WO2013127251A1 - 一种电化学活性材料的制备方法 - Google Patents

一种电化学活性材料的制备方法 Download PDF

Info

Publication number
WO2013127251A1
WO2013127251A1 PCT/CN2013/000003 CN2013000003W WO2013127251A1 WO 2013127251 A1 WO2013127251 A1 WO 2013127251A1 CN 2013000003 W CN2013000003 W CN 2013000003W WO 2013127251 A1 WO2013127251 A1 WO 2013127251A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
source
electrochemically active
lithium
manganese
Prior art date
Application number
PCT/CN2013/000003
Other languages
English (en)
French (fr)
Inventor
董明
李红
耿则先
赵金旺
屈瑶
Original Assignee
恒正科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒正科技(苏州)有限公司 filed Critical 恒正科技(苏州)有限公司
Publication of WO2013127251A1 publication Critical patent/WO2013127251A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing an electrochemically active material, in particular to a method for preparing an electrochemically active material by carbon-free reduction synthesis. Background technique
  • Electrochemically active electrode materials can be used in the manufacture of batteries, such as the existing lithium iron phosphate (LiFeP0 4 ), which has a stable crystal structure, good safety, excellent cycle performance, and no strategic resource nickel. Cobalt, low price, non-toxic and environmentally friendly materials, due to its stable crystal structure, strong overcharge and overdischarge resistance, it is recognized as the best positive electrode material for manufacturing high-safety, low-cost, long-life lithium batteries.
  • LiFeP0 4 existing lithium iron phosphate
  • Cobalt, low price, non-toxic and environmentally friendly materials due to its stable crystal structure, strong overcharge and overdischarge resistance, it is recognized as the best positive electrode material for manufacturing high-safety, low-cost, long-life lithium batteries.
  • Patent CN101172597A proposes the use of iron powder as the iron source, but using ammonium dihydrogen phosphate synthesis, the process will discharge the polluting gas ammonia gas.
  • Patent CN101172599 proposes to reduce the precursor of iron oxide and phosphoric acid by carbon coating method, and synthesize lithium iron phosphate.
  • the preliminary process of this preparation technology is complicated, the cost is high, and the carbon coating cannot achieve uniform stability, and the synthesis produces a large amount. Carbon dioxide, which is emitted into the atmosphere, causes pollution.
  • the present invention has come. Summary of the invention
  • the object of the invention is to provide an electrochemically active material
  • the manganese ion electrode has a high potential and its atomic weight is lower than that of iron, the electrode potential of LiFe x Mn y P0 4 material is higher than that of LiFeP0 4 material, and the electrochemical capacity and electrochemical energy of LiFe x Mn y P0 4 material are higher than those of LiFe x Mn y P0 4 material. LiFeP0 4 material.
  • 0 ⁇ 0.01 moles of magnesium is used to balance the valence.
  • the technical solution of the present invention is: a method for preparing an electrochemically active material, wherein the active material has a similar chemical formula of Li Mg (1-x) Mn x/3 Fe 2x/3 P04, and the X-ray diffraction pattern is characterized as
  • the mixing process is performed by introducing an inert gas into a grinding device such as a ball mill, and then pulverizing, mixing, and dispersing the material by using a grinding device.
  • a grinding device such as a ball mill
  • the temperature is controlled at 400-800 ° C and the temperature is maintained for 1-6 hours.
  • the inert gas is preferably nitrogen.
  • the magnesium source is one or two compounds of magnesium hydroxide and magnesium carbonate.
  • the manganese source is an elemental manganese metal.
  • the iron source is preferably one or more of iron oxide, triiron tetroxide and iron oxalate
  • the lithium source is lithium carbonate, lithium hydroxide, lithium dihydrogen phosphate, and lithium hydrogen phosphate.
  • One or several compounds of lithium phosphate are particularly preferred.
  • the phosphorus source is one or more compounds of dihydrogen phosphate, diammonium hydrogen phosphate, lithium dihydrogen phosphate, and phosphorus pentoxide.
  • the use of manganese metal to reduce the trivalent iron salt eliminates the need for carbon addition for redox reaction, which does not produce carbon dioxide, which is environmentally friendly and the finished ferrous manganese phosphate. There is no carbon residue in lithium, high purity and better performance.
  • the melting point of manganese is 1244 ° C
  • the melting point of manganese oxide (MnO) is 1650 ° C
  • the activity of the simple element is higher than that of manganese oxide
  • the manganese element is directly oxidized to Mn 2+ during the reaction.
  • the material is pulverized and mixed by a grinding device such as a ball mill, and the material is dispersed by using alcohol, and an inert gas is introduced into the grinding device to protect the metal manganese powder from being oxidized.
  • the materials are thoroughly mixed to facilitate the synthesis of the material.
  • the composite has excellent morphology, particle size distribution, tap density, specific surface area and electrochemical performance.
  • the invention selects environment-friendly materials for carbon-free processing of lithium iron manganese phosphate to meet environmental protection requirements; and at the same time, improves the purity of lithium manganese phosphate.
  • the electrochemically active material prepared by the invention exhibits good electrochemical stability compared with the existing LiFeP0 4 material, and has high charge and discharge capacity, high energy and excellent rate performance.
  • Figure 1 is a XRD diffraction curve of a lithium iron phosphate material
  • Figure 3 is a graph showing charge and discharge curves of lithium iron phosphate material charged at 0.2C rate and 0.2C rate discharge;
  • FIG. 4 is a graph showing charge and discharge curves of a material obtained by the specific example 1 of the present invention at a 0.2 C rate charge and a 0.2 C rate discharge;
  • Figure 5 is a XRD diffraction diagram of a lithium iron manganese phosphate material obtained in Example 2 of the present invention.
  • Fig. 6 is a graph showing charge and discharge curves of a material prepared by a specific example 2 in a 0.2 C rate charge and a 0.2 C rate discharge. detailed description
  • the metal manganese powder, the ferric oxide, and the lithium dihydrogen phosphate are mixed thoroughly in a molar ratio of 1:1:3, and the material is dispersed in an alcohol, and placed in a roller ball mill for 5-10 hours under nitrogen protection.
  • the ground product was taken out, transferred to a synthesis furnace under nitrogen protection, heated to 180 ° C at a rate of 15 ° C / min, held for 1 hour, then heated to 300 ° C, held for 1 hour, and then heated to 650 °C, keep warm for 4 hours, then cool.
  • the product is prepared by powdering, testing and packaging to obtain lithium manganese phosphate.
  • conductive carbon black and binder are added to form a pole piece, and a metal lithium plate is selected for the electrochemical test.
  • the tap density of the material prepared in this embodiment is greater than 1.3 g/cm3, and the electrochemical discharge capacity of the electrode material is greater than 160 mAh/g.
  • Figure 1 shows the XRD diffraction pattern of lithium iron phosphate material.
  • Figure 2 shows lithium iron phosphate
  • the XRD diffraction pattern of the material, as shown in Fig. 2 has no impurity phase in the X-ray spectrum, and is pure phase lithium manganese hydride.
  • the XRD diffraction pattern and the first charge and discharge curve are shown in Fig. 2 and Fig. 4.
  • Sample XRD diffraction analysis As shown in Fig. 5, the X-ray spectrum has no impurity phase and is pure phase lithium iron manganese manganese magnesium.
  • the battery test was assembled according to the method of Example 1. The results showed that the first discharge specific capacity was 160 mAh/g, and the XRD diffraction pattern and the first charge and discharge curve are shown in Fig. 5 and Fig. 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学活性材料的制备方法,所述活性材料具有类似化学式为Li Mg(1-x)Mnx/3Fe2x/3PO4,其特征在于,所述制备方法所采用的原料为含有镁源、锰源、铁源、锂源或磷源化合物的混合物,其中各元素的摩尔比为:镁元素:锰元素:铁元素:锂元素:磷元素=(1-x):x/3:2x/3:1:1,x=0.95~1.OO;将上述混合物室温下在惰性气体保护环境下充分搅拌混合均匀后,继续在惰性气体保护环境下转入合成炉内进行烧结,烧结完成后室温冷却即得所述电化学活性材料。本发明加工反应时间短,能源耗费少,加工出的产品性能优良,采用无碳合成工艺,利用单质锰金属还原铁的化合物,避免了二氧化碳的排出,有利于环保。

Description

一种电化学活性材料的制备方法
技术领域
本发明涉及一种电化学活性材料的制备方法,特别是设计一种无碳还 原合成制备电化学活性材料的方法。 背景技术
具有电化学活性的电极材料均可以用于电池的生产制造, 如现有的磷 酸亚铁锂 (LiFeP04), 它具有稳定的晶体结构, 安全性好, 循环性能特别好, 不使用战略资源镍钴、 价格低、 材料无毒环保, 由于其晶体结构稳定, 耐 过充和过放的能力强, 被公认为制造高安全、 低成本、 长寿命的锂电池的 最佳正极材料。
专利 CN101172597A提出了采用铁粉作为铁源, 但采用磷酸二氢铵合 成, 其过程会排放污染气体氨气。 专利 CN101172599提出采用碳包覆的方 法还原氧化铁与磷酸组成的前驱体, 合成磷酸亚铁锂, 但是此制备技术前 期工艺较为复杂, 成本较高, 且碳包覆无法达到均一稳定, 合成产生大量 二氧化碳, 排放至大气中造成污染。 为解决以上问题, 本发明由此而来。 发明内容
本发明目的是提供一种电化学活性材料
Figure imgf000003_0001
(x=0.95〜1.00) 的制造方法, 加工反应时间短, 能源耗费少, 加工出的产 品性能优良, 同时采用无碳合成工艺, 利用单质锰金属还原铁的化合物, 避免了二氧化碳的排出, 有利于环保。
由于锰离子电极电位高, 其原子量又低于铁的原子量, LiFexMnyP04 材料的电极电位高于 LiFeP04材料, LiFexMnyP04材料的电化学容量和电化 学能量均高于 LiFeP04材料。为了便于生产过程中的质量控制、配料、计量 方便, 采用 0〜0.01摩尔的镁来平衡化合价。 本发明的技术方案是: 一种电化学活性材料的制备方法, 所述活性 材料具有类似化学式为 Li Mg(1-x)Mnx/3Fe2x/3P04, 其 X射线衍射图谱中表征 为正交结构, 属于 Pnmb空间群, 其特征在于, 所述制备方法所采用的原料 为含有镁源、 锰源、 铁源、 锂源或磷源化合物的混合物, 其中各元素的摩 尔比为: 镁元素: 锰元素: 铁元素: 锂元素: 磷元素 =(l-x):x/3:2x/3:l:l, x=0.95〜1.00; 将上述混合物室温下在惰性气体保护环境下充分搅拌混合均 匀后, 继续在惰性气体保护环境下转入合成炉内进行烧结, 烧结完成后室 温冷却即得所述电化学活性材料。
优选的, 所述混合过程是在球磨机等研磨设备中通入惰性气体后, 通 过研磨设备对物料进行边粉碎、 边混合, 并利用酒精分散物料。
优选的, 所述烧结过程中, 温度控制在 400-800°C, 保温 1-6小时。 优选的, 所述惰性气体优选为氮气。
优选的, 所述镁源为氢氧化镁、 碳酸镁中一种或两种化合物。
优选的, 所述锰源为单质锰金属。
优选的, 所述铁源为氧化铁、 四氧化三铁、 草酸铁中的一种或几种化 优选的, 所述锂源为碳酸锂、 氢氧化锂、 磷酸二氢锂、 磷酸氢二锂、 磷酸锂中的一种或几种化合物。
优选的, 所述磷源为磷酸二氢氨、 磷酸氢二氨、 磷酸二氢锂、 五氧化 二磷中的一种或几种化合物。
与 般采用碳还原三价铁盐加工磷酸亚铁锂不同, 采用金属锰还原三 价铁盐, 无需再加入碳进行氧化还原反应, 不会产生二氧化碳, 因而有利 于环保, 同时成品磷酸亚铁锰锂中无碳残留, 纯度高, 性能更加优良。
由于锰单质的熔点为 1244°C, 氧化亚锰 (MnO)的熔点为 1650°C, 猛单 质的活性高于氧化亚锰, 反应过程中锰单质直接被氧化成 Mn2+
本发明优点是:
1、 本发明在进行电化学活性材料的加工时, 通过球磨机等研磨设备 对物料进行边粉碎、 边混合, 利用酒精分散物料, 在研磨设备中通入惰性 气体保护金属锰粉不被氧化, 使得物料充分混合, 利于材料充分反应合成。 合成材料的形貌结构、 粒度分布、 振实密度、 比表面积和电化学性能优良。 2、 本发明选用环境友好物料进行磷酸亚铁锰锂的无碳加工, 满足环 保需要; 同时提高了磷酸亚铁锰锂的纯度。
3、本发明制备的电化学活性材料,相比现有 LiFeP04材料表现出具有 良好的电化学稳定性, 充放电容量高、 能量高、 倍率性能优良。 附图说明
下面结合附图及实施例对本发明作进一步描述:
图 1为磷酸亚铁锂材料的 XRD衍射曲线图;
图 2为本发明具体实施例 1制备的磷酸亚铁锰锂材料的 XRD衍射曲线 图;
图 3为磷酸亚铁锂材料在 0.2C倍率充电、 0.2C倍率放电的充放电曲线 图;
图 4为本发明具体实施例 1所得的材料在 0.2C倍率充电、 0.2C倍率放 电的充放电曲线图;
图 5为本发明具体实施例 2所得的磷酸亚铁锰镁锂材料的 XRD衍射曲 线图;
图 6为本发明具体实施例 2制备材料在 0.2C倍率充电、 0.2C倍率放电 的充放电曲线图。 具体实施方式
以下结合具体实施例对上述方案做进一步说明。 应理解, 这些实施例 是用于说明本发明而不限于限制本发明的范围。 实施例中采用的实施条件 可以根据具体厂家的条件做进一步调整, 未注明的实施条件通常为常规实 验中的条件。
实施例 1
将金属锰粉、 三氧化二铁、 磷酸二氢锂按摩尔比 1 : 1 : 3 充分混合, 以酒精分散物料, 在氮气保护条件下, 置于滚筒球磨机中混合研磨 5-10h。 取出研磨产物, 在氮气保护条件下将物料转入合成炉内, 以 15°C/分钟的速 度升温至 180°C, 保温 1小时, 然后升温至 300°C, 保温 1小时, 再升温至 650°C , 保温 4小时, 随后冷却。 经制粉、 测试、 包装得到产品磷酸亚铁锰锂。 电化学测试过程, 添加 导电碳黑, 粘结剂, 制成极片, 电化学测试对电极选用金属锂片。 本实施 例制备出的材料振实密度大于 1.3g/cm3, 电极物质电化学放电克容量大于 160mAh/g,
其样品 XRD衍射分析:
图 1 为磷酸亚铁锂材料的 XRD 衍射图谱, 单位晶格常数为 a=10.332A, b=6.010A, c=4.692A, 单位晶格的体积为 291.4m3 ; 图 2为磷 酸亚铁锰锂材料的 XRD衍射图谱,如图 2所示, X射线图谱中无杂相, 为 纯相磷酸亚铁锰锂, 单位晶格常数为 a=4.713 A, b=10.382A, c=6.049A, 与磷酸亚铁锂材料相比, 其晶格常数发生了改变。 其 XRD衍射图谱、 首 次充放电曲线图如图 2、 图 4。
实施例 2
将氢氧化镁、金属锰粉、三氧化二铁、 磷酸二氢锂按摩尔比 1 ·.33:33:100 充分混合, 以酒精分散物料, 在氮气保护条件下, 置于滚筒球磨机中混合 研磨 5-10h。取出研磨产物, 在氮气保护条件下将物料转入合成炉内, 以 15 °C/分钟的速度升温至 180°C,保温 1小时,然后升温至 300°C,保温 1小时, 再升温至 650°C, 保温 4小时, 随后冷却。
样品 XRD衍射分析: 如图 5所示, X射线图谱中无杂相, 为纯相磷酸 亚铁锰镁锂。 按照实施例 1 的方法组装电池测试, 结果表明其首次放电比 容量为 160mAh/g, 其 XRD衍射图谱、 首次充放电曲线图如图 5、 图 6。
上述实例只为说明本发明的技术构思及特点, 其目的在于让熟悉此项 技术的人是能够了解本发明的内容并据以实施, 并不能以此限制本发明的 保护范围。 凡根据本发明精神实质所做的等效变换或修饰, 都应涵盖在本 发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电化学活性材料的制备方法, 所述活性材料具有类似化学式为 Li Mg(,.x)Mnx/3Fe2x/3P04, 其 X射线衍射图谱中表征为正交结构, 属于 Pnmb 空间群, 其特征在于, 所述制备方法所采用的原料为含有镁源、 锰源、 铁 源、 锂源或磷源化合物的混合物, 其中各元素的摩尔比为: 镁元素: 锰元 素: 铁元素: 锂元素 : 磷元素 =(l-x):x/3:2x/3: l : l, x=0.95〜1.00; 将上述 混合物室温下在惰性气体保护环境下充分搅拌混合均匀后, 继续在惰性气 体保护环境下转入合成炉内进行烧结, 烧结完成后室温冷却即得所述电化 学活性材料。
2. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述混合过程是在球磨机等研磨设备中通入惰性气体后, 通过研磨设备对物 料进行边粉碎、 边混合, 并利用酒精分散物料。
3. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述烧结过程中, 温度控制在 400-800° (:, 保温 1 -6小时。
4. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述惰性气体优选为氮气。
5. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述镁源为氢氧化镁、 碳酸镁中一种或两种化合物。
6. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述锰源为单质锰金属。
7.根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所述 铁源为氧化铁、 四氧化三铁、 草酸铁中的一种或几种化合物。
8. 根据权利要求】所述电化学活性材料的制备方法, 其特征在于, 所 述锂源为碳酸锂、 氢氧化锂、 磷酸二氢锂、 磷酸氢二锂、 磷酸锂中的一种 或几种化合物。
9. 根据权利要求 1所述电化学活性材料的制备方法, 其特征在于, 所 述磷源为磷酸二氢氨、 磷酸氢二氨、 磷酸二氢锂、 五氧化二磷中的一种或 几种化合物。
5
更正页 (细则第 91条) ISA/CN
PCT/CN2013/000003 2012-02-29 2013-01-04 一种电化学活性材料的制备方法 WO2013127251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100482772A CN102569802A (zh) 2012-02-29 2012-02-29 一种电化学活性材料的制备方法
CN201210048277.2 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013127251A1 true WO2013127251A1 (zh) 2013-09-06

Family

ID=46414678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000003 WO2013127251A1 (zh) 2012-02-29 2013-01-04 一种电化学活性材料的制备方法

Country Status (2)

Country Link
CN (1) CN102569802A (zh)
WO (1) WO2013127251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147945B2 (en) 2013-03-08 2018-12-04 Umicore Olivine composition with improved cell performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794497A (zh) * 2005-11-01 2006-06-28 中国科学院成都有机化学有限公司 一种体相掺杂改性的锂离子蓄电池正极材料及其制备方法
WO2011092281A1 (de) * 2010-01-28 2011-08-04 Süd-Chemie AG Substituiertes lithium-mangan-metallphosphat
TW201132580A (en) * 2010-01-28 2011-10-01 Sued Chemie Ag Substituted lithium-manganese metal phosphate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567449B (zh) * 2009-06-02 2012-06-27 徐瑞松 一种纳米级锂电池正极材料及其制备方法
CN101734638B (zh) * 2009-12-14 2012-08-15 恒正科技(苏州)有限公司 电化学活性材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794497A (zh) * 2005-11-01 2006-06-28 中国科学院成都有机化学有限公司 一种体相掺杂改性的锂离子蓄电池正极材料及其制备方法
WO2011092281A1 (de) * 2010-01-28 2011-08-04 Süd-Chemie AG Substituiertes lithium-mangan-metallphosphat
TW201132580A (en) * 2010-01-28 2011-10-01 Sued Chemie Ag Substituted lithium-manganese metal phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147945B2 (en) 2013-03-08 2018-12-04 Umicore Olivine composition with improved cell performance

Also Published As

Publication number Publication date
CN102569802A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
CN100511778C (zh) 高性能锂离子电池正极材料LiFePO4/C的制备方法
CN101630739B (zh) 掺杂改性的磷酸铁锂的制备方法
CN100448071C (zh) 锂电池正极材料及其制备方法
CN101752555B (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
CN102738465B (zh) 一种磷酸锰铁锂正极复合材料的制备方法
CN100491239C (zh) 锂离子电池正极材料磷酸铁锂的制备方法及其产品
CN101826617B (zh) 磷酸铁锂的制备方法
CN104701538B (zh) 一种用于锂离子电池正极材料磷酸铁锂的制备方法
CN101339995A (zh) 锂离子动力电池用磷酸铁锂正极材料的制备方法
CN100564250C (zh) 锂离子电池正极材料磷酸铁锂的微波快速固相烧结方法
CN100486889C (zh) 锂离子电池正极活性物质磷酸亚铁锂的制备方法
CN102332580A (zh) 氟化硫酸铁盐化合物、制备方法及用途
CN102769131A (zh) 一种制备磷酸锰铁锂/碳复合材料的方法
CN100537419C (zh) 高密度球形磷酸铁锂的制备方法
CN102208624A (zh) 一种低温固相法制备碳包覆磷酸亚铁锂正极材料的方法
CN101944615B (zh) 一种锂离子电池用磷酸锰锂正极材料及其制备方法
CN101399341B (zh) 磷酸铁锂的电池正极材料制备方法
CN106887586B (zh) 一种碳气凝胶网络的磷酸锰铁锂电池电极材料及制备方法
CN108448113A (zh) 一种掺杂改性的磷酸铁锂正级材料的制备方法
CN100371239C (zh) 微波加热制备高密度磷酸铁锂的方法
CN101826616A (zh) 一种制备磷酸铁锂正极材料的方法
CN105552341A (zh) 一种电化学活性正极材料及其制备方法
CN101118963A (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
CN103137966A (zh) 一种掺杂改性磷酸铁锂正极材料的制备方法
CN102468489B (zh) 磷酸锂铁材料的制造方法及由其制得的磷酸锂铁粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755122

Country of ref document: EP

Kind code of ref document: A1