WO2013125646A1 - 熱線反射部材 - Google Patents

熱線反射部材 Download PDF

Info

Publication number
WO2013125646A1
WO2013125646A1 PCT/JP2013/054372 JP2013054372W WO2013125646A1 WO 2013125646 A1 WO2013125646 A1 WO 2013125646A1 JP 2013054372 W JP2013054372 W JP 2013054372W WO 2013125646 A1 WO2013125646 A1 WO 2013125646A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
heat ray
ray reflective
polymer layer
cholesteric liquid
Prior art date
Application number
PCT/JP2013/054372
Other languages
English (en)
French (fr)
Inventor
大谷紀昭
佐藤慶吾
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2013125646A1 publication Critical patent/WO2013125646A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays

Definitions

  • the present invention relates to a heat ray reflective member using a heat ray reflective film.
  • thermoelectric cutting material a material using antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO) or the like (for example, see Patent Document 1), a material using a laminated film of a metal thin film (for example, Patent Document) 2), an infrared reflecting member using a cholesteric liquid crystal polymer (for example, see Patent Document 3), and the like have been proposed.
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • Patent Document 1 a material using a laminated film of a metal thin film
  • Patent Document 3 an infrared reflecting member using a cholesteric liquid crystal polymer
  • JP-A-9-156025 Japanese Patent Laid-Open No. 10-309767 JP-A-4-281403
  • the heat ray cut member using ATO or ITO as proposed in Patent Document 1 has an absorption band in the visible light region
  • the heat ray cut method is a heat ray absorption type, so it is used for glass or the like. May cause thermal cracking when used together.
  • the heat ray cut member using the laminated film of the metal thin film as proposed in Patent Document 2 is a reflection type heat ray cut method, so the problem of causing the above thermal crack does not occur.
  • the electromagnetic wave is cut, so that there is a problem that communication with a mobile phone or the like is impossible.
  • the infrared ray reflective film using the cholesteric liquid crystal polymer as proposed in Patent Document 3 is a reflection type heat ray cut method, the problem of causing the above-described thermal cracking does not occur, Since a non-metallic material is used, the problem that communication such as the above-described mobile phone cannot be performed does not occur. However, since this infrared reflective film uses an organic material, it has a problem that the light reflectance is lowered when exposed to light for a long time.
  • the present invention has been made to solve the above problems, and provides a heat ray reflecting member having high transmittance and high heat ray shielding effect and excellent in light resistance.
  • the heat ray reflective member of the present invention is a heat ray reflective member provided with a substrate, a heat ray reflective film, and an adhesive layer
  • the heat ray reflective film includes a transparent substrate and a cholesteric liquid crystal polymer layer
  • the cholesteric liquid crystal polymer layer is formed on one main surface of the transparent substrate by polymerizing a liquid crystal compound having a polymerizable functional group and a chiral agent having a polymerizable functional group, and the pressure-sensitive adhesive layer.
  • the light incident surface of the heat ray reflective member and the cholesteric liquid crystal At least one of the layers positioned between the polymer layer has a maximum transmittance of 7% or less in a wavelength region of 380 nm or less and a water vapor transmittance of 3.0 g / ( Characterized in that 2 ⁇ day) less than.
  • FIG. 1 is a schematic cross-sectional view showing an example of the heat ray reflective member of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the heat ray reflective member of the present invention.
  • the heat ray reflective member of the present invention is a heat ray reflective member provided with a substrate, a heat ray reflective film, and an adhesive layer, and the heat ray reflective film has a transparent substrate and a cholesteric liquid crystal polymer layer,
  • the cholesteric liquid crystal polymer layer is formed on one main surface of the transparent substrate by polymerizing a liquid crystal compound having a polymerizable functional group and a chiral agent having a polymerizable functional group, and the pressure-sensitive adhesive.
  • the layer is provided on at least the surface of the heat ray reflective film on which the cholesteric liquid crystal polymer layer is formed, and adheres the substrate and the heat ray reflective film.
  • the light incident surface of the heat ray reflective member and the cholesteric layer At least one of the layers positioned between the liquid crystal polymer layer has a maximum transmittance of 7% or less in a wavelength region of 380 nm or less and a water vapor transmittance of 3.0 g / ( Characterized in that 2 ⁇ day) less than.
  • the light incident surface of the heat ray reflecting member refers to the main surface of the heat ray reflecting member on the substrate side.
  • both main surfaces of the heat ray reflecting member can be light incident surfaces.
  • the present invention can provide a heat ray reflecting member having high transmittance and high heat ray shielding effect and excellent in light resistance.
  • FIG. 1 is a schematic cross-sectional view showing an example of the heat ray reflective member of the present invention.
  • a heat ray reflective member 10 shown in FIG. 1 includes a substrate 11, a heat ray reflective film 12, and an adhesive layer 13.
  • the heat ray reflective film 12 includes a transparent substrate 12a and a cholesteric liquid crystal polymer layer 12b.
  • light is incident according to the arrow 14, and the main surface of the heat ray reflecting member 10 on the substrate 11 side becomes a light incident surface.
  • FIG. 2 is a schematic sectional view showing another example of the heat ray reflective member of the present invention.
  • the heat ray reflective member 20 shown in FIG. 2 includes a heat ray reflective film 12 having a transparent base material 12a and a cholesteric liquid crystal polymer layer 12b disposed between two substrates 11. Each of the two substrates 11 and the heat ray reflective film 12 are bonded by an adhesive layer 13.
  • light is incident according to the arrow 14a or 14b, and both main surfaces of the heat ray reflecting member 20 can be light incident surfaces.
  • the glass that can be used for the substrate is not particularly limited as long as the transmittance does not decrease.
  • commercially available soda lime silicate glass can be used.
  • the transparent substrate that can be used for the substrate is not particularly limited as long as the transmittance does not decrease.
  • polyester resins for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polycarbonate resins polyacrylate esters Resin (eg, polymethyl methacrylate), alicyclic polyolefin resin, polystyrene resin (eg, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc.), polyvinyl chloride resin, polyvinyl acetate resin
  • a resin obtained by processing a resin such as a polyethersulfone resin, a cellulose resin (for example, diacetylcellulose, triacetylcellulose, etc.) or a norbornene resin into a film shape or a sheet shape can be used.
  • Examples of methods for processing the resin into a film or sheet include an extrusion molding method, a calender molding method, a compression molding method, an injection molding method, a method in which the resin is dissolved in a solvent, and the like. You may add additives, such as antioxidant, a flame retardant, a heat-resistant agent, a ultraviolet absorber, a slipping agent, an antistatic agent, to the said resin.
  • the thickness of the transparent substrate is, for example, 10 to 500 ⁇ m.
  • the substrate When the substrate is disposed between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer, the substrate has a maximum transmittance of 7% or less, preferably 5% or less in a wavelength region of 380 nm or less, More preferably, the water vapor transmission rate is 3% or less and the water vapor transmission rate is smaller than 3.0 g / (m 2 ⁇ day). In this case, the amount of light reaching the cholesteric liquid crystal polymer layer can be limited, and the exposure of the cholesteric liquid crystal polymer layer to air can be suppressed. As a result, the light resistance of the heat ray reflective member can be improved.
  • the maximum transmittance can be adjusted using various ultraviolet absorbers, for example.
  • a cholesteric liquid crystal polymer can be obtained by adding a small amount of an optically active compound (chiral agent) to a nematic liquid crystal compound that is a rod-like molecule.
  • This cholesteric liquid crystal polymer has a layered structure in which nematic liquid crystal compounds are stacked several times. In this layer, the nematic liquid crystal compounds are arranged in a certain direction, and the layers are stacked so that the arrangement direction of the liquid crystal compounds is spiral. Therefore, the cholesteric liquid crystal polymer can selectively reflect only light of a specific wavelength according to the helical pitch.
  • the normal cholesteric liquid crystal polymer has the feature that the pitch of the spiral changes depending on the temperature and the wavelength of the reflected light changes.
  • the thus obtained cholesteric liquid crystal polymer layer can fix the reflection wavelength semipermanently without changing the wavelength of the light reflected by the temperature.
  • the cholesteric liquid crystal polymer layer has cholesteric liquid crystal optical rotation, when the rotation direction and wavelength of circularly polarized light are equal to the rotation direction of liquid crystal molecules and the helical pitch, the light is reflected without being transmitted.
  • sunlight is synthesized from circularly polarized light of a right spiral and a left spiral.
  • a cholesteric liquid crystal polymer layer with a specific helical pitch using a chiral agent with a right-handed optical rotation and a cholesteric liquid crystal polymer layer with a specific helical pitch using a chiral agent with a left-handed optical rotation Can be made higher in reflectivity at the selective reflection wavelength.
  • the cholesteric liquid crystal polymer layer constituting the heat ray reflective film used for the heat ray reflective member of the present invention is formed by polymerizing a liquid crystal compound having a polymerizable functional group and a chiral agent having a polymerizable functional group.
  • liquid crystal compound used in the formation of the cholesteric liquid crystal polymer layer in the present invention are described in Chapter 8 of “Basics and Applications of Liquid Crystals” (Shinichi Matsumoto, Ryosuke Kakuda; Kogyo Kenkyukai). The known compounds can be used.
  • liquid crystal compound examples include, for example, WO95 / 22586 pamphlet, JP-A No. 2000-281629, JP-A No. 2001-233737, JP-A-2001-519317, JP-A-2002-533742, JP 2002-308832, JP 2002-265421, JP 2005-309255, JP 2005-263789, JP 2008-291218, JP 2008-242349, WO 2009/133290
  • the compounds described in No. pamphlet etc. can be mentioned.
  • the liquid crystal compound preferably contains a high melting point liquid crystal compound and a low melting point liquid crystal compound.
  • the difference between the melting point of the high melting point liquid crystal compound and the melting point of the low melting point liquid crystal compound is preferably 15 ° C. or higher and 30 ° C. or lower, and more preferably 20 ° C. or higher and 30 ° C. or lower.
  • the difference between the melting points is less than 15 ° C., the compatibility of the liquid crystal compound is lowered.
  • the orientation of the cholesteric liquid crystal polymer layer is partly disturbed and haze may be increased.
  • the difference between the melting points exceeds 30 ° C., there may be a change in the light reflectance when the heat-resistant storage test is performed at a temperature equal to or higher than the glass transition temperature of the transparent substrate.
  • the combination of the high melting point liquid crystal compound and the low melting point liquid crystal compound commercially available products can be used.
  • the liquid crystal compound preferably contains the high melting point liquid crystal compound in a total mass ratio of 90% by mass or less.
  • the ratio of the high-melting-point liquid crystal compound exceeds 90% by mass, the compatibility of the liquid crystal compound tends to be reduced. As a result, the orientation of the cholesteric liquid crystal polymer layer is partially disturbed, resulting in an increase in haze. There is.
  • the melting point of the high melting point liquid crystal compound is preferably equal to or higher than the glass transition temperature of the transparent substrate.
  • the melting point of the liquid crystal compound is low, the compatibility and solubility with the chiral agent and the solvent are excellent, but when the melting point is too low, the heat resistance of the produced heat ray reflective film is inferior. Therefore, it is preferable that at least the melting point of the high melting point liquid crystal compound is equal to or higher than the glass transition temperature of the transparent substrate.
  • the melting point of the liquid crystal compound can be measured as follows. First, a liquid crystal compound is sandwiched between two slide glass plates. Then, while observing the slide glass with a microscope, the temperature of the slide glass is increased at a rate of 5 ° C./min, and the temperature at which the liquid crystal compound starts to melt is determined as the melting point.
  • the glass transition temperature of the transparent substrate can be measured as follows. First, a sample piece of about 25 mm ⁇ 10 mm was prepared, heated in the range of 20 ° C. to 200 ° C., and measured for dynamic viscoelasticity at a frequency of 1 Hz using a dynamic viscoelasticity test measurement device “RSAII” manufactured by Rheometrics. To do. Then, the glass transition temperature is obtained from the value of the dynamic loss tangent tan ⁇ calculated from the dynamic storage elastic modulus E ′ and the dynamic loss elastic modulus E ′′ obtained from the measurement of the dynamic viscoelasticity.
  • those having the maximum melting point are designated as high melting point liquid crystal compounds and those having the minimum melting point are designated as low melting point liquid crystal compounds.
  • the chiral agent used for forming the cholesteric liquid crystal polymer layer in the present invention is not particularly limited as long as it has good compatibility with the liquid crystal compound and can be dissolved in a solvent.
  • a chiral agent having a polymerizable functional group can be used.
  • chiral agent examples include, for example, WO 98/00428 pamphlet, JP-T 9-506088, JP-T 10-509726, JP 2000-44451, JP 2000-506873. And compounds described in JP-A No. 2003-66214, JP-A No. 2003-313187, US Pat. No. 6,468,444, and the like.
  • a commercial item can be used, for example, the brand names “S101”, “R811”, “CB15” manufactured by Merck; the brand names “PALIOCOLOR LC756” manufactured by BASF; ADEKA; For example, trade names “CNL715” and “CNL716” manufactured by the company are listed.
  • the selective reflection wavelength of the cholesteric liquid crystal polymer layer can be controlled by adjusting the helical pitch.
  • This helical pitch can be adjusted by adjusting the compounding amounts of the liquid crystal compound and the chiral agent. For example, when the concentration of the chiral agent is high, the twisting force of the spiral increases, so that the pitch of the spiral is reduced, and the selective reflection wavelength ⁇ of the cholesteric liquid crystal polymer layer is shifted to the short wavelength side. Further, when the concentration of the chiral agent is low, the twisting force of the spiral is reduced, so that the pitch of the spiral is increased, and the selective reflection wavelength ⁇ of the cholesteric liquid crystal polymer layer is shifted to the longer wavelength side.
  • the blending amount of the chiral agent is preferably 0.1 parts by mass or more and 10 parts by mass or less, and 0.2 parts by mass with respect to 100 parts by mass in total of the at least two kinds of liquid crystal compounds and the chiral agent. More preferred is 7.0 parts by mass or less.
  • the blending amount of the chiral agent is 0.1 parts by mass or more and 10 parts by mass or less, the selective reflection wavelength of the obtained cholesteric liquid crystal polymer layer can be controlled in a long wavelength region.
  • the selective reflection wavelength of the cholesteric liquid crystal polymer layer can be controlled by adjusting the blending amount of the chiral agent as described above. If this selective reflection wavelength is controlled in the near infrared region, a heat ray reflective film that has substantially no absorption in the visible light region, that is, is transparent in the visible light region and can selectively reflect light in the near infrared region. Obtainable.
  • the maximum reflectance wavelength of the heat ray reflective film in the present invention is preferably in the range of 900 to 1800 nm.
  • the thickness of the cholesteric liquid crystal polymer layer in the present invention is preferably 1.5 times or more and 4.0 times or less of the wavelength (maximum reflectance wavelength) that reflects incident light to the maximum, and is 1.7 times or more of the maximum reflectance wavelength. 0 times or less is more preferable.
  • the thickness of the cholesteric liquid crystal polymer layer is less than 1.5 times the maximum reflectance wavelength, it becomes difficult to maintain the orientation of the cholesteric liquid crystal polymer layer, and the light reflectance of the heat ray reflective film may be lowered.
  • the thickness of the cholesteric liquid crystal polymer layer is, for example, from 0.5 ⁇ m to 20 ⁇ m, and preferably from 1 ⁇ m to 10 ⁇ m.
  • the cholesteric liquid crystal polymer layer in the present invention is not limited to a single layer structure, and may have a multiple layer structure. In the case of a multi-layer structure, it is preferable that each layer has a different selective reflection wavelength because the wavelength region in which light is reflected can be easily controlled.
  • Transparent substrate> As a transparent base material which comprises the heat ray reflective film used for the heat ray reflective member of this invention, if it is formed with the material which has translucency, it will not specifically limit.
  • the transparent substrate include polyester resins (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polyacrylate resins (eg, polymethyl methacrylate), alicyclic polyolefin resins, polystyrene.
  • Resin for example, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc.
  • polyvinyl chloride resin for example, polyvinyl acetate resin, polyethersulfone resin, cellulose resin (for example, diacetyl cellulose, triacetyl cellulose) Etc.
  • a resin obtained by processing a resin such as a norbornene-based resin into a film shape or a sheet shape can be used.
  • methods for processing the resin into a film or sheet include an extrusion molding method, a calender molding method, a compression molding method, an injection molding method, a method in which the resin is dissolved in a solvent, and the like.
  • the transparent substrate may be provided with a primer on its surface, or may be subjected to corona treatment or plasma treatment.
  • the thickness of the transparent substrate is, for example, 10 to 500 ⁇ m.
  • the transparent substrate When the transparent substrate is disposed between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer, the transparent substrate has a maximum transmittance of 7% or less in a wavelength region of 380 nm or less, preferably It is preferable to use 5% or less, more preferably 3% or less, and a water vapor transmission rate smaller than 3.0 g / (m 2 ⁇ day). In this case, the amount of light reaching the cholesteric liquid crystal polymer layer can be limited, and the exposure of the cholesteric liquid crystal polymer layer to air can be suppressed. As a result, the light resistance of the heat ray reflective member can be improved.
  • the maximum transmittance can be adjusted using various ultraviolet absorbers, for example.
  • the heat ray reflective film used for the heat ray reflective member of the present invention can have, for example, a solar transmittance of 70% or more according to Japanese Industrial Standard (JIS) A5759, and a haze according to JIS K7105 of 2.0% or less, preferably 1
  • the light reflectance at the maximum reflectance wavelength can be 40% or more, preferably 45% or more.
  • the heat ray reflective film having such characteristics has a high transmittance in the visible light region, a low haze, and a high light reflectance. Therefore, even if the reflection wavelength increases and the film thickness increases, the cholesteric liquid crystal polymer layer The disorder of the orientation does not occur.
  • permeability of the heat ray reflective film in this invention is substantially the same as a board
  • the solar radiation transmittance is calculated based on JIS A5759 by measuring the transmittance using an ultraviolet-visible near-infrared spectrophotometer “Ubest V-570 type” (manufactured by JASCO) in the range of 300 nm to 250 nm.
  • the haze can be measured using an ultraviolet-visible near-infrared spectrophotometer “Ubest V-570” (manufactured by JASCO Corporation) in the range of 380 nm to 780 nm based on JIS K7105.
  • the light reflectance at the maximum reflectance wavelength is obtained by measuring the reflection spectrum using an ultraviolet-visible near-infrared spectrophotometer “Ubest V-570” (manufactured by JASCO) in the range of 350 nm to 2500 nm. Calculated from the reflection spectrum.
  • the adhesive layer used for the heat ray reflective member of this invention is arrange
  • the pressure-sensitive adhesive layer in the present invention is provided at least on the surface of the heat ray reflective film on which the cholesteric liquid crystal polymer layer is formed (hereinafter also referred to as a cholesteric liquid crystal polymer layer forming surface). Therefore, the substrate and the heat ray reflective film can be bonded without directly exposing the cholesteric liquid crystal polymer layer to air.
  • the heat ray reflective film 12 is disposed between the two substrates 11 as shown in FIG.
  • the heat ray reflective member 20 made can be provided.
  • Examples of the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer include acrylic pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, vinyl acetate-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, phenol-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives. Can be mentioned.
  • the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is disposed between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer, the pressure-sensitive adhesive layer has a maximum transmittance of 7% or less in a wavelength region of 380 nm or less, preferably It is preferable to use 5% or less, more preferably 3% or less, and a water vapor transmission rate smaller than 3.0 g / (m 2 ⁇ day). In this case, the amount of light reaching the cholesteric liquid crystal polymer layer can be limited, and the exposure of the cholesteric liquid crystal polymer layer to air can be suppressed. As a result, the light resistance of the liquid crystal reflecting member can be improved.
  • the maximum transmittance can be adjusted using, for example, various ultraviolet absorbers.
  • the adhesive layer 13 provided in the transparent base material 12a side of the heat ray reflective film 12 is shown.
  • PVB polyvinyl butyral resin
  • EVA ethylene-vinyl acetate copolymer resin
  • the adhesiveness between the transparent substrate 12a and the substrate 11 can be improved.
  • a coating solution for forming a cholesteric liquid crystal polymer layer is prepared by dissolving in a solvent. And this coating liquid is apply
  • the pressure-sensitive adhesive layer 13 is formed on the surface of the cholesteric liquid crystal polymer layer 12b opposite to the transparent substrate 12a side. And if the board
  • a separator (not shown) on the adhesive layer 13.
  • the separator since the separator may be peeled off immediately before the heat ray reflective film 12 is bonded to the substrate 11, contamination of the adhesive layer 13 can be prevented until just before the heat ray reflective film 12 is bonded to the substrate 11.
  • network, a foam sheet, metal foil etc. can be used, for example.
  • the surface of the separator may be coated with a release agent such as silicone, long chain alkyl, or fluorine. Such a coated surface is preferably arranged so as to face the pressure-sensitive adhesive layer.
  • the method for applying the coating solution is not particularly limited, for example, roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, micro gravure coating, or gravure printing, screen printing, Printing methods such as offset printing and ink jet printing can be used.
  • Examples of the polymerization initiator include a photopolymerization initiator.
  • Examples of the photopolymerization initiator include benzoin alkyl ether initiators such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone initiators such as -4-methoxybenzophenone and polyvinylbenzophenone; ⁇ -hydroxycyclohexyl phenyl ketone, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ ′ -Dimethylacetophenone, methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio)
  • photopolymerization initiator a commercially available photopolymerization initiator can also be used.
  • Irgacure registered trademark
  • Irgacure registered trademark
  • Irgacure registered trademark
  • Irgacure® 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1
  • Irgacure (registered trademark) 819 bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide
  • Irgacure (registered trademark) 907 (2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-on)
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the liquid crystal compound and the chiral agent.
  • the ultraviolet ray to be irradiated is, for example, 160 to 380 nm, and preferably 250 to 380 nm.
  • the irradiation time is, for example, 0.1 to 600 seconds, and preferably 0.3 to 300 seconds.
  • ultraviolet light sources include low-pressure mercury lamps (sterilization lamps, fluorescent chemical lamps, black lights, etc.), high-pressure discharge lamps (high-pressure mercury lamps, metal halide lamps, etc.), short arc discharge lamps (ultra-high-pressure mercury lamps, xenon lamps, Mercury xenon lamp etc.) can be used.
  • the amount of ultraviolet light is, for example, 200 to 600 mJ / cm 2 , and preferably 300 to 500 mJ / cm 2 .
  • the solvent examples include halogenated hydrocarbons such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, methylene chloride, trichloroethylene, tetrachloroethylene, chlorobenzene, and orthodichlorobenzene; phenol, p-chlorophenol, o-chlorophenol , M-cresol, o-cresol, p-cresol, etc .; aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene, 1,2-dimethoxybenzene; acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone , Cyclohexanone, cyclopentanone, 2-pyrrolidone, ketones such as N-methyl-2-pyrrolidone; esters such as ethyl acetate and butyl acetate;
  • Example 1 ⁇ Preparation of heat ray reflective film> First, as a transparent substrate, a polyethylene terephthalate (PET) film (trade name “U34”, manufactured by Toray Industries, Inc., thickness: 50 ⁇ m, glass transition temperature: 75 ° C.) having both surfaces easily treated with an acrylic resin was prepared. Next, the following materials were stirred and mixed to prepare a coating solution for forming a cholesteric liquid crystal polymer layer.
  • PET polyethylene terephthalate
  • Liquid crystal compound having a polymerizable functional group manufactured by ADEKA, high melting point liquid crystal compound, trade name “PLC-7700”, melting point: 90 ° C.
  • Liquid crystal compound having a polymerizable functional group ADEKA, low melting point liquid crystal compound, trade name “PLC-8100”, melting point: 65 ° C.
  • chiral agent having a polymerizable functional group trade name “CNL-715”, produced by ADEKA
  • Photopolymerization initiator manufactured by Ciba Specialty Chemicals, trade name “Irgacure 907” 3.0 parts
  • Solvent cyclohexanone 412 parts
  • the coating liquid for forming the cholesteric liquid crystal polymer layer was applied onto a PET film using a micro gravure coater and dried at 100 ° C. to form a coating film.
  • the coating film was cured by irradiating the coating film with ultraviolet rays (wavelength: maximum wavelength 365 nm, light source: high-pressure mercury lamp, light amount: 500 mJ / cm 2 ) for 30 seconds. This produced the heat ray reflective film in which the cholesteric liquid crystal polymer layer (thickness: 2.1 micrometers) was formed on one main surface of a transparent base material.
  • a polyethylene terephthalate film manufactured by Nakamoto Pax Co., Ltd., trade name “NS50MB”, thickness: 38 ⁇ m
  • a first release PET film was prepared.
  • an ultraviolet absorber manufactured by Wako Pure Chemical Industries, Ltd., benzophenone
  • an acrylic pressure-sensitive adhesive manufactured by Soken Chemical Co., Ltd., trade name “SK Dyne 2094”, solid content: 25%
  • a crosslinking agent manufactured by Soken Chemical Co., Ltd., trade name “E-5XM”, solid content: 5%
  • the pressure-sensitive adhesive layer-forming coating solution was applied on the surface of the first release PET film on the silicone-treated side so that the thickness after drying was 25 ⁇ m, thereby forming a pressure-sensitive adhesive layer.
  • a polyethylene terephthalate film manufactured by Nakamoto Pax Co., Ltd., trade name “NS50A” (hereinafter referred to as “second peeled PET film”) with a silicone treatment on one side was bonded to the upper surface of this pressure-sensitive adhesive layer, and Examples 1 adhesive tape was produced.
  • a float glass manufactured by Nippon Sheet Glass Co., Ltd.
  • the second release PET film is peeled off from the pressure-sensitive adhesive tape to expose the surface of the pressure-sensitive adhesive layer, and the exposed surface of the pressure-sensitive adhesive layer is brought into contact with one main surface of the float glass. Bonding was performed at 5 MPa.
  • the first release PET film is peeled from the pressure-sensitive adhesive tape to expose the surface of the pressure-sensitive adhesive layer, and the exposed surface of the pressure-sensitive adhesive layer is formed on one main surface of the transparent substrate. It was brought into contact with the exposed surface and bonded at 25 ° C. with a nip pressure of 0.5 MPa. Thereby, the heat ray reflective member of Example 1 with which the board
  • Example 2 A heat ray reflective member of Example 2 was produced in the same manner as in Example 1 except that the float glass was changed to aluminum oxide vapor deposited PET (trade name “Barrier Rocks 1011HG”, thickness: 12 ⁇ m, manufactured by Toray Industries, Inc.).
  • Example 3 A heat ray reflective member of Example 3 was produced in the same manner as in Example 1 except that the float glass was changed to silicon oxide vapor-deposited PET (trade name “Techbarrier VX”, thickness: 12 ⁇ m, manufactured by Mitsubishi Plastics, Inc.). .
  • Comparative Example 1 A heat ray reflective member of Comparative Example 1 was produced in the same manner as in Example 1 except that the float glass was changed to aluminum oxide vapor deposited PET (trade name “Barrier Rocks 1011RG-CR”, thickness: 12 ⁇ m, manufactured by Toray Industries, Inc.). did.
  • Comparative Example 2 A pressure-sensitive adhesive tape was produced in the same manner as in Example 1 except that no ultraviolet absorber (benzophenone) was used, and a heat ray reflective member in Comparative Example 2 was produced in the same manner as in Example 1.
  • the maximum transmittance and the water vapor transmission rate in a wavelength region of 380 nm or less of the layer located between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer were measured as follows.
  • the light resistance of each heat ray reflective member was evaluated as follows.
  • the light incident surface of the heat ray reflecting member is the main surface of the heat ray reflecting member on the substrate side.
  • the layer located between the light-incidence surface of a heat ray reflective member and a cholesteric liquid crystal polymer layer is a board
  • an ultraviolet-visible near-infrared spectrophotometer “Ubest” in the range of 380 nm to 780 nm was used.
  • the maximum transmittance was measured using “V-570” (manufactured by JASCO Corporation). The maximum transmittance indicates whether or not light in a wavelength region of 380 nm or less can be transmitted. The lower the value, the less light is transmitted.
  • Water vapor transmission rate of a layer located between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer After bonding the substrate and the pressure-sensitive adhesive layer used in each Example and Comparative Example at 25 ° C. with a nip pressure of 0.5 Mpa, water vapor permeates under an environment of a temperature of 40 ° C. and a relative humidity of 90% based on JIS K7129. Using a testing machine “PERMATRAN W (registered trademark) 3/33” (manufactured by MOCON), water vapor was permeated from the surface of the substrate on which the adhesive layer was not bonded, and the water vapor transmission rate was measured. The water vapor transmission rate indicates moisture resistance, and the lower the water vapor transmission rate, the higher the moisture resistance.
  • the surface of the transparent substrate on which the cholesteric liquid crystal polymer layer was not formed was shaved with a sandpaper, and the surface was further painted black with an oil-based felt pen of black ink.
  • the reflection spectrum of the heat ray reflective film thus treated was measured in the range of 350 nm to 2500 nm using an ultraviolet visible near infrared spectrophotometer “Ubest V-570 type” (manufactured by JASCO Corporation). From the obtained reflection spectrum, the maximum reflectance wavelength and the maximum reflectance of the heat ray reflective member were calculated. The maximum reflectance indicates the heat ray shielding effect, and the higher the value, the higher the heat ray shielding effect.
  • the main surface on the substrate side of the heat ray reflective member is a light incident surface, under conditions of BPT 63 ° C and relative humidity 50%.
  • An irradiation test was performed in which xenon light was irradiated for 1000 hours at an illuminance of 60 W / m 2 (energy density in the range of 300 to 400 nm), and the change rate of the maximum reflectance before and after storage was calculated based on the following formula.
  • ⁇ R indicates the light resistance of the heat ray reflective member. The lower the value, the higher the light resistance.
  • ⁇ R 0.5% or less, it can be determined that the light resistance is excellent.
  • ⁇ R (%)
  • Rsta (%) represents the maximum reflectance before the storage test
  • Rend (%) represents the maximum reflectance after the 1000 hour storage test.
  • the layer located between the light incident surface of the heat ray reflective member and the cholesteric liquid crystal polymer layer has a maximum transmittance in a wavelength region of 380 nm or less of 7.0% or less, and a water vapor transmittance. Since the heat ray reflective members of Examples 1 to 3 having a 3.0 g / (m 2 ⁇ day) had a solar transmittance of 85% or higher and a maximum reflectance of 45% or higher, It was confirmed that it has a high heat ray shielding effect.
  • the present invention has a high transmittance and a high heat ray shielding effect, and can provide a highly reliable heat ray reflective film even when exposed to light for a long time.
  • direct sunlight can be used. Heat rays can be effectively blocked, and even if exposed to sunlight for a long period of time, the cooling effect is enhanced without being deteriorated, and it is effective for energy saving and power saving.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、基板11と熱線反射フィルム12と粘着剤層13とを備えた熱線反射部材10である。熱線反射フィルム12は、透明基材12aとコレステリック液晶ポリマー層12bとを有する。コレステリック液晶ポリマー層12bは、重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを重合させて透明基材12aの一主面上に形成されたものである。粘着剤層13は、少なくとも熱線反射フィルム12のコレステリック液晶ポリマー層12bが形成された面上に設けられ、基板11と熱線反射フィルム12とを接着する。熱線反射部材10の光入射面とコレステリック液晶ポリマー層12bとの間に位置する層のうちの少なくとも1つは、380nm以下の波長域での最大透過率が7%以下で、かつ、水蒸気透過率が3.0g/(m・day)より小さい。

Description

熱線反射部材
 本発明は、熱線反射フィルムを用いた熱線反射部材に関する。
 地球温暖化防止及び省エネルギーの観点から、ビルディングの窓、ショーウインドウ、自動車の窓面等から太陽光の熱線(赤外線)をカットし、温度を低減させることが広く行われている。熱線カット材料としては、アンチモンドープ酸化錫(ATO)や錫ドープ酸化インジウム(ITO)等を用いたもの(例えば、特許文献1参照。)、金属薄膜の積層膜を用いたもの(例えば、特許文献2参照。)、コレステリック液晶ポリマーを用いた赤外線反射部材(例えば、特許文献3参照。)等が提案されている。
特開平9-156025号公報 特開平10-309767号公報 特開平4-281403号公報
 しかし、特許文献1で提案されているようなATOやITOを用いた熱線カット部材は、可視光領域に吸収帯を有するものであるが、熱線カット方法が熱線吸収タイプであるため、ガラス等に貼り合わせて使用した場合に熱割れを引き起こすことがある。
 また、特許文献2で提案されているような金属薄膜の積層膜を用いた熱線カット部材は、熱線カット方式が反射タイプであるため、上記のような熱割れを引き起こすという問題は発生しないが、ビルディングの窓やショーウインドウに使用した場合、電磁波をカットしてしまうため、携帯電話等の通信ができないという問題点がある。
 一方、特許文献3で提案されているようなコレステリック液晶ポリマーを用いた赤外線反射フィルムは、熱線カット方式が反射タイプであるため、上記のような熱割れを引き起こすという問題は発生せず、また、非金属材料を用いているため、上記のような携帯電話等の通信ができないという問題も発生しない。しかし、この赤外線反射フィルムは、有機材料を用いているため、長時間光に暴露されると光反射率が低下するといった問題を有している。
 本発明は、上記問題点を解消するためになされたものであり、高い透過率と高い熱線遮蔽効果を有し、耐光性に優れる熱線反射部材を提供する。
 本発明の熱線反射部材は、基板と、熱線反射フィルムと、粘着剤層とを備えた熱線反射部材であって、上記熱線反射フィルムは、透明基材と、コレステリック液晶ポリマー層とを含み、上記コレステリック液晶ポリマー層は、重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを重合させて上記透明基材の一主面上に形成されたものであり、上記粘着剤層は、少なくとも上記熱線反射フィルムの上記コレステリック液晶ポリマー層が形成された面上に設けられ、上記基板と上記熱線反射フィルムとを接着するものであり、上記熱線反射部材の光入射面と上記コレステリック液晶ポリマー層との間に位置する層の少なくとも1つは、380nm以下の波長域での最大透過率が7%以下で、かつ、水蒸気透過率が3.0g/(m・day)より小さいことを特徴とする。
 本発明によれば、高い透過率と高い熱線遮蔽効果を有し、耐光性に優れる熱線反射部材を提供できる。
図1は、本発明の熱線反射部材の一例を示す概略断面図である。 図2は、本発明の熱線反射部材の他の例を示す概略断面図である。
 本発明の熱線反射部材は、基板と、熱線反射フィルムと、粘着剤層とを備えた熱線反射部材であって、上記熱線反射フィルムは、透明基材と、コレステリック液晶ポリマー層とを有し、上記コレステリック液晶ポリマー層は、重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを重合させて上記透明基材の一主面上に形成されたものであり、上記粘着剤層は、少なくとも上記熱線反射フィルムの上記コレステリック液晶ポリマー層が形成された面上に設けられ、上記基板と上記熱線反射フィルムとを接着するものであり、上記熱線反射部材の光入射面と上記コレステリック液晶ポリマー層との間に位置する層の少なくとも1つは、380nm以下の波長域での最大透過率が7%以下で、かつ、水蒸気透過率が3.0g/(m・day)より小さいことを特徴とする。ここで、熱線反射部材の光入射面とは、熱線反射部材の基板側の主面をいう。熱線反射部材の両主面側に基板が配置されている場合は、熱線反射部材の両主面とも光入射面となり得る。
 上記構成とすることにより、本発明は、高い透過率と高い熱線遮蔽効果を有し、耐光性に優れる熱線反射部材を提供できる。
 以下、本発明の熱線反射部材を図面に基づき説明する。
 図1は、本発明の熱線反射部材の一例を示す概略断面図である。図1に示す熱線反射部材10は、基板11と、熱線反射フィルム12と、粘着剤層13とを備えている。熱線反射フィルム12は、透明基材12aと、コレステリック液晶ポリマー層12bとを有する。図1では、矢印14に従って光が入射され、熱線反射部材10の基板11側の主面が、光入射面となる。
 図2は、本発明の熱線反射部材の他の例を示す概略断面図である。図2に示す熱線反射部材20は、2つの基板11間に、透明基材12aとコレステリック液晶ポリマー層12bとを有する熱線反射フィルム12が配置されてなる。2つの基板11の各々と熱線反射フィルム12とは、粘着剤層13によって接着されている。図2では、矢印14aまたは14bに従って光が入射され、熱線反射部材20の両主面が、光入射面となり得る。
 <基板>
 本発明の熱線反射部材に用いられる基板には、ガラス、透明基材等を用い得る。
 上記基板に用い得るガラスとしては、透過率が低下しないものであれば特に限定されず、例えば、市販のソーダライムシリケートガラス等が使用可能である。
 上記基板に用い得る透明基材としては、透過率が低下しないものであれば特に限定されず、例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂(例えば、ポリメチルメタクリレート等)、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂(例えば、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等)、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン系樹脂、セルロース系樹脂(例えば、ジアセチルセルロース、トリアセチルセルロース等)、ノルボルネン系樹脂等の樹脂を、フィルム状又はシート状に加工したものを用いることができる。上記樹脂をフィルム状又はシート状に加工する方法としては、押し出し成形法、カレンダー成形法、圧縮成形法、射出成形法、上記樹脂を溶剤に溶解させてキャスティングする方法等が挙げられる。上記樹脂には、酸化防止剤、難燃剤、耐熱防止剤、紫外線吸収剤、易滑剤、帯電防止剤等の添加剤を添加してもよい。上記透明基材の厚みは、例えば、10~500μmである。
 上記基板が熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に配置される場合、上記基板としては、380nm以下の波長域での最大透過率が7%以下、好ましくは5%以下、より好ましくは3%以下であり、かつ、水蒸気透過率は3.0g/(m・day)より小さいものを用いることが好ましい。この場合、コレステリック液晶ポリマー層に到達する光量を制限できるとともに、コレステリック液晶ポリマー層が空気に暴露されるのを抑制でき、その結果、熱線反射部材の耐光性を向上できる。上記最大透過率は、例えば、各種紫外線吸収剤を用いて調整可能である。
 <コレステリック液晶ポリマー層>
 コレステリック液晶ポリマーは、棒状分子であるネマチック液晶化合物に少量の光学活性化合物(キラル剤)を添加することにより得ることができる。このコレステリック液晶ポリマーは、ネマチック液晶化合物が幾重にも重なる層状の構造を有している。この層内では、それぞれのネマチック液晶化合物が一定方向に配列しており、互いの層は液晶化合物の配列方向が螺旋状になるように集積している。そのため、コレステリック液晶ポリマーは、この螺旋のピッチに応じて、特定の波長の光のみを選択的に反射することができる。
 通常のコレステリック液晶ポリマーは、温度により螺旋のピッチが変わり、反射する光の波長が変わるという特徴がある。重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを含有する組成物を、液晶状態で均一にさせた後、液晶状態を保持したまま紫外線等の活性エネルギー線を照射すると、液晶化合物の配向状態を半永久的に固定化したコレステリック液晶ポリマーを含有する層(コレステリック液晶ポリマー層)を作製することが可能となる。
 このようにして得られたコレステリック液晶ポリマー層は、温度によって反射する光の波長が変わることがなく半永久的に反射波長を固定化することが可能となる。また、このコレステリック液晶ポリマー層は、コレステリック液晶旋光性を有することから、円偏光の回転方向と波長が、液晶分子の回転方向と螺旋ピッチと等しい場合、その光を透過せずに反射する。通常、太陽光は、右螺旋と左螺旋の円偏光から合成されている。そのため、旋光性の向きが右螺旋のキラル剤を用いて特定の螺旋ピッチとしたコレステリック液晶ポリマー層と、旋光性の向きが左螺旋のキラル剤を用いて特定の螺旋ピッチとしたコレステリック液晶ポリマー層とを積層させることにより、選択反射波長での反射率をより高くすることができる。
 本発明の熱線反射部材に用いられる熱線反射フィルムを構成するコレステリック液晶ポリマー層は、重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを重合させて形成される。
 本発明におけるコレステリック液晶ポリマー層の形成に用いられる上記液晶化合物としては、例えば、「液晶の基礎と応用」(松本正一、角田市良 共著;(株)工業調査会)第8章に記載されているような公知の化合物を用いることができる。
 上記液晶化合物の具体例としては、例えば、WO95/22586号パンフレット、特開2000-281629号公報、特開2001-233837号公報、特表2001-519317号公報、特表2002-533742号公報、特開2002-308832号公報、特開2002-265421号公報、特開2005-309255号公報、特開2005-263789号公報、特開2008-291218号公報、特開2008-242349号公報、WO2009/133290号パンフレット等に記載の化合物を挙げることができる。
 上記液晶化合物は、高融点液晶化合物と低融点液晶化合物とを含むことが好ましい。この場合、高融点液晶化合物の融点と低融点液晶化合物の融点との差が、15℃以上30℃以下であることが好ましく、20℃以上30℃以下がより好ましい。上記融点の差が15℃を下回ると、液晶化合物の相溶性が低下し、その結果、コレステリック液晶ポリマー層の配向性が一部乱れ、ヘイズの上昇が生じることがある。一方、上記融点の差が30℃を超えると、透明基材のガラス転移温度以上の温度で耐熱保存試験を行った場合での光反射率に変化が生じることがある。
 上記高融点液晶化合物と上記低融点液晶化合物との組合せとしては、市販品を用いることができ、例えば、ADEKA社製の商品名「PLC7700」(融点90℃)と「PLC8100」(融点65℃)との組合せ、上記「PLC7700」(融点90℃)と「PLC7500」(融点65℃)との組合せ、DIC社製の商品名「UCL-017A」(融点96℃)と「UCL-017」(融点70℃)との組合せ等が挙げられる。
 上記液晶化合物は、上記高融点液晶化合物を全体の質量割合で90質量%以下の範囲で含むことが好ましい。高融点液晶化合物の割合が90質量%を超えると、上記液晶化合物の相溶性が低下する傾向があり、その結果、コレステリック液晶ポリマー層の配向性が一部乱れることにより、ヘイズの上昇が生じる場合がある。
 上記高融点液晶化合物の融点は、透明基材のガラス転移温度以上であることが好ましい。液晶化合物の融点が低い場合、キラル剤や溶剤との相溶性や溶解性に優れるが、融点が低すぎると、作製した熱線反射フィルムの耐熱性が劣る。そのため、少なくとも高融点液晶化合物の融点を透明基材のガラス転移温度以上とするのがよい。
 ここで、液晶化合物の融点は、次のようにして測定できる。まず、二枚のスライドガラス板の間に液晶化合物を挟み込む。そして、顕微鏡でスライドガラスを観察しながら、スライドガラスを5℃/分の速度で昇温させていき、液晶化合物の融解し始めた温度を融点と判断する。
 また、透明基材のガラス転移温度は、次のようにして測定できる。まず、約25mm×10mmの試料片を作製し、20℃~200℃の範囲で昇温させ、Rheometrics社製の動的粘弾性試験測定装置「RSAII」にて周波数1Hzで動的粘弾性を測定する。そして、この動的粘弾性の測定より得られた動的貯蔵弾性率E’及び動的損失弾性率E”によって算出される動的損失正接tanδの値からガラス転移温度を求める。
 上記液晶化合物を三種類以上用いる場合は、それらの中で、最大の融点を有するものを高融点液晶化合物とし、最小の融点を有するものを低融点液晶化合物とする。
 本発明におけるコレステリック液晶ポリマー層の形成に用いられる上記キラル剤としては、上記液晶化合物との相溶性が良好で、かつ、溶剤に溶解可能なものであれば、特に構造についての制限はなく、従来の重合性官能基を有するキラル剤を用いることができる。
 上記キラル剤の具体例としては、例えば、WO98/00428号パンフレット、特表平9-506088号公報、特表平10-509726号公報、特開2000-44451号公報、特表2000-506873号公報、特開2003-66214号公報、特開2003-313187号公報、米国特許第6468444号明細書等に記載の化合物を挙げることができる。また、このようなキラル剤としては、市販品を用いることができ、例えば、メルク社製の商品名「S101」、「R811」、「CB15」;BASF社製の商品名「PALIOCOLOR LC756」;ADEKA社製の商品名「CNL715」、「CNL716」等が挙げられる。
 上記コレステリック液晶ポリマー層の選択反射波長は、螺旋ピッチを調整することにより制御することができる。この螺旋ピッチは、上記液晶化合物及び上記キラル剤の配合量を調整することにより、調整することができる。例えば、上記キラル剤の濃度が高い場合、螺旋の捻じり力が増加するため、螺旋のピッチは小さくなり、コレステリック液晶ポリマー層の選択反射波長λは短波長側へシフトする。また、上記キラル剤の濃度が低い場合、螺旋の捻じり力が低下するため、螺旋のピッチは大きくなり、コレステリック液晶ポリマー層の選択反射波長λは長波長側へシフトする。よって、上記キラル剤の配合量としては、上記少なくとも二種類の液晶化合物と上記キラル剤との合計100質量部に対して、0.1質量部以上10質量部以下が好ましく、0.2質量部以上7.0質量部以下がより好ましい。上記キラル剤の配合量が0.1質量部以上10質量部以下であれば、得られるコレステリック液晶ポリマー層の選択反射波長を長波長域に制御することができる。
 上記のようにキラル剤の配合量を調整することにより、コレステリック液晶ポリマー層の選択反射波長を制御することができる。この選択反射波長を近赤外線領域に制御すれば、可視光領域に実質的に吸収がなく、即ち、可視光領域で透明で、かつ近赤外線領域の光を選択的に反射可能な熱線反射フィルムを得ることができる。本発明における熱線反射フィルムの最大反射率波長は、900~1800nmの範囲内であることが好ましい。
 本発明におけるコレステリック液晶ポリマー層の厚みは、入射光を最大反射させる波長(最大反射率波長)の1.5倍以上4.0倍以下が好ましく、最大反射率波長の1.7倍以上3.0倍以下がより好ましい。コレステリック液晶ポリマー層の厚みが最大反射率波長の1.5倍を下回ると、コレステリック液晶ポリマー層の配向性を維持することが困難になり、熱線反射フィルムの光反射率が低下することがある。また、コレステリック液晶ポリマー層の厚みが最大反射率波長の4.0倍を超えると、コレステリック液晶ポリマー層の配向性と光反射率は良好に維持できるが、熱線反射フィルムの厚みが厚くなり過ぎることがある。コレステリック液晶ポリマー層の厚みは、例えば、0.5μm以上20μm以下、好ましくは1μm以上10μm以下である。
 本発明におけるコレステリック液晶ポリマー層は、単層構造に限らず、複数層構造であってもよい。複数層構造の場合、それぞれの層が、異なる選択反射波長を有すれば、光を反射する波長領域を制御しやすくなり、好ましい。
 <透明基材>
 本発明の熱線反射部材に用いられる熱線反射フィルムを構成する透明基材としては、透光性を有する材料で形成されていれば特に限定されない。透明基材としては、例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂(例えば、ポリメチルメタクリレート等)、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂(例えば、ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等)、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン系樹脂、セルロース系樹脂(例えば、ジアセチルセルロース、トリアセチルセルロース等)、ノルボルネン系樹脂等の樹脂を、フィルム状又はシート状に加工したものを用いることができる。上記樹脂をフィルム状又はシート状に加工する方法としては、押し出し成形法、カレンダー成形法、圧縮成形法、射出成形法、上記樹脂を溶剤に溶解させてキャスティングする方法等が挙げられる。上記樹脂には、酸化防止剤、難燃剤、耐熱防止剤、紫外線吸収剤、易滑剤、帯電防止剤等の添加剤を添加してもよい。また、透明基材は、コレステリック液晶ポリマー層との密着性を向上させるため、その表面にプライマーを設けてもよいし、コロナ処理やプラズマ処理等を施してもよい。上記透明基材の厚みは、例えば、10~500μmである。
 上記透明基材が熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に配置される場合、上記透明基材としては、380nm以下の波長域での最大透過率が7%以下、好ましくは5%以下、より好ましくは3%以下であり、かつ、水蒸気透過率は3.0g/(m・day)より小さいものを用いることが好ましい。この場合、コレステリック液晶ポリマー層に到達する光量を制限できるとともに、コレステリック液晶ポリマー層が空気に暴露されるのを抑制でき、その結果、熱線反射部材の耐光性を向上できる。上記最大透過率は、例えば、各種紫外線吸収剤を用いて調整可能である。
 <熱線反射フィルム>
 本発明の熱線反射部材に用いられる熱線反射フィルムは、例えば、日本工業規格(JIS)A5759による日射透過率を70%以上とでき、また、JIS K7105によるヘイズを2.0%以下、好ましくは1.5%以下とでき、最大反射率波長における光反射率を40%以上、好ましくは45%以上とすることができる。このような特性を有する熱線反射フィルムは、可視光領域で高い透過率を有し、ヘイズが低く、光反射率が高いため、反射波長が大きくなって膜厚が増加してもコレステリック液晶ポリマー層の配向性の乱れが生じない。また、本発明における熱線反射フィルムの日射透過率は、基板とほぼ同じであることが好ましい。
 ここで、日射透過率は、300nm~250nmの範囲で紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて透過率を測定し、JIS A5759に基づき算出される。また、ヘイズは、JIS K7105に基づき、380nm~780nmの範囲で紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて測定できる。また、最大反射率波長における光反射率は、350nm~2500nmの範囲で紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて反射スペクトルを測定し、得られた反射スペクトルから算出される。
 <粘着剤層>
 本発明の熱線反射部材に用いられる粘着剤層は、上記熱線反射フィルムの最外層として配置される。本発明における粘着剤層は、少なくとも熱線反射フィルムのコレステリック液晶ポリマー層が形成された面(以下、コレステリック液晶ポリマー層形成面ともいう。)上に設けられている。そのため、コレステリック液晶ポリマー層を直接空気に暴露させることなく、基板と熱線反射フィルムとを接着できる。また、熱線反射フィルムのコレステリック液晶ポリマー層形成面とは反対側の面上にも粘着剤層を設けた場合には、図2に示すように、2つの基板11間に熱線反射フィルム12が配置された熱線反射部材20を提供可能である。
 上記粘着剤層に用いる粘着剤としては、例えば、アクリル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、酢酸ビニル系粘着剤、シリコーン系粘着剤、フェノール系粘着剤、ゴム系粘着剤等が挙げられる。
 上記粘着剤層が熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に配置される場合、上記粘着剤層としては、380nm以下の波長域での最大透過率が7%以下、好ましくは5%以下、より好ましくは3%以下であり、かつ、水蒸気透過率は3.0g/(m・day)より小さいものを用いることが好ましい。この場合、コレステリック液晶ポリマー層に到達する光量を制限できるとともに、コレステリック液晶ポリマー層が空気に暴露されるのを抑制でき、その結果、液晶反射部材の耐光性を向上できる。上記最大透過率は、例えば、各種紫外線吸収材を用いて調整可能である。
 また、図2に示すような、2つの基板11間に熱線反射フィルム12が配置されてなる熱線反射部材20を作製する場合、熱線反射フィルム12の透明基材12a側に設けられる粘着剤層13としては、ポリビニルブチラール樹脂(PVB)やエチレン-酢酸ビニル共重合樹脂(EVA)等を用いて形成される接着剤層であることが好ましい。この場合、透明基材12aと基板11との接着性を向上できる。
 次に、本発明の熱線反射部材の製造方法の一例を図1を参照しながら説明する。
 まず、重合性官能基を有し、融点が異なる二種類の液晶化合物と、重合性官能基を有するキラル剤と、重合開始剤と、さらに必要に応じて界面活性剤、配向調整剤等とを溶剤に溶解させてコレステリック液晶ポリマー層形成用塗布液を調製する。そして、この塗布液を透明基材12aの一主面上に膜状に塗布して乾燥させる。その後、得られた塗膜に例えば紫外線を照射して上記液晶化合物と上記キラル剤とを重合させる。これにより、透明基材12aの一主面上にコレステリック液晶ポリマー層12bが形成された熱線反射フィルム12が得られる。
 次いで、コレステリック液晶ポリマー層12bの透明基材12a側とは反対側の面上に粘着剤層13を形成する。そして、この粘着剤層13の露出面の上に基板11を貼り合わせると、図1に示す熱線反射部材10が得られる。
 なお、熱線反射フィルム12を作製後、直ぐに基板11に貼り合わせない場合は、粘着剤層13上にさらにセパレータ(図示せず)を設けておくとよい。この場合、熱線反射フィルム12を基板11に貼り合わせる直前にセパレータを剥離すればよいので、熱線反射フィルム12を基板11に貼り合わせる直前までは粘着剤層13の汚染を防止できる。上記セパレータとしては、例えば、プラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シート、金属箔等を用いることができる。このセパレータの表面には、シリコーン系、長鎖アルキル系、フッ素系等の剥離剤でコーティング処理してもよい。このようなコーティング処理された表面は、粘着剤層と面するように配置されるのが好ましい。
 上記塗布液を塗布する方法は特に制限されず、例えば、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、マイクログラビアコート等の塗工法、又はグラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等の印刷法等を用いることができる。
 上記重合開始剤としては、例えば、光重合開始剤が挙げられる。上記光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル系開始剤;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン等のベンゾフェノン系開始剤;α-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等の芳香族ケトン系開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド等のアシルフォスフィンオキサイド系開始剤;ベンジルジメチルケタール等の芳香族ケタール系開始剤;チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-ドデシルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系開始剤;ベンジル等のベンジル系開始剤;ベンゾイン等のベンゾイン系開始剤;2-メチル-2-ヒドロキシプロピオフェノン等のα-ケトール系化合物;2-ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1-フェノン-1,1-プロパンジオン-2-(o-エトキシカルボニル)オキシム等の光活性オキシム系化合物;カンファーキノン系化合物;ハロゲン化ケトン系化合物;アシルホスフィノキシド系化合物;アシルホスフォナート系化合物等が挙げられる。
 上記光重合開始剤としては、市販の光重合開始剤を用いることもでき、例えば、チバ・スペシャリティ・ケミカルズ社製のイルガキュア(登録商標)184(1-ヒドロキシシクロヘキシルフェニルケトン)、イルガキュア(登録商標)651(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、イルガキュア(登録商標)369(2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1)、イルガキュア(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド)、イルガキュア(登録商標)907(2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン)、イルガキュア(登録商標)500、イルガキュア(登録商標)1000、イルガキュア(登録商標)1700、イルガキュア(登録商標)1800、イルガキュア(登録商標)1850;メルク社製のダロキュア(登録商標)1173(2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン);旭電化工業社製のN-1717;黒金化成社製の2,2’-ビス(o-クロロフェニル)-4,5,4’-テトラフェニル-1,2’-ビイミダゾール等のビイミダゾール系化合物等が挙げられる。これらの光重合開始剤は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記光重合開始剤の配合量は、上記液晶化合物と上記キラル剤との合計100質量部に対して、好ましくは0.05~5質量部である。
 上記紫外線照射の条件としては、特に制限はなく、目的に応じて適宜選択することができる。照射する紫外線は、例えば、160~380nmであり、250~380nmが好ましい。照射時間は、例えば0.1~600秒であり、0.3~300秒が好ましい。紫外線の光源としては、例えば、低圧水銀ランプ(殺菌ランプ、蛍光ケミカルランプ、ブラックライト等)、高圧放電ランプ(高圧水銀ランプ、メタルハライドランプ等)、ショートアーク放電ランプ(超高圧水銀ランプ、キセノンランプ、水銀キセノンランプ等)等を用いることができる。紫外線の光量としては、例えば200~600mJ/cmであり、好ましくは300~500mJ/cmである。
 上記溶剤としては、例えば、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、塩化メチレン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類;フェノール、p-クロロフェノール、o-クロロフェノール、m-クレゾール、o-クレゾール、p-クレゾール等のフェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2-ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ピロリドン、N-メチル-2-ピロリドン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;t-ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2-メチル-2,4-ペンタンジオール等のアルコール類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;アセトニトリル、ブチロニトリル等のニトリル類;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;二硫化炭素、エチルセルソルブ、ブチルセルソルブ等が使用できる。これらの溶剤は、単独で使用してもよいし、二種類以上を混合して使用してもよい。
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。また、特に指摘がない場合、下記において、「部」は「質量部」を意味する。
 (実施例1)
 <熱線反射フィルムの作製>
 まず、透明基材として、両面をアクリル樹脂にて易接着処理したポリエチレンテレフタレート(PET)フィルム(東レ社製、商品名「U34」、厚み:50μm、ガラス転移温度:75℃)を用意した。次に、下記材料を攪拌して混合し、コレステリック液晶ポリマー層形成用塗布液を調製した。
 (1)重合性官能基を有する液晶化合物(ADEKA社製、高融点液晶化合物、商品名「PLC-7700」、融点:90℃) 86.8部
 (2)重合性官能基を有する液晶化合物(ADEKA社製、低融点液晶化合物、商品名「PLC-8100」、融点:65℃) 9.7部
 (3)重合性官能基を有するキラル剤(ADEKA社製、商品名「CNL-715」) 3.5部
 (4)光重合開始剤(チバ・スペシャリティ・ケミカルズ社製、商品名「イルガキュア907」) 3.0部
 (5)溶剤(シクロヘキサノン) 412部
 上記コレステリック液晶ポリマー層形成用塗布液をマイクログラビアコータを用いてPETフィルム上に塗布し、100℃で乾燥させて塗膜を形成した。その塗膜に紫外線(波長:最大波長365nm、光源:高圧水銀ランプ、光量:500mJ/cm)を30秒間照射して塗膜を硬化させた。これにより、透明基材の一主面上にコレステリック液晶ポリマー層(厚さ:2.1μm)が形成された熱線反射フィルムを作製した。
 <粘着テープの作製>
 まず、片面がシリコーン処理されたポリエチレンテレフタレートフィルム(中本パックス社製、商品名「NS50MB」、厚さ:38μm)(以下、第1剥離PETフィルムという。)を用意した。
 また、アクリル系粘着剤(綜研化学社製、商品名「SKダイン2094」、固形分:25%)100部に対して、紫外線吸収剤(和光純薬社製、ベンゾフェノン)を1.25部、架橋剤(綜研化学社製、商品名「E-5XM」、固形分:5%)0.27質量部を添加し、十分分散させて粘着剤層形成用塗工液を調製した。
 そして、上記第1剥離PETフィルムのシリコーン処理された側の面上に、乾燥後の厚さが25μmとなるように上記粘着剤層形成用塗工液を塗布し、粘着剤層を形成した。さらに、この粘着剤層の上面に、片面がシリコーン処理されたポリエチレンテレフタレートフィルム(中本パックス社製、商品名「NS50A」)(以下、第2剥離PETフィルムという。)を貼合し、実施例1の粘着テープを作製した。
 <熱線反射部材の作製>
 まず、基板として、厚さ3mmのフロートガラス(日本板硝子社製)を用意した。次いで、上記粘着テープから第2剥離PETフィルムを剥離して粘着剤層の表面を露出させ、この粘着剤層の露出面をフロートガラスの一主面に当接させ、25℃においてニップ圧0.5Mpaで貼合した。次いで、上記粘着テープから第1剥離PETフィルムを剥離して粘着剤層の表面を露出させ、この粘着剤層の露出面を上記透明基材の一主面上に形成されたコレステリック液晶ポリマー層の露出面に当接させ、25℃においてニップ圧0.5Mpaで貼合した。これにより、基板と熱線反射フィルムとが粘着剤層を介して接着された、実施例1の熱線反射部材を作製した。
 (実施例2)
 フロートガラスを、酸化アルミニウム蒸着PET(東レ社製、商品名「バリアロックス1011HG」、厚み:12μm)に変更した以外は、実施例1と同様にして、実施例2の熱線反射部材を作製した。
 (実施例3)
 フロートガラスを、酸化ケイ素蒸着PET(三菱樹脂社製、商品名「テックバリアVX」、厚み:12μm)に変更した以外は、実施例1と同様にして、実施例3の熱線反射部材を作製した。
 (比較例1)
 フロートガラスを、酸化アルミニウム蒸着PET(東レ社製、商品名「バリアロックス1011RG-CR」、厚み:12μm)に変更した以外は、実施例1と同様にして、比較例1の熱線反射部材を作製した。
 (比較例2)
 紫外線吸収剤(ベンゾフェノン)を使用しなかったこと以外は、実施例1と同様にして粘着テープを作製し、実施例1と同様にして、比較例2の熱線反射部材を作製した。
 上記実施例1~3及び上記比較例1~2に関して、熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に位置する層の380nm以下の波長域での最大透過率と水蒸気透過率、熱線反射部材の日射透過率、最大反射率波長、及び最大反射率を下記のようにして測定した。また、各熱線反射部材の耐光性を下記のようにして評価した。ここでは、熱線反射部材の光入射面は、熱線反射部材の基板側の主面とした。
 [熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に位置する層の380nm以下の波長域での最大透過率]
 上記実施例及び比較例において、熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に位置する層は、基板と粘着剤層である。ここでは、各実施例及び比較例で用いた、基板と粘着剤層とを25℃においてニップ圧0.5Mpaで貼り合わせた後、380nm~780nmの範囲で紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて最大透過率を測定した。最大透過率は、380nm以下の波長領域での光が透過できているかどうかを示すものであり、値が低いほど光が透過しないことを示している。
 [熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に位置する層の水蒸気透過率]
 各実施例及び比較例で用いた、基板と粘着剤層とを25℃においてニップ圧0.5Mpaで貼り合わせた後、JIS K7129に基づき、温度40℃、相対湿度90%の環境下で水蒸気透過試験機「PERMATRAN W(登録商標)3/33」(MOCON社製)を用いて、粘着剤層が貼合されていない側の基板の表面から水蒸気を透過させて、水蒸気透過率を測定した。水蒸気透過率は、耐湿性を示すものであり、水蒸気透過率が低いほど耐湿性が高いことを示している。
 [日射透過率]
 熱線反射部材の基板側の主面を光入射面として、300nm~2500nmの範囲で紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて光透過率を測定し、JIS A 5759に基づき、日射透過率を計算した。
 [最大反射率波長及び最大反射率]
 コレステリック液晶ポリマー層が形成されていない側の透明基材の表面を紙やすりで削り、さらにその表面を黒インクの油性フェルトペンで黒く塗りつぶした。そのように処理した熱線反射フィルムの反射スペクトルを、紫外可視近赤外分光光度計「Ubest V-570型」(日本分光社製)を用いて、350nm~2500nmの範囲で測定した。得られた反射スペクトルから、熱線反射部材の最大反射率波長と最大反射率を算出した。最大反射率は、熱線遮蔽効果を示すものであり、値が高いほど熱線遮蔽効果が高いことを示す。
 [耐光性試験]
 耐光性試験機「スーパーキセノンウェザーメータSX-75」(スガ試験機社製)を用いて、熱線反射部材の基板側の主面を光入射面として、BPT63℃、相対湿度50%の条件下で、キセノン光を、照度60W/m(300~400nmの範囲でのエネルギー密度)で1000時間照射する照射試験を行って、保存前後での最大反射率の変化率を下記式に基づき計算した。ΔRは、熱線反射部材の耐光性を示すものであり、値が低いほど耐光性が高いことを示し、ΔRが0.5%以下であれば、耐光性に優れると判断できる。
 ΔR(%)=|(Rsta(%)-Rend(%))|/Rsta(%)×100
 上記式において、Rsta(%)は保存試験前の最大反射率、Rend(%)は1000時間保存試験後の最大反射率を表す。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、熱線反射部材の光入射面とコレステリック液晶ポリマー層との間に位置する層の、380nm以下の波長域での最大透過率が7.0%以下で、かつ水蒸気透過率が3.0g/(m・day)である実施例1~3の熱線反射部材は、日射透過率が85%以上で、最大反射率が45%以上であったことから、高い透過率と高い熱線遮蔽効果を有することが確認できた。また、耐光性の指標である最大反射率の変化率ΔRが0.5%以下であったことから、長時間光に暴露されても反射率の変化率が小さく、耐光性に優れることが確認できた。
 本発明は、高い透過率と高い熱線遮蔽効果を有し、長時間光に暴露されても信頼性の高い熱線反射フィルムを提供でき、その熱線反射フィルムを窓に貼り付けることにより、直射日光による熱線を効果的に遮断でき、長期間日光に暴露されても劣化することなく、冷房効果を高め、省エネルギー及び電力節減に有効である。
 10、20 熱線反射部材
 11 基板
 12 熱線反射フィルム
 12a 透明基材
 12b コレステリック液晶ポリマー層
 13 粘着剤層
 

Claims (7)

  1.  基板と、熱線反射フィルムと、粘着剤層とを含む熱線反射部材であって、
     前記熱線反射フィルムは、透明基材と、コレステリック液晶ポリマー層とを含み、
     前記コレステリック液晶ポリマー層は、重合性官能基を有する液晶化合物と、重合性官能基を有するキラル剤とを重合させて前記透明基材の一主面上に形成されたものであり、
     前記粘着剤層は、少なくとも前記熱線反射フィルムの前記コレステリック液晶ポリマー層が形成された面上に設けられ、前記基板と前記熱線反射フィルムとを接着するものであり、
     前記熱線反射部材の光入射面と前記コレステリック液晶ポリマー層との間に位置する層のうちの少なくとも1つは、380nm以下の波長域での最大透過率が7%以下で、かつ、水蒸気透過率が3.0g/(m・day)より小さいことを特徴とする熱線反射部材。
  2.  前記熱線反射フィルムの前記コレステリック液晶ポリマー層が形成された面とは反対側の面上に、前記粘着剤層及び前記基板をさらに設けた請求項1に記載の熱線反射部材。
  3.  前記基板は、ガラスまたは透明基材である請求項1又は2に記載の熱線反射部材。
  4.  前記熱線反射フィルムの最大反射率波長が、900~1800nmの範囲内である請求項1~3のいずれか1項に記載の熱線反射部材。
  5.  前記コレステリック液晶ポリマー層の厚みが、最大反射率波長の1.5倍以上である請求項1~4のいずれか1項に記載の熱線反射部材。
  6.  前記コレステリック液晶ポリマー層の形成に用いられる前記液晶化合物は、高融点液晶化合物と低融点液晶化合物とを含み、
     前記高融点液晶化合物の融点と前記低融点液晶化合物の融点との差が、15℃以上30℃以下の範囲内であり、
     前記高融点液晶化合物の融点が、前記透明基材のガラス転移点以上である請求項1~5のいずれか1項に記載の熱線反射部材。
  7.  前記液晶化合物は、前記高融点液晶化合物を全体の質量割合で90質量%以下の範囲で含む請求項6に記載の熱線反射部材。
PCT/JP2013/054372 2012-02-24 2013-02-21 熱線反射部材 WO2013125646A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038507A JP2013174690A (ja) 2012-02-24 2012-02-24 熱線反射部材
JP2012-038507 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125646A1 true WO2013125646A1 (ja) 2013-08-29

Family

ID=49005823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054372 WO2013125646A1 (ja) 2012-02-24 2013-02-21 熱線反射部材

Country Status (2)

Country Link
JP (1) JP2013174690A (ja)
WO (1) WO2013125646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180345629A1 (en) * 2015-11-30 2018-12-06 Saint-Gobain Glass France Laminated glass comprising pressure-sensitive adhesive on the external surface thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055831A (ja) * 2013-09-13 2015-03-23 日立マクセル株式会社 熱遮蔽部材及びそれを用いた熱遮蔽体
CN107850703B (zh) * 2015-07-24 2021-07-27 3M创新有限公司 带散热层的反射叠堆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128417A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 電磁波反射部材の製造方法、および電磁波反射部材の反射率回復方法
JP2011154215A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 赤外光反射板、合わせガラス用積層中間膜シート及びその製造方法、並びに合わせガラス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056115A (ja) * 1998-08-05 2000-02-25 Nitto Denko Corp 光学フィルムフィルタおよびプラズマディスプレイ表示装置
JP2002123182A (ja) * 2000-08-10 2002-04-26 Nisshinbo Ind Inc プラズマディスプレイパネル用前面板及びその製造方法
JP3716800B2 (ja) * 2002-02-20 2005-11-16 日立化成工業株式会社 透明性を有するディスプレイ用電磁波シールド性接着フィルム及びディスプレイ用電磁波遮蔽体の製造法並びにディスプレイ
JP2005031170A (ja) * 2003-07-08 2005-02-03 Kureha Chem Ind Co Ltd 撮像装置および光学フィルター
JP2006162813A (ja) * 2004-12-03 2006-06-22 Fuji Photo Film Co Ltd 光記録媒体用フィルタ、光記録媒体及びその製造方法、並びに、光記録方法及び光再生方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128417A (ja) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd 電磁波反射部材の製造方法、および電磁波反射部材の反射率回復方法
JP2011154215A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 赤外光反射板、合わせガラス用積層中間膜シート及びその製造方法、並びに合わせガラス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180345629A1 (en) * 2015-11-30 2018-12-06 Saint-Gobain Glass France Laminated glass comprising pressure-sensitive adhesive on the external surface thereof
JP2018538229A (ja) * 2015-11-30 2018-12-27 サン−ゴバン グラス フランス 外表面に感圧接着剤を含む積層ガラス
US11072151B2 (en) * 2015-11-30 2021-07-27 Saint-Gobain Glass France Laminated glass comprising pressure-sensitive adhesive on the external surface thereof

Also Published As

Publication number Publication date
JP2013174690A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5617843B2 (ja) 光学積層体及び光学積層体の製造方法
TWI551895B (zh) Double-sided transparent adhesive sheet with linear polarizing function
CN107209299B (zh) 波长转换部件及具备该波长转换部件的背光单元、液晶显示装置、波长转换部件的制造方法
JP5090695B2 (ja) 偏光板の製造方法
JP6386278B2 (ja) 透明遮熱断熱部材及びその製造方法
JP2017187685A (ja) 曲面形状の光反射フィルム及びその製造方法、ならびに当該光反射フィルムを用いた光制御フィルム、光学フィルム、機能性ガラスおよびヘッドアップディスプレイ
JP2016216039A (ja) 光反射フィルム、ならびにこれを用いた光制御フィルム、光学フィルム、機能性ガラスおよびヘッドアップディスプレイ
KR20190005836A (ko) 유기 el 표시 장치용 광학 필름, 유기 el 표시 장치용 편광 필름, 유기 el 표시 장치용 점착제층 구비 편광 필름, 및 유기 el 표시 장치
WO2014045878A1 (ja) 熱線カットフィルムおよびその製造方法、合わせガラス並びに熱線カット部材
WO2012050078A1 (ja) 合わせガラス体およびそれに用いる積層体
JP2012032454A (ja) 赤外線反射膜
JP2013072985A (ja) 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
JP2018017839A (ja) 機能性ガラスおよびこれを用いたヘッドアップディスプレイ
JP2008197224A (ja) 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP2019059904A (ja) 合わせガラス用光学フィルム及びそれを用いた合わせガラス
WO2017115784A1 (ja) 偏光板保護フィルム及びその製造方法並びに偏光板及び液晶表示装置
WO2013125646A1 (ja) 熱線反射部材
JP2008134385A (ja) 液晶表示用偏光板
KR20160001688A (ko) 편광판 보호 필름, 편광판, 화상 표시 장치, 및 편광판 보호 필름의 제조 방법
JP2004145139A (ja) 光学補償板、それを用いた光学補償層付偏光板、前記光学補償板の製造方法、および、それらを用いた液晶表示装置
JP6099442B2 (ja) 透明遮熱断熱部材
JP2008242349A (ja) 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP5457970B2 (ja) 赤外光反射膜および赤外光反射板
KR102571177B1 (ko) 적층체 및 디바이스
JP6246570B2 (ja) 熱線反射フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752239

Country of ref document: EP

Kind code of ref document: A1