WO2013128792A1 - エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池 - Google Patents

エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池 Download PDF

Info

Publication number
WO2013128792A1
WO2013128792A1 PCT/JP2013/000321 JP2013000321W WO2013128792A1 WO 2013128792 A1 WO2013128792 A1 WO 2013128792A1 JP 2013000321 W JP2013000321 W JP 2013000321W WO 2013128792 A1 WO2013128792 A1 WO 2013128792A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
expanded
lead
expanded lattice
wrinkle
Prior art date
Application number
PCT/JP2013/000321
Other languages
English (en)
French (fr)
Inventor
暁申 田
宇亮 潘
道男 榑松
善博 村田
佐々木 健浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to IN7724DEN2014 priority Critical patent/IN2014DN07724A/en
Priority to JP2013516823A priority patent/JP5291272B1/ja
Publication of WO2013128792A1 publication Critical patent/WO2013128792A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an expanded lattice, a manufacturing method thereof, and a lead storage battery electrode plate and a lead storage battery using the expanded lattice.
  • Lead storage batteries have features such as low cost, stable output, and suitable for large current discharge, and have been widely used in fields such as vehicle starting, main power source for electric vehicles or power tools, backup power source, etc. .
  • Lead batteries are mainly classified into liquid type lead acid batteries that are open type (vent type) and control valve type lead acid batteries that are sealed type.
  • the control valve type lead storage battery has a feature that it is maintenance-free, and is therefore more widely used.
  • a control valve type lead-acid battery consists of a positive electrode plate, negative electrode plate, separator, electrolyte, casing with safety valve, etc., and the positive and negative electrode plates are filled with an active material in an alloy grid manufactured by a special process. Both paste-type electrode plates are used.
  • the grids used for lead-acid batteries can be broadly divided into two types: cast grids and expanded grids. Compared to a cast grid, an expanded grid can not only save material costs, but also has less variation in the weight of the manufactured grid and greatly improves production efficiency. Therefore, at present, instead of the conventional cast lattice, an expanded lattice is often used.
  • Patent Document 1 discloses a punching shear type expanding apparatus.
  • the expanding device mainly includes an upper blade and a lower blade, and the upper and lower blades have a tooth-like structure.
  • the upper blade performs a vertical punching motion in the vertical direction while facing the lower blade.
  • the punched lead sheet is stretched in the horizontal direction to form a net-like structure.
  • the following problems are likely to occur in the expanded lattice produced by the above expanding method. That is, when the lead sheet is stretched in the horizontal direction, the lattice bone constituting the mesh is pulled into a linear shape, the stress received by the lattice bone increases, and the intersection (ie, node) of the lattice bone is pulled too much. The problem is that it may tear easily. In particular, during the crystal growth of the electrode plate, fracture of the lattice bone tends to occur in a very short period of time, which affects the distribution of the grid current collection, and the active material near the fracture portion of the lattice bone falls off. Therefore, it cannot be used effectively and the discharge capacity is reduced.
  • Patent Document 2 in order to relieve the stress applied to the expanded lattice during the expansion deformation, the expanded lattice obtained by the expanding process is subjected to heat treatment, thereby achieving a high capacity and long life. It has been proposed to obtain a lead acid battery.
  • the inventors of the present application further examined the cause of stress and wrinkle generation in the expanded lattice in the conventional expanding process.
  • wrinkle generation in the expanded lattice can be controlled by consciously adjusting the process conditions of the expanding process, thereby reducing the stress applied to the lattice bone.
  • an expanded lattice having a predetermined wrinkle generation rate and wrinkle formation for a lead-acid battery an unexpected effect can be obtained, an excellent discharge capacity and battery cycle life can be obtained, and the present invention has been completed. It was.
  • the expanded lattice of the present invention is an expanded lattice that is formed by an expanding method and includes a plurality of rhombus meshes composed of lattice bones, and some of the lattice bones are wrinkled.
  • a curved portion which is generated and protrudes, and is a rhombus between two parallel and opposed lattice bones which are the length of a side of a rhombus mesh and are not wrinkled in the projected view of the expanded lattice
  • D1 The distance measured in parallel to the remaining two lattice bones of D
  • D2 the remaining two lattice bones in the rhombus form from the apex of the curvature of the lattice bone where wrinkles are generated to the other lattice bones that are parallel and opposite to it
  • the wrinkle formation degree W is preferably in the range of 0.11 to 0.17.
  • the wrinkle generation rate which is the percentage of the number of lattice bones where wrinkles are generated in the expanded lattice to the total number of lattice bones constituting the expanded lattice, is preferably in the range of 5 to 20%.
  • the wrinkle generation rate is more preferably in the range of 6 to 17%.
  • the wrinkle generation rate is more preferably in the range of 7 to 15%.
  • the electrode plate for a lead storage battery according to the present invention includes the expanded lattice and an active material filled in the expanded lattice.
  • the lead storage battery of the present invention is characterized by comprising the electrode plate.
  • the electrode plate is preferably a positive electrode plate.
  • the method for producing an expanded lattice of the present invention produces the expanded lattice, and includes the following steps: (1) A lead sheet is punched using a punching die, and a plurality of slits arranged obliquely are formed along the length direction of the lead sheet by relative movement with respect to the lower die of the upper die. After spreading in the direction perpendicular to the surface of the lead sheet, the upper die is returned to its original position to complete one stroke step, and the above steps are repeated each time the lead sheet moves a predetermined distance in the length direction.
  • An expanding process for forming a reticulated sheet having a rhombic mesh (2) A shaping step of horizontally shaping the obtained mesh sheet with a guide roller to obtain a planar mesh body; (3) a cutting step of forming an expanded lattice by cutting the obtained net-like body into a predetermined shape and size;
  • a method for producing an expanded lattice comprising: In the expanding step, by controlling the depth of cut and / or the number of strokes of the upper mold by an external device, the resulting expanded lattice has a predetermined degree of wrinkle formation and / or wrinkle generation rate.
  • the depth of cut is preferably 2.965 to 3.045 mm.
  • the cutting depth is more preferably 2.98 to 3.03 mm.
  • the stroke number is more preferably 600 to 1800 rpm.
  • the stroke number is more preferably 750 to 1500 rpm.
  • the number of strokes is more preferably 800 to 1300 rpm.
  • an expanded lattice having a wrinkle generation rate and a wrinkle formation degree within a predetermined range can be obtained with a high yield, and by using such an expanded lattice for a lead storage battery, Excellent discharge capacity and cycle life can be obtained.
  • (A) is a front view schematically showing a conventional expanded lattice
  • (b) is an enlarged schematic view showing a part of the expanded lattice.
  • (A) is a front view which shows typically the expanded lattice of this invention
  • (b) is a schematic diagram which expands and shows a part of said expanded lattice. It is a projection view which shows the state which the wrinkle has generate
  • 1 is a perspective view schematically showing a part of a lead storage battery of the present invention.
  • the emphasis has been mainly placed on the preparation method of the active material (lead paste) and the alloy components of the lattice.
  • the present inventors considered that if the lattice bone constituting the expanded lattice is easily broken, the performance and life of the battery are greatly affected. Therefore, paying attention to improvement of the shape of the expanded lattice, it was intended to improve the battery performance such as the discharge capacity and life of the battery by changing the structure of the expanded lattice.
  • the conventional expanded lattice includes a plurality of meshes, each of which is composed of four lattice bones except for the irregularly shaped meshes at the edges, and the projected shape on the plane is approximately rhombus. It is.
  • the lattice bone constituting the mesh is usually linear.
  • the mesh in an expanded lattice produced without defects should be flat and uniform, and the yield will decrease if wrinkles occur in the lattice bone constituting the mesh. In addition, wrinkles occur randomly, and the production of the expanded lattice has become uncontrollable.
  • FIG. 2 is a schematic diagram of the expanded lattice 1 of the present invention.
  • the expanded lattice 1 has a plurality of meshes i. Each mesh is surrounded by four lattice bones g and has a substantially rhombic projection shape.
  • a feature of the expanded lattice of the present invention is that, in one mesh i ′ of the expanded lattice, wrinkles are generated in one lattice bone g ′ constituting the mesh i ′, and a protruding curved portion 1a is formed. It is in the shape.
  • the inventors of the present application have found that in the expanded lattice in which wrinkles are generated, the degree of curvature of the lattice bone affects each performance of the battery.
  • the degree of curvature of the lattice bone in the expanded lattice is within an appropriate range, the cycle life and discharge capacity of the battery can be significantly improved.
  • wrinkle formation degree represents the degree of curvature of lattice bone in the expanded lattice.
  • the expanded lattice of the present invention is projected vertically onto a plane where the expanded lattice is present, and a projection view in which wrinkles are generated in some lattice bones in the expanded lattice of the present invention is obtained (FIG. 3). ).
  • D1 is the distance between the lattice bone g1 in which no wrinkles are generated and another lattice bone g2 that is parallel to and faces the lattice bone g1, and when the mesh i is a diamond, D1 is the side of the diamond Equal to the length, ie corresponding to the length of each normal lattice bone.
  • D2 is the distance from the vertex 1a of the curvature of the lattice bone g1 ′ where wrinkles are generated to another lattice bone g2 that is parallel to and opposed to the lattice bone g1, and the lattice bone g1 ′ is the lattice bone g1.
  • deviated from the straight line (dashed line in a figure) which exists is formed. Therefore, D2 is slightly larger than the length of the side of the rhombus, and the ratio D2 / D1 is larger than 1.
  • the inventors of the present application have conducted many tests, and when the wrinkle formation degree W of the lattice bone is in the range of 0.09 to 0.19, it has a beneficial effect on characteristics such as the discharge capacity and cycle life of the battery. Prove that you can bring.
  • the greater the degree of wrinkle formation W the greater the degree of curvature of the lattice bone. If the ratio W of the wrinkle formation exceeds 0.19, it indicates that the lattice bone is remarkably deformed. In such a case, the lattice bone is easily broken, which adversely affects the battery life characteristics. Will be affected.
  • the degree of wrinkle formation W is less than 0.09, the above-described beneficial effect due to the curvature of the lattice bone does not appear much.
  • the wrinkle formation degree W is more preferably in the range of 0.11 to 0.17.
  • the reason why wrinkle formation has a beneficial effect on battery performance is estimated as follows. That is, since the curved lattice bone has a larger surface area than the linear lattice bone, the contact area with the active material per unit volume is increased. Therefore, it is possible to secure a larger reaction area, thereby improving the current collecting property of the lattice, improving the current distribution of the lattice, and increasing the utilization factor of the active material. Therefore, by generating wrinkles in the lattice bone, the utilization factor of the active material can be increased without increasing the volume of the battery, thereby improving the discharge capacity of the battery.
  • the straight lattice bone is easily affected by stress during the expansion process and has little room for deformation, so the lattice bone breaks while the lattice extends in the height direction of the electrode plate during battery use. Is very easy to occur, and the broken lattice bone has a significant adverse effect on the current collection and life of the lattice.
  • the curved lattice bone has a certain relaxation action against the stress applied in the expanding process due to its own shape, and when the lattice extends in the height direction, the curved lattice bone has a linear shape. There is more room for deformation than lattice bone.
  • the stress which a lattice bone receives can be relieve
  • the lifetime of a lattice can be extended and by extension, the lifetime characteristic of a battery can be improved.
  • wrinkles are generated only in one lattice bone g ′ among the four lattice bones constituting the mesh i ′.
  • the present invention is not limited to this, and the lattice bone g ′ generating wrinkles is not limited thereto. May be two or more.
  • the number of lattice bones that generate wrinkles in each mesh is preferably 2 or less.
  • the inventors of the present invention have found through experiments that the cycle life and discharge capacity of the battery can be further improved significantly if the ratio of the number of lattice bones that generate wrinkles in the expanded lattice is within an appropriate range. did.
  • the wrinkle generation ratio in the expanded lattice is represented by “wrinkle generation rate”. That is, the “wrinkle occurrence rate” is defined as a percentage of the number of lattice bones where wrinkles are generated in the expanded lattice with respect to the total number of lattice bones constituting the expanded lattice.
  • the range of the wrinkle occurrence rate is not particularly limited.
  • the wrinkle generation rate is too low, for example, less than 5%, the number of lattice bones that generate wrinkles may be too small to obtain the effects of the present invention.
  • the wrinkle generation rate is too high, for example, when it is higher than 20%, there is a possibility that excessive use of the active material described later occurs. Therefore, it is necessary to keep the wrinkle occurrence rate of the lattice bone in the expanded lattice within a range of 5 to 20%.
  • the wrinkle occurrence rate is preferably in the range of 6 to 17%, and more preferably in the range of 7 to 15%.
  • the reason why the wrinkle generation rate has a beneficial effect on the battery performance is estimated as follows. That is, when the wrinkle generation rate is 6% or more, the contact area between the active material and the expanded lattice is appropriately increased by these lattice bones in which the wrinkle is generated, so that the utilization rate of the active material can be increased. Presumed to be possible. However, if the utilization rate of the active material is too high, the life of the battery may be affected. Experiments have shown that when the wrinkle incidence of lattice bone exceeds 20%, the active material utilization rate may reach 40% or more, but when the active material utilization rate exceeds 40%. In some cases, the reaction of the active material proceeds too much and the life of the battery is shortened.
  • the upper limit of the wrinkle generation rate needs to be 20% or less, and preferably 17% or less.
  • the wrinkle generation rate is in the range of 6 to 17%, the effect that the charging efficiency of the battery and the reaction space between the sulfuric acid and the active material reach the best balance can be obtained.
  • the inventors of the present application also examined the influence of the part where wrinkles occur on the battery performance. Specifically, the expanded lattice was divided into three parts, upper, middle and lower, for evaluation. As a result, in any of the three portions, no matter which portion of the lattice bone is wrinkled, if the degree of wrinkle formation is appropriate and the wrinkle generation rate in the entire expanded lattice is 20% or less, basically It turns out that the same effect can be obtained.
  • the lead sheet of the raw material is fed into a punching die used in a normal expanding method, and the specific conditions in the expanding process are adjusted, so that the expanded lattice of the present invention, that is, part of the lattice bone An expanded lattice in which wrinkles are generated can be obtained.
  • the method for producing the expanded lattice of the present invention includes the following steps: (1) A lead sheet is punched using a punching die, and a plurality of slits arranged obliquely are formed along the length direction of the lead sheet by relative movement with respect to the lower die of the upper die. After spreading in the direction perpendicular to the surface of the lead sheet, the upper die is returned to its original position to complete one stroke step, and the above steps are repeated each time the lead sheet moves a predetermined distance in the length direction.
  • An expanding process for forming a reticulated sheet having a rhombic mesh (2) A shaping step of horizontally shaping the obtained mesh sheet with a guide roller to obtain a planar mesh body; (3) a cutting step of forming an expanded lattice by cutting the obtained net-like body into a predetermined shape and size; Is provided.
  • a lead alloy foil usually used in this field such as a Pb alloy foil containing at least one metal of Ca and Sn, can be used. From the viewpoint of corrosion resistance and mechanical strength, Pb— What consists of a Ca-Sn ternary alloy is preferable. When a lead sheet having such an alloy composition is used, the cycle life characteristics of the lead storage battery can be easily improved.
  • the punching die used in the expanding step includes a punching die having a plurality of sword-like movable dies 2 (upper die) and a plurality of ridge-like fixed dies 3 (lower die) as shown in FIG. It is done.
  • the movable type 2 cutting tool and the fixed type 3 ridge are symmetrically distributed so as to be V-shaped with respect to the center line in the width direction of the lead sheet 4.
  • the lead sheet 4 is fed in the length direction between the movable mold 2 and the fixed mold 3 to perform punching.
  • the arrangement of the cutting tools in the movable die and the ridges in the fixed die is adjusted so that the central portion in the width direction of the lead sheet is not punched out.
  • the lead sheet 4 is cut along the length direction so as to be V-shaped.
  • a plurality of rows of slits arranged diagonally are formed, and at the same time, the movable die 2 continues to be pushed down, and the slit is widened in the direction perpendicular to the lead sheet surface. Return.
  • Such a single punching process is called one stroke.
  • the lead sheet 4 is moved a predetermined distance forward in the length direction, and the above steps are repeated, thereby forming a plurality of diagonally arranged slits in the lead sheet again.
  • a connecting portion between two adjacent slits in each row corresponds to a central portion of one slit in the adjacent row. Therefore, when the slit is widened, a plurality of rhombus meshes are formed. The above steps are repeated to obtain a mesh sheet having a plurality of rhombus meshes.
  • the mesh sheet obtained as described above is flattened (shaped) in the horizontal direction by a pair of guide rollers, so that the mesh sheet is spread in the horizontal direction to obtain a planar mesh.
  • the mesh body is cut into a predetermined shape and size as necessary, and an ear is formed at the center of the lead sheet to obtain an expanded lattice.
  • the characteristics of the production method of the present invention are as follows. That is, in the above-described expanding step, by controlling the movable cutting depth by an external device, the resulting expanded lattice can have a predetermined degree of wrinkle formation. Further, by controlling the movable punching speed by an external device, the resulting expanded lattice can have a predetermined wrinkle generation rate.
  • the inventors of the present application are closely related to the conditions of the expanding process and the generation of wrinkles. By optimizing the two directions of the cutting depth and the punching speed of the mold, the wrinkle formation of the obtained expanded lattice is performed. It was discovered that the degree and degree of wrinkle occurrence can be controlled.
  • the cutting depth of the movable mold is the maximum distance t in which the cutting tool of the movable mold 2 moves downward with respect to the upper end surface of the fixed mold 3 in one stroke, and the unit is mm.
  • the cutting depth of the mold is in the range of 2.965 mm to 3.045 mm, preferably in the range of 2.97 mm to 3.04 mm, more preferably 2.98 mm. It is necessary to limit to the range of ⁇ 3.03 mm.
  • the movable punching speed is represented by the number of strokes.
  • the number of strokes represents the number of punches completed per unit time (1 min), and the unit is rpm. For example, if the number of strokes is 100 rpm, it means that the movable tool performs punching of the lead sheet 100 times per minute. The larger the number of strokes, the faster the punching speed of the mold, and the production efficiency of the expanded lattice is improved accordingly.
  • the inventors of the present application have found that there is a certain proportional relationship between the number of strokes of the mold in the expanding process and the wrinkle generation rate of the expanded lattice, as shown in FIG.
  • the greater the number of strokes the higher the possibility that wrinkles will occur, and the wrinkle occurrence rate will increase accordingly.
  • the wrinkle occurrence rate is 3% or less.
  • the wrinkle occurrence rate approaches 5%.
  • the wrinkle occurrence rate is 20%.
  • the effect of the number of strokes on the wrinkle incidence is estimated by the following factors. That is, if the number of strokes exceeds 600 rpm, the lead sheet advance speed tends to be somewhat inconsistent with the speed at which the movable tool is pushed downward to form the slit, and the force received by the lattice bone becomes uneven. Wrinkles will occur in the lattice bone of the part. When the number of strokes is less than 500 rpm, a sufficient number of wrinkles cannot be formed on the expanded lattice, and the effects of the present invention cannot be obtained. However, if the number of strokes is too large, the number of wrinkles generated will be excessive, and the entire expanded grid will be bumpy, which may affect productivity.
  • the depth of wrinkle formation of the lattice bone in the obtained expanded lattice is in the range of 0.09 to 0.19 by keeping the cutting depth of the upper die in the range of 2.97 to 3.04 mm. It is preferable to be inside. Further, it is preferable that the wrinkle generation rate of the obtained expanded lattice is within a range of 5 to 20% by keeping the number of strokes of the upper die within a range of 600 to 1800 rpm.
  • the wrinkle formation degree of the lattice bone in the obtained expanded lattice is in the range of 0.11 to 0.17 by keeping the cutting depth of the upper die in the range of 2.98 to 3.03 mm. Further, it is more preferable that the number of strokes of the upper mold is within the range of 750 to 1500 rpm, since the wrinkle generation rate of the obtained expanded lattice can be within the range of 6 to 17%. By setting the number of strokes of the upper die within the range of 800 to 1300 rpm, the wrinkle generation rate of the obtained expanded lattice can be within the range of 7 to 15%, which is even more preferable.
  • an expanded lattice having a predetermined wrinkle generation rate and a wrinkle formation degree can be easily obtained by controlling the number of strokes and the cutting depth of a movable tool in the expanding process. Can do. As a result, it is possible to manufacture a lead-acid battery that is suitable for applications that require large-capacity discharge and a long cycle life, and that has excellent discharge capacity and cycle characteristics.
  • the degree of wrinkle formation and the wrinkle generation rate of the obtained expanded lattice are controlled by adjusting two of the cutting depth and the punching speed of the mold, but the present invention is not limited to this.
  • the wrinkle formation rate and wrinkle occurrence rate should be within the specified range by various methods such as lead sheet traveling speed, movable height, adjustment of guide roller pressing force, horizontal guide roller extension, etc. These methods may be used alone or in combination with the adjustment method of the present embodiment.
  • the expanded lattice of the present invention can be used for any battery that uses an expanded lattice.
  • a lead storage battery will be described as an example.
  • the expanded lattice of the present invention can be used for producing the lead storage battery of the present invention. Except for the use of the expanded lattice of the present invention, the method for producing the lead-acid battery of the present invention is the same as the ordinary production method.
  • the method for manufacturing a lead storage battery of the present invention includes a step of filling a flat mesh obtained by the above shaping step with a lead paste, for example.
  • Lead paste as an active material is prepared by adding water and sulfuric acid to a lead powder composed of 60 to 90% by mass of lead oxide and 10 to 40% by mass of lead metal.
  • the lead paste may be filled from one side of the mesh body or from both the front and back sides of the mesh body.
  • the net-like body filled with the lead paste is cut into a predetermined size to have a shape having an ear part, thereby obtaining an expanded lattice filled with the active material.
  • the electrode plate of the present invention is formed through aging and drying.
  • the influence of the positive electrode plate on the performance of the lead storage battery is relatively larger than that of the negative electrode plate, the effect of the expanded lattice of the present invention is more remarkable than that of the negative electrode plate. Therefore, it is preferable to use the electrode plate of the present invention as the positive electrode plate of the lead storage battery.
  • the lead storage battery 11 of the present invention includes a battery case 8 and cells (unit cells) divided into a plurality of partitions in the battery case 8 by partition walls.
  • Each cell accommodates one electrode group.
  • the electrode plate group is formed by alternately stacking positive plates 5, negative plates 6, and separators 7 interposed between the positive plates and the negative plates.
  • Each cell is connected in series by welding the strap on the positive electrode side of each cell directly or via a pole column to the strap on the negative electrode side in the adjacent cell.
  • a battery inner lid 9 with a built-in safety valve is attached to the opening of the battery case 8, and the positive and negative poles at both ends of the battery case are connected to the positive terminal and the negative terminal provided on the battery inner cover, respectively.
  • the battery case 8 is bonded to the inner lid 9 with an adhesive. Then, an electrolytic solution (not shown) is poured into the battery case 8, and after pouring, the battery upper lid 10 is hermetically fixed to the battery case 8 and the inner lid 9, thereby forming the lead storage battery 11 of the present invention.
  • a sulfuric acid solution usually used in the field of lead storage batteries can be used, and there is no particular limitation.
  • dilute sulfuric acid having a mass fraction of 1.1 to 1.4 g / ml can be used.
  • electrolyte adsorption may be used, and the electrolyte may be adsorbed to a separator mainly composed of glass fiber, or a gelled colloidal electrolyte may be used.
  • the contact area between the expanded lattice and the active material is increased, and the utilization rate of the active material is increased. Capacity has improved.
  • lead in the positive grid may gradually oxidize to lead oxide, increasing the volume of the grid, and macroscopically appears as an extension of the grid in the plate height direction.
  • the present invention uses a curved lattice bone, the stress generated in the expanded lattice during crystal growth can be relieved, the possibility that the lattice bone is broken can be reduced, and the cycle life of the battery can be improved.
  • the lead storage battery of the present invention uses an expanded lattice having a lattice bone in which the wrinkles of the present invention are generated on the positive electrode plate, and the wrinkle formation degree and wrinkle generation rate in the expanded lattice are within an appropriate range. Therefore, an excellent discharge capacity and cycle life can be obtained.
  • Example 1- Preparation of positive electrode plate
  • the lead material sheet made of Pb-Ca-Sn ternary alloy sheet is fed into the punching die, and the relative movement with respect to the movable fixed die is controlled by an external device.
  • the resulting mesh sheet was shaped in the horizontal direction by a pair of shaping guide rollers to obtain a planar mesh.
  • the positive electrode lead paste was filled in the mesh body after shaping. Thereafter, the net body filled with the lead paste is cut into a predetermined shape and size, an expanded lattice filled with the lead paste is obtained, aging and drying are performed, and the positive electrode plate of the present invention (length 139 mm, width 64 mm, A thickness of 2.9 mm) was formed.
  • the depth of wrinkle formation and the wrinkle occurrence rate of the expanded lattice were controlled to the desired values by adjusting the movable cutting depth and the number of strokes with an external device.
  • the battery was disassembled, the lead paste was removed from the positive electrode plate, the expanded lattice was taken out from it, and the degree of wrinkle formation and wrinkle occurrence rate was measured as follows. In this example, the measured degree of wrinkle formation was 0.09 and the wrinkle generation rate was 11%.
  • Example 2- In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.11 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 3- In the production of the positive electrode plate, the wrinkle occurrence rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 4 In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.17 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 5 In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.19 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 1 In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.08 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 2 In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.21 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 6- In the production of the positive electrode plate, the wrinkle occurrence rate measured for the expanded lattice was 6% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 7 In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 7% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 8- In the production of the positive electrode plate, the wrinkle occurrence rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 9 In the production of the positive electrode plate, the wrinkle occurrence rate measured for the expanded lattice was 15% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 10- In the production of the positive electrode plate, the wrinkle generation rate measured for the expanded lattice was 17% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Otherwise, a positive electrode plate was produced in the same manner as in Example 1, and a negative electrode plate and a lead storage battery were produced in the same manner as in Example 1.
  • Example 11 In the production of the positive electrode plate, the wrinkle occurrence rate measured for the expanded lattice was 11% and the wrinkle formation degree was 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. Similarly, in the production of the negative electrode plate, the wrinkle generation rate measured for the expanded lattice is 11% and the wrinkle formation degree is 0.14 by adjusting the movable cutting depth and the number of strokes with an external device. It was made to become. Otherwise, a positive electrode plate and a negative electrode plate were produced in the same manner as in Example 1, and a lead storage battery was produced in the same manner as in Example 1.
  • Discharge capacity C discharge current (I) ⁇ discharge time (h)
  • Table 1 summarizes the parameters and test results of each of the above storage batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 エキスパンド格子及びその製造方法、並びに該エキスパンド格子を用いた鉛蓄電池用極板及び鉛蓄電池を提供する。前記エキスパンド格子はエキスパンド法によって形成され、格子骨で構成される複数の菱形の網目を備え、前記格子骨のうち一部の格子骨にはシワが発生し、突出する湾曲部を形成しており、前記エキスパンド格子の投影図において、菱形の網目における辺の長さである、シワが発生していない2本の平行且つ対向する格子骨間を菱形の残りの2つの格子骨と平行に計測した距離をD1とし、シワが発生している格子骨の湾曲の頂点からそれと平行で且つ対向する他の格子骨までを菱形の残りの2つの格子骨と平行に計測した距離をD2とするとき、格子骨の湾曲の程度を表すシワ形成度W=(D2-D1)/D1(但し、D2>D1)は、0.09~0.19の範囲にあることを特徴とする。

Description

エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池
 本発明は、エキスパンド格子及びその製造方法、並びに該エキスパンド格子を用いた鉛蓄電池用極板及び鉛蓄電池に関する。
 鉛蓄電池には、安価で、出力が安定し、大電流放電に適している等の特長があり、車両の始動、電動車両又は電動工具の主電源、バックアップ電源等の分野において広く用いられてきた。
 鉛蓄電池には、主に、開放式(ベント形)である液式鉛蓄電池と、密封式である制御弁式鉛蓄電池とがある。その中で、制御弁式鉛蓄電池はメンテナンスフリーであるという特長を有するので、さらに広く用いられている。制御弁式鉛蓄電池は、正極板や負極板、セパレータ、電解液、安全弁付きケーシング等の部分からなり、正負極板には、特殊な工程で製造した合金製格子に活物質を充填してなるペースト式極板がともに用いられている。鉛蓄電池に用いる格子は、鋳造格子及びエキスパンド格子の2種類に大別することができる。鋳造格子に比べ、エキスパンド格子(expand grid)は材料コストの節約が可能なだけでなく、製造される格子の重さにばらつきが少なく、生産効率も大幅に向上する。よって、現在では、従来からの鋳造格子に替わり、エキスパンド格子を用いることが多くなってきている。
 通常、エキスパンド格子の作製にはエキスパンド法が用いられる。例えば、特許文献1には押抜き(punching)せん断型エキスパンド装置が開示されている。該エキスパンド装置は主に上刃と下刃とからなり、上下の刃はともに歯状の構造を有している。鉛シートがエキスパンド装置へ送り込まれると、上刃が下刃と対向しつつ垂直方向に上下押抜き運動を行う。それから、押し抜いた鉛シートを水平方向に伸張して網状の構造を形成している。
 上記エキスパンド法によって生産されたエキスパンド格子には、次のような問題が起こりやすい。即ち、鉛シートを水平方向に伸張するとき、網目を構成する格子骨が引っ張られて直線形状になり、格子骨の受ける応力が大きくなるとともに、格子骨の交点(即ち結節点)が引っ張られすぎて、容易に裂けてしまう場合がある、という問題である。特に、極板の結晶成長中に格子骨のごく短期間での破断が起こりやすく、それによって格子集電性の分布に影響が出たり、格子骨破断部付近の活物質が脱落したりして、有効に利用することができず、放電容量の低下を招いてしまう。しかも、格子骨が破断するので、格子がより腐食しやすくなり、電池の寿命が短くなってしまう。上記の問題を解決するため、特許文献2においては、エキスパンド変形中にエキスパンド格子が受けた応力を緩和するため、エキスパンド加工によって得られたエキスパンド格子に熱処理を施し、それによって高容量且つ長寿命の鉛蓄電池を得る、ということが提案されている。
 一方、エキスパンド加工のプロセス条件が変化した場合や、例えば鉛シートの進行速度と型の押抜き速度とが合っていない場合には、網目を構成する一部の格子骨にシワが発生する場合がある。この場合には、広げた後のエキスパンド格子が平らにならず、後に続く極板生産の安定性に影響してしまう。通常、このようなシワはランダムで発生するので、その発生の数や程度を制御することは不可能である。よって、現在のところ、エキスパンド法でエキスパンド格子を製造する際に発生するシワについては意識的に検討されていない。しかも、エキスパンド格子において、シワの発生は生産性が低いことを表すと考えられており、このようなシワの発生をできるだけ回避することが望まれている。
中国特許出願第CN1126378A号明細書 特開2003-157853号明細書
 本願発明者らは、従来のエキスパンド工程においてエキスパンド格子に応力及びシワが発生する原因についてさらに検討を行った。その結果、エキスパンド工程のプロセス条件を意識的に調整することで、エキスパンド格子におけるシワの発生を制御し、それによって格子骨が受ける応力を緩和することができるということを発見した。さらに、所定のシワ発生率及びシワ形成度を有するエキスパンド格子を鉛蓄電池に用いることで、予期せぬ効果が生まれ、優れた放電容量及び電池サイクル寿命を得ることができ、本発明の完成に至った。
 具体的に、本発明のエキスパンド格子は、エキスパンド法によって形成され、格子骨で構成される複数の菱形の網目を備えるエキスパンド格子であって、前記格子骨のうち一部の格子骨にはシワが発生し、突出する湾曲部を形成しており、前記エキスパンド格子の投影図において、菱形の網目における辺の長さである、シワが発生していない2本の平行且つ対向する格子骨間を菱形の残りの2つの格子骨と平行に計測した距離をD1とし、シワが発生している格子骨の湾曲の頂点からそれと平行で且つ対向する他の格子骨までを菱形の残りの2つの格子骨と平行に計測した距離をD2とするとき、格子骨の湾曲の程度を表すシワ形成度Wは、下記の式(1)、即ち
 W=(D2-D1)/D1     (1)
 によって決まり(但し、D2>D1)、前記シワ形成度は0.09~0.19の範囲にあることを特徴とする。ここでシワとは、本来は直線形状である格子骨(ストランド)に生じた湾曲であり、この湾曲は格子の菱形形状を変形させるものである。
 前記シワ形成度Wは0.11~0.17の範囲にあることが好ましい。
 前記エキスパンド格子においてシワが発生している格子骨数の、前記エキスパンド格子を構成する全格子骨数に対する百分率であるシワ発生率は、5~20%の範囲にあることが好ましい。
 前記シワ発生率は6~17%の範囲にあることがより好ましい。
 前記シワ発生率は7~15%の範囲にあることがさらに好ましい。
 また、本発明の鉛蓄電池用極板は、前記エキスパンド格子と、前記エキスパンド格子に充填された活物質と、を備えることを特徴とする。
 また、本発明の鉛蓄電池は、前記極板を備えることを特徴とする。
 前記極板は正極板であることが好ましい。
 また、本発明のエキスパンド格子の製造方法は、前記エキスパンド格子を製造し、下記の工程、即ち、
 (1)押抜き型を用いて鉛シートに押抜きを行い、上型の下型に対する相対運動によって、斜めに並ぶ複数のスリットを鉛シートの長さ方向に沿って形成するとともに、該スリットを鉛シート表面と垂直な方向に広げた後、上型を元の位置に戻して1ストロークのステップを完了し、鉛シートが長さ方向に所定距離移動するたびに前記ステップを繰り返すことで、複数の菱形の網目を有する網状シートを形成するエキスパンド工程と、
 (2)得られた網状シートをガイドローラで水平方向に整形し、平面の網状体を得る整形工程と、
 (3)得られた網状体を所定の形状及び寸法に裁断することでエキスパンド格子を形成する裁断工程と、
 を備えるエキスパンド格子の製造方法であって、
 前記エキスパンド工程において、外部機器によって前記上型の切込み深さ及び/又はストローク数を制御することにより、得られるエキスパンド格子が所定のシワ形成度及び/又はシワ発生率を有するようにすることを特徴とする。
 前記切込み深さは2.965~3.045mmであることが好ましい。
 前記切込み深さは2.98~3.03mmであることがより好ましい。
 前記ストローク数は600~1800rpmであることがより好ましい。
 前記ストローク数は750~1500rpmであることがさらに好ましい。
 前記ストローク数は800~1300rpmであることがより一層好ましい。
 本発明のエキスパンド格子の製造方法によれば、シワ発生率及びシワ形成度が所定の範囲内に収まったエキスパンド格子を高い歩留まりで得ることができ、このようなエキスパンド格子を鉛蓄電池に用いることで、優れた放電容量及びサイクル寿命を得ることができる。
(a)は従来のエキスパンド格子を模式的に示す正面図であり、(b)は前記エキスパンド格子の一部を拡大して示す模式図である。 (a)は本発明のエキスパンド格子を模式的に示す正面図であり、(b)は前記エキスパンド格子の一部を拡大して示す模式図である。 本発明のエキスパンド格子における一部の格子骨にシワが発生している状態を示す投影図である。 本発明の押抜き型が鉛シートに押抜きを行っている状態を示す模式図であり、(a)は押抜き前の状態であり、(b)は押抜き後の状態である。 本発明の押抜き型が鉛シートに押抜きを行う際の切込み深さを示す模式図である。 押抜き型の切込み深さと格子骨のシワ形成度との関係を示すグラフである。 押抜き型のストローク数とシワ発生率との関係を示すグラフである。 本発明の鉛蓄電池を一部切除して模式的に示す斜視図である。
 従来より、電池の性能及び寿命の改善については、主に活物質(鉛ペースト)の調製方法及び格子の合金成分等の検討に重点が置かれていた。しかし、エキスパンド格子を構成する格子骨が破断しやすければ、電池の性能及び寿命に大きな影響を及ぼすと本願発明者らは考えた。そこで、エキスパンド格子の形状の改良に着目し、エキスパンド格子の構造を変更することで電池の放電容量及び寿命等の電池性能を向上させることを期した。
 以下、具体的な実施形態によって本発明を説明するが、本発明は以下の具体的な実施形態に限定されない。
 (本発明のエキスパンド格子)
 図1に示す通り、従来のエキスパンド格子は複数の網目を備え、端縁部の不規則な形状の網目を除き、各網目は4本の格子骨で構成され、平面への投影形状は略菱形である。網目を構成する格子骨は、ふつう直線形状である。
 従来より、欠陥なく生産されたエキスパンド格子における網目は平ら且つ均一であるべきで、網目を構成する格子骨にシワが発生すれば歩留まりは下がるものと考えられてきた。また、シワはランダムで発生するので、エキスパンド格子の生産は制御不能な状態になっていた。
 しかし、本願発明者らは従来の技術上の偏見を克服しようと図り、エキスパンド格子のエキスパンド工程を意識的に調整することによって、生産されるエキスパンド格子における一部の格子骨にシワを発生させた。即ち、一部の格子骨を湾曲させ、元の直線形状から非直線形状にした。
 図2は本発明のエキスパンド格子1の模式図である。図2(a)に示す通り、エキスパンド格子1は複数の網目iを有している。各網目は4本の格子骨gに囲まれてなり、略菱形の投影形状を有している。本発明のエキスパンド格子の特徴は、その中の一の網目i’において、網目i’を構成する一の格子骨g’にシワが発生し、突出する湾曲部1aを形成しており、非直線形状になっている点にある。
 本願発明者らは、シワが発生しているエキスパンド格子において、格子骨の湾曲の程度が電池の各性能に影響することを発見した。そして、エキスパンド格子における格子骨の湾曲の程度が適切な範囲内にあるとき、電池のサイクル寿命及び放電容量を著しく向上させることができる。
 本明細書において、「シワ形成度」とは、エキスパンド格子における格子骨の湾曲の程度を表す。計算の便宜上、本発明のエキスパンド格子をエキスパンド格子が存在する平面へ垂直に投影し、本発明のエキスパンド格子における一部の格子骨にシワが発生している状態の投影図を得た(図3)。該投影図において、シワが発生していない2本の平行且つ対向する格子骨間を菱形の残りの2つの格子骨と平行に計測した距離をD1とし、シワが発生している格子骨の湾曲の頂点からそれと平行で且つ対向する他の格子骨までを菱形の残りの2つの格子骨と平行に計測した距離をD2とするとき、シワ形成度Wは、下記の式(1)、即ち
 W=(D2-D1)/D1     (1)
によって決まる。
 該投影図において、エキスパンド格子における一部の網目iは正常な菱形であるが、他の一部の網目i’には変形が発生し、即ち該網目を構成する一の格子骨にシワが発生し、上向きに突出する湾曲部1aを形成していることが分かる。図3に示す通り、D1はシワが発生していない格子骨g1と、それと平行で且つ対向する他の格子骨g2との距離であり、網目iが菱形である場合、D1は菱形の辺の長さに等しく、即ち正常な格子骨のそれぞれの長さに相当する。一方、網目i’において、D2はシワが発生している格子骨g1’の湾曲の頂点1aからそれと平行で且つ対向する他の格子骨g2までの距離であり、格子骨g1’は格子骨g1の存在する直線(図中の破線)からずれて外側へ突出した湾曲部を形成している。よって、D2は菱形の辺の長さよりわずかに大きく、D2/D1の比は1より大きい。
 本願発明者らは多くの試験を行い、格子骨のシワ形成度Wが0.09~0.19の範囲内にあるとき、電池の放電容量及びサイクル寿命等の特性に対して有益な影響をもたらすことができるということを証明した。シワ形成度Wは、大きいほど格子骨の湾曲の程度が大きいことを表す。シワ形成度の比Wが0.19を超えている場合、格子骨が著しく変形していることを表すが、このような場合には、格子骨の破断を招きやすく、電池の寿命特性に悪影響を及ぼしてしまう。一方、シワ形成度Wが0.09未満の場合、格子骨の湾曲による上記の有益な影響があまり現れない。なお、シワ形成度Wは0.11~0.17の範囲にあるのがより好ましい。
 シワ形成度が電池性能に有益な影響をもたらす理由に関しては、以下のように推測される。即ち、湾曲形状の格子骨は、直線形状の格子骨に比べて表面積がより大きいので、単位体積あたりでの活物質との接触面積が大きくなる。よって、より多くの反応面積を確保し、それによって格子の集電性を高め、格子の電流分布を改善し、活物質の利用率を高めることができる。よって、格子骨にシワを発生させることにより、電池の体積を増やすことなく活物質の利用率を高め、それによって電池の放電容量を向上させることができる。
 さらに、直線形状の格子骨は、エキスパンド工程中に応力の作用を受けやすく、且つ変形の余地に乏しいので、電池使用中に格子が極板の高さ方向に伸長するうちに、格子骨の破断が極めて起こりやすく、破断した格子骨は格子の集電性及び寿命に著しい悪影響を与えてしまう。一方、湾曲形状の格子骨は、自身の形状により、エキスパンド工程で加わった応力に対して一定の緩和作用を有するほか、格子が高さ方向に伸長する際、湾曲形状の格子骨は直線形状の格子骨に比べて変形の余地がより大きい。よって、格子骨にシワを発生させることで、格子骨が受ける応力を緩和することができる。これにより、格子の寿命を延ばし、ひいては電池の寿命特性を向上させることができる。
 以上の説明においては、網目i’を構成する4本の格子骨のうち1本の格子骨g’のみにシワが発生しているが、これに限定されず、シワを発生させる格子骨g’は2本以上でもよい。しかし、エキスパンド格子におけるシワの分布の均一性を考慮し、各網目においてシワを発生させる格子骨の数は2本以下であることが好ましい。
 さらに、本願発明者らは、エキスパンド格子におけるシワを発生させる格子骨数の比が適切な範囲内にあると、電池のサイクル寿命及び放電容量をさらに著しく向上させることができるということを実験により発見した。
 本明細書においては、「シワ発生率」によってエキスパンド格子におけるシワの発生比を表している。即ち、「シワ発生率」は、エキスパンド格子においてシワが発生している格子骨数の、エキスパンド格子を構成する全格子骨数に対する百分率であると定義される。
 本発明において、エキスパンド格子を構成する格子骨に所定のシワ形成度を持たせさえすれば、従来に比べ電池性能に関して一定の向上効果が得られるので、シワ発生率の範囲については特に限定されない。しかし、シワ発生率が低すぎる場合、例えば5%未満である場合には、シワを発生させる格子骨数が少なすぎて本発明の効果を得られないおそれがある。一方、シワ発生率が高すぎる場合、例えば20%より高い場合には、後述の活物質の過度な利用が起こるおそれがある。よって、エキスパンド格子における格子骨のシワ発生率を5~20%の範囲に収める必要がある。なお、該シワ発生率は、6~17%の範囲に収めるのが好ましく、7~15%の範囲に収めるのがさらに好ましい。
 シワ発生率が電池性能に有益な影響をもたらす理由については、次のように推測される。即ち、シワ発生率が6%以上であると、シワが発生しているこれらの格子骨によって、活物質とエキスパンド格子との接触面積が適度に大きくなるので、活物質の利用率を高めることができると推測される。しかし、活物質の利用率が高すぎると、かえって電池の寿命に影響してしまう場合がある。実験により、格子骨のシワ発生率が20%を上回ると、活物質の利用率が40%以上に達することもあるということが証明されているが、活物質の利用率が40%を上回ると、活物質の反応が進みすぎて電池の寿命を縮めてしまうことがある。よって、シワ発生率の上限は20%以下に収める必要があり、17%以下に収めるのが好ましい。シワ発生率が6~17%の範囲内にあると、電池の充電効率及び硫酸と活物質との反応スペースが最良のバランスに達するという効果が得られる。
 また、本願発明者らは、シワの発生する部位が電池性能に与える影響についても調べた。具体的に、エキスパンド格子を上中下の3つの部分に分けて評価した。その結果、該3つの部分において、どの部分の格子骨にシワが発生していても、シワ形成度が適切で、且つエキスパンド格子全体におけるシワ発生率が20%以下でさえあれば、基本的に同じ効果が得られることが分かった。
 (本発明のエキスパンド格子の製造方法)
 本発明の製造方法においては、原料の鉛シートを通常のエキスパンド法で用いる押抜き型に送り込み、エキスパンド工程における具体的な条件を調整することで、本発明のエキスパンド格子、即ち一部の格子骨にシワが発生しているエキスパンド格子を得ることができる。
 本発明のエキスパンド格子の製造方法は、下記の工程、即ち、
 (1)押抜き型を用いて鉛シートに押抜きを行い、上型の下型に対する相対運動によって、斜めに並ぶ複数のスリットを鉛シートの長さ方向に沿って形成するとともに、該スリットを鉛シート表面と垂直な方向に広げた後、上型を元の位置に戻して1ストロークのステップを完了し、鉛シートが長さ方向に所定距離移動するたびに前記ステップを繰り返すことで、複数の菱形の網目を有する網状シートを形成するエキスパンド工程と、
 (2)得られた網状シートをガイドローラで水平方向に整形し、平面の網状体を得る整形工程と、
 (3)得られた網状体を所定の形状及び寸法に裁断することでエキスパンド格子を形成する裁断工程と、
 を備える。
 鉛シートの材料には、例えばCa及びSnのうち少なくとも1種の金属を含むPb合金箔など、当分野で通常用いられる鉛合金箔を用いることができるが、耐食性及び機械的強度から、Pb-Ca-Sn三元合金からなるものが好ましい。このような合金組成を有する鉛シートを用いると、鉛蓄電池のサイクル寿命特性を容易に改善できる。
 上記エキスパンド工程において用いる押抜き型としては、図4に示すような刀状の複数の可動型2(上型)とうね状の複数の固定型3(下型)とを有する押抜き型が挙げられる。このうち、可動型2のバイト及び固定型3のうねは、鉛シート4の幅方向中心線に対してV字形になるように対称に分布している。上記鉛シート4を可動型2と固定型3との間へ長さ方向に送り込み、押抜きを行う。この時、鉛シートの幅方向中央部は押抜きされないように、可動型におけるバイト及び固定型におけるうねの並び方を調整する。可動型2のバイトが図の矢印方向に鉛シート4を押し抜いて固定型3のうねの上端を通過する時、鉛シート4が長さ方向に沿って切られ、V字状になるように斜めに並ぶ複数列のスリットが形成されると同時に、可動型2のバイトが引き続き下へ押し抜き、上記のスリットを鉛シート表面に垂直な方向へ広げ、その後可動型2は元の位置に戻る。このような1回の押抜き過程を1ストロークと呼ぶ。その後、鉛シート4を長さ方向前方へ所定距離移動させ、上記のステップを繰り返すことによって、斜めに並ぶ複数のスリットを再び鉛シートに形成する。各列における隣り合う2つのスリット間の連結部は、隣の列における1つのスリットの中心部と対応している。よって、スリットを広げると菱形の網目が複数形成される。上記のステップを繰り返し、菱形の複数の網目を有する網状シートを得る。
 その後、上記のようにして得られた網状シートを1対のガイドローラで水平方向に平坦化処理(整形処理)することで、網状シートを水平方向に広げ、平面の網状体を得る。その後、該網状体を必要に応じて所定の形状及び寸法に裁断し、鉛シートの中心部に耳部を形成して、エキスパンド格子を得る。
 本発明の製造方法の特徴は以下の点にある。即ち、上記のエキスパンド工程において、外部機器によって可動型の切込み深さを制御することにより、得られるエキスパンド格子が所定のシワ形成度を有するようにできる。さらに、外部機器によって可動型の押抜き速度を制御することにより、得られるエキスパンド格子が所定のシワ発生率を有するようにできる。
 本願発明者らは、エキスパンド工程の条件とシワの発生とは密接に関連しており、型の切込み深さ及び押抜き速度という2つの方面を最適化することで、得られるエキスパンド格子のシワ形成度及びシワ発生率の大きさを制御できるということを発見した。
 図5に示す通り、可動型の切込み深さとは、可動型2のバイトが1ストロークにおいて固定型3の上端面に対し下方へ移動する最大距離tであり、単位はmmである。
 エキスパンド工程において、可動型の切込み深さが深ければ、格子骨の湾曲が顕著になり、シワ形成度が大きくなる。図6に示す通り、切込み深さtとエキスパンド格子のシワ形成度Wとの間には正の比例関係が存在する。切込み深さtが小さいと、シワ形成度Wは0に近く、切込み深さtが増すにしたがい、格子骨の湾曲の程度は徐々に大きくなり、シワ形成度Wもこれに伴って大きくなる。そして、ある範囲を超えるとシワ形成度Wは急激に増加する。図6から、シワ形成度Wを好ましい範囲(0.09~0.19)内に収めるには、切込み深さtを2.965mm~3.045mmの範囲内に収める必要があることが分かる。切込み深さが2.965mm未満であれば、シワ形成度は0.09未満となる。この場合、格子骨は直線形状に近くなり、本発明の格子骨の湾曲による効果を得ることができない。反対に、切込み深さtが3.045mmを超えると、シワ形成度Wが0.19を超え、エキスパンド格子の加工中に大きな応力が発生し、格子骨の断面積が小さくなって折損しやすくなるので、電池の性能に悪影響を及ぼしてしまう場合がある。よって、所定のシワ形成度を有するエキスパンド格子を得るには、型の切込み深さを2.965mm~3.045mmの範囲、好ましくは2.97mm~3.04mmの範囲、さらに好ましくは2.98mm~3.03mmの範囲内に制限する必要がある。
 また、可動型の押抜き速度はストローク数によって表される。ストローク数は単位時間(1min)あたりに完了する押抜き回数を表し、単位はrpmである。例えば、ストローク数が100rpmであれば、可動型のバイトが1分間に鉛シートに対して100回押抜きを行うということを表す。ストローク数が大きいほど型の押抜き速度は速く、エキスパンド格子の生産効率もこれに伴って向上する。
 以前、エキスパンド格子の生産性を高めるためにストローク数の増加が試みられたが、ストローク数が大きすぎると、生産されるエキスパンド格子にはシワができ、即ち網目を構成する格子骨に湾曲が発生し、生産性が良くない等の問題を招くことが分かった。よって、従来のエキスパンド工程においては、このような現象を回避するために、均一且つ平らなエキスパンド格子が得られるようストローク数を通常500rpm以下に制限していた。
 本願発明者らは検討の結果、図7に示す通り、エキスパンド工程における型のストローク数とエキスパンド格子のシワ発生率との間に一定の比例関係が存在することを発見した。ストローク数が大きいほどシワが発生する可能性は高くなり、シワ発生率はこれに従って高くなる。ストローク数が500rpmを下回るとき、シワ発生率は3%以下であり、ストローク数が600rpmを上回ると、シワ発生率は5%に近づき、ストローク数が1800rpmを超えると、シワ発生率は20%を超える。よって、所定のシワ発生率を有するエキスパンド格子を得るには、型のストローク数を600~1800rpmの範囲、好ましくは750~1500rpmの範囲、さらに好ましくは800~1300rpmの範囲に制限する必要がある。本発明は従来よりも大きなストローク数を用いることができるので、エキスパンド格子を高い生産効率で得ることができる。
 ストローク数がシワ発生率に与える影響は、推測によれば下記の要素によってもたらされる。即ち、ストローク数が600rpmを上回ると、鉛シートの前進速度が、可動型のバイトが下方へ押し抜いてスリットを形成する速度とある程度合わなくなりやすく、格子骨の受ける力が不均一になり、一部の格子骨にシワが発生することとなる。ストローク数が500rpmを下回ると、エキスパンド格子に充分な数のシワを形成できず、本発明の効果が得られない。しかし、ストローク数が大きすぎると、シワ発生数が過剰になり、エキスパンド格子全体がでこぼこになって、生産性に影響してしまう場合がある。
 本発明のエキスパンド工程においては、上型の切込み深さを2.97~3.04mmの範囲に収めることで、得られるエキスパンド格子における格子骨のシワ形成度を0.09~0.19の範囲内にするのが好ましい。また、上型のストローク数を600~1800rpmの範囲に収めることで、得られるエキスパンド格子のシワ発生率を5~20%の範囲内にすることが好ましい。
 上型の切込み深さを2.98~3.03mmの範囲に収めることで、得られるエキスパンド格子における格子骨のシワ形成度を0.11~0.17の範囲内にするのがより好ましい。また、上型のストローク数を750~1500rpmの範囲に収めることで、得られるエキスパンド格子のシワ発生率を6~17%の範囲内にすることができるためさらに好ましい。上型のストローク数を800~1300rpmの範囲に収めることで、得られるエキスパンド格子のシワ発生率を7~15%の範囲内にすることができるためより一層好ましい。
 本発明のエキスパンド格子の製造方法によれば、エキスパンド工程において可動型のバイトのストローク数及び切込み深さを制御することで、所定のシワ発生率及びシワ形成度を有するエキスパンド格子を容易に得ることができる。それによって、大容量放電且つ長サイクル寿命が必要となる用途に適し、優れた放電容量及びサイクル特性を有する鉛蓄電池を製造することができる。
 上記の実施形態においては、型の切込み深さと押抜き速度との2つを調整することで、得られるエキスパンド格子のシワ形成度及びシワ発生率の大きさを制御したが、これに限定されず、所定のシワ形成度及びシワ発生率を有するエキスパンド格子が得られさえすれば、本発明のエキスパンド工程又は後に続く工程において他のプロセス条件を調整してもよい。例えば、鉛シートの進行速度、可動型の高さ、ガイドローラの押圧力の調整、水平方向のガイドローラの増設等、さまざまな方法によってシワ形成度及びシワ発生率を所定の範囲内にすることができ、これらの方法は単独で用いても、本実施形態の調整方法と組み合わせて用いてもよい。
 本発明のエキスパンド格子は、エキスパンド格子を使用する任意の電池に用いることができる。以下、鉛蓄電池を例に説明を行う。
 (鉛蓄電池)
 本発明のエキスパンド格子は、本発明の鉛蓄電池の製造に用いることができる。本発明のエキスパンド格子を用いることを除き、本発明の鉛蓄電池の製造方法は通常の製造方法と同じである。
 本発明の鉛蓄電池の製造方法は、例えば上記の整形工程によって得られた平面の網状体に鉛ペースト充填を行う工程を備える。活物質としての鉛ペーストは、60~90質量%の酸化鉛と10~40質量%の鉛金属とからなる鉛粉に、水と硫酸とを加え、混練してなる。鉛ペーストは網状体の片面から充填してもよく、網状体の表裏両面から充填してもよい。その後、裁断工程において、鉛ペーストが充填された網状体を所定の寸法に切断し、耳部を有する形状にして、活物質が充填されたエキスパンド格子を得る。そして、熟成、乾燥を経て本発明の極板が形成される。
 正極板が鉛蓄電池の性能に与える影響は、負極板よりも相対的に大きいので、本発明のエキスパンド格子による効果も負極板より顕著である。よって、鉛蓄電池の正極板として本発明の極板を用いるのが好ましい。
 図8に示す通り、本発明の鉛蓄電池11は、電槽8と、電槽8内で隔壁によって複数に区画されているセル(単電池)とを有する。各セルには極板群が1つずつ収容されている。極板群は、正極板5、負極板6及び正極板と負極板との間に介在するセパレータ7が交互に積層されてなる。各セルの正極側のストラップを直接又は極柱を介して隔壁ごしに隣のセルにおける負極側のストラップと溶接することで、各セルを直列に接続している。電槽8の開口部には安全弁を内蔵した電池中蓋9を取り付け、電槽の両側端部の正極柱及び負極柱を電池中蓋に設けられた正極端子及び負極端子にそれぞれ接続するとともに、電槽8を中蓋9と接着剤で接着する。それから、電槽8に電解液(図示せず)を注入し、注液後に電池上蓋10を電槽8及び中蓋9に密封固定することで、本発明の鉛蓄電池11を形成する。
 電解液には鉛蓄電池の分野において通常用いられている硫酸溶液を用いることができ、特に制限はなく、例えば質量分率1.1~1.4g/mlの希硫酸を用いることができる。制御弁式鉛蓄電池については、例えば電解質の吸着を利用し、ガラス繊維を主体とするセパレータに電解質を吸着させてもよく、ゲル化したコロイド電解質を用いてもよい。
 本発明の鉛蓄電池においては、エキスパンド格子を構成する格子骨にシワが発生しているので、エキスパンド格子と活物質との接触面積が大きくなり、活物質の利用率が高まることにより、電池の放電容量が向上している。また、鉛蓄電池の使用中には、正極格子中の鉛が次第に酸化して酸化鉛となり、格子の体積が増加することがあり、マクロ的には格子の極板高さ方向への伸長として現れる。本発明は、湾曲した格子骨を用いているので、結晶成長中にエキスパンド格子に発生する応力を緩和し、格子骨が破断する可能性を低減して、電池のサイクル寿命を向上させることができる。
 本発明の鉛蓄電池は、正極板に本発明のシワが発生している格子骨を有するエキスパンド格子を用いており、且つ、エキスパンド格子におけるシワ形成度及びシワ発生率を適切な範囲に収めているので、優れた放電容量及びサイクル寿命を得ることができる。
 実施例
 以下、実施例及び比較例を用いて本発明を詳細に説明するが、本発明はこれらの具体例に限定されない。
 -実施例1-
 (正極板の作製)
 Pb-Ca-Sn三元合金のシートからなる鉛材料シートを押抜き型に送り込みながら、外部機器によって可動型の固定型に対する相対運動を制御し、鉛シートを上下に繰り返し押し抜いた後、得られた網状シートを整形型の1対のガイドローラで水平方向に整形し、平面の網状体を得た。
 その後、原料の鉛粉に水及び硫酸を重量比100:15:10になるように添加して混練し、正極鉛ペーストを得た。そして整形後の網状体に正極鉛ペーストを充填した。その後、鉛ペーストが充填された網状体を所定の形状及び寸法に切断し、鉛ペーストが充填されたエキスパンド格子を得て、熟成及び乾燥を行い、本発明の正極板(縦139mm、横64mm、厚さ2.9mm)を形成した。
 この間、外部機器によって可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子のシワ形成度及びシワ発生率が所望の値になるように制御した。
 (負極板の作製)
 通常のエキスパンド法で得られた、シワが発生していない水平な網状体を使用し、原料の鉛粉に水及び硫酸を重量比100:5:10になるように添加して混練し、負極鉛ペーストを得た。その後、網状体に負極鉛ペーストを充填した後、所定の形状及び寸法に切断するとともに、熟成及び乾燥を行い、負極板(縦142mm、横65mm、厚さ1.70mm)を得た。
 (鉛蓄電池の作製)
 上記のようにして得られた正極板と負極板とを、ガラス繊維を主体とするセパレータを介して交互に積層し、同極性の極板の耳部をそれぞれ重ね溶接してストラップを形成した。その後、電槽の隔壁によって区画された6つのセル室に各極板群を1つずつ収容した。本実施例において、極板群間の直列接続は、極柱無しのストラップ溶接によって行った。
 その後、各セルに電解液として濃度1.242g/mlの硫酸を170mm注入した後、電槽の開口部に中蓋及び上蓋を取り付けて密封し、化成処理を施して、電池容量20Ahの鉛蓄電池を得た。
 組立完了後の電池を分解し、正極板から鉛ペーストを取り除き、その中のエキスパンド格子を取り出して、シワ形成度及びシワ発生率の測定を次のように行った。本実施例において、測定されたシワ形成度は0.09であり、シワ発生率は11%であった。
 (1)シワ形成度の測定
 組立完了後の電池から取り出したエキスパンド格子に対し、まず該エキスパンド格子の平面への正投影図を作成した。その後、菱形の網目における辺の長さと、シワが発生している格子骨における湾曲の頂点から対辺までを菱形の残りの2つの格子骨と平行に計測した距離とを測長器でそれぞれ測定した。上記湾曲の頂点から対辺までの距離を菱形の辺の長さで除し、その比から1を引いた値をシワ形成度として記録した。10個の電池のエキスパンド格子についてそれぞれ上記の測定を行い、測定によって得られた10個のシワ形成度の平均値をエキスパンド格子のシワ形成度とした。
 (2)シワ発生率の測定
 組立完了後の電池から取り出したエキスパンド格子に対し、該エキスパンド格子中の全格子骨数及びシワが発生している格子骨数についてそれぞれ統計を取り、シワが発生している格子骨数を全格子骨数で除し、その百分率をシワ発生率として記録した。10個の電池のエキスパンド格子についてそれぞれ上記の測定を行い、測定によって得られた10個のシワ発生率の平均値をエキスパンド格子のシワ発生率とした。
 -実施例2-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.11になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例3-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例4-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.17になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例5-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.19になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -比較例1-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.08になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -比較例2-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.21になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例6-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が6%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例7-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が7%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例8-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例9-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が15%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例10-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が17%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板を作製し、且つ実施例1と同様の方法で負極板及び鉛蓄電池を作製した。
 -実施例11-
 正極板の作製において、外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.14になるようにした。また、負極板の作製においても、同様に外部機器で可動型の切込み深さ及びストローク数を調整することにより、エキスパンド格子について測定されるシワ発生率が11%、シワ形成度が0.14になるようにした。それ以外は実施例1と同様に正極板及び負極板を作製し、且つ実施例1と同様の方法で鉛蓄電池を作製した。
 上記の実施例1~11及び比較例1、2において得られた各鉛蓄電池について、下記の条件で電池性能の評価試験を行った。
 (一)放電容量の評価
 満充電状態の電池に対し、25±2℃の環境温度下で放電電流0.05Cの定電流放電を行い、放電終止電圧が1.75V/cell(セル)になった時点で放電を終了し、各電池の放電時間(単位は分)を記録して、表1にまとめた。放電時間によって電池の放電容量を評価した。
 (二)サイクル寿命の評価
 (1)初期容量Cの測定
まず、満充電状態の電池に対し、25±2℃の環境温度下で放電電流0.25Cの定電流放電を行い、放電終止電圧が1.75V/cellになった時点で放電を終了し、電池の放電時間hを記録して、以下の公式により初期容量Cを求めた。
 初期容量C=放電電流(I)×放電時間(h
 (2)回復充電
 上記測定後の電池に対して、25±2℃の環境温度下で充電電圧2.275V/cellの定電圧充電を行い、最大充電電流0.4Cで6~16時間充電して満充電状態にした。
 (3)高温トリクル充電
 上記の電池を60±2℃の恒温槽に入れ、充電電圧2.275V/cellの定電圧充電を行い、3週間充電し続けた。
 (4)放電容量Cの測定
 上記の電池を恒温槽から取り出し、25±2℃の環境で12~25時間放置した後、(1)と同条件で放電を行い、この時の放電時間hを測定し、以下の公式によって放電容量Cを求めた。この過程を1回の充放電サイクルとした。
 放電容量C=放電電流(I)×放電時間(h)
 (5)上記の(2)~(4)のステップを繰り返し、計算で得られた放電容量Cが初期容量Cの50%よりも低くなった時点で試験を終了し、充放電が行われたサイクル数を記録し、表1にまとめた。サイクル数によって電池のサイクル寿命を評価した。
 上記各蓄電池の各パラメータ及び各試験結果をまとめて以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、所定のシワ形成度(0.09~0.19)を有するエキスパンド格子を用いた本発明の実施例1~11の鉛蓄電池においては、すべて20時間を超える放電時間及び10回以上のサイクル数が得られ、本発明の鉛蓄電池が優れた放電容量及びサイクル寿命を有することを示しているのが分かった。一方、シワ形成度が上記の範囲外にある比較例1、2の電池の放電時間はともに20時間未満で、サイクル数も8回しかなかった。しかも、シワ形成度が0.11~0.17であることと、シワ発生率が7~15%であることとを同時に満たす実施例2~4及び7~9の電池においては、21時間を超える放電時間及び11回以上のサイクル数が得られた。また、負極板にも本発明のエキスパンド格子を用いた実施例11の電池については、負極板に本発明のエキスパンド格子を用いていない実施例8の電池と同じ効果が得られた。

Claims (14)

  1.  エキスパンド法によって形成され、格子骨で構成される複数の菱形の網目を備えるエキスパンド格子であって、
     前記格子骨のうち一部の格子骨にはシワが発生し、突出する湾曲部を形成しており、
     前記エキスパンド格子の投影図において、菱形の網目における辺の長さである、シワが発生していない2本の平行且つ対向する格子骨間を菱形の残りの2つの格子骨と平行に計測した距離をD1とし、シワが発生している格子骨の湾曲の頂点からそれと平行で且つ対向する他の格子骨までを菱形の残りの2つの格子骨と平行に計測した距離をD2とするとき、格子骨の湾曲の程度を表すシワ形成度Wは、下記の式(1)、即ち
     W=(D2-D1)/D1     (1)
     によって決まり(但し、D2>D1)、
     前記シワ形成度は0.09~0.19の範囲にあることを特徴とするエキスパンド格子。
  2.  前記シワ形成度Wは0.11~0.17の範囲にあることを特徴とする、請求項1に記載のエキスパンド格子。
  3.  前記エキスパンド格子においてシワが発生している格子骨数の、前記エキスパンド格子を構成する全格子骨数に対する百分率であるシワ発生率は、5~20%の範囲にあることを特徴とする、請求項1又は2に記載のエキスパンド格子。
  4.  前記シワ発生率は6~17%の範囲にあることを特徴とする、請求項3に記載のエキスパンド格子。
  5.  前記シワ発生率は7~15%の範囲にあることを特徴とする、請求項4に記載のエキスパンド格子。
  6.  鉛蓄電池用極板であって、
     請求項1~5のいずれか1項に記載のエキスパンド格子と、前記エキスパンド格子に充填された活物質と、を備えることを特徴とする鉛蓄電池用極板。
  7.  鉛蓄電池であって、
     請求項6に記載の極板を備えることを特徴とする鉛蓄電池。
  8.  前記極板は正極板であることを特徴とする、請求項7に記載の鉛蓄電池。
  9.  請求項1~5のいずれか1項に記載のエキスパンド格子を製造し、
     下記の工程、即ち、
     (1)押抜き型を用いて鉛シートに押抜きを行い、上型の下型に対する相対運動によって、斜めに並ぶ複数のスリットを鉛シートの長さ方向に沿って形成するとともに、該スリットを鉛シート表面と垂直な方向に広げた後、上型を元の位置に戻して1ストロークのステップを完了し、
     鉛シートが長さ方向に所定距離移動するたびに前記ステップを繰り返すことで、複数の菱形の網目を有する網状シートを形成するエキスパンド工程と、
     (2)得られた網状シートをガイドローラで水平方向に整形し、平面の網状体を得る整形工程と、
     (3)得られた網状体を所定の形状及び寸法に裁断することでエキスパンド格子を形成する裁断工程と、
     を備えるエキスパンド格子の製造方法であって、
     前記エキスパンド工程において、前記上型の切込み深さ及び/又はストローク数を制御することにより、得られるエキスパンド格子が所定のシワ形成度及び/又はシワ発生率を有するようにすることを特徴とするエキスパンド格子の製造方法。
  10.  前記切込み深さは2.965~3.045mmであることを特徴とする、請求項9に記載のエキスパンド格子の製造方法。
  11.  前記切込み深さは2.98~3.03mmであることを特徴とする、請求項10に記載のエキスパンド格子の製造方法。
  12.  前記ストローク数は600~1800rpmであることを特徴とする、請求項9~11のいずれか1項に記載のエキスパンド格子の製造方法。
  13.  前記ストローク数は750~1500rpmであることを特徴とする、請求項12に記載のエキスパンド格子の製造方法。
  14.  前記ストローク数は800~1300rpmであることを特徴とする、請求項12に記載のエキスパンド格子の製造方法。
PCT/JP2013/000321 2012-02-29 2013-01-23 エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池 WO2013128792A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN7724DEN2014 IN2014DN07724A (ja) 2012-02-29 2013-01-23
JP2013516823A JP5291272B1 (ja) 2012-02-29 2013-01-23 エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210050442.8A CN102569821B (zh) 2012-02-29 2012-02-29 拉网格栅及其制造方法、使用其的铅蓄电池极板、及铅蓄电池
CN201210050442.8 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013128792A1 true WO2013128792A1 (ja) 2013-09-06

Family

ID=46414694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000321 WO2013128792A1 (ja) 2012-02-29 2013-01-23 エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池

Country Status (4)

Country Link
JP (1) JP5291272B1 (ja)
CN (1) CN102569821B (ja)
IN (1) IN2014DN07724A (ja)
WO (1) WO2013128792A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728369B2 (en) 2009-12-30 2014-05-20 3M Innovative Properties Company Method of making an auxetic mesh
CN103624142B (zh) * 2013-11-17 2016-05-18 保定金阳光能源装备科技有限公司 一种铅酸蓄电池连续曲面板栅的制造工艺及制造设备
CN104752643B (zh) * 2013-12-27 2019-03-15 松下蓄电池(沈阳)有限公司 铅蓄电池
JP7098874B2 (ja) * 2016-02-02 2022-07-12 株式会社Gsユアサ 鉛蓄電池、鉛蓄電池用の正極板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569969A (en) * 1979-07-05 1981-01-31 Matsushita Electric Ind Co Ltd Grid body for lead-acid battery
JPS57850A (en) * 1980-06-04 1982-01-05 Furukawa Battery Co Ltd:The Expanded porous base plate for plate of storage battery
JPS60105171A (ja) * 1983-11-09 1985-06-10 Matsushita Electric Ind Co Ltd 鉛蓄電池用格子体の製造法
JPH11339812A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2003157855A (ja) * 2001-11-21 2003-05-30 Japan Storage Battery Co Ltd 蓄電池用格子体
JP2008091055A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 鉛蓄電池用エキスパンド格子および鉛蓄電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202094213U (zh) * 2011-03-31 2011-12-28 松下蓄电池(沈阳)有限公司 铅蓄电池用格栅、正极板、极板组、以及铅蓄电池
CN102227026A (zh) * 2011-05-06 2011-10-26 深圳市钧蓝电源材料有限公司 锂离子及锂聚合物电池用正负极金属网及其制造工艺
CN202495530U (zh) * 2012-02-29 2012-10-17 松下蓄电池(沈阳)有限公司 拉网格栅、使用其的铅蓄电池极板、及铅蓄电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569969A (en) * 1979-07-05 1981-01-31 Matsushita Electric Ind Co Ltd Grid body for lead-acid battery
JPS57850A (en) * 1980-06-04 1982-01-05 Furukawa Battery Co Ltd:The Expanded porous base plate for plate of storage battery
JPS60105171A (ja) * 1983-11-09 1985-06-10 Matsushita Electric Ind Co Ltd 鉛蓄電池用格子体の製造法
JPH11339812A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2003157855A (ja) * 2001-11-21 2003-05-30 Japan Storage Battery Co Ltd 蓄電池用格子体
JP2008091055A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 鉛蓄電池用エキスパンド格子および鉛蓄電池

Also Published As

Publication number Publication date
JP5291272B1 (ja) 2013-09-18
CN102569821A (zh) 2012-07-11
CN102569821B (zh) 2014-07-16
JPWO2013128792A1 (ja) 2015-07-30
IN2014DN07724A (ja) 2015-05-15

Similar Documents

Publication Publication Date Title
CN107026271B (zh) 铅蓄电池用正极板、铅蓄电池、铅蓄电池用正极板的制造方法
JP2019186231A (ja) 耐食性を変化させた電池グリッド
JP5325358B1 (ja) 電池用極板及びその製造方法、該極板を有する極板群並びに鉛蓄電池
WO2015056417A1 (ja) 制御弁式鉛蓄電池
JP5291272B1 (ja) エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池
US20040038129A1 (en) Direct cast lead alloy strip for expanded metal battery plate grids
JP5230845B2 (ja) 鉛蓄電池用の極板群、鉛蓄電池、及び鉛蓄電池用の極板群の製造方法
JP3440795B2 (ja) 鉛蓄電池
CN102903966B (zh) 密封式铅蓄电池
JP5402090B2 (ja) 全固体リチウムイオン二次電池の製造方法
JP4186197B2 (ja) 鉛蓄電池用正極板
CN104518201A (zh) 铅蓄电池
JP6232365B2 (ja) 鉛蓄電池
CN202495530U (zh) 拉网格栅、使用其的铅蓄电池极板、及铅蓄电池
JP2014197456A (ja) 鉛蓄電池用正極格子体の製造方法及び鉛蓄電池
JP5630716B2 (ja) 鉛蓄電池
JP4876328B2 (ja) 蓄電池用極板格子製造装置
JP5088679B2 (ja) 鉛蓄電池
JP4984786B2 (ja) 鉛蓄電池
JP2009146727A (ja) 制御弁式鉛蓄電池
JP4834912B2 (ja) 蓄電池用格子体の製造方法と、その製造方法により製造した蓄電池用格子体を用いる鉛蓄電池の製造方法
JP4423965B2 (ja) 自動車エンジン始動用捲回型鉛蓄電池
JP2002075380A (ja) 鉛蓄電池用エキスパンド格子体
JP2001135318A (ja) 密閉鉛蓄電池用格子体及びその製造方法
JP5594039B2 (ja) 鉛蓄電池用極板およびこれを用いた鉛蓄電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516823

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754981

Country of ref document: EP

Kind code of ref document: A1