WO2013125729A1 - 摺動接点部材、これを用いた直流モータ及び発電機 - Google Patents

摺動接点部材、これを用いた直流モータ及び発電機 Download PDF

Info

Publication number
WO2013125729A1
WO2013125729A1 PCT/JP2013/055269 JP2013055269W WO2013125729A1 WO 2013125729 A1 WO2013125729 A1 WO 2013125729A1 JP 2013055269 W JP2013055269 W JP 2013055269W WO 2013125729 A1 WO2013125729 A1 WO 2013125729A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding contact
contact member
member according
conductive
conductive diamond
Prior art date
Application number
PCT/JP2013/055269
Other languages
English (en)
French (fr)
Inventor
義貴 上原
紘敬 三輪
南部 俊和
与四郎 野口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13751834.6A priority Critical patent/EP2819280B1/en
Priority to JP2014500974A priority patent/JP5741762B2/ja
Priority to CN201380008636.4A priority patent/CN104115380B/zh
Priority to US14/377,970 priority patent/US10566883B2/en
Publication of WO2013125729A1 publication Critical patent/WO2013125729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/20Contacts for co-operation with commutator or slip-ring, e.g. contact brush characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/10Arrangements of brushes or commutators specially adapted for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/006Structural associations of commutators

Definitions

  • the present invention relates to a sliding contact member, a DC motor and a generator using the same.
  • Patent Document 1 As this type of prior art, there is one disclosed in Patent Document 1 under the name “conductive member”.
  • the conductive member disclosed in Patent Document 1 is electrically connected when a plurality of conductive members are in contact with each other, and at least one of the conductive members is connected to another conductive member.
  • a portion that contacts the conductive member has a film containing conductive hard carbon, and constitutes a key contact.
  • Patent Document 1 when the conductive member disclosed in Patent Document 1 is used, for example, as a brush or a commutator for a drive motor or a generator, the power applied to the brush is increased, and the sliding speed of the brush is increased. As the speed increases, the sliding speed and sliding surface pressure also increase. Therefore, the heat generation of the brush is increased and the material is thermally softened. As a result, the wear of the commutator as the brush or the counterpart material is increased. In addition, there is a problem that the heat generated by the brush or commutator cannot be sufficiently diffused in the sliding surface, and the temperature rises locally and the material is softened.
  • an object of the present invention is to provide a sliding contact member that can suppress heat generation and reduce wear, and a DC motor and a generator using the sliding contact member.
  • a powdered portion containing a conductive diamond and a conductive binder is disposed at least at the sliding contact portion of one or both of the two sliding contact members that are in sliding contact with each other. This suppresses heat generation and reduces wear.
  • the DC motor and the generator according to the present invention use the sliding contact member as a brush or a commuter. Thereby, the thermal diffusion of these brushes and commutators is promoted, and the increase in local heat generation is suppressed.
  • the powdered portion including the conductive diamond and the conductive binder is disposed at least in the sliding contact portion of either one or both of the two sliding contact members that are in sliding contact with each other, And the wear can be reduced.
  • (A) is a figure which shows the surface roughness curve which measured the abrasion amount of diamond with AFM (atomic force microscope)
  • (B) is a schematic diagram which calculates
  • a powdered portion containing conductive diamond is arranged at least at the sliding contact portion of one or both of the two sliding contact members that are in sliding contact with each other.
  • “Conductive diamond” is a diamond semiconductor doped with impurities (boron B or the like).
  • the “conductive binder” a compound semiconductor can be employed. Examples of the compound semiconductor include Zn, Cd, Hg, B, Al, Ga, In, Tl, N, P, As, Sb, Bi, O, S, Se, Te, and Po.
  • the compacted portion contains the conductive diamond powder and a conductive binder that connects the conductive diamond powders, the strength and adhesion between the conductive diamond powders can be improved. Thereby, the apparent intensity
  • the powder having a specific resistance lower than that of the conductive diamond particles is used as the conductive binder, the specific resistance between the conductive diamond powders is reduced, and the apparent electrical conduction of the above-mentioned powder compaction portion is improved.
  • the volume ratio of the conductive diamond is adjusted, the apparent strength of the compacted portion is improved, and the wear resistance and seizure resistance are improved. Be made.
  • the volume ratio of conductive diamond By making the volume ratio of conductive diamond lower in inverse proportion to the distance from the sliding surface in the thickness direction, the hardness, thermal conduction, thermal diffusion performance, and electrical conduction functions of the sliding surface are not degraded. In addition, the entire powdered part can be reduced in production cost as well as the volume ratio of the conductive diamond.
  • the specific resistance of the conductive diamond powder is reduced, so that the apparent electrical conductivity of the compacted portion can be improved.
  • the powder diameter of the conductive diamond By setting the powder diameter of the conductive diamond to 5 ⁇ m or less, it is possible to reduce the mechanical roughness as well as the surface roughness of the sliding contact surface of the compacted portion during wear.
  • any one of Cu, Al, Ni, Ti, Zn, Co, Au, and Ag as a material having a low specific resistance, the specific resistance of powders other than conductive diamond can be reduced, so the appearance of the compacted portion is apparent.
  • the electrical conductivity of can be improved. Moreover, since it can be manufactured by the powder deposition method, it can be manufactured at low cost.
  • the thermal diffusibility of the compacted portion is improved, so that a local temperature rise on the sliding surface can be suppressed, and wear due to thermal deterioration can be reduced.
  • the thermal conductivity of the compacted portion By setting the thermal conductivity of the compacted portion to 500 W / (m ⁇ K) or more, the thermal conductivity of the compacted portion is improved, so that a local temperature rise on the sliding contact surface can be suppressed, Wear due to deterioration can be reduced.
  • the above-mentioned compacted part By manufacturing the above-mentioned compacted part by a sintering method, it can be manufactured at a low cost and a high density. By manufacturing the above-mentioned compacted portion by the powder deposition method, it can be manufactured at a lower cost and higher density. By using the sliding contact member described above for the brush and / or the commutator, it is possible to manufacture a DC motor and a generator at low cost.
  • the wear amount of diamond is determined based on the maximum height of the surface roughness curve measured with an AFM (atomic force microscope) (see FIG. 1 (A)) and the area expected for contact with the mating material (FIG. 1 (B). ))).
  • FIG. 2 is an explanatory view showing the first evaluation method, wherein 1 is a copper ball and 2 is a sliding contact member according to the present invention. Note that the arrows shown in FIG. 2 indicate the rolling direction of the ball 1.
  • the wear amount was evaluated (300 min) by the ball-on-disk method shown in FIG. [Evaluation results] As shown in Table 1, the wear resistance is remarkably improved, and the aggression against the counterpart material (ball 1) is also low.
  • FIG. 3 is an explanatory view showing a second evaluation method, in which 3 is a copper electrode, 4 is a sliding contact member according to the present invention, and 5 is a DC power supply for energizing between them.
  • the arrows shown in FIG. 3 indicate the moving direction of the electrode 3.
  • the electric discharge resistance (wear amount) was evaluated by electric discharge machining shown in FIG. [Evaluation results] As shown in Table 2, the wear resistance is remarkably improved, and the aggression against the counterpart (electrode 3) is also low.
  • FIG. 4 is an explanatory view showing a third evaluation method, wherein 6 is a copper ball, 7 is a sliding contact member according to the present invention, and 8 is a DC power source for energizing between them.
  • the arrows shown in FIG. 4 indicate the rolling direction of the ball 6.
  • the amount of wear was evaluated by an energization sliding test shown in FIG. [Evaluation results] As shown in Table 3, the wear resistance is remarkably improved, and the aggressiveness to the opponent (ball 6) is also low.
  • FIG. 5 is an explanatory view showing a fourth evaluation method, wherein 9 is a copper ball and 10 is a sliding contact member according to the present invention.
  • the arrows shown in FIG. 5 indicate the rolling direction of the ball 9.
  • the seizure resistance was evaluated by the seizure test shown in FIG. [Evaluation results] The copper plate burned immediately, whereas the sliding contact member according to the present invention did not burn until the powdered portion was worn away.
  • FIG. 6 is an explanatory view showing a fifth evaluation method
  • (A) is a schematic explanatory view of two sliding contact members in which the thickness of each compacted portion is 10 ⁇ m
  • (B) is the thickness. It is a schematic explanatory drawing of two sliding contact members made into 500 micrometers.
  • FIG. 7 is an explanatory view showing a simulation explanation result when the thickness of each compacted portion is 10 ⁇ m
  • FIG. 8 is an explanatory view showing a simulation explanation result when the thickness is 500 ⁇ m.
  • reference numeral 11 denotes one sliding contact member
  • reference numeral 12 denotes the other sliding contact member, which are made of carbon and iron (copper) that are in sliding contact with each other.
  • the compacting parts 14 and 14 made into the thickness of 500 micrometers are formed in the sliding contact surfaces 11a and 12a of the sliding contact members 11 and 12, respectively.
  • FIG. 9A is a cross-sectional view showing a simplified structure of a DC brush motor according to an example
  • FIG. 9B is an enlarged view of a portion indicated by an encircling line I in FIG.
  • a direct current brush motor A shown in FIG. 9A has a substantially cylindrical case 20 and bearings 21 and 21 fitted coaxially to the opposite end surfaces 20a and 20a of the case 20, and these bearings.
  • a drive shaft 22 is rotatably supported by 21 and 21.
  • a coil 23 and a commutator 24 are disposed on the drive shaft 22, and a magnet 25 is disposed on the inner wall surface of the case 20.
  • a brush 26 is disposed in the case 20 via a spring 27 so as to be in sliding contact with the commutator 24.
  • Reference numeral 26 denotes a DC power source.
  • the commutator 24 has a compact portion 24a having the above-described configuration formed on the sliding contact surface with the brush 26 with a required thickness.
  • the above-mentioned compacted portion 26a is also formed in the brush 26 with a required thickness on the sliding contact surface with the commutator 24.
  • the above-described DC motor A and generator brush 26 and commutator 24 are worn by (1) mechanical wear and (2) electrical wear (material removal by discharge).
  • wear is promoted by thermal softening of the material due to heat generation between the sliding contact surfaces of the brush 26 and commutator 24, and for (2), the wear resistance is inversely proportional to the heat resistance of the discharge resistance.
  • the hardness of the sliding contact surface is increased by adopting the sliding contact member according to the present invention, in addition to improving the mechanical wear resistance, the thermal conductivity of the sliding contact surface is improved. Therefore, mechanical wear can be reduced along with thermal softening of the material.
  • the present invention is not limited to the above-described embodiments, and the following modifications can be made.
  • the sliding contact member is applied to the driving brush motor as an example.
  • the present invention can be similarly applied to a brush and a commutator of a generator.
  • the present invention is not limited to the driving brush motor and the generator and can be applied as appropriate. In this case, the same effect as that of the driving brush motor can be obtained.
  • the structure in which the dust portion is disposed on the sliding contact surface of the sliding contact member has been described as an example.
  • the entire sliding contact member may be formed of a material forming the dust portion. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

 本発明は、互いに摺接する二つの摺動接点部材(11,12)のいずれか一方又は双方の互いの少なくとも摺接面に、導電性ダイヤモンドと導電性バインダを含む圧粉部(11a,12a)を配したものであり、この摺動接点部材(11,12)を直流モータや発電機に適用している。

Description

摺動接点部材、これを用いた直流モータ及び発電機
 本発明は、摺動接点部材、これを用いた直流モータ及び発電機に関する。
 この種の従来技術として、「導電部材」とした名称において特許文献1に開示されたものがある。
 特許文献1に開示された導電部材は、複数の導電性部材が接触することで電気的に接続されるものであり、それらの導電性部材のうちの少なくとも1つの導電性部材は、他の導電性部材と接触する部分において導電性硬質炭素を含む膜を有した構成になっており、キー接点を構成するものとしている。
日本国特開2002−25346号公報
 しかしながら、上記特許文献1に開示された導電性部材は、例えば駆動用モータや発電機のブラシやコミュテータとして使用するとき、ブラシに通電される電力が大きくなることに加え、そのブラシの摺動速度が高速になるにつれて摺動速度,摺動面圧も増加する。
 そのため、ブラシの発熱が増大して材料が熱軟化し、結果としてブラシ又は相手材であるコミュテータの摩耗が大きくなる。
 また、ブラシやコミュテータで発生する熱を摺動面内に十分に熱拡散できず、局所的に温度が上昇して材料が軟化するという問題がある。
 そこで本発明は、発熱を抑制することができるとともに磨耗を低減させられる摺動接点部材、これを用いた直流モータ及び発電機の提供を目的としている。
 上記課題を解決するための本発明は、次のとおりである。
 本発明に係る摺動接点部材は、互いに摺接する二つの摺動接点部材のいずれか一方又は双方の互いの少なくとも摺接部位に、導電性ダイヤモンドと導電性バインダを含む圧粉部を配することにより、発熱を抑制して磨耗を低減させている。
 本発明に係る直流モータと発電機は、上記摺動接点部材をブラシ又はコミュータとして用いたものである。これにより、それらブラシ、コミュテータの熱拡散を促進し、局所的な発熱の増大を抑えている。
 本発明によれば、互いに摺接する二つの摺動接点部材のいずれか一方又は双方の互いの少なくとも摺接部位に、導電性ダイヤモンドと導電性バインダを含む圧粉部を配しているので、発熱を抑制することができるとともに磨耗も低減させることができる。
(A)は、ダイヤモンドの摩耗量をAFM(原子間力顕微鏡)で測定した表面粗さ曲線を示す図、(B)は、相手材との接触で予想される面積を求める模式図である。 第一の評価方法を示す説明図である。 第二の評価方法を示す説明図である。 第三の評価方法を示す説明図である。 第四の評価方法を示す説明図である。 第五の評価方法を示す説明図であり、(A)は、互いの圧粉部の厚みを10μmとした二つの摺動接点部材の概略説明図、(B)は、当該厚みを500μmとした二つの摺動接点部材の概略説明図である。 互いの圧粉部の厚みを10μmとしたときのシュミレーション解説結果を示す説明図である。 同上の圧粉部の厚みを500μmとしたときのシュミレーション解説結果を示す説明図である。 (A)は、一例に係る直流ブラシモータの構造を簡略化して示す断面図、(B)は、(A)に包囲線Iで示す部分の拡大図である。
 以下に、本発明を実施するための形態について説明する。
 本発明に係る摺動接点部材は、互いに摺動接触する二つの摺動接触部材のいずれか一方又は双方の互いの少なくとも摺接部位に、導電性ダイヤモンドを含む圧粉部を配している。
 「導電性ダイヤモンド」とは、不純物(ボロンB等)をドーピングしたダイヤモンド半導体のことである。
 「導電性バインダ」としては、化合物半導体を採用することができる。
 化合物半導体としては、例えばZn、Cd、Hg、B、Al、Ga、In、Tl、N、P、As、Sb、Bi、O、S、Se、Te、Po等である。
 上記の構成により、表面層の高硬度化による耐摩耗性の向上とともに、圧粉部における熱伝導向上による放熱性向上を図ることができる。
 さらに、この熱伝導向上によって耐放電性も向上し、電気的摩耗も低減できる。またさらに、安価なダイヤモンド粒子を使用した圧粉部としているので、低コストで製造することが可能である。
 圧粉部が導電性ダイヤモンド粉末の他、この導電性ダイヤモンド粉末どうしを結びつける導電性バインダを含有しているので、導電性ダイヤモンド粉末間の強度,密着性を向上させられる。これにより、圧粉部の見かけの強度、熱伝導及び電気伝導が向上する。
 導電性バインダとして、導電性ダイヤモンド粒子よりも比抵抗が低い粉末を用いているので、導電性ダイヤモンド粉末間の比抵抗が低減し、上記した圧粉部の見かけの電気伝導が向上する。
 導電性ダイヤモンドの体積比率を50%以上とすることにより、圧粉部中の導電性ダイヤモンドの体積比率が向上し、圧粉部の見かけの強度が向上し、耐摩耗性と耐焼付き性を向上させられる。
 厚さ方向の摺接面からの距離に反比例して導電性ダイヤモンドの体積比率が低下する構造にすることにより、摺接面の硬度,熱伝導,熱拡散性能,電気伝導の機能を低下させずに、圧粉部全体としては導電性ダイヤモンドの体積比率とともに、製造コストを低減できる。
 比抵抗が1×10−1Ω・cm以下の導電性ダイヤモンド粉末で構成することにより、導電性ダイヤモンド粉末の比抵抗が低減するので、圧粉部の見かけの電気伝導性を向上させられる。
 導電性ダイヤモンドの粉末径を5μm以下とすることにより、摩耗時の圧粉部の摺接面の表面粗さの低減とともに機械的な摩耗を低減させられる。
 比抵抗が低い材料として、Cu,Al,Ni,Ti,Zn,Co,Au,Agのいずれかのものとすることにより、導電性ダイヤモンド以外の粉末の比抵抗を低くできるので圧粉部の見かけの導電性を向上できる。また、パウダーデポジション法で製作が可能なため、低コストでの製造を行なうことができる。
 圧粉部の厚みを100μm以上とすることにより、その圧粉部の熱拡散性が向上するので、摺接面の局所的な温度上昇を抑えることができ、熱劣化による摩耗を低減できる。
 圧粉部の熱伝導率を500W/(m・K)以上とすることにより、その圧粉部の熱伝導性が向上するので、摺接面の局所的な温度上昇を抑えることができ、熱劣化による摩耗を低減できる。
 上記した圧粉部を焼結法で製造することにより、低コストで高密度に製造することができる。
 上記した圧粉部をパウダーデポジション法で製造することにより、さらに低コストで高密度に製造することができる。
 上記した摺動接点部材をブラシ又はコミュテータ若しくはそれら双方に用いることにより、直流モータや発電機を、低コストで製造することができる。
 まず、ダイヤモンドの摩耗量(比摩耗量)の測定方法について、説明する。
 ダイヤモンドは基本的に考えられる測定方法で摩耗が確認できませんでした。
 そこで、ダイヤモンドの摩耗量はAFM(原子間力顕微鏡)で測定した表面粗さ曲線の最大高さ(図1(A)参照)と、相手材との接触で予想される面積(図1(B)参照)を元に計算している。
<実施例1>
 [使用した材料]
 導電性ダイヤモンド粉末をコバルト(導電性バインダ)で結合した圧粉部を摺接面に形成した摺動接点部材。
 [製造方法]
 圧粉部を焼結法で製造した。
 [評価方法]
 図2は、第一の評価方法を示す説明図であり、1が銅製のボール、2が本発明に係る摺動接点部材である。なお、図2に示す矢印はボール1の転動方向を示している。
 図2に示すボールオンディスク方式で摩耗量を評価(300min)した。
 [評価結果]
 表1に示すように、耐摩耗性が飛躍的に向上し、相手材(ボール1)への攻撃性も低い。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 [使用した材料]
 導電性ダイヤモンド粉末をコバルトで結合した圧粉部を摺接面に形成した摺動接点部材。
 [製造方法]
 圧粉部を焼結法で製造した。
 [評価方法]
 図3は、第二の評価方法を示す説明図であり、3が銅製の電極、4が本発明に係る摺動接点部材、5が両者間に通電するための直流電源である。なお、図3に示す矢印は電極3の移動方向を示している。
 図3に示す放電加工で耐放電性(摩耗量)を評価した。
 [評価結果]
 表2に示すように、耐摩耗性が飛躍的に向上し、相手(電極3)への攻撃性も低い。
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 [使用した材料]
 導電性ダイヤモンド粉末をコバルトで結合した圧粉部を摺接面に形成した摺動接点部材。
 [製造方法]
 圧粉部を焼結法で製造した。
 [評価方法]
 図4は、第三の評価方法を示す説明図であり、6が銅製のボール、7が本発明に係る摺動接点部材、8が両者間に通電するための直流電源である。なお、図4に示す矢印はボール6の転動方向を示している。
 図4に示す通電摺動試験で摩耗量を評価した。
 [評価結果]
 表3に示すように、耐摩耗性が飛躍的に向上し、また、相手(ボール6)への攻撃性も低い。
Figure JPOXMLDOC01-appb-T000003
<実施例4>
 [使用した材料]
 導電性ダイヤモンド粉末を銅で結合した圧粉部を摺接面に形成した摺動接点部材。
 [製造方法]
 パウダーデポジション法で製造した。
 [評価方法]
 図5は、第四の評価方法を示す説明図であり、9が銅製のボール、10が本発明に係る摺動接点部材である。なお、図5に示す矢印はボール9の転動方向を示している。
 図5に示す焼付き試験で耐焼付き性を評価した。
 [評価結果]
 銅板はすぐ焼きついたのに対し、本発明に係る摺動接点部材は圧粉部が摩耗してなくなるまで焼きつきは発生しなかった。
<実施例5>
 図6は第五の評価方法を示す説明図であり、(A)は、互いの圧粉部の厚みを10μmとした二つの摺動接点部材の概略説明図、(B)は、当該厚みを500μmとした二つの摺動接点部材の概略説明図である。図7は、互いの圧粉部の厚みを10μmとしたときのシュミレーション解説結果を示す説明図、図8は、当該厚みを500μmとしたときのシュミレーション解説結果を示す説明図である。
 図6(A)において、符号11で示すものは一方の摺動接点部材、符号12で示すものが他方の摺動接点部材であり、互いに摺接するカーボン,鉄(銅)製のものである。
 それら双方の摺動接点部材11,12の摺接面11a,12aには、10μmの厚みにした圧粉部13,13をそれぞれ形成している。
 また、同図(B)においては、摺動接点部材11,12の摺接面11a,12aに、500μmの厚みにした圧粉部14,14をそれぞれ形成している。
 [使用した材料]
 導電性ダイヤモンド粉末の圧粉部と同等の熱特性を有する上記材料物性で圧粉部の厚さを10μm(図6(A))と500μm(図6(B))で熱拡散状態を解析した。
 [解析条件]
 摺接面に常に500℃の熱が発生していると設定。
 [評価方法]
 図6(A),(B)に示す焼付き試験で耐焼付き性を評価した。
 [評価結果]
 圧粉部の厚みを厚くすると熱拡散が促進される。
 図7,8から明らかなように、圧粉部13の厚みを増加させることにより、熱拡散性が向上している。
 ところで、上記した摺動接点部材は、図9に示す直流ブラシモータに採用することができる。図9(A)は、一例に係る直流ブラシモータの構造を簡略化して示す断面図、(B)は、(A)に包囲線Iで示す部分の拡大図である。
 図9(A)に示す直流ブラシモータAは、略円筒形のケース20と、このケース20の互いに対向する両端面20a,20aにベアリング21,21が同軸的に嵌合されており、それらベアリング21,21に駆動軸22が回転自在に軸支されている。
 駆動軸22には、コイル23とコミュテータ24が配設されているとともに、ケース20の内壁面にはマグネット25が配設されている。
 ケース20には、ブラシ26がコミュテータ24と摺接自在にしてばね27を介して配設されている。なお、26は直流電源である。
 コミュテータ24は、ブラシ26との摺接面に上記した構成からなる圧粉部24aが所要の厚みにして形成されている。一方、ブラシ26にも、コミュテータ24との摺接面に上記した圧粉部26aが所要の厚みにして形成されている。
 上記した直流モータAや発電機のブラシ26とコミュテータ24は、(1)機械的な摩耗と(2)電気的な摩耗(放電による材料除去)で摩耗が進行する。
 (1)についてはブラシ26とコミュテータ24の互いの摺接面どうしの発熱による材料の熱軟化で摩耗が促進され、また、(2)については耐放電性は熱伝導性に摩耗量は反比例する。
 これに対して、本発明に係る摺動接点部材の採用により、摺接面の硬度が上昇するので、耐機械摩耗性が向上することに加えて、その摺接面の熱伝導性が向上するので、材料の熱軟化とともに機械的な摩耗を低減させられる。
 なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
 上述した実施形態においては、摺動接点部材を駆動用ブラシモータに適用したものを例として説明したが、同様にして発電機のブラシとコミュテータに適用することができる。
 また、駆動用ブラシモータや発電機に限らず、適宜適用することができることも勿論である。この場合にも、駆動用ブラシモータと同様の効果を得ることができる。
 上述した実施形態においては、摺動接点部材の摺接面に圧粉部を配した構成のものを例として説明したが、摺動接点部材全体を圧粉部をなす材料で形成してもよい。
11,12   摺動接点部材
11a,12a 圧粉部

Claims (13)

  1.  互いに摺動接触する二つの摺動接点部材のいずれか一方又は双方の互いの少なくとも摺接面に、導電性ダイヤモンドと導電性バインダを含む圧粉部を配していることを特徴とする摺動接点部材。
  2.  導電性バインダは、導電性ダイヤモンド粒子よりも比抵抗が低い粉末である請求項1に記載の摺動接点部材。
  3.  圧粉部は、導電性ダイヤモンドの体積比率が50%以上である請求項1又は2に記載の摺動接点部材。
  4.  圧粉部は、厚さ方向の摺接面からの距離に反比例して導電性ダイヤモンドの体積比率が低下する構造である請求項1~3のいずれか1項に記載の摺動接点部材。
  5.  導電性ダイヤモンドは、比抵抗が1×10−1Ω・cm以下の粉末で構成されている請求項1~4のいずれか1項に記載の摺動接点部材。
  6.  導電性ダイヤモンドの粉末径が5μm以下である請求項5に記載の摺動接点部材。
  7.  導電性バインダを、Cu,Al,Ni,Ti,Zn,Co,Au,Agのいずれかとした請求項1~6のいずれか1項に記載の摺動接点部材。
  8.  圧粉部の厚さを100μm以上にしている請求項1~7のいずれか1項に記載の摺動接点部材。
  9.  圧粉部の熱伝導率を500W/(m・K)以上とした請求項1~8のいずれか1項に記載の摺動接点部材。
  10.  圧粉部を焼結法で製造している請求項1~9のいずれか1項に記載の摺動接点部材。
  11.  圧粉部をパウダーデポジション法で製造している請求項1~9のいずれか1項に記載の摺動接点部材。
  12.  請求項1~11のいずれか1項に記載の摺動接点部材をブラシ又はコミュテータ若しくはそれら双方に用いたことを特徴とする直流モータ。
  13.  請求項1~11のいずれか1項に記載の摺動接点部材をブラシ又はコミュテータ若しくはそれら双方に用いたことを特徴とする発電機。
PCT/JP2013/055269 2012-02-24 2013-02-21 摺動接点部材、これを用いた直流モータ及び発電機 WO2013125729A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13751834.6A EP2819280B1 (en) 2012-02-24 2013-02-21 Sliding contact member, dc motor and generator using said sliding contact member
JP2014500974A JP5741762B2 (ja) 2012-02-24 2013-02-21 摺動接点部材、これを用いた直流モータ及び発電機
CN201380008636.4A CN104115380B (zh) 2012-02-24 2013-02-21 滑动触点部件、使用滑动触点部件的直流电动机及发电机
US14/377,970 US10566883B2 (en) 2012-02-24 2013-02-21 Sliding contact member, and DC motor and generator using said sliding contact member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-038860 2012-02-24
JP2012038860 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125729A1 true WO2013125729A1 (ja) 2013-08-29

Family

ID=49005900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055269 WO2013125729A1 (ja) 2012-02-24 2013-02-21 摺動接点部材、これを用いた直流モータ及び発電機

Country Status (5)

Country Link
US (1) US10566883B2 (ja)
EP (1) EP2819280B1 (ja)
JP (1) JP5741762B2 (ja)
CN (1) CN104115380B (ja)
WO (1) WO2013125729A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180019803A (ko) * 2016-08-16 2018-02-27 삼성디스플레이 주식회사 유기 발광 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025346A (ja) 2000-07-13 2002-01-25 Sumitomo Electric Ind Ltd 導電部材
JP2010208942A (ja) * 2004-02-25 2010-09-24 Sumitomo Electric Hardmetal Corp 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016447A (en) * 1956-12-31 1962-01-09 Union Carbide Corp Collimated electric arc-powder deposition process
JP2711914B2 (ja) * 1989-10-06 1998-02-10 株式会社豊田中央研究所 摺動電気部品
WO2002001700A1 (fr) * 2000-06-28 2002-01-03 Totankako Co., Ltd. Balai au carbone pour machine electrique
US7534296B2 (en) * 2002-01-11 2009-05-19 Board Of Trustees Of Michigan State University Electrically conductive diamond electrodes
JP2004222371A (ja) * 2003-01-10 2004-08-05 Asmo Co Ltd 回転電機の整流子の製造方法及び回転電機の整流子
JP2006187190A (ja) * 2004-11-30 2006-07-13 Denso Corp ブラシ、整流子及び整流機構
EP2124817B8 (en) * 2007-03-09 2022-02-09 MiRus LLC Bioabsorbable coatings for medical devices
KR101487120B1 (ko) * 2011-12-22 2015-01-28 센주긴조쿠고교 가부시키가이샤 미끄럼 이동 부재 및 베어링

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025346A (ja) 2000-07-13 2002-01-25 Sumitomo Electric Ind Ltd 導電部材
JP2010208942A (ja) * 2004-02-25 2010-09-24 Sumitomo Electric Hardmetal Corp 高強度・高耐摩耗性ダイヤモンド焼結体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819280A4

Also Published As

Publication number Publication date
US10566883B2 (en) 2020-02-18
CN104115380B (zh) 2016-12-14
EP2819280A1 (en) 2014-12-31
JP5741762B2 (ja) 2015-07-01
JPWO2013125729A1 (ja) 2015-07-30
EP2819280A4 (en) 2015-03-11
CN104115380A (zh) 2014-10-22
EP2819280B1 (en) 2016-08-31
US20150015111A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
CN106207691A (zh) 一种汽车油泵碳刷及其制备方法
JP2006187190A (ja) ブラシ、整流子及び整流機構
JP5741762B2 (ja) 摺動接点部材、これを用いた直流モータ及び発電機
JP4802558B2 (ja) 積層樹脂ブラシ
JP5790885B2 (ja) 接点部材及び電動機
JP5498709B2 (ja) 金属黒鉛質ブラシ
US10205293B2 (en) Commutator, motor using same and method of manufacturing the commutator
WO2016010104A1 (ja) 燃料ポンプモータ用の積層カーボンブラシ
JP5542585B2 (ja) レジンボンド質カーボンブラシ
JP2019205253A (ja) 摩擦発電システム
JPWO2015194444A1 (ja) 摺動部材、回転機、摺動部材の製造方法
JP2017017796A (ja) カーボンブラシ及びその製造方法
JP2007174732A (ja) 電刷子
CN103146945A (zh) 用于微电机整流子的自润滑电接触材料
JP2015088306A (ja) 摺動接点部材、電動機及び発電機
JP2015082910A (ja) 摺動接点部材、電動機及び発電機
JP4476458B2 (ja) 電気機械用カーボンブラシ
JP2011124141A (ja) 電気接点及びコネクタ端子
JP2010124687A (ja) 電気機械用カーボンブラシ
JP2007043777A (ja) 回転機用ブラシ
JP2005302512A (ja) 電刷子
CN204597189U (zh) 一种电刷结构
JP2006310168A (ja) 電気接点機構
JP2005198477A (ja) 電刷子
JP2022149108A (ja) 摺動接触部材、ブラシ、および、回転機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751834

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014500974

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013751834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751834

Country of ref document: EP