WO2013125904A1 - 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터 - Google Patents

고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터 Download PDF

Info

Publication number
WO2013125904A1
WO2013125904A1 PCT/KR2013/001449 KR2013001449W WO2013125904A1 WO 2013125904 A1 WO2013125904 A1 WO 2013125904A1 KR 2013001449 W KR2013001449 W KR 2013001449W WO 2013125904 A1 WO2013125904 A1 WO 2013125904A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
electrolyte
capacitor
compound
electrode
Prior art date
Application number
PCT/KR2013/001449
Other languages
English (en)
French (fr)
Inventor
정철수
서범
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120018619A external-priority patent/KR101325989B1/ko
Priority claimed from KR1020120032957A external-priority patent/KR101305209B1/ko
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2013125904A1 publication Critical patent/WO2013125904A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolyte for a capacitor having improved high rate charging and discharging characteristics and a capacitor using the same.
  • the present invention relates to an electrolyte for a capacitor and a capacitor using the same.
  • electrochemical energy storage devices are a key component of finished devices essential for all portable information and communication devices and electronic devices.
  • electrochemical energy storage devices will be reliably used as high quality energy sources in the renewable energy field that can be applied to future electric vehicles and portable electronic devices.
  • electrochemical capacitors may be classified into an electric double layer using an electric double layer principle and a hybrid supercapacitor using an electrochemical conversion-reduction reaction.
  • the electric double layer capacitor is used in many fields that require high output energy characteristics, but the electric double layer capacitor has a disadvantage of being used for a small capacity.
  • hybrid supercapacitors are being researched as a new alternative to improve the capacity characteristics of electric double layer capacitors.
  • the lithium ion capacitor of the hybrid supercapacitor may have an accumulation capacity of about 3 to 4 times that of the electric double layer capacitor.
  • the electrolytes used in high capacity capacitors are classified into aqueous electrolytes, non-aqueous electrolytes and solid electrolytes.
  • the aqueous electrolyte has a high conductivity to reduce the internal resistance of the basic cell, but the energy density of the capacitor is low due to the low operating voltage.
  • non-aqueous electrolytes generally have a higher viscosity than aqueous electrolytes and have a conductivity of about 1/10 to 1/100 times lower. Therefore, when the non-aqueous electrolyte is used, the output resistance is worse than that of the aqueous electrolyte due to the increased internal resistance.
  • the potential difference is high, and the energy density of the capacitor which is proportional to the square of the voltage used can be greatly increased, the usable temperature range is wide, and the high pressure resistance and miniaturization can be achieved. Research is actively underway.
  • Li-ion capacitor is oxidized as a feature of the capacitor electrode in the positive electrode (active carbon) during charging, at which time the negative ions in the electrolyte is adsorbed on the positive electrode to maintain a stable voltage.
  • the negative electrode graphite acts as a stable negative electrode by inserting lithium ions as in the negative electrode of the lithium secondary battery.
  • the electrolytic salt dissolved in the electrolyte plays a role of stably maintaining the charging voltage of the lithium ion capacitor without generating an overvoltage.
  • an object of the present invention is to provide a capacitor in which the withstand voltage characteristic is increased when used in an ultra high capacity capacitor.
  • the present invention provides an electrolyte having improved high rate charge / discharge characteristics including a compound included in at least one of the following Chemical Formulas 1 to 12:
  • the present invention provides an electrolyte with improved high rate charge and discharge characteristics, characterized in that the compound comprises 0.5 to 70 parts by weight based on 100 parts by weight of the electrolyte.
  • the present invention is prepared by applying a substance to improve the movement speed of the ions to the electrode, immersing the coated electrode and assembling the battery, injecting the electrolyte into the assembled battery, and completing the battery after the electrolyte injection,
  • the material to improve the movement speed of the ion provides a capacitor with improved high-rate charge and discharge characteristics, characterized in that the compound included at least one of the formulas (1) to (12).
  • the present invention provides a capacitor with improved high rate charge and discharge characteristics, the electrolyte comprising the compound, an electrolytic salt and a non-aqueous organic solvent.
  • the electrolytic salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x, y is a natural number), LiCl, LiI, characterized in that at least one mixture in the group consisting of It is possible to provide a capacitor with improved high rate charge / discharge characteristics.
  • the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2 -Dimethoxyethene (DME), ⁇ -butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF)
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC 1,2 -Dimethoxyethene
  • DME 1,3-dioxolane
  • DEE diethylether
  • MF methyl formate
  • the electrolyte according to the present invention has excellent conductivity, and when used in an ultra high capacity capacitor, the breakdown voltage characteristic can be greatly increased.
  • the electrolyte according to the present invention can be used in a wide range of industrial fields from small electronic devices to large automotive applications due to low gas generation even at high temperatures.
  • the capacitor according to the present invention does not take an overvoltage even at high rate charging and discharging, so that a capacitor having a high capacity can be realized.
  • Figure 1 shows a manufacturing process of the capacitor with improved high rate charge and discharge characteristics according to an embodiment of the present invention.
  • Figure 2 shows a manufacturing process of the capacitor with improved high rate charge and discharge characteristics according to another embodiment of the present invention.
  • the present inventors have developed an organic solvent having a relatively low polarity which can prevent the capacity decrease from occurring under electrolyte conditions using an anion having a large electron density, and when added to an electrolyte of an electrochemical capacitor such as a lithium ion capacitor, the electron density is high.
  • the present invention has been completed by focusing on the fact that large anions are prevented from being strongly adsorbed with the electrode, thereby realizing a high capacity capacitor even at a high rate.
  • the present invention is characterized by consisting of an electrolyte comprising a compound selected from one or more of the following formula (1) to (12).
  • n is smaller than 1 in Chemical Formula 1, the boiling point is low, so that it may be volatilized in the adsorption process, and thus, practical application is difficult. If the value is larger than 8, the electron density of the compound is too low. You can't keep it stable.
  • n is less than 1 in Formula 2, the boiling point is low, so that it may be volatilized in the adsorption process, and thus practical application is difficult.
  • the value is larger than 8, the electron density of the compound is too low. You can't keep it stable.
  • n is less than 1 in Formula 10, it is difficult to apply practically because it causes deterioration of battery performance by -OH group, and when greater than 30, the size of the compound is too large, so that the nanopore of the capacitor electrode As the compound becomes difficult to be impregnated, it is difficult to expect the effect of keeping the voltage of the capacitor electrode stable during charging.
  • n is less than 1 in Formula 11, it is difficult to apply practically because of deterioration of battery performance due to -OH group, and when larger than 30, the size of the compound is too large. As the compound becomes difficult to be impregnated, it is difficult to expect the effect of keeping the voltage of the capacitor electrode stable during charging.
  • Chemical Formulas 1 to 12 are monomers or polymers, and the electrolyte including the chemical formulas may prevent a high electron density anion from being strongly adsorbed with the electrode, thereby realizing a capacitor having a high capacity even at a high rate.
  • the compounds containing Formulas 1 to 12 have an acryl group at one end thereof, and thus have a structure that is easily polymerized by simple heating conditions in a battery.
  • the other terminal consists of CN, NCO, F, Cl, etc. with high electron density. Therefore, the nano-size pores (pore) may play a role that can further improve the moving speed of the anion and cation.
  • the compound preferably contains 0.5 to 70 parts by weight based on 100 parts by weight of the electrolyte.
  • the negative ions increase the adsorption and desorption rate to the nano pores of the activated carbon electrode, thereby improving the high rate characteristic of the capacitor.
  • the compound is used in an amount less than 0.5 parts by weight, it is difficult to expect a great effect in improving the desorption rate of the anion having a high cell density, and when the amount is larger than 70 parts by weight for the anion having a low electron density It is difficult to expect a useful effect because it can cause a decrease in dose.
  • Formulas 1 to 12 are included in the electrolyte and may be used as a material to improve the moving speed of the ions when the capacitor is completed.
  • Capacitor manufacturing according to the present invention is to apply a substance to improve the movement speed of the ions to the electrode, the electrode is pressure-impregnated the coated electrode, assembling the battery, injecting the electrolyte into the assembled battery, and after the electrolyte injection to complete the battery To prepare, but the material to improve the movement speed of the ion is characterized in that the compound included at least one of the formula (1) to (12).
  • Figure 1 shows a manufacturing process of the capacitor with improved high rate charge and discharge characteristics according to an embodiment of the present invention.
  • a compound that improves the movement speed of ions is applied to the anode and the cathode of the capacitor electrode by applying a compound including at least one of Formula 1 to Formula 12, which improves the movement speed of the ions, and a material capable of improving the movement speed of the ions.
  • ions When ions are applied to the cathode and the anode, ions may move more freely to the nano-sized pores in the cathode and the anode.
  • the coating method is not particularly limited, and the compounds of Formulas 1 to 12 may be coated on surfaces of the anode and the cathode to enter nano-sized pores.
  • Compounds of Chemical Formulas 1 to 12 are materials that assist in the movement speed of anions and cations during charge and discharge at the nanopores of the electrode, and the compounds have high rate charge and discharge by impregnating the cathode and the anode in advance before completing the capacitor. The cause of performance deterioration at the capacitor electrode can be prevented at the time.
  • the compounds containing Formulas 1 to 12 have an acryl group at one end thereof, and thus have a structure that is easily polymerized by simple heating conditions in a battery.
  • the other terminal is advantageously a compound having an ether group having ion conductivity with CN, NCO, F, Cl, amine, etc. having high electron density.
  • an acrylic monomer composed of a short alkyl group of less than C8 may realize the same effect by the polarity of the acrylic group. Therefore, the nano-size pores (pore) may play a role that can further improve the moving speed of the anion and cation.
  • the coated negative electrode and the positive electrode are subjected to reduced pressure impregnation.
  • the pressure reduction impregnation is preferably carried out under reduced pressure and temperature within a range in which a material (compound containing at least one from the group consisting of Chemical Formulas 1 to 12) coated on the positive electrode and the negative electrode is not volatilized under a reduced pressure.
  • the decompression time is appropriate as long as the applied materials are impregnated between the nanopores.
  • the reduced pressure, temperature and time can be appropriately adjusted because the structure is different according to the formulas (1) to (12). That is, it carries out by adjusting a pressure reduction, temperature, and time within the range which does not volatilize.
  • battery assembly may be performed.
  • the battery assembly manufactures a battery type using a positive electrode, a negative electrode and a separator.
  • the shape of the battery is not particularly limited, and may be manufactured in all battery types such as pouch type, rectangular type, cylindrical type as well as stacking type and winding type batteries.
  • the reduced pressure impregnation and the battery assembly may be performed in a reversed order. That is, after assembling the battery using the positive electrode, the negative electrode, and the separator, the positive electrode and the negative electrode may be impregnated under reduced pressure.
  • the capacitor according to the present invention provides a capacitor including a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the electrode mixture of the positive electrode includes a positive electrode active material, a conductive material and a binder
  • the electrode mixture of the negative electrode includes a negative electrode active material, a conductive material and a binder
  • the cathode active material may be any carbon material having a double layer capacity, and may be used in the group consisting of activated carbon, natural fiber, amorphous carbon, fullerene, nanotube, graphene, and the like. Although it is not limited to the kind, it is preferable to use activated carbon with a large specific surface area and cheap.
  • any carbon material capable of adsorption and desorption with lithium ions may be used, and for example, natural graphite, artificial graphite, mixed mesocarbon, mixed carbon fiber, cocos, carbon material heat treated, etc. , Hard carbon, soft carbon and the like can be used.
  • the conductive material graphite, carbon black, acetylene black, Ketjen black, or the like can be used.
  • binder polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene-butadiene rubber, or the like may be used, and the material is not particularly limited as long as it is a stable material for electrolyte.
  • the separator is located between the positive electrode and the negative electrode to prevent a short circuit caused by the contact between the two electrode plate active material and to hold and maintain the electrolyte solution required for the battery reaction.
  • the separator is not particularly limited as long as it is insulating and can penetrate the nonaqueous electrolyte. Specific examples thereof include polyethylene, vinylon, polyamide, polypropylene, polyvinyl chloride, polyethylene, and other porous materials having pores or pores.
  • the electrolyte injection step is a step of injecting an electrolyte containing a compound containing at least one of Formula 1 to Formula 12 to the assembled battery.
  • the chemical formulas 1 to 12 are monomers or polymers, and the electrolyte including the chemical formulas may prevent a high electron density anion from being strongly adsorbed to the electrode, thereby realizing a high capacity capacitor even at a high rate.
  • the compound of Formula 1 to Formula 12 may include at least one selected.
  • the electrolyte may be composed of at least one compound selected from Chemical Formulas 1 to 12, an electrolytic salt, and a non-aqueous organic solvent.
  • the content of the compound included in the electrolyte preferably includes 0.5 to 70 parts by weight based on 100 parts by weight of the electrolyte.
  • the negative ions increase the adsorption and desorption rate to the nano pores of the activated carbon electrode, thereby improving the high rate characteristic of the capacitor. If the compound is used in an amount of less than 0.5 parts by weight, it is difficult to expect a great effect on improving the movement speed of the anion having a high cell density, and when using more than 70 parts by weight of the capacity for the anion having a low electron density It is difficult to expect a useful effect because it can cause degradation.
  • the electrolytic salts that may be used in the production of lithium ion capacitors include LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, etc. It can be used as an electrolyte for lithium ion capacitors by mixing at least one group.
  • the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), 1,2-dimethoxy Ethene (DME), ⁇ -butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF), methylpro Pioneate (MP), sulfolane (S), dimethyl sulfoxide (DMSO) and acetonitrile (AN), etc. can be used as an electrolyte by mixing at least one.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC 1,2-dimethoxy Ethene
  • DME 1,3-dioxolane
  • DEE diethylether
  • MF methyl formate
  • the capacitor is manufactured using the electrolyte as described above, even if an anion having a large electron density is used as the electrolyte salt, there is an effect of suppressing the strong adsorption of the anion with the electrode. Therefore, overvoltage is not applied even at high rate charging and discharging, so that a capacitor having a high capacity can be realized.
  • the battery may be completed to provide a capacitor having characteristics of high rate charging and discharging.
  • the present invention can manufacture a capacitor according to another embodiment.
  • Figure 2 shows a manufacturing process of the capacitor with improved high rate charge and discharge characteristics according to another embodiment of the present invention.
  • the present invention provides an assembly and injection step of injecting a material for improving the battery assembly process and the movement speed of ions; A pressure reduction impregnation step of impregnating the assembled battery under reduced pressure; An electrolyte injection step of injecting an electrolyte into the pressure-impregnated battery; And to complete the battery after the injection of the electrolyte, the material to improve the movement speed of the ions can be prepared a capacitor with improved high rate charge and discharge characteristics, characterized in that the compound included at least one of the formula (1) to (12).
  • capacitor assembly composed of an activated carbon electrode composed of nanopores, a separator, and a cathode is assembled.
  • the substance which improves the movement speed of the ions is a compound included in at least one of formulas (1) to (12).
  • the battery After the impregnation of the material to improve the movement speed of the ion in the nanopores of the electrode through the electrolyte injection step of injecting the electrolyte into the assembled battery, the battery can be prepared by completing the electrolyte injection.
  • the capacitor manufactured through the above manufacturing process is easily inserted and detached at the nano-sized pores of the electrode at the time of charging or discharging, thereby improving the high-rate charging and discharging efficiency.
  • the activated carbon and the lithium metal were cut to a suitable size, and a separator made of a porous polyethylene film was inserted therebetween to prepare an electrode assembly (battery).
  • 2-Isocyanatoethyl methacrylate was added in an amount of 1 part by weight based on the entire electrolyte in order to free the movement of ions in the nano pores of the capacitor electrode of the assembled battery, followed by a reduced pressure impregnation.
  • 2-Isocyanatoethyl methacrylate is applied to the capacitor electrode in advance to 1 part by weight based on the entire electrolyte, and then the same effect can be realized even if the lithium metal and the separator are manufactured in the above structure. have.
  • the assembled battery was charged with an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70 and an electrolyte composed of 0.5M LiBF 4 , and then sealed under reduced pressure to complete a capacitor.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 5 In the same manner as in Example 1, but the compound is 5 parts by weight (Example 2), 25 parts by weight (Example 3), 50 parts by weight (Example 4) and 70 parts by weight (100 parts by weight of the electrolyte) Example 5) was added.
  • the activated carbon and the lithium metal were cut to a suitable size, and a separator made of a porous polyethylene film was inserted therebetween to prepare an electrode assembly (battery).
  • Ethylene glycol methyl ether methacrylate was added in an amount of 1 part by weight based on the entire electrolyte in order to free the movement of ions in the nano pores of the capacitor electrode of the assembled battery, followed by a reduced pressure impregnation.
  • Ethylene glycol methyl ether methacrylate is applied to the capacitor electrode in advance to 1 part by weight based on the whole electrolyte, and the same effect can be realized even if the lithium metal and the separator are manufactured in the above structure. Can be.
  • the assembled battery was charged with an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70 and an electrolyte composed of 0.5M LiBF 4 , and then sealed under reduced pressure to complete a capacitor.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 7 In the same manner as in Example 6, but the compound is 5 parts by weight (Example 7), 25 parts by weight (Example 8), 50 parts by weight (Example 9) and 70 parts by weight (100 parts by weight of the electrolyte) Example 10) was added.
  • the activated carbon and the lithium metal were cut to a suitable size, and a separator made of a porous polyethylene film was inserted therebetween to prepare an electrode assembly (battery).
  • the compound Hexyl methacrylate of n is 6 in Chemical Formula 3 is added to 1 part by weight of the whole electrolyte, followed by a reduced pressure impregnation. Was carried out. (In this process, after applying Hexyl methacrylate to 1 part by weight of the entire electrolyte in advance on the capacitor electrode, the same effect can be realized even if the lithium metal and the separator are manufactured in the above-described structure. )
  • the assembled battery was charged with an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70 and an electrolyte composed of 0.5M LiBF 4 , and then sealed under reduced pressure to complete a capacitor.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 12 In the same manner as in Example 6, but the compound is 5 parts by weight (Example 12), 25 parts by weight (Example 13), 50 parts by weight (Example 14) and 70 parts by weight (100 parts by weight of the electrolyte) Example 15) was added.
  • an electrolyte was prepared by mixing an organic solvent and 0.5 M LiBF 4 mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Capacitors were manufactured by conventional methods known in the art, in which activated carbon and lithium metal were cut to a suitable size, and a separator made of a porous polyethylene film was inserted therebetween to prepare an electrode assembly. After inserting the electrode assembly into the pouch, the portion except for the electrolyte injection hole was fused, the prepared electrolyte was injected and placed in the injection hole, and the pressure was sealed to complete the capacitor.
  • the preparation of the electrolyte was carried out using compound 2-Isocyanatoethyl methacrylate consisting of n in the formula (1) in an electrolyte composed of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70. It was prepared by mixing 3 parts by weight based on 100 parts by weight of the electrolyte.
  • the preparation of the electrolyte was carried out using compound 2-Isocyanatoethyl methacrylate consisting of n in the formula (1) in an electrolyte composed of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70. It was prepared by mixing 25 parts by weight based on 100 parts by weight of the electrolyte.
  • compound 2-Isocyanatoethyl methacrylate consisting of n in the formula (1) in an electrolyte composed of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70. It was prepared by mixing 25 parts by weight based on 100 parts by weight of the electrolyte.
  • Preparation of the electrolyte is a compound consisting of n 5 in the formula (11) Ethylene glycol methyl ether methacrylate in an electrolyte consisting of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30: 70 was prepared by mixing 1 part by weight with respect to 100 parts by weight of the electrolyte.
  • Preparation of the electrolyte is a compound consisting of n 5 in the formula (11) Ethylene glycol methyl ether methacrylate in an electrolyte consisting of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30: 70 was prepared by mixing 25 parts by weight with respect to 100 parts by weight of the electrolyte.
  • the preparation of the electrolyte was carried out using a compound Hexyl methacrylate consisting of n 6 in Formula 3 in an electrolyte composed of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70. It was prepared by mixing 1 part by weight with respect to parts by weight.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the preparation of the electrolyte was carried out using a compound Hexyl methacrylate consisting of n 6 in Formula 3 in an electrolyte composed of 0.5M LiBF 4 and an organic solvent mixed with ethylene carbonate (EC): diethyl carbonate (DEC) in a volume ratio of 30:70. It was prepared by mixing 25 parts by weight with respect to parts by weight.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Discharge capacities were measured after charging 0.2C, 1C, 2C, 5C, and 10C using the capacitors prepared in Examples and Comparative Examples. The measured results are shown in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터에 관한 것으로 보다 상세하게는 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물을 포함하는 고율충방전 특성이 향상된 전해질 및 이온의 이동속도를 개선시키는 물질을 전극에 도포하고, 상기 도포된 전극을 갑압함침하고 전지를 조립하고, 조립된 전지에 전해질을 주입하고, 전해질주입 후 전지를 완성하여 제조하되, 상기 이온의 이동속도를 개선시키는 물질은 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제공한다.

Description

고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터
본 발명은 고율충방전 특성이 향상된 캐피시터용 전해질 및 이를 이용한 캐패시터에 관한 것으로 보다 상세하게는 슈퍼캐패시터, 리튬이온 캐패시터 등과 같은 전기화학 캐패시터의 충방전시 불필요한 과전압을 방지하여 캐패시터의 고율충방전 특성을 향상시킬 수 있는 캐패시터용 전해질 및 이를 이용한 캐패시터에 관한 것이다.
일반적으로, 전기화학적 에너지 저장장치는 모든 휴대용 정보통신기기, 전자기기에 필수적으로 사용되는 완제품 기기의 핵심부품이다. 또한, 전기화학적 에너지 저장장치는 미래형 전기자동차 및 휴대용 전자장치등에 적용될 수 있는 신재생 에너지 분야의 고품질 에너지원으로써 확실하게 사용될 것이다.
전기화학적 에너지 저장장치 중 전기화학 캐패시터는 전기이중층 원리를 이용하는 전기이중층 캐패시터(Electrical double layer)와 전기화학적 산환-환원 반응을 이용하는 하이브리드 슈퍼 캐패시터(Hybrid supercapacitor)로 구분될 수 있다.
여기서, 전기이중층 캐패시터는 고출력 에너지 특성을 필요로 하는 분야에서 많이 사용되고 있으나, 전기이중층 캐패시터는 작은 용량에 사용되는 단점을 가지고 있다. 이에 비해 하이브리드 슈퍼 캐패시터는 전기이중층 캐패시터의 용량 특성을 개선할 새로운 대안으로 많은 연구가 이루어지고 있다. 특히, 하이브리드 슈퍼 캐패시터 중 리튬이온 캐패시터는 전기이중층 캐패시터에 비해 3 내지 4배 정도의 축적용량을 가질 수 있다.
고용량 캐패시터에서 사용되는 전해질은 수계 전해질, 비수계 전해질 및 고체 전해질로 분류가 된다. 이 중 수계 전해질은 전도도가 커 기본 셀의 내부저항을 줄일 수 있으나 사용전압이 낮아 캐패시터의 에너지 밀도가 낮다.
한편 비수계 전해질은 일반적으로 수계 전해질 보다 점도가 높고, 1/10~ 1/100 배 정도 낮은 전도도를 갖는다. 따라서 비수계 전해질을 사용하는 경우 내부저항이 커져서 출력 특성이 수계 전해질보다 좋지 못한 단점이 있다. 그러나 비수계 전해질의 경우, 적용 가능한 전위차가 높아 사용전압의 제곱에 비례하는 캐패시터의 에너지 밀도를 크게 높일 수 있고 사용가능한 온도 범위가 넓으며, 고내압화, 소형화 등이 가능하다는 장점이 있어 최근 이에 대한 연구가 활발히 진행되고 있다.
리튬이온 캐패시터는 충전시 양극(활성탄)에서 캐패시터 전극의 특징으로 산화되며, 이때 전해질에 있는 음이온이 양극에 흡착되어 안정한 전압을 유지하게 된다. 한편 충전시 음극(graphite)에서는 리튬이차전지의 음극에서와 같이 리튬이온이 삽입되어 안정된 음극으로서 작용하게 된다. 이때 리튬이온 캐패시터의 충전전압을 과전압 발생없이 안정적으로 유지시켜 주는 역할을 하는 것이 전해질에 녹아 있는 전해염이다.
이때, 리튬이온 캐패시터에서 음이온의 전자밀도가 너무 작은 전해염을 사용할 경우, 고율충전시 충전용량을 제대로 잡아 줄 수 없기 때문에 과전압이 걸리게 된다. 한편 전자밀도가 큰 음이온일수록 충전시 리튬이온 캐패시터의 산화전극에 강하게 흡착되어 고율 방전시 과전압을 만들어 낼 가능성이 매우 크다.
즉, 전자밀도가 큰 음이온을 전해질염으로 사용할 경우, 저율 충방전시 고용량을 구현시킬 수 있다. 그러나 이러한 음이온은 극판과 강하게 흡착되어 있기 때문에, 극판으로부터 탈리되기 어렵게 된다. 따라서 전자밀도가 큰 음이온을 사용한 전해질 조건에서는 고율방전시에도 과전압이 걸리게 되어 용량감소를 초래하게 된다.
따라서, 전자밀도가 큰 음이온이 전극과 강하게 흡착되는 것을 억제시켜 고율에서도 고용량의 캐패시터를 구현할 수 있는 캐패시터의 개발이 요구되었다.
상기 문제점을 해결하기 위해 본 발명의 목적은 초고용량 캐패시터에 사용시 내전압 특성이 증가되는 캐패시터를 제공하는 데 있다.
본 발명의 다른 목적은 전자밀도가 큰 음이온을 전해질염으로 사용하더라도 음이온이 전극과 강하게 흡착되는 것을 억제시키는 전해질 및 이를 포함하는 캐패시터를 제공하는 데 있다.
본 발명의 또 다른 목적은 고율 충방전시에도 과전압이 걸리지 않게 되어 고용량의 캐패시터를 제공하는 데 있다.
상기 목적을 달성하기 위해 본 발명은 하기 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물을 포함하는 고율충방전 특성이 향상된 전해질을 제공한다.
[화학식 1]
Figure PCTKR2013001449-appb-I000001
[화학식 2]
Figure PCTKR2013001449-appb-I000002
[화학식 3]
Figure PCTKR2013001449-appb-I000003
[화학식 4]
Figure PCTKR2013001449-appb-I000004
[화학식 5]
Figure PCTKR2013001449-appb-I000005
[화학식 6]
Figure PCTKR2013001449-appb-I000006
[화학식 7]
Figure PCTKR2013001449-appb-I000007
[화학식 8]
Figure PCTKR2013001449-appb-I000008
[화학식 9]
Figure PCTKR2013001449-appb-I000009
[화학식 10]
Figure PCTKR2013001449-appb-I000010
[화학식 11]
Figure PCTKR2013001449-appb-I000011
[화학식 12]
Figure PCTKR2013001449-appb-I000012
또한 본 발명은 상기 화합물이 전해질 100중량부에 대하여 0.5 ~ 70 중량부를 포함하는 것을 특징으로 하는 고율충방전 특성이 향상된 전해질을 제공한다.
또한 본 발명은 이온의 이동속도를 개선시키는 물질을 전극에 도포하고, 상기 도포된 전극을 갑압함침하고 전지를 조립하고, 조립된 전지에 전해질을 주입하고, 전해질주입 후 전지를 완성하여 제조하되, 상기 이온의 이동속도를 개선시키는 물질은 하기 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제공한다.
[화학식 1]
Figure PCTKR2013001449-appb-I000013
[화학식 2]
Figure PCTKR2013001449-appb-I000014
[화학식 3]
Figure PCTKR2013001449-appb-I000015
[화학식 4]
Figure PCTKR2013001449-appb-I000016
[화학식 5]
Figure PCTKR2013001449-appb-I000017
[화학식 6]
Figure PCTKR2013001449-appb-I000018
[화학식 7]
Figure PCTKR2013001449-appb-I000019
[화학식 8]
Figure PCTKR2013001449-appb-I000020
[화학식 9]
Figure PCTKR2013001449-appb-I000021
[화학식 10]
Figure PCTKR2013001449-appb-I000022
[화학식 11]
Figure PCTKR2013001449-appb-I000023
[화학식 12]
Figure PCTKR2013001449-appb-I000024
또한 본 발명은 상기 전해질이 상기 화합물, 전해염 및 비수계 유기용매를 포함하는 고율충방전 특성이 향상된 캐패시터를 제공한다.
또한 본 발명은 상기 전해염은 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl, LiI 로 이루어진 군에서 1 이상 혼합한 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제공한다.
또한 본 발명은 상기 비수계 유기용매는 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN)로 이루어진 군에서 1이상 혼합한 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제공한다.
본 발명에 따른 전해질은 전도도가 우수하고, 초고용량 캐패시터에 사용시 내전압 특성이 크게 증가될 수 있다.
또한 본 발명에 따른 전해질은 고온에서도 가스 발생이 적어 소형 전자기기로부터 대형 자동차 용도까지 광범위한 산업 분야에 사용이 가능하다.
또한 본 발명에 따른 전해질을 이용하여 캐패시터를 제조하는 경우, 전자밀도가 큰 음이온을 전해질염으로 사용하더라도 음이온이 전극과 강하게 흡착되는 것을 억제시키는 효과가 있다.
또한 본 발명에 따른 캐패시터는 고율 충방전시에도 과전압이 걸리지 않게 되어 고용량의 캐패시터를 구현할 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 고율충방전 특성이 향상된 캐패시터의 제조공정도를 나타낸 것이다.
도 2는 본 발명의 다른 실시예에 따른 고율충방전 특성이 향상된 캐패시터의 제조공정도를 나타낸 것이다.
이하 본 발명에 첨부된 도면을 참조하여 발명의 실시를 위한 구체적인 내용에서는 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명자들은 전자밀도가 큰 음이온을 사용한 전해질 조건하에서 용량감소 현상이 일어나는 것을 방지할 수 있는 극성이 비교적 낮은 유기용매를 개발하여 리튬이온 캐패시터 등과 같은 전기화학 캐패시터의 전해질에 첨가할 경우, 전자밀도가 큰 음이온이 전극과 강하게 흡착되는 것을 억제시켜 고율에서도 고용량의 캐패시터를 구현할 수 있다는 점에 착안하여 본 발명을 완성하였다.
본 발명은 아래의 화학식 1 내지 화학식 12 중 1이상 선택된 화합물을 포함하는 전해질로 이루어지는 것이 특징이다.
[화학식 1]
Figure PCTKR2013001449-appb-I000025
화학식 1에서 n이 1보다 작은 경우에는 비점이 낮아 흡착공정에서 휘발뒬 수 있기 때문에 실질적 적용에 어려움이 발생하게 되며, 8보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 2]
Figure PCTKR2013001449-appb-I000026
화학식 2에서 n이 1보다 작은 경우에는 비점이 낮아 흡착공정에서 휘발뒬 수 있기 때문에 실질적 적용에 어려움이 발생하게 되며, 8보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 3]
Figure PCTKR2013001449-appb-I000027
화학식 3에서 R이 C2보다 작은 경우에는 비점이 낮아 흡착공정에서 휘발뒬 수 있기 때문에 실질적 적용에 어려움이 발생하게 되며, C8보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 4]
Figure PCTKR2013001449-appb-I000028
화학식 4에서 R이 C2보다 작은 경우에는 비점이 낮아 흡착공정에서 휘발뒬 수 있기 때문에 실질적 적용에 어려움이 발생하게 되며, C8보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 5]
Figure PCTKR2013001449-appb-I000029
화학식 5에서 R1, R2가 C1보다 작은 경우에는 -OH기에 의해 전지성능의 악화를 초래하게 되기 때문에 실질적 적용에 어려움이 발생하게 되며, C6보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 6]
Figure PCTKR2013001449-appb-I000030
화학식 6에서 R이 C2보다 작은 경우에는 -OH기에 의해 전지성능의 악화를 초래하게 되기 때문에 실질적 적용에 어려움이 발생하게 되며, C10보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 7]
Figure PCTKR2013001449-appb-I000031
화학식 7에서 R1, R2가 C2보다 작은 경우에는 -OH기에 의해 전지성능의 악화를 초래하게 되기 때문에 실질적 적용에 어려움이 발생하게 되며, C10보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 8]
Figure PCTKR2013001449-appb-I000032
화학식 8에서 R이 C7보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 9]
Figure PCTKR2013001449-appb-I000033
화학식 9에서 R이 C7보다 큰 경우에는 화합물의 전자밀도가 너무 낮아지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 줄 수 없다.
[화학식 10]
Figure PCTKR2013001449-appb-I000034
화학식 10에서 n이 1보다 작은 경우에는 -OH기에 의해 전지성능의 악화를 초래하게 되기 때문에 실질적 적용에 어려움이 발생하게 되며, 30보다 큰 경우에는 화합물의 크기가 너무 커지기 때문에 캐패시터 전극의 나노포어속으로 화합물이 함침되기 어려워지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 주는 효과를 기대하기 어렵게 된다.
[화학식 11]
Figure PCTKR2013001449-appb-I000035
화학식 11에서 n이 1보다 작은 경우에는 -OH기에 의해 전지성능의 악화를 초래하게 되기 때문에 실질적 적용에 어려움이 발생하게 되며, 30보다 큰 경우에는 화합물의 크기가 너무 커지기 때문에 캐패시터 전극의 나노포어속으로 화합물이 함침되기 어려워지기 때문에 충전시 캐패시터 전극의 전압을 안정적으로 유지시켜 주는 효과를 기대하기 어렵게 된다.
[화학식 12]
Figure PCTKR2013001449-appb-I000036
상기 화학식 1 ~ 화학식 12는 모노머 또는 폴리머로서 상기 화학식들이 포함된 전해질은 전자밀도가 큰 음이온이 전극과 강하게 흡착되는 것을 억제시켜 고율에서도 고용량의 캐패시터를 구현할 수 있다.
보다 구체적으로 설명하면, 상기의 화학식 1 ~ 화학식 12을 포함하는 화합물들은 한쪽 말단이 아크릴기를 갖고 있어서 전지 내에서 간단한 가열조건에 의해 폴리머화 시키기 쉬운 구조로 이루어져 있다. 또한, 다른 말단은 전자밀도가 높은 CN, NCO, F, Cl 등으로 이루어져 있다. 따라서, 나노크기의 포어(pore) 사이에서 음이온과 양이온의 이동속도를 더욱 향상시킬 수 있는 역할을 할 수 있다.
상기 화합물은 전해질 100중량부에 대하여 0.5 ~ 70 중량부를 포함하는 것이 바람직하다.
상기 범위내에서는 커패시터 전극을 충방전 시킬 때 음이온이 활성탄 전극의 나노 기공으로 흡탈착 속도를 증진시켜, 커패시터의 고율특성을 향상시킬 수가 있다. 상기 화합물이 0.5중량부 보다 적은 양을 사용할 경우, 높은 전지밀도를 지닌 음이온의 탈삽입 속도 향상에 큰 효과를 기대하기 어려우며, 70중량부 보다 많은 양을 사용할 경우에는 낮은 전자 밀도를 지닌 음이온에 대한 용량 저하를 유발시킬 수 있기 때문에 유용한 효과를 기대하기 어렵다.
상기 화학식 1 내지 화학식 12는 전해질에 포함되는 것으로 캐패시터가 완성된 경우 이온의 이동속도를 개선시키는 물질로 활용될 수 있다.
본 발명에 따른 캐패시터 제조는 이온의 이동속도를 개선시키는 물질을 전극에 도포하고, 상기 도포된 전극을 갑압함침하고 전지를 조립하고, 조립된 전지에 전해질을 주입하고, 전해질주입 후 전지를 완성하여 제조하되, 상기 이온의 이동속도를 개선시키는 물질은 상기 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것인 것이 특징이다.
도 1은 본 발명의 일실시예에 따른 고율충방전 특성이 향상된 캐패시터의 제조공정도를 나타낸 것이다.
이온의 이동속도를 개선시키는 물질인 1 내지 화학식 12 중에서 1이상 포함된 화합물을 캐패시터 전극의 양극, 음극에 이온의 이동속도를 개선시키는 물질을 도포하는 데, 이온의 이동속도를 개선시킬 수 있는 물질을 음극 및 양극에 도포하는 경우 음극 및 양극에 있는 나노크기의 포어(pore)에 이온이 더욱 자유롭게 이동할 수 있다.
도포하는 방법은 특별히 제한되는 것은 아니며, 양극 및 음극의 표면에 상기 화학식 1 내지 화학식 12의 화합물을 도포하여 나노크기의 포어(pore)에 들어갈 수 있도록 한다.
상기 화학식 1 내지 화학식 12의 화합물은 전극의 나노포어에서 충방전시에 음이온과 양이온의 이동속도에 도움을 주는 물질로서, 상기 화합물은 캐패시터를 완성하기 전에 음극 및 양극에 미리 함침시켜 줌으로써 고율 충방전시에 캐패시터 전극에서의 성능열화 원인을 방지할 수 있다.
보다 구체적으로 설명하면, 상기의 화학식 1 ~ 화학식 12을 포함하는 화합물들은 한쪽 말단이 아크릴기를 갖고 있어서 전지 내에서 간단한 가열조건에 의해 폴리머화 시키기 쉬운 구조로 이루어져 있다. 또한, 다른 말단은 전자밀도가 높은 CN, NCO, F, Cl, 아민(amine)등과 이온전도성을 지닌 에테르기를 갖고 있는 화합물이 유리하다. 또한 이온전도성이 약한 알킬기의 경우 C8 미만의 짧은 알킬기 구성된 아크릴계 모노머도 아크릴기의 극성에 의해 동일한 효과를 구현시킬 수 있다. 따라서, 나노크기의 포어(pore) 사이에서 음이온과 양이온의 이동속도를 더욱 향상시킬 수 있는 역할을 할 수 있다.
상기 도포된 음극 및 양극은 감압함침을 실시한다. 상기 감압함침은 양극 및 음극에 도포된 물질(화학식 1 ~ 화학식 12로 이루어진 군에서 1이상 포함된 화합물)이 감압상태에서 휘발되지 않는 범위내에서 감압 및 온도를 맞쳐 실시하는 것이 바람직하다. 감압 시간은 도포된 물질들이 나노기공 사이에 함침이 되는 정도이면 적절하다. 상기 감압, 온도 및 시간은 상기 화학식 1 ~ 12에 따라 구조가 상이하므로 적절히 조절할 수 있다. 즉, 휘발되지 않는 범위내에서 감압, 온도 및 시간을 조절하여 실시한다.
음극 및 양극이 감압함침된 이후에는 전지조립을 할 수 있다. 상기 전지조립은 양극, 음극 및 세퍼레이터를 이용하여 전지형을 제조한다. 이 경우 전지 형태는 특별히 제한되지 않으며, 스태킹(stacking)형, 와인딩(Winding)형의 전지뿐만 아니라 파우치형, 각형, 원통형 등의 모든 전지형태로 제조될 수 있다.
한편, 감압함침과 전지조립은 순서가 바뀌어 실시될 수 있다. 즉, 양극, 음극 및 세퍼레이터를 이용하여 전지를 조립한 후에 양극 및 음극을 감압함침할 수 있다.
본 발명에 따른 캐패시터는 양극, 음극, 세퍼레이터 및 전해질을 포함하는 캐패시터를 제공한다.
상기 양극의 전극 합재로는 양극 활물질, 도전재 및 바인더를 포함하여 구성되며, 음극의 전극 합재로는 음극 활물질, 도전재 및 바인더를 포함하여 구성된다.
상기 양극 활물질로는 이중층 용량을 가지는 모든 탄소 재료가 가능하고, 활성탄, 천연섬유, 비정질 카본, 플라렌(fullerene), 나노 튜브 및 그래핀 (graphene) 등으로 이루어진 군에서 1 이상 사용할 수 있으며, 특별히 그 종류에 제한되지 않지만 비표면적이 크고 값싼 활성탄을 사용하는 것이 바람직하다.
상기 음극 활물질로는 리튬 이온과 흡착과 탈리가 가능한 모든 탄소 재료를 사용할 수 있으며, 예를 들어, 천연흑연, 인조흑연, 혼연화 메소카본, 혼연화 탄소섬유, 코코스, 피치 등을 열처리한 탄소재료, 하드카본, 소프트 카본 등을 이용할 수 있다.
상기 도전재로서는 구체적으로 그래파이트, 카본블랙, 아세틸렌 블랙을, 케첸 블랙 등을 이용할 수 있다.
상기 바인더로는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 방향족 폴리아미드, 셀롤로오스, 스타이렌-부타다이엔 고무 등을 사용할 수 있으며, 전해액에 대하여 안정적인 재료라면 크게 제한되지 않는다.
또한, 상기 세퍼레이트는 양극과 음극 사이에 위치하여 두 극판 활물질의 접촉에 의한 단락을 방지하고 전지반응에 필요한 전해액을 보유, 유지한다. 상기 세퍼레이트로는 절연성이 있으며 비수전해액을 침투시킬 수 있는 것이면 특별히 제한되지 않는다. 구체적인 예로는 폴리에틸렌, 비닐론, 폴리아미드, 폴리프로필렌, 폴리비닐클로라이드 및 폴리에틸렌 등의 소재로 공극 또는 기공을 가지는 다공질 재료이면 사용가능하다.
다음으로 전해질주입을 실시하는 데, 상기 전해질 주입공정은 상기 조립된 전지에 화학식 1 내지 화학식 12 중 1이상을 포함한 화합물을 포함하는 전해질을 주입하는 공정이다.
상기 화학식 1 ~ 화학식 12은 모노머 또는 폴리머로서 상기 화학식들이 포함된 전해질은 전자밀도가 큰 음이온이 전극과 강하게 흡착되는 것을 억제시켜 고율에서도 고용량의 캐패시터를 구현할 수 있다.
본 발명에 캐패시터에 있어서, 상기 화학식 1 내지 화학식 12 중 1이상 선택된 화합물을 포함할 수 있다.
상기 전해질은 상기 화학식 1 내지 화학식 12 중 1이상 선택된 화합물, 전해염 및 비수계 유기용매로 이루어질 수 있다.
전해질에 포함된 상기 화합물의 함량은 전해질 100중량부에 대하여 0.5 ~ 70 중량부를 포함하는 것이 바람직하다.
상기 범위내에서는 커패시터 전극을 충방전 시킬 때 음이온이 활성탄 전극의 나노 기공으로 흡탈착 속도를 증진시켜, 커패시터의 고율특성을 향상시킬 수가 있다. 상기 화합물이 0.5중량부 보다 적은 양을 사용할 경우, 높은 전지밀도를 지닌 음이온의 이동속도 향상에 큰 효과를 기대하기 어려우며, 70중량부 보다 많은 양을 사용할 경우에는 낮은 전자 밀도를 지닌 음이온에 대한 용량 저하를 유발시킬 수 있기 때문에 유용한 효과를 기대하기 어렵다.
또한, 리튬이온 캐패시터 제조시에 사용될 수 있는 전해염으로는 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl, LiI 등으로 이루어진 군에서 1 이상 혼합하여 리튬이온 캐패시터용 전해질로 사용할 수 있다.
또한, 비수계 유기용매는 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN) 등으로 이루어진 군에서 1이상 혼합하여 전해질로 사용할 수 있다.
상기와 같은 전해질을 이용하여 캐패시터를 제조하는 경우, 전자밀도가 큰 음이온을 전해질염으로 사용하더라도 음이온이 전극과 강하게 흡착되는 것을 억제시키는 효과가 있다. 따라서, 고율 충방전시에도 과전압이 걸리지 않게 되어 고용량의 캐패시터를 구현할 수 있다.
상기 전해질주입 후에 전지를 완성하여 고율충방전의 특성을 갖는 캐패시터를 제공할 수 있다.
또한, 본 발명은 다른 일실시예에 따라 캐패시터를 제조할 수 있다.
도 2는 본 발명의 다른 실시예에 따른 고율충방전 특성이 향상된 캐패시터의 제조공정도를 나타낸 것이다.
본 발명은 전지조립공정 및 이온의 이동속도를 개선시키는 물질을 주입하는 조립 및 주입단계; 조립된 전지를 감압함침하는 감압함침단계; 감압함침된 전지에 전해질을 주입하는 전해질주입단계; 및 전해질주입 후 전지를 완성하여 제조하되, 상기 이온의 이동속도를 개선시키는 물질은 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제조할 수 있다.
즉, 먼저 나노포어로 구성되어 있는 활성탄 전극과 세퍼레이터 그리고 음극으로 구성된 캐패시터 조립체(조전지)를 조립한다.
이후에 이온의 이동속도를 개선시키는 물질만을 미리 주입한 뒤, 상기 이온의 이동속도를 개선시키는 물질을 캐패시터 전극의 나노포어에 함침시키는 감압함침공정단계를 거친다.
상기 이온의 이동속도를 개선시키는 물질은 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물이다.
이온의 이동속도를 개선시키는 물질을 전극의 나노포어에 충분히 함침된 후 조전지에 전해질을 주입하는 전해질주입단계를 거치며, 전해질주입 후 전지를 완성하여 제조할 수 있다.
상기의 제조공정을 거쳐 제조된 캐패시터는 전극의 나노크기의 포어(pore)에서 충전 또는 방전시에 양이온 및 음이온의 삽입 및 탈착 용이하게 진행되어 고율 충방전 효율이 더욱 향상되는 효과가 있다.
이하, 본 발명의 실시예에 대하여 상세히 설명한다.
실시예 1
캐패시터의 제조는 활성탄과 리튬 금속을 적당한 크기로 자른 뒤, 이들 사이에 폴리에틸레 다공성 필름으로 제조된 세퍼레이터를 삽입하여 전극 조립체(조전지)를 제조하였다. 이 조전지의 캐패시터 전극의 나노 포어(nano pore)에서 이온의 이동이 자유롭게 될 수 있도록 하기 위해 2-Isocyanatoethyl methacrylate을 전해질 전체에 대해 1중량부가 되도록 넣은 뒤, 감압함침을 실시하였다. (이 공정은 캐패시터 전극에 미리 2-Isocyanatoethyl methacrylate을 전해질 전체에 대해 1중량부가 되도록 도포한 뒤, 리튬메탈과 세퍼레이터를 상기와 같은 구조로 전극 조립체(조전지)를 제조해도 동일한 효과를 구현시킬 수 있다.)
조립된 조전지에 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질을 넣은 뒤 감압밀봉을 하여 캐패시터를 완성하였다.
실시예 2 ~ 5
실시예 1과 각각 동일하게 실시하되, 화합물은 전해질 100중량부에 대하여 5중량부(실시예 2), 25중량부(실시예 3), 50중량부(실시예 4) 및 70중량부(실시예 5)로 첨가하였다.
실시예 6
캐패시터의 제조는 활성탄과 리튬 금속을 적당한 크기로 자른 뒤, 이들 사이에 폴리에틸레 다공성 필름으로 제조된 세퍼레이터를 삽입하여 전극 조립체(조전지)를 제조하였다. 이 조전지의 캐패시터 전극의 나노 포어(nano pore)에서 이온의 이동이 자유롭게 될 수 있도록 하기 위해 Ethylene glycol methyl ether methacrylate을 전해질 전체에 대해 1중량부가 되도록 넣은 뒤, 감압함침을 실시하였다. (이 공정은 캐패시터 전극에 미리 Ethylene glycol methyl ether methacrylate을 전해질 전체에 대해 1중량부가 되도록 도포한 뒤, 리튬메탈과 세퍼레이터를 상기와 같은 구조로 전극 조립체(조전지)를 제조해도 동일한 효과를 구현시킬 수 있다.)
조립된 조전지에 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질을 넣은 뒤 감압밀봉을 하여 캐패시터를 완성하였다.
실시예 7 ~ 10
실시예 6과 각각 동일하게 실시하되, 화합물은 전해질 100중량부에 대하여 5중량부(실시예 7), 25중량부(실시예 8), 50중량부(실시예 9) 및 70중량부(실시예 10)로 첨가하였다.
실시예 11
캐패시터의 제조는 활성탄과 리튬 금속을 적당한 크기로 자른 뒤, 이들 사이에 폴리에틸레 다공성 필름으로 제조된 세퍼레이터를 삽입하여 전극 조립체(조전지)를 제조하였다. 이 조전지의 캐패시터 전극의 나노 포어(nano pore)에서 이온의 이동이 자유롭게 될 수 있도록 하기 위해 화학식 3에서 n이 6로 이루어진 화합물 Hexyl methacrylate을 전해질 전체에 대해 1중량부가 되도록 넣은 뒤, 감압함침을 실시하였다. (이 공정은 캐패시터 전극에 미리 Hexyl methacrylate을 전해질 전체에 대해 1중량부가 되도록 도포한 뒤, 리튬메탈과 세퍼레이터를 상기와 같은 구조로 전극 조립체(조전지)를 제조해도 동일한 효과를 구현시킬 수 있다.)
조립된 조전지에 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질을 넣은 뒤 감압밀봉을 하여 캐패시터를 완성하였다.
실시예 12 ~ 15
실시예 6과 각각 동일하게 실시하되, 화합물은 전해질 100중량부에 대하여 5중량부(실시예 12), 25중량부(실시예 13), 50중량부(실시예 14) 및 70중량부(실시예 15)로 첨가하였다.
비교예 1
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 만을 혼합하여 전해질을 제조하였다.
캐패시터의 제조는 당해 업계에서 알려진 통상적인 방법으로 제조하였는 데, 활성탄과 리튬 금속을 적당한 크기로 자른 뒤, 이들 사이에 폴리에틸레 다공성 필름으로 제조된 세퍼레이터를 삽입하여 전극 조립체를 제조하였다. 이 전극 조립체를 파우치에 삽입한 후 전해액 주입구를 제외한 부분을 융착시키고, 제조된 전해질을 주입하여 주입구에 넣은 뒤 감압밀봉을 하여 캐패시터를 완성하였다.
비교예 2
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 1에서 n이 1로 이루어진 화합물 2-Isocyanatoethyl methacrylate을 전해질 100중량부에 대하여 3중량부 혼합하여 제조하였다.
비교예 3
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 1에서 n이 1로 이루어진 화합물 2-Isocyanatoethyl methacrylate을 전해질 100중량부에 대하여 25중량부 혼합하여 제조하였다.
비교예 4
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 11에서 n이 5로 이루어진 화합물 Ethylene glycol methyl ether methacrylate을 전해질 100중량부에 대하여 1 중량부 혼합하여 제조하였다.
비교예 5
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 11에서 n이 5로 이루어진 화합물 Ethylene glycol methyl ether methacrylate을 전해질 100중량부에 대하여 25 중량부 혼합하여 제조하였다.
비교예 6
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 3에서 n이 6으로 이루어진 화합물 Hexyl methacrylate을 전해질 100중량부에 대하여 1 중량부 혼합하여 제조하였다.
비교예 7
비교예 1과 동일한 방법으로 캐패시터를 제조하되,
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 0.5M LiBF4 로 구성된 전해질에 화학식 3에서 n이 6으로 이루어진 화합물 Hexyl methacrylate을 전해질 100중량부에 대하여 25 중량부 혼합하여 제조하였다.
상기 실시예 및 비교예로 제조된 캐패시터를 이용하여 0.2C, 1C, 2C, 5C 및 10C을 충전 후에 방전용량을 측정하였다. 측정된 결과는 아래 표 1과 같다.
표 1
구 분 화합물 화합물함량(중량부) 방전용량(mAh/g)
0.2C 1C 2C 5C 10C
실시예 1 2-Isocyanatoethyl methacrylate 1 78 76 65 52 45
실시예 2 5 76 74 63 54 50
실시예 3 25 77 73 70 61 51
실시예 4 50 70 66 61 45 27
실시예 5 70 23 22 20 18 15
실시예 6 Ethylene glycol methyl ether methacrylate 1 77 76 63 53 46
실시예 7 5 65 57 50 45 41
실시예 8 25 55 48 37 33 31
실시예 9 50 41 39 27 13 11
실시예 10 70 17 18 13 12 8
실시예 11 Hexyl methacrylate 1 74 65 60 54 42
실시예 12 5 62 55 46 33 21
실시예 13 25 45 42 35 32 15
실시예 14 50 21 20 17 15 8
실시예 15 70 15 14 10 8 7
비교예 1 - 0 69 55 39 26 3
비교예 2 2-Isocyanatoethyl methacrylate 3 67 51 37 6 -
비교예 3 25 12 10 8 1 -
비교예 4 Ethylene glycol methyl ether methacrylate 1 76 68 51 34 18
비교예 5 25 10 7 6 - -
비교예 6 Hexyl methacrylate 1 72 58 44 29 16
비교예 7 25 3 - - - -
(표 1에서 방전용량이 “-”은 방전되지 않은 것임을 뜻함)
실험결과 본 발명에 따른 제조방법으로 제조된 캐패시터는 방전용량이 비교예 1 ~ 비교예 4에 비해 우수함을 확인할 수 있었다. 특히, 고율 충방전시에는 비교예 1 ~ 비교예 4의 경우 방전 용량이 현저히 감소하는 것에 비해 실시예 1 ~ 실시예 15는 방전용량의 감소가 크지 않음을 확인할 수 있었다. 또한, 화합물이 고함량(25중량부)으로 적용된 실시예 3, 8, 13과 비교예 3, 5, 7의 비교로부터 알 수 있듯이, 화합물이 고함량의 조건일수록 캐패시터 전극의 나노포어에서 음이온의 이동속도를 증가시켜 줄 수 있는 화합물들을 우선적으로 감압 흡착시켜 놓는 방법이 유리함을 알 수 있다.
이를 통해 고율로 충방전하더라도 과전압이 걸리지 않게 되어 고율특성이 강하게 요구되는 캐패시터의 성능을 향상시킬 수 있는 효과가 있음을 확인할 수 있었다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.

Claims (6)

  1. 하기 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물을 포함하는 고율충방전 특성이 향상된 전해질.
    [화학식 1]
    Figure PCTKR2013001449-appb-I000037
    [화학식 2]
    Figure PCTKR2013001449-appb-I000038
    [화학식 3]
    Figure PCTKR2013001449-appb-I000039
    [화학식 4]
    Figure PCTKR2013001449-appb-I000040
    [화학식 5]
    Figure PCTKR2013001449-appb-I000041
    [화학식 6]
    Figure PCTKR2013001449-appb-I000042
    [화학식 7]
    Figure PCTKR2013001449-appb-I000043
    [화학식 8]
    Figure PCTKR2013001449-appb-I000044
    [화학식 9]
    Figure PCTKR2013001449-appb-I000045
    [화학식 10]
    Figure PCTKR2013001449-appb-I000046
    [화학식 11]
    Figure PCTKR2013001449-appb-I000047
    [화학식 12]
    Figure PCTKR2013001449-appb-I000048
  2. 제1항에 있어서,
    상기 화합물은 전해질 100 중량부에 대하여 0.5 ~ 70 중량부를 포함하는 것을 특징으로 하는 고율충방전 특성이 향상된 전해질.
  3. 이온의 이동속도를 개선시키는 물질을 전극에 도포하고,
    상기 도포된 전극을 갑압함침하고 전지를 조립하고,
    조립된 전지에 전해질을 주입하고, 전해질주입 후 전지를 완성하여 제조하되,
    상기 이온의 이동속도를 개선시키는 물질은 하기 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터.
    [화학식 1]
    Figure PCTKR2013001449-appb-I000049
    [화학식 2]
    Figure PCTKR2013001449-appb-I000050
    [화학식 3]
    Figure PCTKR2013001449-appb-I000051
    [화학식 4]
    Figure PCTKR2013001449-appb-I000052
    [화학식 5]
    Figure PCTKR2013001449-appb-I000053
    [화학식 6]
    Figure PCTKR2013001449-appb-I000054
    [화학식 7]
    Figure PCTKR2013001449-appb-I000055
    [화학식 8]
    Figure PCTKR2013001449-appb-I000056
    [화학식 9]
    Figure PCTKR2013001449-appb-I000057
    [화학식 10]
    Figure PCTKR2013001449-appb-I000058
    [화학식 11]
    Figure PCTKR2013001449-appb-I000059
    [화학식 12]
    Figure PCTKR2013001449-appb-I000060
  4. 제3항에 있어서,
    상기 전해질은 상기 화합물, 전해염 및 비수계 유기용매를 포함하는 고율충방전 특성이 향상된 캐패시터.
  5. 제4항에 있어서,
    상기 전해염은 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl, LiI 로 이루어진 군에서 1 이상 혼합한 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터.
  6. 제4항에 있어서,
    상기 비수계 유기용매는 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN)로 이루어진 군에서 1이상 혼합한 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터.
PCT/KR2013/001449 2012-02-23 2013-02-22 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터 WO2013125904A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120018619A KR101325989B1 (ko) 2012-02-23 2012-02-23 고율충방전 특성이 향상된 전해질 및 이를 포함하는 캐패시터
KR10-2012-0018619 2012-02-23
KR1020120032957A KR101305209B1 (ko) 2012-03-30 2012-03-30 고율충방전 특성이 향상된 캐패시터 및 이의 제조방법
KR10-2012-0032957 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013125904A1 true WO2013125904A1 (ko) 2013-08-29

Family

ID=49006009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001449 WO2013125904A1 (ko) 2012-02-23 2013-02-22 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터

Country Status (1)

Country Link
WO (1) WO2013125904A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226297A (zh) * 2020-01-17 2020-06-02 诚捷智能装备(东莞)有限公司 穿胶、含浸及封口一体机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010690A (ko) * 2004-07-27 2006-02-02 삼성에스디아이 주식회사 연료전지용 전해질 및 이를 채용한 연료전지
KR20060055291A (ko) * 2004-11-16 2006-05-23 삼성에스디아이 주식회사 고체 고분자 전해질막, 그 제조방법 및 이를 이용한연료전지
US20110176255A1 (en) * 2008-09-29 2011-07-21 Tomokazu Sasaki Method for manufacturing electrode for electrochemical element
JP2012064820A (ja) * 2010-09-17 2012-03-29 Nissin Electric Co Ltd リチウムイオンキャパシタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010690A (ko) * 2004-07-27 2006-02-02 삼성에스디아이 주식회사 연료전지용 전해질 및 이를 채용한 연료전지
KR20060055291A (ko) * 2004-11-16 2006-05-23 삼성에스디아이 주식회사 고체 고분자 전해질막, 그 제조방법 및 이를 이용한연료전지
US20110176255A1 (en) * 2008-09-29 2011-07-21 Tomokazu Sasaki Method for manufacturing electrode for electrochemical element
JP2012064820A (ja) * 2010-09-17 2012-03-29 Nissin Electric Co Ltd リチウムイオンキャパシタの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226297A (zh) * 2020-01-17 2020-06-02 诚捷智能装备(东莞)有限公司 穿胶、含浸及封口一体机
WO2021142809A1 (zh) * 2020-01-17 2021-07-22 诚捷智能装备(东莞)有限公司 穿胶、含浸及封口一体机
CN111226297B (zh) * 2020-01-17 2022-07-12 诚捷智能装备(东莞)有限公司 穿胶、含浸及封口一体机

Similar Documents

Publication Publication Date Title
WO2018212429A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020067717A1 (ko) 전고체 전지용 음극 및 이의 제조방법
WO2019027137A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023068807A1 (ko) 리튬 이차전지
WO2016052881A1 (ko) 리튬 이차전지의 제조방법
WO2022050712A1 (ko) 리튬 이차 전지
WO2015064987A1 (ko) 리튬 이차전지
WO2022103101A1 (ko) 리튬 이차 전지
WO2022080770A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020055180A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019107838A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019172650A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2018062934A1 (ko) 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2013125904A1 (ko) 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022197094A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2022114930A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752465

Country of ref document: EP

Kind code of ref document: A1