WO2014024763A1 - 路面状態検出装置及び路面状態検出方法 - Google Patents

路面状態検出装置及び路面状態検出方法 Download PDF

Info

Publication number
WO2014024763A1
WO2014024763A1 PCT/JP2013/070847 JP2013070847W WO2014024763A1 WO 2014024763 A1 WO2014024763 A1 WO 2014024763A1 JP 2013070847 W JP2013070847 W JP 2013070847W WO 2014024763 A1 WO2014024763 A1 WO 2014024763A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
refractive index
polarization
surface state
unit
Prior art date
Application number
PCT/JP2013/070847
Other languages
English (en)
French (fr)
Inventor
光範 中村
佐藤 宏
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/419,758 priority Critical patent/US9341708B2/en
Priority to CN201380041971.4A priority patent/CN104520735B/zh
Priority to EP13828642.2A priority patent/EP2884311B1/en
Priority to JP2014529457A priority patent/JP5907271B2/ja
Publication of WO2014024763A1 publication Critical patent/WO2014024763A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction

Definitions

  • the present invention relates to a road surface state detection device and a road surface state detection method for detecting a road surface state.
  • Patent Document 1 since the apparatus described in Patent Document 1 detects the road surface state based on the radiation temperature of the sky, the reference is not stable when the sky is not constant, and is difficult to apply to vehicles and the like. .
  • An object of the present invention is to provide a road surface state detection device and a road surface state detection method capable of detecting a road surface state with high accuracy regardless of the weather.
  • the road surface state detection apparatus includes a radio wave reception unit, an image generation unit, a polarization ratio calculation unit, a refractive index calculation unit, and a road surface state identification unit.
  • the radio wave receiving unit receives horizontal polarization and vertical polarization of radio waves radiated from the target with an emission angle.
  • the image generation unit generates a horizontal polarization image and a vertical polarization image, respectively, based on the horizontal polarization and the vertical polarization received by the radio wave reception unit.
  • the polarization ratio calculation unit calculates the polarization ratio, which is the ratio of the intensity of horizontal polarization and vertical polarization for each radiation angle, based on the horizontal polarization image and vertical polarization image generated by the image generation unit.
  • the refractive index calculation unit calculates a target refractive index based on changes in the polarization ratio for two different radiation angles calculated by the polarization ratio calculation unit.
  • the road surface state identifying unit identifies the road surface state based on the refractive index calculated by the refractive index calculating unit.
  • the road surface state detection method receives horizontal polarization and vertical polarization of radio waves radiated from an object with a radiation angle, and receives received horizontal polarization and vertical polarization. Based on the polarization, a horizontal polarization image and a vertical polarization image are generated, respectively. Based on the generated horizontal polarization image and vertical polarization image, the horizontal polarization and the vertical polarization are generated for each radiation angle. Calculating the polarization ratio, which is the ratio of the intensity to the wave, calculating the refractive index of the target based on the calculated change in the polarization ratio for two different radiation angles, and calculating Identifying a road surface condition based on the refractive index.
  • FIG. 1 is a schematic block diagram illustrating a basic configuration of a road surface state detection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the operation of the polarization ratio calculation unit provided in the road surface state detection device according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the polarization ratio used for the road surface state detection device according to the embodiment of the present invention for each road surface state.
  • FIG. 4 is an example of refractive index information used in the road surface state detection device according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a road surface state identification unit included in the road surface state detection device according to the embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a road surface state detection method according to the embodiment of the present invention.
  • the road surface state detection device includes a radio wave receiver 1, an image generator 2, a polarization ratio calculator 3, a distance detector 4, and a polarization ratio.
  • a storage unit 5, a refractive index calculation unit 6, a refractive index storage unit 7, and a road surface state identification unit 8 are provided.
  • a road surface state detection device is mounted on a vehicle and detects a road surface state in front of the vehicle.
  • the radio wave receiving unit 1 is, for example, a road surface in front of a vehicle. Polarization and vertical polarization are received respectively.
  • the radio wave receiver 1 includes, for example, an array antenna in which a plurality of antennas are arranged in an array.
  • the radio wave receiver 1 has, for example, an angle of view of about 15 ° in the vertical direction and about 30 ° in the horizontal direction.
  • “radio waves” refers to electromagnetic waves having a frequency of about 30 GHz to 10 THz.
  • the image generation unit 2 generates a horizontal polarization image and a vertical polarization image, respectively, based on the horizontal polarization and the vertical polarization of the radio wave received by the radio wave reception unit 1.
  • the horizontal polarization image is a two-dimensional image based on the horizontal polarization component of the radio wave received by the radio wave receiver 1
  • the vertical polarization image is a two-dimensional image based on the vertical polarization component of the radio wave received by the radio wave receiver 1. is there.
  • the polarization ratio calculation unit 3 is based on the horizontal polarization image and the vertical polarization image generated by the image generation unit 2 and the intensity of the horizontal polarization component and the vertical polarization component of the radio wave received by the radio wave reception unit 1.
  • a polarization ratio P H / P V which is a ratio of (reception power) is calculated.
  • the distance detection unit 4 detects the moving distance d of the vehicle C on which the road surface state detection device according to the embodiment of the present invention is mounted.
  • the polarization ratio calculation unit 3 is as shown in FIG. From the moving distance d detected by the distance detector 4, the radiation angle ⁇ of the radio wave emitted by the object is calculated. In the example shown in FIG. 2, if the radiation angle of a radio wave from a certain target is ⁇ 0 in the initial state of the vehicle C, the radiation angle when the vehicle C moves a distance ⁇ d is ⁇ 1 .
  • the polarization ratio calculator 3 calculates the polarization ratio P H / P V for each radiation angle ⁇ .
  • the polarization ratio storage unit 5 stores the polarization ratio P H / P V calculated by the polarization ratio calculation unit 3 for each radiation angle ⁇ .
  • the refractive index calculator 6 calculates the target predicted refractive index n based on the polarization ratio P H / P V for each radiation angle ⁇ calculated by the polarization ratio calculator 3.
  • the refractive index calculation unit 6 firstly calculates a ratio ⁇ ( ⁇ 0 , ⁇ 1 ) as a change in the polarization ratio P H / P V for the two radiation angles ⁇ 0 , ⁇ 1 as shown in the equation ( 1 ). Is calculated.
  • the refractive index calculation unit 6 calculates the target predicted refractive index n from the calculated ratio ⁇ ( ⁇ 0 , ⁇ 1 ) using Fresnel's expression.
  • the polarization ratio calculation unit 3 calculates the polarization ratio P H / P V between the horizontal polarization component and the vertical polarization component for each movement distance d when the target is a dry road surface. (The data on the dry road surface is indicated by the white diamond “ ⁇ ”). Similarly, the polarization ratio calculation unit 3 calculates the polarization ratio P H / P V between the horizontal polarization component and the vertical polarization component for each movement distance d when the target is a frozen road surface (black painting). The frozen road surface data is indicated by the square “ ⁇ ” in FIG.
  • the refractive index storage unit 7 stores refractive index information in which a road surface type and a refractive index are associated with each other.
  • the refractive index storage unit 7 stores the refractive index as 1.2 when the road surface state is “snow”, and the refractive index as 2 when the road surface state is “dry”.
  • a range of values may be stored as the refractive index.
  • “frozen”, “wet” or the like is set as the road surface state.
  • the road surface state identification unit 8 refers to the refractive index information stored in the refractive index storage unit 7 and identifies the road surface state based on the target refractive index calculated by the refractive index calculation unit 6.
  • the refractive index calculation unit 6 determines the ratio of the polarization ratios P H / P V for the two radiation angles ⁇ 0 and ⁇ 1 when the vehicle C moves the distance ⁇ d on the dry road surface. from gamma a, and was calculated refractive index n 2 and.
  • the road surface state identification unit 8 searches the refractive index closest to the calculated refractive index from the refractive index information in the refractive index storage unit 7, and determines the road surface state corresponding to the searched refractive index as the road surface that is running. Identifies as a state. Therefore, the road surface state identification unit 8 identifies the state of the road surface on which the vehicle C travels as “dry”.
  • the refractive index calculation unit 6 calculates the refractive index from the ratio ⁇ b of the polarization ratio P H / P V for the two radiation angles ⁇ 0 and ⁇ 1 when the vehicle C moves the distance ⁇ d on the frozen road surface. n is calculated as 3.
  • the road surface state identification unit 8 searches the refractive index information of the refractive index storage unit 7 for the refractive index “2.5” that is closest to the calculated refractive index, and “freezing” that is the road surface state corresponding to the searched refractive index. "Is identified as the state of the running road surface.
  • the road surface state identification unit 8 may acquire the ambient temperature from the temperature detection unit 81 that detects the ambient temperature, and exclude the identified road surface state according to the ambient temperature when identifying the road surface state. For example, when the road surface temperature is 3 ° C. or lower, the possibility that the road surface freezes or snow is low. From this, the road surface state identifying unit 8 sets the road surface state by excluding “freezing” and “snow cover” from the road surface state that the refractive index information has when the threshold is 5 ° C. and the ambient temperature is 5 ° C. or higher, for example. Can be identified.
  • the road surface state identification unit 8 includes a road surface area detection unit that detects a road surface area corresponding to the road surface in the image generated by the image generation unit 2.
  • the road surface area detection unit detects the road surface area based on, for example, the polarization ratio between the horizontal polarization and the vertical polarization received by the radio wave reception unit 1.
  • the received power of radio waves radiated from a flat object such as a road surface has a feature that changes are within a certain range. Therefore, for example, the road surface area detection unit extracts and extracts an area in the image generated by the image generation unit 2 where the change in received power of the radio wave received by the radio wave reception unit 1 is within a predetermined value (for example, 5%). You may make it detect the performed area
  • the road surface state identification unit 8 sets two regions that do not overlap in the detected road surface region for each of the two refractive indexes ⁇ 0 and ⁇ 1 for calculating the polarization ratio P H / P V , and sets the two The refractive index may be obtained from the intensity of the region.
  • the road surface state identifying unit 8 acquires the horizontal polarization intensity P H ( ⁇ w1 ) for one of the set two regions, and the other acquires the vertical polarization P V ( ⁇ w0 ), and P H ( ⁇ w1). ), P V ( ⁇ w0 ), the ratio ⁇ ( ⁇ w1 , ⁇ w0 ) is calculated, and the refractive index n is calculated from the calculated ⁇ ( ⁇ w1 , ⁇ w0 ).
  • the road surface state identification unit 8 may output a control signal instructing the vehicle control unit 91 that controls the operation of the vehicle C to control the operation according to the identified road surface state. For example, as shown in FIG. 5, the road surface state identification unit 8 sets boundaries where the refractive index n changes as n 1 , n 2 , n 3 in the image generated by the image generation unit 2 and corresponds to the set boundaries. The operation of the vehicle C is controlled via the vehicle control unit 91 according to the distance to the actual position. Boundary in accordance with the refractive index n, the radiation angle theta 0, the polarization ratio P H / P V per theta 1 spatially analyze each, based on the region where the inflection point matches may be set .
  • the vehicle control unit 91 includes, for example, a drive unit that drives the vehicle, a braking unit that decelerates and stops the vehicle, a steering unit that changes the traveling direction of the vehicle, and the like.
  • the road surface state identification unit 8 sets a boundary according to the refractive index n in the image generated by the image generation unit 2, and according to the distance to the actual position corresponding to the set boundary, sounds, characters, images Etc. may be presented to the occupant via the output unit 92.
  • the output unit 92 includes a speaker, a display device, and the like. Further, the road surface state identification unit 8 may change the output of the output unit 92 step by step according to the distance to the actual position corresponding to the set boundary.
  • a road surface state detection device (Road condition detection method) An example of the road surface state detection method in the road surface state detection device according to the embodiment of the present invention will be described using the flowchart of FIG. In the following description, a road surface state detection device according to an embodiment of the present invention will be described as a road surface state detection device that is mounted on a vehicle and detects a road surface state in the traveling direction of the vehicle.
  • step S1 the radio wave receiving unit 1 receives the horizontal polarization and the vertical polarization of radio waves radiated from the target, respectively, in front of the vehicle.
  • the image generation unit 2 generates a horizontal polarization image and a vertical polarization image, respectively, from the horizontal polarization and vertical polarization received by the radio wave reception unit 1.
  • step S ⁇ b> 2 the polarization ratio calculation unit 3 generates a radio wave radiated from the object based on the horizontal polarization image and the vertical polarization image generated by the image generation unit 2 and the moving distance d of the vehicle detected by the distance detection unit 4.
  • the radiation angle ⁇ is calculated.
  • step S ⁇ b> 3 the polarization ratio calculation unit 3 determines the horizontal polarization component and the vertical polarization of the radio wave received by the radio wave reception unit 1 based on the horizontal polarization image and the vertical polarization image generated by the image generation unit 2.
  • the polarization ratio P H / P V that is the ratio of the intensity to the component (received power) is calculated.
  • step S4 the polarization ratio storage unit 5 stores the polarization ratio P H / P V calculated by the polarization ratio calculation unit 3 for each radiation angle ⁇ .
  • step S5 the refractive index calculation unit 6 calculates the ratio ⁇ ( ⁇ 0 , ⁇ 1 ) of the polarization ratio P H / P V for the two radiation angles ⁇ 0 and ⁇ 1 .
  • step S6 the refractive index calculation unit 6 calculates the target refractive index n from the calculated ratio ⁇ ( ⁇ 0 , ⁇ 1 ) based on the Fresnel equation.
  • the refractive index calculation unit 6 may calculate the refractive index n at a predetermined timing after the polarization ratio calculation unit 3 calculates the polarization ratio P H / P V.
  • the road surface state identification unit 8 refers to the refractive index information stored in the refractive index storage unit 7, and identifies the road surface state according to the target refractive index n calculated by the refractive index calculation unit 6.
  • the polarization ratio between the horizontal polarization and the vertical polarization of the radio wave radiated from the target is calculated, and the polarization ratio of two different radiation angles is calculated.
  • the refractive index is calculated at a predetermined timing after the polarization ratio is calculated, thereby statistically using a plurality of pieces of information in time series.
  • the calculation accuracy of the refractive index can be improved.
  • the refractive index storage unit 7 stores the refractive index information including the road surface state type, and excludes the predetermined type according to the ambient temperature. By identifying the road surface state, erroneous determination can be reduced and the road surface state can be detected with high accuracy.
  • the road surface state identification unit 8 identifies the road surface state for the detected road surface region, thereby reducing misjudgment and highly accurate road surface state. Can be detected.
  • the road surface state identification unit 8 calculates the distance to the actual position corresponding to the boundary according to the refractive index, so that the vehicle Control and presentation to passengers.
  • the road surface state detection device disposes two radiations by disposing the two radio wave receiving units 1 that detect the horizontal polarization and the vertical polarization, shifted in the vertical direction. it may calculate the polarization ratio P H / P V on the corner.
  • the radio wave receiver 1 is installed, for example, at a height of about 30 to 50 cm on the lower side and a height of about 30 to 50 cm between the lower side and the upper side.
  • the refractive index can be calculated for the symmetry of the shape other than the road surface.
  • the polarization ratio calculation unit 3 may detect the inclination of the traveling road surface and correct the radiation angle ⁇ according to the detected inclination of the road surface.
  • the slope of the road surface may be acquired from, for example, a GPS receiver and map data, a gyro sensor, an acceleration sensor, or the like.
  • the present invention it is possible to provide a road surface state detection device and a road surface state detection method capable of detecting a road surface state with high accuracy regardless of the weather.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Hydrology & Water Resources (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 電波受信部1は、対象から放射角を有して放射される電波の水平偏波、垂直偏波をそれぞれ受信する。画像生成部2は、水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成する。偏波比算出部3は、水平偏波画像、垂直偏波画像に基づいて、放射角毎に、水平偏波と垂直偏波との強度の比である偏波比を算出する。屈折率算出部6は、2つの異なる放射角についての偏波比の変化に基づいて、対象の屈折率を算出する。路面状態識別部8は、屈折率に基づいて、路面の状態を識別する。

Description

路面状態検出装置及び路面状態検出方法
 本発明は、路面の状態を検出する路面状態検出装置及び路面状態検出方法に関する。
 路面の状態を検出する装置として、路面からの放射温度と、天空からの放射温度とを計測し、天空を基準に、水平偏波成分と垂直偏波成分との受信強度比に基づいて、路面状態を判別する装置が提案されている(特許文献1参照)。
特開2007-140992号公報
 しかしながら、特許文献1に記載の装置は、天空の放射温度を基準として、路面の状態を検出するため、天空が一定とならない場合には基準が安定せず、車両等への適用が困難である。
 本発明は、天候によらず、高精度に路面の状態を検出できる路面状態検出装置及び路面状態検出方法を提供することを目的とする。
 本発明の第1の態様に係る路面状態検出装置は、電波受信部と、画像生成部と、偏波比算出部と、屈折率算出部と、路面状態識別部とを備える。電波受信部は、対象から放射角を有して放射される電波の水平偏波、垂直偏波をそれぞれ受信する。画像生成部は、電波受信部が受信する水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成する。偏波比算出部は、画像生成部が生成する水平偏波画像、垂直偏波画像に基づいて、放射角毎に、水平偏波と垂直偏波との強度の比である偏波比を算出する。屈折率算出部は、偏波比算出部が算出する、2つの異なる放射角についての偏波比の変化に基づいて、対象の屈折率を算出する。路面状態識別部は、屈折率算出部が算出する屈折率に基づいて、路面の状態を識別する。
 本発明の第2の態様に係る路面状態検出方法は、対象から放射角を有して放射される電波の水平偏波、垂直偏波をそれぞれ受信することと、受信された水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成することと、生成された水平偏波画像、垂直偏波画像に基づいて、放射角毎に、水平偏波と垂直偏波との強度の比である偏波比を算出することと、算出された、2つの異なる放射角についての偏波比の変化に基づいて、対象の屈折率を算出することと、算出された屈折率に基づいて、路面の状態を識別することとを含む。
図1は、本発明の実施の形態に係る路面状態検出装置の基本的な構成を説明する模式的なブロック図である。 図2は、本発明の実施の形態に係る路面状態検出装置が備える偏波比算出部の動作を説明する模式的な図である。 図3は、本発明の実施の形態に係る路面状態検出装置に用いる偏波比を路面状態毎に説明する図である。 図4は、本発明の実施の形態に係る路面状態検出装置に用いる屈折率情報の一例である。 図5は、本発明の実施の形態に係る路面状態検出装置が備える路面状態識別部を説明する模式的な図である。 図6は、本発明の実施の形態に係る路面状態検出方法を説明するフローチャートである。
 次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、下記の実施の形態に例示した装置や方法に特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
(路面状態検出装置)
 本発明の実施の形態に係る路面状態検出装置は、図1に示すように、電波受信部1と、画像生成部2と、偏波比算出部3と、距離検出部4と、偏波比記憶部5と、屈折率算出部6と、屈折率記憶部7と、路面状態識別部8とを備える。本発明の実施の形態に係る路面状態検出装置は、車両に搭載され、車両の前方の路面状態を検出する。
 電波受信部1は、例えば車両の前方の路面を対象として、対象から放射角(対象から電波受信部1への放射方向と垂直方向とがなす角)θを有して放射される電波の水平偏波と垂直偏波とをそれぞれ受信する。電波受信部1は、例えば、複数のアンテナをアレイ配置したアレイアンテナを備える。電波受信部1は、例えば、垂直方向に15°程度、水平方向に30°程度の画角を有する。なお、本発明において「電波」とは、30GHz~10THz程度の周波数の電磁波をいう。
 画像生成部2は、電波受信部1が受信した電波の水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成する。水平偏波画像は、電波受信部1が受信した電波の水平偏波成分に基づく2次元画像、垂直偏波画像は、電波受信部1が受信した電波の垂直偏波成分に基づく2次元画像である。
 偏波比算出部3は、画像生成部2が生成した水平偏波画像、垂直偏波画像に基づいて、電波受信部1が受信した電波の、水平偏波成分と垂直偏波成分との強度(受信電力)の比である偏波比P/Pを算出する。
 距離検出部4は、本発明の実施の形態に係る路面状態検出装置が搭載された車両Cの移動距離dを検出する。偏波比算出部3は、図2に示すように。距離検出部4が検出した移動距離dから、対象が放射する電波の放射角θを算出する。図2に示す例では、車両Cの初期状態において、ある対象からの電波の放射角をθとすると、車両Cが距離Δd移動した場合の放射角はθとなる。
 偏波比算出部3は、放射角θ毎に偏波比P/Pを算出する。偏波比記憶部5は、偏波比算出部3が算出した偏波比P/Pを、放射角θ毎に記憶する。
 屈折率算出部6は、偏波比算出部3が算出した放射角θ毎の偏波比P/Pに基づいて、対象の予測屈折率nを算出する。屈折率算出部6は、先ず、式(1)に示すように、2つの放射角θ,θについての偏波比P/Pの変化としての比Γ(θ,θ)を算出する。
Figure JPOXMLDOC01-appb-M000001
 屈折率算出部6は、次に、式(2)に示すように、フレネルの式を用いて、算出した比Γ(θ,θ)から、対象の予測屈折率nを算出する。
Figure JPOXMLDOC01-appb-M000002
 例えば、偏波比算出部3は、図3に示すように、対象を乾燥路面とした場合について、水平偏波成分と垂直偏波成分との偏波比P/Pを移動距離d毎に算出する(白抜きの菱形「◇」で乾燥路面のデータを示す)。同様に、偏波比算出部3は、対象を凍結路面とした場合について、水平偏波成分と垂直偏波成分との偏波比P/Pを移動距離d毎に算出する(黒塗りの四角形「■」で凍結路面のデータを示す)。
 屈折率記憶部7は、図4に示すように、路面状態の種別と屈折率とが関連付けられた屈折率情報を記憶する。屈折率記憶部7は、図4に示す例では、路面状態が「積雪」の場合、屈折率が1.2、路面状態が「乾燥」の場合、屈折率が2のように記憶するが、屈折率として、値の範囲を記憶するようにしてもよい。屈折率情報は、その他、路面状態として、「凍結」、「湿潤」等が設定される。
 路面状態識別部8は、屈折率記憶部7が記憶する屈折率情報を参照して、屈折率算出部6が算出した対象の屈折率に基づいて、路面状態を識別する。
 例えば、図4に示す例において、屈折率算出部6が、車両Cが乾燥路面を距離Δd移動した場合の、2つの放射角θ,θについての偏波比P/Pの比Γから、屈折率nを2と算出したとする。この場合、路面状態識別部8は、屈折率記憶部7の屈折率情報から、算出した屈折率と最も近い屈折率を検索し、検索された屈折率に対応する路面状態を、走行中の路面の状態として識別する。よって、路面状態識別部8は、車両Cが走行する路面の状態を「乾燥」と識別する。
 同様に、屈折率算出部6は、車両Cが凍結路面を距離Δd移動した場合の、2つの放射角θ,θについての偏波比P/Pの比Γから、屈折率nを3と算出する。路面状態識別部8は、屈折率記憶部7の屈折率情報から、算出した屈折率と最も近い屈折率「2.5」を検索し、検索された屈折率に対応する路面状態である「凍結」を、走行中の路面の状態として識別する。
 路面状態識別部8は、周囲温度を検出する温度検出部81から周囲温度を取得し、路面状態の識別の際、周囲温度に応じて、識別する路面状態を除外するようにしてもよい。例えば、路面温度3℃以下の場合、路面が凍結したり積雪したりする可能性は低い。このことから、路面状態識別部8は、例えば閾値を5℃として、周囲温度が5℃以上の場合に、屈折率情報が有する路面状態から「凍結」、「積雪」を除外して路面状態を識別することができる。
 路面状態識別部8は、画像生成部2が生成した画像において、路面に相当する路面領域を検出する路面領域検出部を有する。路面領域検出部は、例えば、電波受信部1が受信した水平偏波と垂直偏波との偏波比に基づいて路面領域を検出する。また、路面のように平坦な物体から放射される電波の受信電力は、一定の範囲内で変化が収まるという特徴を有する。よって、路面領域検出部は、例えば、画像生成部2が生成した画像において、電波受信部1が受信した電波の受信電力の変化が所定値(例えば5%)以内となる領域を抽出し、抽出した領域を路面領域として検出するようにしてもよい。
 また、路面状態識別部8は、偏波比P/Pを算出する2つの屈折率θ,θそれぞれについて、検出した路面領域において重複しない2つの領域を設定し、設定した2つの領域の強度から屈折率を求めるようにしてもよい。例えば路面状態識別部8は、設定した2つの領域について、一方は水平偏波の強度P(θw1)、他方は垂直偏波のP(θw0)を取得し、P(θw1),P(θw0)の平均値から比Γ(θw1,θw0)を算出し、算出したΓ(θw1,θw0)から屈折率nを算出する。
 路面状態識別部8は、識別した路面状態に応じて、車両Cの動作を制御する車両制御部91に、動作の制御を命令する制御信号を出力するようにしてもよい。例えば、路面状態識別部8は、図5に示すように、画像生成部2が生成した画像において屈折率nがn,n,nと変化する境界を設定し、設定した境界に対応する実際の位置までの距離に応じて、車両制御部91を介して車両Cの動作の制御をする。屈折率nに応じた境界は、放射角θ,θ毎の偏波比P/Pをそれぞれ空間的に解析し、変曲点が一致する領域に基づいて、設定されてもよい。
 車両制御部91は、例えば、車両を駆動する駆動部、車両を減速、停止させる制動部、車両の進行方向を変更する操舵部等からなる。
 また、路面状態識別部8は、画像生成部2が生成した画像において屈折率nに応じた境界を設定し、設定した境界に対応する実際の位置までの距離に応じて、音、文字、画像等を、出力部92を介して乗員に提示するようにしてもよい。出力部92は、スピーカ、表示装置等から構成される。また、路面状態識別部8は、設定した境界に対応する実際の位置までの距離に応じて、段階的に出力部92の出力を変化させるようにしてもよい。
(路面状態検出方法)
 図6のフローチャートを用いて、本発明の実施の形態に係る路面状態検出装置における路面状態検出方法の一例を説明する。以下の説明において、本発明の実施の形態に係る路面状態検出装置は、車両に搭載され、車両の進行方向の路面状態を検出する路面状態検出装置として説明する。
 先ず、ステップS1において、電波受信部1は、車両の前方を対象として、対象から放射される電波の水平偏波と垂直偏波とをそれぞれ受信する。次いで、画像生成部2は、電波受信部1が受信した水平偏波、垂直偏波から、それぞれ水平偏波画像、垂直偏波画像を生成する。
 ステップS2において、偏波比算出部3は、画像生成部2が生成した水平偏波画像、垂直偏波画像と、距離検出部4が検出した車両の移動距離dから、対象が放射する電波の放射角θを算出する。
 ステップS3において、偏波比算出部3は、画像生成部2が生成した水平偏波画像、垂直偏波画像に基づいて、電波受信部1が受信した電波の、水平偏波成分と垂直偏波成分との強度(受信電力)の比である偏波比P/Pを算出する。
 ステップS4において、偏波比記憶部5は、偏波比算出部3が算出した偏波比P/Pを、放射角θ毎に記憶する。
 ステップS5において、屈折率算出部6は、2つの放射角θ,θについての偏波比P/Pの比Γ(θ,θ)を算出する。屈折率算出部6は、ステップS6において、フレネルの式に基づいて、算出した比Γ(θ,θ)から、対象の屈折率nを算出する。屈折率算出部6は、偏波比算出部3が偏波比P/Pを算出してから、所定のタイミングで屈折率nを算出するようにしてもよい。
 ステップS7において、路面状態識別部8は、屈折率記憶部7が記憶する屈折率情報を参照し、屈折率算出部6が算出した対象の屈折率nに応じて、路面状態を識別する。
 本発明の実施の形態に係る路面状態検出装置によれば、対象から放射される電波の水平偏波と垂直偏波との偏波比を算出し、2つの異なる放射角についての偏波比の比に基づいて対象の屈折率を算出することにより、高精度に路面状態を検出できる。
 また、本発明の実施の形態に係る路面状態検出装置によれば、偏波比を算出してから所定のタイミングで屈折率を算出することにより、統計的に時系列上の複数の情報をもちいて、屈折率の算出精度を向上することができる。
 また、本発明の実施の形態に係る路面状態検出装置によれば、屈折率記憶部7が、路面状態の種別を含む屈折率情報を記憶し、周囲温度に応じて、所定の種別を除外して路面状態を識別することにより、誤判定を低減し、高精度に路面状態を検出できる。
 また、本発明の実施の形態に係る路面状態検出装置によれば、路面状態識別部8が、検出した路面領域について、路面状態を識別することにより、誤判定を低減し、高精度に路面状態を検出できる。
 また、本発明の実施の形態に係る路面状態検出装置によれば、路面状態識別部8が、屈折率に応じた境界に対応する、実際の位置までの距離を算出することにより、事前に車両の制御や乗員への提示を行うことができる。
(その他の実施の形態)
 上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、既に述べた実施の形態においては、路面状態検出装置は、水平偏波と垂直偏波とをそれぞれ検出する2つの電波受信部1を、上下方向にずらして配置することにより、2つの放射角についての偏波比P/Pを算出する構成としてもよい。設置される高さが異なる2つの電波受信部1の高低差を用いて偏波比P/Pを算出することにより、車両が停止している場合においても高精度に路面の状態を検出することができる。電波受信部1は、例えば、下側が30~50cm程度の高さに設置され、下側と上側との差が30~50cm程度の高さに設置される。更に、3つの電波受信部1を用いて偏波比P/Pを算出することにより、路面以外の形状の対称についても、屈折率を算出することができる。
 また、既に述べた実施の形態においては、偏波比算出部3は、走行する路面の傾斜を検出し、検出された路面の傾斜に応じて、放射角θを補正するようにしてもよい。路面の傾斜は、例えば、GPS受信機及び地図データ、ジャイロセンサ、加速度センサ等から取得されればよい。これにより、屈折率nの算出に必要な放射角θの算出に誤差が生じる場合でも、放射角を適正に補正でき、高精度に路面状態を検出できる。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 特願2012-175865号(出願日:2012年8月8日)の全内容は、ここに援用される。
 本発明によれば、天候によらず、高精度に路面の状態を検出できる路面状態検出装置及び路面状態検出方法を提供することができる。
 1 電波受信部
 2 画像生成部
 3 偏波比算出部
 6 屈折率算出部
 7 屈折率記憶部
 8 路面状態識別部

Claims (9)

  1.  対象から放射角を有して放射される電波の水平偏波、垂直偏波をそれぞれ受信する電波受信部と、
     前記電波受信部が受信する水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成する画像生成部と、
     前記画像生成部が生成する水平偏波画像、垂直偏波画像に基づいて、放射角毎に、水平偏波と垂直偏波との強度の比である偏波比を算出する偏波比算出部と、
     前記偏波比算出部が算出する、2つの異なる放射角についての偏波比の変化に基づいて、対象の屈折率を算出する屈折率算出部と、
     前記屈折率算出部が算出する屈折率に基づいて、路面の状態を識別する路面状態識別部と
     を備えることを特徴とする路面状態検出装置。
  2.  車両に搭載される路面状態検出装置であって、
     前記偏波比算出部は、前記2つの異なる放射角の偏波比を移動距離に基づく変化より算出することを特徴とする請求項1に記載の路面状態検出装置。
  3.  上下方向にずらして配置された2つの前記電波受信部を備え、
     前記偏波比算出部は、前記2つの電波受信部の高低差から、前記2つの異なる放射角の偏波比を算出することを特徴とする請求項1に記載の路面状態検出装置。
  4.  前記屈折率算出部は、前記偏波比算出部が偏波比を算出してから所定のタイミングで屈折率を算出することを特徴とする請求項1又は2に記載の路面状態検出装置。
  5.  路面状態の種別と屈折率とが関連付けられた屈折率情報を記憶する屈折率記憶部を更に備え、
     前記路面状態識別部は、前記屈折率記憶部が記憶する屈折率情報を参照して、前記屈折率算出部が算出した屈折率に基づいて、路面状態を識別することを特徴とする請求項1~4のいずれか1項に記載の路面状態検出装置。
  6.  前記路面状態識別部は、周囲温度に応じて、前記屈折率情報のうち、所定の路面状態の種別を除外して路面状態を識別することを特徴とする請求項5に記載の路面状態検出装置。
  7.  前記路面状態識別部は、前記画像生成部が生成した画像において、路面に相当する路面領域を検出し、検出した前記路面領域について、路面状態を識別することを特徴とする請求項1~6のいずれか1項に記載の路面状態検出装置。
  8.  前記路面状態識別部は、前記画像生成部が生成した画像において、前記屈折率算出部が算出した屈折率に応じた境界を設定し、前記境界に対応する実際の位置までの距離を算出することを特徴とする請求項1~7のいずれか1項に記載の路面状態検出装置。
  9.  対象から放射角を有して放射される電波の水平偏波、垂直偏波をそれぞれ受信することと、
     受信された水平偏波、垂直偏波に基づいて、それぞれ、水平偏波画像、垂直偏波画像を生成することと、
     生成された水平偏波画像、垂直偏波画像に基づいて、放射角毎に、水平偏波と垂直偏波との強度の比である偏波比を算出することと、
     算出された、2つの異なる放射角についての偏波比の変化に基づいて、対象の屈折率を算出することと、
     算出された屈折率に基づいて、路面の状態を識別することと
     を含むことを特徴とする路面状態検出方法。
PCT/JP2013/070847 2012-08-08 2013-08-01 路面状態検出装置及び路面状態検出方法 WO2014024763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/419,758 US9341708B2 (en) 2012-08-08 2013-08-01 Road surface condition detection device and road surface condition detection method
CN201380041971.4A CN104520735B (zh) 2012-08-08 2013-08-01 路面状态检测装置以及路面状态检测方法
EP13828642.2A EP2884311B1 (en) 2012-08-08 2013-08-01 Road surface state detection device and road surface state detection method
JP2014529457A JP5907271B2 (ja) 2012-08-08 2013-08-01 路面状態検出装置及び路面状態検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012175865 2012-08-08
JP2012-175865 2012-08-08

Publications (1)

Publication Number Publication Date
WO2014024763A1 true WO2014024763A1 (ja) 2014-02-13

Family

ID=50067994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070847 WO2014024763A1 (ja) 2012-08-08 2013-08-01 路面状態検出装置及び路面状態検出方法

Country Status (5)

Country Link
US (1) US9341708B2 (ja)
EP (1) EP2884311B1 (ja)
JP (1) JP5907271B2 (ja)
CN (1) CN104520735B (ja)
WO (1) WO2014024763A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194042A1 (ja) * 2014-06-20 2015-12-23 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JP2016004019A (ja) * 2014-06-19 2016-01-12 日産自動車株式会社 物体検出装置及び物体検出方法
JP2017036986A (ja) * 2015-08-10 2017-02-16 日産自動車株式会社 路面検出装置の制御方法および路面検出装置
JP2018084535A (ja) * 2016-11-25 2018-05-31 日産自動車株式会社 路面判断方法および路面判断装置
JP2018205186A (ja) * 2017-06-06 2018-12-27 株式会社豊田中央研究所 路面状態判定装置及び路面状態判定プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523091B (en) * 2014-02-12 2017-11-01 Jaguar Land Rover Ltd A system for use in a vehicle
US10360459B2 (en) * 2016-04-06 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Detection device, detection method, and non-transitory computer-readable recording medium storing detection program
US10872419B2 (en) * 2018-09-04 2020-12-22 GM Global Technology Operations LLC Method and apparatus for evaluating a vehicle travel surface
US11402489B2 (en) * 2019-12-17 2022-08-02 Hewlett Packard Enterprise Development Lp Passive multi-person location tracking utilizing signal polarization
EP4152040A1 (en) * 2021-09-17 2023-03-22 Aptiv Technologies Limited Method and radar system for determining road conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310896A (ja) * 2001-04-19 2002-10-23 Mitsubishi Heavy Ind Ltd 路面状態判別装置及び路面状態判別方法
JP2007140992A (ja) 2005-11-18 2007-06-07 Aisin Aw Co Ltd 交差点での運転支援方法及び運転支援装置
JP2011150689A (ja) * 2009-12-25 2011-08-04 Ricoh Co Ltd 撮像装置、車載用撮像システム、路面外観認識方法及び物体識別装置
JP2012073221A (ja) * 2010-08-30 2012-04-12 Nissan Motor Co Ltd 物体検出装置及び物体検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715999A1 (de) * 1997-04-17 1998-10-22 Daimler Benz Ag Radar-Anordnung zur Straßenzustandserkennung in einem Kraftfahrzeug
DE19718623A1 (de) * 1997-05-02 1998-11-05 Daimler Benz Ag Verfahren zur polarimetrischen Fahrbahnerkennung
DE19963001A1 (de) * 1999-12-24 2001-06-28 Bosch Gmbh Robert Kraftfahrzeug-Radarsystem
JP3671229B2 (ja) 2002-11-26 2005-07-13 国土交通省国土技術政策総合研究所長 電波放射計式路面状況把握装置
EA008399B1 (ru) * 2003-03-14 2007-04-27 Ливас Апс Устройство детектирования данных о состоянии поверхности
US7167126B2 (en) * 2004-09-01 2007-01-23 The Boeing Company Radar system and method for determining the height of an object
JP4556765B2 (ja) * 2005-05-19 2010-10-06 株式会社デンソー 電波受信システムおよび撮像システム
JP5610254B2 (ja) * 2008-06-18 2014-10-22 株式会社リコー 撮像装置及び路面状態判別方法
FI121250B (fi) * 2008-09-11 2010-08-31 Valtion Teknillinen Menetelmä tieolosuhteiden tunnistamiseksi
JP5461065B2 (ja) * 2009-05-21 2014-04-02 クラリオン株式会社 現在位置特定装置とその現在位置特定方法
JP5930019B2 (ja) * 2012-03-01 2016-06-08 日産自動車株式会社 車両検出装置及び車両検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310896A (ja) * 2001-04-19 2002-10-23 Mitsubishi Heavy Ind Ltd 路面状態判別装置及び路面状態判別方法
JP2007140992A (ja) 2005-11-18 2007-06-07 Aisin Aw Co Ltd 交差点での運転支援方法及び運転支援装置
JP2011150689A (ja) * 2009-12-25 2011-08-04 Ricoh Co Ltd 撮像装置、車載用撮像システム、路面外観認識方法及び物体識別装置
JP2012073221A (ja) * 2010-08-30 2012-04-12 Nissan Motor Co Ltd 物体検出装置及び物体検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2884311A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004019A (ja) * 2014-06-19 2016-01-12 日産自動車株式会社 物体検出装置及び物体検出方法
WO2015194042A1 (ja) * 2014-06-20 2015-12-23 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JPWO2015194042A1 (ja) * 2014-06-20 2017-05-25 日産自動車株式会社 電波画像生成装置及び電波画像生成方法
JP2017036986A (ja) * 2015-08-10 2017-02-16 日産自動車株式会社 路面検出装置の制御方法および路面検出装置
JP2018084535A (ja) * 2016-11-25 2018-05-31 日産自動車株式会社 路面判断方法および路面判断装置
JP2018205186A (ja) * 2017-06-06 2018-12-27 株式会社豊田中央研究所 路面状態判定装置及び路面状態判定プログラム
JP7001305B2 (ja) 2017-06-06 2022-01-19 株式会社豊田中央研究所 路面状態判定装置及び路面状態判定プログラム

Also Published As

Publication number Publication date
EP2884311B1 (en) 2017-07-19
US9341708B2 (en) 2016-05-17
EP2884311A4 (en) 2015-10-07
CN104520735B (zh) 2016-03-02
EP2884311A1 (en) 2015-06-17
US20150212199A1 (en) 2015-07-30
CN104520735A (zh) 2015-04-15
JP5907271B2 (ja) 2016-04-26
JPWO2014024763A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
JP5907271B2 (ja) 路面状態検出装置及び路面状態検出方法
US20200264276A1 (en) Signal processing apparatus, signal processing method, program, and object detection system
EP3229041B1 (en) Object detection using radar and vision defined image detection zone
US11899099B2 (en) Early fusion of camera and radar frames
CN111352110B (zh) 处理雷达数据的方法和装置
US9651393B2 (en) Driving support device, driving support method, and recording medium storing driving support program
JP5821419B2 (ja) 移動物体検出装置、移動物体検出方法及び移動物体検出用コンピュータプログラム
US10551494B2 (en) Road information detection apparatus and road information detection method
KR101428239B1 (ko) 노면 표식 인식 장치 및 그 인식 방법
US10353051B2 (en) Apparatus for detecting axial misalignment of beam sensor
US20150378015A1 (en) Apparatus and method for self-localization of vehicle
KR102543525B1 (ko) 차량 및 그 충돌 회피 방법
US20190196008A1 (en) Method and device to detect object
JP2015506474A (ja) 車両における車輪に依存しない速度測定のための方法及び装置
JP7155284B2 (ja) 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体
US11255963B2 (en) Sensing device, mobile body system, and sensing method
JP7111181B2 (ja) 検知装置、移動体システム、及び検知方法
CN113752945A (zh) 车载显示系统
JP2017125702A (ja) 物体検出装置
CN109964132B (zh) 用于在运动物体上配置传感器的方法、设备和系统
US20240183986A1 (en) Travelable area extraction apparatus, system, and method, and non-transitory computer readable medium
JP5843017B2 (ja) 車両挙動検出装置及び車両挙動検出方法
CN117409390A (zh) 图案识别装置
JP2023122390A (ja) 測距装置及び測距方法
CN114609644A (zh) 用于通过激光雷达系统补充探测对象的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529457

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419758

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013828642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013828642

Country of ref document: EP