the pixel output waveform in the road surface region. Detect as a vehicle. Alternatively, an inflection point is detected from the waveform scanned in the vertical direction, and the vehicle is detected by determining the symmetry of the waveform of the pixel output with the inflection point as the second symmetry axis. In this way, the vehicle can be accurately detected by utilizing the fact that the metal vehicle reflects electromagnetic waves from the road surface. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 車両検出装置1は、物体から放射される電磁波を検知するアンテナ2と、アンテナ2で受信した電磁波に基づいて電波画像を生成する画像生成部3と、電波画像の中から路面領域を検出する路面領域検出部4と、路面領域の境界部分において水平方向に所定値以上の長さがある部分を第1の対称軸として設定する対称軸設定部5と、電波画像の垂直方向の画像中央に水平な中心線を設定し、中心線と第1の対称軸との間を路面反射領域として設定する路面反射領域設定部6と、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合には路面反射領域を車両として検出する車両検出部7とを備える。

Description

車両検出装置及び車両検出方法
 本発明は、物体から放射される電磁波を受信して路面上にある車両を検出する車両検出装置及び車両検出方法に関する。
 近年、物体から放射される電波を計測することによって、車両等の物体を検出する技術が開発されており、その一例として特許文献1が開示されている。特許文献1に開示された電波受信システムでは、受信した電波から車両のフロントガラスやボンネットの形状を検出することによって車両を検出していた。
特開2006-322833号公報
 しかしながら、上述した特許文献1に開示された電波受信システムでは、車両の一部の形状を検出することによって車両を認識しているので、似たような形状をしたものが存在していれば誤検出が生じてしまうという問題点があった。
 そこで、本発明は、上述した実情に鑑みて提案されたものであり、物体から放射される電磁波を利用して正確に車両を検出することのできる車両検出装置及び車両検出方法を提供することを目的とする。
 本発明の第1の態様に係わる車両検出装置は、物体から放射される電磁波を検知するアンテナと、アンテナで受信した電磁波に基づいて電波画像を生成する画像生成部と、アンテナで受信した電磁波に基づいて電波画像の中から路面領域を検出する路面領域検出部と、路面領域の境界部分において水平方向に所定値以上の長さがある部分を第1の対称軸として設定する対称軸設定部と、電波画像の垂直方向の画像中央に水平な中心線を設定し、この中心線と第1の対称軸との間を路面反射領域として設定する路面反射領域設定部と、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合には路面反射領域を車両として検出する車両検出部とを備えている。
 本発明の第2の態様に係わる車両検出方法は、アンテナで受信した電磁波に基づいて電波画像を生成し、アンテナで受信した電磁波に基づいて電波画像の中から路面領域を検出し、路面領域の境界部分において水平方向に所定値以上の長さがある部分を第1の対称軸として設定し、電波画像の垂直方向の画像中央に水平な中心線を設定し、この中心線と第1の対称軸との間を路面反射領域として設定し、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合には路面反射領域を車両として検出する。
 本発明の第3の態様に係わる車両検出装置は、物体から放射される電磁波を検知するアンテナと、アンテナで受信した電磁波に基づいて電波画像を生成する画像生成部と、電波画像の画素出力を電波画像の垂直方向に走査して生成される画素出力の波形から画素出力の変曲点を検出し、変曲点を第2の対称軸とした画素出力の波形の対称性を判別して車両を検出する車両検出部とを備えている。
図1は、本発明を適用した第1実施形態に係る車両検出装置の構成を示すブロック図である。 図2は、第1実施形態に係る車両検出装置による車両検出処理の処理手順を示すフローチャートである。 図3は、画像生成部3によって生成された電波画像の一例を示す平面図である。 図4は、図3に示す車両31と自車両との間の関係を側方からみた図である。 図5は、第1実施形態に係る車両検出装置によって検出された画素出力の波形を示すグラフである。 図6は、図5の画素出力の波形に対して周波数解析を行った結果を示すグラフである。 図7は、本発明を適用した第2実施形態に係わる車両検出装置の動作を説明するための図であり、図7(a)は電波画像上の走査軸を示す平面図であり、図7(b)は前記した操作軸上の画素出力と走査位置との関係を示すグラフである。
 以下、本発明を適用した実施形態について図面を参照して説明する。
(第1実施形態)
 [車両検出装置の構成]
 図1を参照して、第1実施形態に係る車両検出装置の構成を説明する。本実施形態に係る車両検出装置1は、物体から放射される電磁波を検知するアンテナ2と、アンテナ2で受信した電磁波に基づいて電波画像を生成する画像生成部3と、アンテナ2で受信した電磁波に基づいて電波画像の中から路面領域を検出する路面領域検出部4と、電波画像上に第1の対称軸を設定する対称軸設定部5と、電波画像上に路面反射領域を設定する路面反射領域設定部6と、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して車両を検出する車両検出部7とを備えている。
 ここで、本実施形態に係る車両検出装置1は、金属製の車両が路面から放射された電磁波を反射することを利用し、電波画像上において路面から放射された電磁波の波形と特徴が近似している領域を車両として認識するものである。そして、本実施形態では車両検出装置1を車両に搭載した場合を一例として示しており、自車両の進行方向にアンテナ2を向けて自車両の進行方向に存在している車両を検出する場合について説明する。
 アンテナ2は、複数のアンテナをアレイ化したアレイアンテナとメカスキャン機構とレンズとからなり、例えば1列×20行の素子数を備えたアレイアンテナで構成し、100~300GHzの周波数の電磁波を検出するように設定されている。また、アレイアンテナを複数列設けて2次元画像を同時に取得するようにして、メカスキャン機構を省く構成としてもよい。
 画像生成部3は、アンテナ2で受信した電磁波の受信電磁波量に基づいて2次元の電波画像を生成しており、アンテナ2と併せて電波カメラで構成してもよい。
 路面領域検出部4は、アンテナ2で受信した電磁波の受信電力の変化が所定値(例えば5%)以内となる領域を電波画像の中から抽出し、この領域を路面領域として検出する。これは路面のように平坦な物体から放射される電磁波の受信電力は一定の範囲内で変化が収まるという特徴を利用したものである。また、路面領域はその他の方法で検出してもよく、例えばアンテナ2で水平偏波と垂直偏波を受信してそれらの偏波比に基づいて路面領域を検出するようにしてもよい。
 対称軸設定部5は、検出された路面領域の境界部分の中から水平な部分を検出し、この水平部分の長さが所定値以上ある場合に第1の対称軸として設定する。
 路面反射領域設定部6は、電波画像の垂直方向の画像中央に水平な中心線を設定し、この中心線と第1の対称軸との間を路面反射領域として設定する。
 車両検出部7は、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合に路面反射領域を車両として検出する。
 [車両検出処理の手順]
 次に、本実施形態に係る車両検出装置1による車両検出処理の手順を図2のフローチャートを参照して説明する。
 ステップS101において、アンテナ2を走査することによって自車両の周囲から放射される電磁波を受信して画像生成部3で電波画像を生成する。生成された電波画像の一例を図3に示す。図3に示す電波画像では、自車両の前方を自車両と同じ方向に走行している車両31が撮像されている。
 次に、ステップS102において、路面領域検出部4が電波画像の中から路面領域を検出する。例えば、アンテナ2で受信した電磁波の受信電力の変化が所定値(5%)以内となるような領域を路面領域として検出する。図3に示す電波画像では、斜線で示した領域32が路面領域として検出される。ただし、路面領域の検出方法は公知の方法を利用すればよく、上述の方法に限定されるわけではない。
 次に、ステップS103において、対称軸設定部5は、路面領域の境界部分の中から地平線や画像の端を除いて水平な部分を検出し、この水平部分の長さが所定値以上ある場合に第1の対称軸として設定する。図3に示す電波画像では、路面領域32の境界部分のうち車両31と接する部分33が水平になっている。この水平部分の長さを予め設定されている所定値と比較し、所定値以上ある場合にはこの水平部分を第1の対称軸33として設定する。
 次に、ステップS104において、路面反射領域設定部6は、電波画像の垂直方向の画像中央に水平な中心線を設定し、この中心線と第1の対称軸33との間を路面反射領域として設定する。図3に示す電波画像では、中心線34を電波画像の中央に設定し、この中心線34と第1の対称軸33との間を路面反射領域35として設定する。電波画像の中央はアンテナ2の設置されている高さに相当し、路面からの反射の影響は中心線34より下のみになる。よって、中心線34を設定して、中心線34より下に路面反射領域35を設定する。
 車両検出装置1を車両に搭載すると、車両の挙動に応じて中心線34の位置がずれてしまうことが考えられる。そこで、路面反射領域設定部6は自車両の挙動に応じて中心線34の位置を変化させる。例えば、車両振動がある場合には予め予想される振動角を設定しておき、その振動角に応じて中心線34の位置を修正して地平面のずれを補正する。さらに、車両の減速時や加速時にはセンサで検知した加速度に応じて中心線34の位置を補正し、車両の旋回時にはローリングによる傾きを補正する。
 次に、ステップS105において、車両検出部7は、路面反射領域35における画素出力の波形と路面領域32における画素出力の波形とを比較して車両の検出を行う。
 ここで、車両検出部7による画素出力の波形の比較方法を図4に基づいて説明する。図4は図3に示す車両31と自車両との間の関係を側方からみた図である。図4に示すように、アンテナ2が高さHの位置に設置されている場合には、中心線34は車両31の高さHの位置となる。第1の対称軸33は車両31の路面上の位置となり、アンテナ2からの距離をDとすると、距離Dは以下のようにして求めることができる。
 まず、電波画像上における対象軸33の位置から角度θを求めることができるので、アンテナ2の設置高Hを用いて式(1)で表すことができる。
 D=H/tanθ   (1)
 ここで、路面反射領域35にある電波画像上の1つの画素をIVとすると、式(2)から画素IVに対応する路面領域32内の画素IRの位置が求められる。
 IR=arctan[H/{D-H/tan(IV*F/E)}]/F*E     (2)
 ただし、Fは電波画像の縦方向の解像度、Eは電波画像の縦方向の画素数を表している。式(2)から求められる画素IRは、第1の対称軸33について画素IVと対称となる位置にある画素である。したがって、画素IVが車両上の点で路面からの電磁波を反射している場合には画素IRから放射された電磁波を反射していることになる。そこで、路面反射領域35内のすべての画素について第1の対称軸33に対して対称となる画素IRの位置を求め、各点における画素出力の波形を比較する。
 例えば、路面反射領域35内の各画素IVについて画素出力を求め、対応する画素IRの画素出力と比較すると、図5に示すような検出結果が得られる。図5は画素IVの位置を変化させた場合に画素IVの画素出力の波形と画素IRの画素出力の波形とを比較したものである。画素IVの画素出力は、画素IRから放射された電磁波を反射したものなので画素IRの画素出力よりも低くなっているが、画素IVの画素出力の波形の形状は画素IRの画素出力の波形の形状に近似したものとなっている。
 さらに、図5に示す検出結果に対して周波数解析を行うと、図6に示すような解析結果が得られる。図6は、周波数解析としてフーリエ変換を行った場合の解析結果を示しており、強度は相違しているものの周波数帯域が一致している。このとき車両検出部7は、画素IVと画素IRの周波数帯域が所定値以内、例えば10%以内にあるか否かを判定し、所定値以内である場合には路面反射領域35の検出結果は路面領域32で放射された電磁波を反射したものであると判定する。これにより、車両検出部7は路面反射領域35を車両31であると判定して電波画像から車両31を検出する。
 また、上述した説明では1つの電波画像に対する処理について説明したが、電波画像を動画として取得し、複数の時点における画素出力を蓄積して波形の比較を行うようにしてもよい。これにより電波画像の解像度が向上するので、波形の比較を高分解能で行うことができる。
 この場合に車両検出部7は、式(1)によって第1の対称軸33までの距離Dを算出し、距離Dの変動が所定値、例えば10%以内の場合にだけ複数の時点において画素出力の波形を比較する。距離Dが大きく変動している場合に複数の時点で画素出力を蓄積しても検出結果が不安定になる。よって、距離Dの変動が少ない場合のみ複数の時点で画素出力を蓄積して車両を検出する。
 また、路面領域32における画素出力の波形だけを複数の時点において比較し、その変動が所定値以下となった場合にのみ車両を検出するための波形比較を行うようにしてもよい。路面状態が変化して路面領域32における画素出力の波形が、複数の時点において大きく変化している場合には車両検出を行っても正確に車両を検出することができないためである。
 さらに、車両検出部7は、第1の対称軸33までの距離Dが複数の時点において所定値以上変化した場合には、路面反射領域35を直ちに走行車両として検出するようにしてもよい。これは距離Dが変化するということは相対速度を有する物体と判断することができるので、その物体を車両と判断するようにしたものである。
 このように上述した処理を行うことによって電波画像から車両が検出されると、本実施形態に係る車両検出装置1による車両検出処理は終了する。
 [第1実施形態の効果]
 以上詳細に説明したように、本実施形態に係る車両検出装置1によれば、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合に路面反射領域を車両として検出するので、金属製の車両が路面からの電磁波を反射することを利用して正確に車両を検出することができる。
 また、本実施形態に係る車両検出装置1によれば、周波数解析を用いて波形の特徴を比較するので、波形の特徴を輝度によらずに比較することができ、より正確に車両を検出することができる。
 さらに、本実施形態に係る車両検出装置1によれば、複数の時点における画素出力を蓄積して波形を比較するので、電波画像の解像度を向上させて波形の比較を高分解能で行うことができる。
 また、本実施形態に係る車両検出装置1によれば、第1の対称軸33までの距離Dの変動が所定値以内の場合に複数の時点において画素出力の波形を比較するので、安定して車両を検出できる条件のときにだけ車両の検出を実行することができる。
 さらに、本実施形態に係る車両検出装置1によれば、路面領域32における画素出力の波形を複数の時点において比較し、その変動が所定値以下の場合に車両を検出するための波形比較を行うので、路面状態が変化している場合に車両の検出が不安定になることを防止することができる。
 また、本実施形態に係る車両検出装置1によれば、第1の対称軸33までの距離Dが複数の時点において所定値以上変化した場合には路面反射領域35を走行車両として検出するので、走行車両を容易に検出することができる。
 さらに、本実施形態に係る車両検出装置1によれば、自車両の挙動に応じて中心線34の位置を変化させるので、自車両の挙動に関係なく安定して車両を検出することができる。
(第2実施形態)
 [車両検出装置の構成]
 第2実施形態に係る車両検出装置は、金属製の車両が路面から放射された電磁波を反射することを利用し、電波画像の画素出力を電波画像の垂直方向に走査して生成される画素出力の波形の対称性を判別して車両を検出するものである。第1実施形態と同様に、車両検出装置を車両に搭載した場合を一例として示しており、自車両の進行方向にアンテナ2を向けて自車両の進行方向に存在している車両を検出する場合について説明する。
 本実施形態に係る車両検出装置1は、図1に示す構成のうち、物体から放射される電磁波を検知するアンテナ2と、アンテナ2で受信した電磁波に基づいて電波画像を生成する画像生成部3と、車両検出部7とを少なくとも備えていればよい。すなわち、第2実施形態に係る車両検出装置は、路面領域検出部4、対称軸設定部5、及び路面反射領域設定部6を備えていなくてもよい。
 本実施形態における車両検出部7は、電波画像の画素出力を電波画像の垂直方向に走査して生成される画素出力の波形から画素出力の変曲点を検出し、変曲点を第2の対称軸とした画素出力の波形の対称性を判別して車両を検出する。
 アンテナ2及び画像生成部3は、第1実施形態と同じであり、説明を省略する。
 [車両検出装置の動作]
 次に、本実施形態に係る車両検出装置の動作を説明する。
 先ず、アンテナ2を走査することによって自車両の周囲から放射される電磁波を受信して画像生成部3で電波画像を生成する。生成された電波画像の一例を図7(a)に示す。図7(a)に示す電波画像では、自車両の前方を自車両と同じ方向に走行している車両31が撮像されている。
 車両検出部7は、電波画像の画素出力を電波画像の垂直方向に走査して画素出力の波形を生成する。具体的には、図7(a)に示すように、電波画像上の複数の走査軸Ax1、Ax2、Ax3の各々に沿って電波画像の画素出力を連続的に出力して、図7(b)に示すような画素出力の波形PAx1~PAx3を生成する。図7(b)の横軸は画素出力を示し、縦軸は走査軸Ax1、Ax2、Ax3上の走査位置を示す。画素出力の波形PAx1は走査軸Ax1に沿った波形であり、画素出力の波形PAx2は走査軸Ax2に沿った波形であり、画素出力の波形PAx3は走査軸Ax3に沿った波形である。
 車両検出部7は、図7(b)に示す画素出力の波形PAx1~PAx3から画素出力の変曲点CPを検出する。車両検出部7は、例えば、画素出力が極大値或いは極小値となる走査軸Ax1~Ax3上の走査位置を、画素出力の変曲点CPとして検出する。車両検出部7は、画素出力の波形PAx1~PAx3の各々について変曲点CPを検出してもよいし、各波形PAx1~PAx3について検出された変曲点の平均値を変曲点CPとしてもよい。
 車両検出部7は、検出した変曲点CPを第2の対称軸とした画素出力の波形PAx1~PAx3の対称性を判別して車両を検出する。車両検出部7は、例えば、変曲点CPを通る直線を第2の対称軸として、第2の対称軸に対して画素出力の波形PAx1~PAx3が対称であるか否かを判断する。画素出力の波形PAx1~PAx3が対称である場合、走査軸Ax1~Ax3上に車両があると判断する。
 画素出力の波形PAx1~PAx3が対称である場合、第2の対称軸は、図7(a)に示す第1の対称軸33に対応する。なぜなら、式(2)から求められる画素IR(図4参照)は、第1の対称軸33について画素IVと対称となる位置にある画素であって、画素IVが画素IRから放射された電磁波を反射しているからである。よって、画素出力の波形PAx1~PAx3に変曲点CPを中心とした対称性が認められる場合、走査軸Ax1~Ax3上の変曲点CPに、第1の対称軸33があると判断できる。よって、走査軸Ax1~Ax3上に車両31があると判断できる。詳細には、走査軸Ax1~Ax3上の変曲点CPの上部に車両31があると判断することができる。更に詳細には、第2実施形態に係わる車両検出装置が中心線34を設定している場合、走査軸Ax1~Ax3上の変曲点CPと中心線34との間に車両31があると判断することができる。
 第1実施形態と同様に、複数の時点における画素出力を蓄積して波形の比較を行うようにしてもよい。この時、距離Dの変動が少ない場合のみ複数の時点で画素出力を蓄積して車両を検出してもよい。
 また、第2実施形態に係わる車両検出装置が路面領域検出部4を備えている場合、路面領域32における画素出力の波形だけを複数の時点において比較し、その変動が所定値以下となった場合にのみ車両を検出するための波形比較を行うようにしてもよい。
 以上詳細に説明したように、本実施形態に係る車両検出装置によれば、電波画像を垂直方向に走査した画素出力の波形PAx1~PAx3から変曲点CPを検出し、この変曲点CPを第2の対称軸とした画素出力の波形PAx1~PAx3の対称性を判別して車両31を検出する。よって、金属製の車両が路面からの電磁波を反射することを利用して正確に車両を検出することができる。
 以上、第1及び第2実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 特願2012-045221号(出願日:2012年3月1日)の全内容は、ここに援用される。
 実施形態に係わる車両検出装置及び車両検出方法によれば、路面反射領域における画素出力の波形と路面領域における画素出力の波形とを比較して波形の特徴が近似している場合に路面反射領域を車両として検出する。或いは、垂直方向に走査した波形から変曲点を検出し、この変曲点を第2の対称軸とした画素出力の波形の対称性を判別して車両を検出する。このようにして、金属製の車両が路面からの電磁波を反射することを利用して正確に車両を検出することができる。よって、本発明は、産業上の利用可能性を有する。
 1 車両検出装置
 2 アンテナ
 3 画像生成部
 4 路面領域検出部
 5 対称軸設定部
 6 路面反射領域設定部
 7 車両検出部
 31 車両
 32 路面領域
 33 第1の対称軸
 34 中心軸
 35 路面反射領域
 CP 変曲点

Claims (9)

  1.  物体から放射される電磁波を検知するアンテナと、
     前記アンテナで受信した電磁波に基づいて電波画像を生成する画像生成部と、
     前記アンテナで受信した電磁波に基づいて前記電波画像の中から路面領域を検出する路面領域検出部と、
     前記路面領域の境界部分において水平方向に所定値以上の長さがある部分を第1の対称軸として設定する対称軸設定部と、
     前記電波画像の垂直方向の画像中央に水平な中心線を設定し、前記中心線と前記第1の対称軸との間を路面反射領域として設定する路面反射領域設定部と、
     前記路面反射領域における画素出力の波形と前記路面領域における画素出力の波形とを比較して波形の特徴が近似している場合には前記路面反射領域を車両として検出する車両検出部と
    を備えていることを特徴とする車両検出装置。
  2.  前記車両検出部は、周波数解析を用いて波形の特徴を比較することを特徴とする請求項1に記載の車両検出装置。
  3.  前記車両検出部は、複数の時点における前記画素出力を蓄積して波形を比較することを特徴とする請求項1または2に記載の車両検出装置。
  4.  前記車両検出部は、前記アンテナの設置高と前記第1の対称軸の電波画像上における位置とに基づいて前記第1の対称軸までの距離を算出し、前記第1の対称軸までの距離の変動が所定値以内の場合に複数の時点において前記画素出力の波形を比較することを特徴とする請求項3に記載の車両検出装置。
  5.  前記車両検出部は、前記路面領域における画素出力の波形を複数の時点において比較し、その変動が所定値以下の場合に、前記路面反射領域における画素出力の波形と前記路面領域における画素出力の波形とを比較することを特徴とする請求項3または4に記載の車両検出装置。
  6.  前記車両検出部は、前記第1の対称軸までの距離が複数の時点において所定値以上変化した場合には前記路面反射領域を走行車両として検出することを特徴とする請求項4または5に記載の車両検出装置。
  7.  当該車両検出装置を車両に搭載した場合に、前記路面反射領域設定部は前記搭載された車両の挙動に応じて前記中心線の位置を変化させることを特徴とする請求項1~6のいずれか1項に記載の車両検出装置。
  8.  アンテナで受信した電磁波に基づいて電波画像を生成し、
     前記アンテナで受信した電磁波に基づいて前記電波画像の中から路面領域を検出し、
     前記路面領域の境界部分において水平方向に所定値以上の長さがある部分を第1の対称軸として設定し、
     前記電波画像の垂直方向の画像中央に水平な中心線を設定し、
     前記中心線と前記第1の対称軸との間を路面反射領域として設定し、
     前記路面反射領域における画素出力の波形と前記路面領域における画素出力の波形とを比較して波形の特徴が近似している場合には前記路面反射領域を車両として検出する
     ことを特徴とする車両検出方法。
  9.  物体から放射される電磁波を検知するアンテナと、
     前記アンテナで受信した電磁波に基づいて電波画像を生成する画像生成部と、
     前記電波画像の画素出力を電波画像の垂直方向に走査して生成される画素出力の波形から画素出力の変曲点を検出し、前記変曲点を第2の対称軸とした前記画素出力の波形の対称性を判別して車両を検出する車両検出部と
    を備えていることを特徴とする車両検出装置。
PCT/JP2013/054911 2012-03-01 2013-02-26 車両検出装置及び車両検出方法 WO2013129380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/380,011 US9081086B2 (en) 2012-03-01 2013-02-26 Vehicle detection device and vehicle detection method
JP2014502240A JP5930019B2 (ja) 2012-03-01 2013-02-26 車両検出装置及び車両検出方法
CN201380011960.1A CN104145193B (zh) 2012-03-01 2013-02-26 车辆检测装置以及车辆检测方法
EP13754138.9A EP2821810B1 (en) 2012-03-01 2013-02-26 Vehicle detector and vehicle detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045221 2012-03-01
JP2012-045221 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013129380A1 true WO2013129380A1 (ja) 2013-09-06

Family

ID=49082577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054911 WO2013129380A1 (ja) 2012-03-01 2013-02-26 車両検出装置及び車両検出方法

Country Status (5)

Country Link
US (1) US9081086B2 (ja)
EP (1) EP2821810B1 (ja)
JP (1) JP5930019B2 (ja)
CN (1) CN104145193B (ja)
WO (1) WO2013129380A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194042A1 (ja) * 2014-06-20 2015-12-23 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JP2016038268A (ja) * 2014-08-07 2016-03-22 日産自動車株式会社 画像生成装置及び画像生成方法
JP2017036986A (ja) * 2015-08-10 2017-02-16 日産自動車株式会社 路面検出装置の制御方法および路面検出装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024763A1 (ja) * 2012-08-08 2014-02-13 日産自動車株式会社 路面状態検出装置及び路面状態検出方法
US9342747B2 (en) * 2014-04-14 2016-05-17 Bendix Commercial Vehicle Systems Llc Vehicle driver assistance apparatus for assisting a vehicle driver in maneuvering the vehicle relative to an object
US10516304B2 (en) 2015-12-22 2019-12-24 Intel Corporation Wireless charging coil placement for reduced field exposure
JP2017116402A (ja) * 2015-12-24 2017-06-29 日本電産エレシス株式会社 車載用レーダ装置
CN111381231A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 估计方法、估计装置以及记录介质
EP4152040A1 (en) * 2021-09-17 2023-03-22 Aptiv Technologies Limited Method and radar system for determining road conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322833A (ja) 2005-05-19 2006-11-30 Denso Corp 電波受信システム,撮像システムおよび電波受信方法
JP2007235950A (ja) * 2006-02-28 2007-09-13 Alpine Electronics Inc 車両位置検出方法及び装置
JP2007293627A (ja) * 2006-04-25 2007-11-08 Honda Motor Co Ltd 車両の周辺監視装置、車両、車両の周辺監視方法、および車両の周辺監視用プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202692A (en) * 1986-06-16 1993-04-13 Millitech Corporation Millimeter wave imaging sensors, sources and systems
US5555036A (en) * 1992-12-17 1996-09-10 Trw Inc. Passive millimeter wave traffic sensor
DE19600059C2 (de) * 1996-01-03 1999-04-15 Daimler Benz Ag Verfahren zur Signalverarbeitung bei einer Kraftfahrzeug-Radaranordnung und Radaranordnung hierfür
AU1690797A (en) * 1996-01-11 1997-08-01 Lockheed Martin Corporation Vehicle detection radiometer
US7042345B2 (en) * 1996-09-25 2006-05-09 Christ G Ellis Intelligent vehicle apparatus and method for using the apparatus
JP3433417B2 (ja) * 1998-04-02 2003-08-04 トヨタ自動車株式会社 レーダ装置
JP3626732B2 (ja) * 2002-02-21 2005-03-09 本田技研工業株式会社 物体検知手段の検知軸調整方法
JP4258385B2 (ja) * 2004-01-14 2009-04-30 株式会社デンソー 路面反射検出装置
JP4284652B2 (ja) * 2004-03-08 2009-06-24 オムロン株式会社 レーダ装置
JP4608631B2 (ja) * 2005-06-08 2011-01-12 国立大学法人名古屋大学 車両用画像処理装置、運転支援装置
CN201383004Y (zh) * 2009-03-16 2010-01-13 中国人民解放军理工大学气象学院 一种智能交通车辆检测雷达
JP5461065B2 (ja) * 2009-05-21 2014-04-02 クラリオン株式会社 現在位置特定装置とその現在位置特定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322833A (ja) 2005-05-19 2006-11-30 Denso Corp 電波受信システム,撮像システムおよび電波受信方法
JP2007235950A (ja) * 2006-02-28 2007-09-13 Alpine Electronics Inc 車両位置検出方法及び装置
JP2007293627A (ja) * 2006-04-25 2007-11-08 Honda Motor Co Ltd 車両の周辺監視装置、車両、車両の周辺監視方法、および車両の周辺監視用プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821810A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194042A1 (ja) * 2014-06-20 2015-12-23 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JPWO2015194042A1 (ja) * 2014-06-20 2017-05-25 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JP2016038268A (ja) * 2014-08-07 2016-03-22 日産自動車株式会社 画像生成装置及び画像生成方法
JP2017036986A (ja) * 2015-08-10 2017-02-16 日産自動車株式会社 路面検出装置の制御方法および路面検出装置

Also Published As

Publication number Publication date
EP2821810A1 (en) 2015-01-07
CN104145193B (zh) 2016-04-27
EP2821810A4 (en) 2016-10-05
US9081086B2 (en) 2015-07-14
US20150014533A1 (en) 2015-01-15
CN104145193A (zh) 2014-11-12
JPWO2013129380A1 (ja) 2015-07-30
EP2821810B1 (en) 2019-09-04
JP5930019B2 (ja) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5930019B2 (ja) 車両検出装置及び車両検出方法
JP5551892B2 (ja) 信号処理装置、及びレーダ装置
US9053554B2 (en) Object detection device using an image captured with an imaging unit carried on a movable body
JP4828553B2 (ja) レーダ装置、及び物標の角度検出方法
EP1942313B1 (en) Apparatus and method of measuring distance using structured light
US20160349356A1 (en) Apparatus for detecting axial misalignment of beam sensor
US9342897B2 (en) In-vehicle target detecting device
JP6520203B2 (ja) 搭載角度誤差検出方法および装置、車載レーダ装置
US10527719B2 (en) Object detection apparatus and object detection method
EP1566659A1 (en) Method and device for determining the center position and extension of an object in a lidar image
JP6136216B2 (ja) レーザレーダ装置,検査システム,及びターゲット板
JP5061814B2 (ja) 車幅検出方法及び装置、車両制御装置
US20110013172A1 (en) Object measuring device and method for use in the device
JP2017215196A (ja) レーダ装置
JP4985306B2 (ja) 障害物判定装置および方法、並びに障害物判定装置を備えた車両
JP2009229374A (ja) レーダ装置、及び方位角検出方法
KR20150034349A (ko) 차량용 탐지 센서 보정 장치 및 방법
JP5979020B2 (ja) 物体認識装置
JP2018162977A (ja) 電波センサ、調整方法および調整プログラム
JP2009128016A (ja) レーダ装置、レーダ制御装置およびレーダ装置の制御方法
WO2021045011A1 (ja) 折返判定装置
WO2021070685A1 (ja) 軸ずれ推定装置
JP5899678B2 (ja) 路面凹凸検出装置及び路面凹凸検出方法
CN112400120B (zh) 车载雷达系统
JP2022161508A (ja) 駐車スペース検知システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380011960.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013754138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014502240

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380011

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE