WO2013125548A1 - フッ素樹脂フィルム - Google Patents

フッ素樹脂フィルム Download PDF

Info

Publication number
WO2013125548A1
WO2013125548A1 PCT/JP2013/054082 JP2013054082W WO2013125548A1 WO 2013125548 A1 WO2013125548 A1 WO 2013125548A1 JP 2013054082 W JP2013054082 W JP 2013054082W WO 2013125548 A1 WO2013125548 A1 WO 2013125548A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fluororesin
ito
heat ray
fluororesin film
Prior art date
Application number
PCT/JP2013/054082
Other languages
English (en)
French (fr)
Inventor
今泉一行
野口幸男
木本敦
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to US14/380,191 priority Critical patent/US20150024189A1/en
Priority to EP13752175.3A priority patent/EP2818515B1/en
Priority to JP2013509056A priority patent/JP5999601B2/ja
Priority to CN201380008082.8A priority patent/CN104093781B/zh
Publication of WO2013125548A1 publication Critical patent/WO2013125548A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a fluororesin film having excellent heat ray blocking properties. More specifically, the present invention relates to a fluororesin film that has excellent heat ray blocking properties and is transparent and colorless and transparent to natural colors.
  • Fluoropolymer film has excellent weather resistance, transparency, mechanical properties, moisture resistance, agricultural house covering materials, roofing membrane materials, window materials, solar cell surface protection materials, condensing panel surface materials, display plate surface materials, Used for building exterior materials.
  • sunlight may be harmful because it contains ultraviolet light and infrared light (heat rays).
  • infrared light heat rays
  • humans can cause dermatitis when exposed to strong ultraviolet rays, and synthetic substances can deteriorate.
  • Indoors where a large amount of infrared rays are inserted can lead to a rise in temperature, which may cause discomfort to the occupants and damage to house-grown plants.
  • Patent Document 1 discloses an infrared shielding agricultural sheet in which inorganic fine particles such as tin oxide are dispersed and mixed in a synthetic resin
  • Patent Document 2 discloses a metal oxide whose surface is coated with amorphous silica.
  • a fluororesin film containing physical particles Patent Document 3 discloses a heat ray-shielding fluororesin composite sheet containing infrared-shielding inorganic fine particles on at least one surface and a roofing material using the same.
  • Patent Document 4 discloses a biaxially oriented polyester film for window pasting that has a near-infrared absorber containing a near-infrared absorber in the intermediate layer and is excellent in transparency
  • Patent Document 5 discloses a transparent conductive material that is also an infrared blocking substance including heat rays.
  • a transparent conductive laminate having an improved membrane transmission color is disclosed.
  • the agricultural sheet of Patent Document 1 contains inorganic particles mainly composed of tin oxide at least 3 parts by weight or 10 parts by weight or more with respect to 100 parts by weight of the synthetic resin, it has an infrared shielding property including heat rays. Since the visible light transmittance is inferior and it appears dark, there is a problem inferior in transparency.
  • the base resin is a composite resin selected from polyethylene terephthalate resin, polyvinyl chloride resin, and polyolefin resin, even if an antifouling layer or dew-proof layer is provided on the surface, strength deterioration or fading occurs due to the influence of ultraviolet rays. It was difficult to obtain long-term durability.
  • Patent Document 2 is a heat ray-blocking fluororesin film in which composite particles having a 95% particle size distribution range of 0.1 to 30 ⁇ m are dispersed in a fluororesin.
  • the composite particles used are metal oxide composite particles whose surface is coated with amorphous silica.
  • the particle size is large (average particle size: 0.5 to 10 ⁇ m), it is transparent when the amount added is necessary for heat ray blocking. As a result, there is a problem that it is difficult to see natural colors when seen through because the color is lowered and the particle color appears.
  • Patent Document 3 is a composite sheet in which a fluororesin layer containing near-infrared blocking inorganic particles is provided on at least one side of a reinforcing substrate.
  • the reinforcing substrate used is a fiber woven fabric such as a glass fiber woven fabric, a polyamide-based fiber woven fabric, or a polyester-based fiber woven fabric, and the color pattern of the fiber woven fabric appears, resulting in a problem of poor transparency.
  • Patent Document 4 has an intermediate layer in which an imonium compound, a phthalocyanine compound, an aluminum compound, a polymethine compound and the like are blended in a polyester resin as a near-infrared absorber in order to control solar radiation transmittance, and visible light transmittance is 70 to 90. %, And a haze of 5.0% or less is proposed as a three-layer coextrusion laminated polyester film. Even in this method, there is a problem that the transmission of light by the near-infrared absorber is inevitably colored, and the visible light transmittance is lowered.
  • a colored film in which a near-infrared absorber and a dye having absorption in the visible light region are added to the intermediate layer has also been proposed, but for the purpose of coloring, the visible light transmittance is further reduced. Further, since the base resin is polyester, it is difficult to obtain long-term weather resistance due to deterioration due to ultraviolet rays.
  • Patent Document 5 a transparent conductive film made of a specific refractive index material and indium tin oxide (hereinafter sometimes referred to as ITO) is laminated in this order on a transparent substrate, so that there is no yellow color as an ITO transmission color.
  • a transparent conductive laminate having a neutral color is disclosed.
  • This method has a problem that the transparent conductive film (ITO) is the outermost layer, which is inferior in outdoor long-term weather resistance, and is inferior in the bending resistance and scratch resistance inherent to the thin film lamination.
  • the transparent conductive film (ITO) formation by the vacuum deposition method, the sputtering method, the CVD method or the like has a problem that the processing is complicated and the cost is high.
  • the object of the present invention is to solve the above-mentioned problems, while maintaining the properties of a fluororesin film such as mechanical properties, transparency, and long-term weather resistance, it has excellent heat ray blocking properties, is colorless and transparent, and can see through natural colors. It is in providing a heat ray shielding fluororesin film.
  • the heat ray blocking property referred to in the present invention is a general term for functionality that reflects or absorbs all or a part of light rays generally classified as infrared rays and does not completely or partially transmit light rays.
  • the present invention has the following configuration.
  • (Ii) The fluororesin film as described above which further satisfies the following formula (A) as light transmittance T IR (%) at a wavelength of 1800 to 2200 nm.
  • the film thickness t of the fluororesin film is 10 to 500 ⁇ m, the yellowness YI of the fluororesin film, the light transmittance T V (%) at a wavelength of 380 to 700 nm, and the wavelength at 1800 to 2200 nm
  • the transmittance of harmful rays is controlled without impairing the properties such as transparency, mechanical properties, weather resistance, etc. inherent to the fluororesin film, and there is no yellowing due to the addition of indium tin oxide, colorless transparency And a fluororesin film having excellent heat ray shielding properties at the same time.
  • a schematic diagram of a heat ray blocking evaluation tester is shown.
  • the fluororesin film of the present invention is a film composed of a resin comprising a fluoroolefin homopolymer, a copolymer of two or more fluoroolefins, or a copolymer of one or more fluoroolefins and other monomers.
  • Fluoroolefin is a monomer having a polymerizable unsaturated bond and a fluorine atom, and may further have a hydrogen atom, a chlorine atom, an oxygen atom, or the like.
  • fluoroolefin include tetrafluoroethylene, vinyl fluoride, vinylidene fluoride, perfluoroalkyl vinyl ether, chlorotrifluoroethylene, and hexafluoropropylene.
  • Other monomers are preferably non-fluorine monomers, olefins such as ethylene, propylene, butene and norbornene, alkenyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether and ethyl allyl ether, vinyl acetate and pivalin. Examples thereof include alkenyl esters such as vinyl acid and allyl pivalate.
  • olefins such as ethylene, propylene, butene and norbornene
  • alkenyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether and ethyl allyl ether, vinyl acetate and pivalin. Examples thereof include alkenyl esters such as vinyl acid and allyl pivalate.
  • Typical fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / propylene copolymer, ethylene / tetrafluoroethylene copolymer.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • FEP tetrafluoroethylene / propylene copolymer
  • ethylene / tetrafluoroethylene copolymer ethylene / tetrafluoroethylene copolymer.
  • EFE tetrafluoroethylene / hexafluoropropylene / ethylene copolymer
  • tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer such as tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (PFA)
  • PVDF polyvinylidene fluoride
  • vinylidene fluoride / hexafluoropropylene copolymer vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • PVDF vinylidene fluoride / hexafluoropropylene copolymer
  • PVF polyvinyl fluoride
  • PV chloride examples include, but are not limited
  • thermoplastic resin not containing fluorine and various additives can be blended within a range that does not impair the properties of the fluororesin.
  • various resins such as olefin-based, acrylic-based, ester-based, and amide-based thermoplastic resins, various pigments (apart from the blue pigment in the present invention), dyes, organic or inorganic fine particles (the present invention)
  • indium tin oxide, fillers, dispersants and the like can be mentioned.
  • a resin mainly composed of ETFE, FEP, PVF, and PVDF is preferable from the viewpoint of film forming property, transparency, handleability, cost, etc.
  • ETFE resin is more preferable. .
  • indium tin oxide refers to an inorganic compound composed of indium oxide and tin oxide. It is known that it has optical transparency in the visible light region and exhibits conductivity from its charge density. Because of these two characteristics, it is often used mainly as a transparent electrode. For example, it is widely applied in liquid crystal displays, plasma displays, touch panel screens, electronic ink in electronic paper, organic EL electrodes, solar cells, antistatic agents, electromagnetic shielding materials, and the like.
  • ITO powder is yellow to gray. When dispersed in a resin, it has transparency, but when exposed to light, it appears slightly powdery (yellow to gray).
  • ITO is used as fine particles.
  • the production method of the ITO fine particles is not particularly limited.
  • a powder sintering method in which an indium oxide powder and a tin oxide powder are pressure-molded and baked and solidified, and an aqueous solution containing an indium salt and a tin salt is neutralized.
  • Examples include a method of firing the precipitate after filtration, washing, and drying. It is known that pulverization can be carried out industrially and that an average particle size of 100 nm or less can be produced.
  • the average particle diameter of the ITO fine particles in the fluororesin film of the present invention is in the range of 10 to 200 nm. If it exceeds 200 nm, there is a decrease in light transmittance and an increase in haze, which is not suitable as a transparent film material from the viewpoint of visibility. If it is less than 10 nm, the heat ray blocking efficiency becomes insufficient.
  • the blue pigment is an inorganic or organic compound that exhibits a blue color when exposed to sunlight, and examples thereof include inorganic pigments such as cobalt and manganese, and organic pigments such as indigo, phthalocyanine, and anthraquinone. .
  • Cobalt pigments and phthalocyanine pigments are preferable in terms of color developability and handling when added to a fluororesin, and cobalt pigments are more preferable in terms of yellowish color reduction effect, heat resistance, weather resistance, etc. due to the addition of ITO. Cobalt blue is more preferable.
  • Cobalt blue is also called cobalt blue, PIGMENT BLUE 28, and the like.
  • the composition formula is represented by CoAl 2 O 4 (cobalt aluminate) or CoO ⁇ Al 2 O 3 (spinel-type crystals of cobalt oxide and aluminum oxide). It excels in light resistance, weather resistance, acid resistance, and alkali resistance, and exhibits very stable color development in the process of adding to the fluororesin and the outdoor exposure of the additive film.
  • An organometallic blue pigment called phthalocyanine blue which is commonly used as a blue pigment, has almost the same yellowing suppression effect as an inorganic pigment, but it can be added to a fluororesin depending on the usage environment from the viewpoint of heat resistance and weather resistance. Cobalt blue having a wider application range is preferable.
  • the average particle size of the blue pigment in the fluororesin film of the present invention needs to be in the range of 10 to 200 nm. If the thickness is less than 10 nm, the light scattering property sufficient to be colored blue with respect to the transmitted light (sunlight) to the fluororesin element film cannot be obtained, so that the intended function as a blue pigment can be achieved. Therefore, the effect as the fluororesin film of the present invention is not exhibited. If it exceeds 200 nm, it is not suitable as a transparent film material from the viewpoint of visibility due to a decrease in light transmittance and an increase in haze.
  • the method of blending the ITO fine particles and the blue pigment in the fluororesin film is not particularly limited, but a composition in which ITO and the blue pigment are separately dispersed in a fluororesin or the like (hereinafter referred to as ITO master and blue master, respectively)
  • ITO master and blue master a composition in which ITO and the blue pigment are separately dispersed in a fluororesin or the like
  • a method is used in which an ITO master and a blue master are mixed in a fluororesin serving as a base at the time of film formation and mixed at a predetermined concentration.
  • ITO fine particles and blue pigment are mixed and dispersed in a fluororesin or the like.
  • the shape is preferably in the form of pellets in terms of transportability to the film forming apparatus, etc., and is preferably equal to the pellet size of the base resin of the fluororesin film.
  • the resin for dispersing the ITO fine particles or / and the blue pigment is preferably the same type as the base resin of the fluororesin film or the above-mentioned fluororesin. From the viewpoints of particle dispersibility, affinity with particles, economy, etc., a resin that does not contain fluorine in the molecular chain can be used, but from the viewpoint of transparency and surface roughness, the base of the fluororesin film What has compatibility with resin is more preferable.
  • the dispersion method is not particularly limited, but a method in which ITO fine particles or / and blue pigment particles and resin are melt-kneaded, a method in which ITO fine particles or / and blue pigment dispersion and resin are melt-kneaded and the dispersion medium is removed simultaneously, ITO A method of dispersing the fine particles or / and blue pigment in the resin solution and then removing the solvent is used.
  • the so-called binder resin before mixing is preferably a powder having a large surface area.
  • the method of melt kneading the ITO fine particles or / and the blue pigment and the resin includes mixing the powdered resin and the particle powder with a tumbler, ribbon blender, nauta mixer, Henschel mixer, planetary mixer, etc.
  • a method is known in which a resin composition that has been primarily kneaded by a kneading apparatus is prepared in advance, and this resin composition is mixed with the same resin or another resin to obtain master pellets in the same manner as described above.
  • a dispersant and various stabilizers can be added as necessary, but it is necessary to select one having heat resistance and chemical resistance that does not decompose at the kneading temperature or film forming temperature.
  • the particle concentration in the particle master is preferably a master chip dispersed at a concentration 2 to 100 times the concentration added to the film.
  • concentration 2 to 100 times the concentration added to the film The higher the concentration of the master chip, the more advantageous in terms of dispersion processing cost, etc. However, when it is 100 times or more, the master chip may be unevenly distributed when mixed with the base resin, resulting in a non-uniform film.
  • the ITO content A (% by weight) of the fluororesin film of the present invention is represented by the following formula (1) and varies depending on the film thickness t ( ⁇ m). Since the heat ray blocking effect depends on the ITO content per unit area of the film, a thick film is effective at a low concentration.
  • the blue pigment content B (% by weight) of the fluororesin film of the present invention is represented by the following formula (2) and depends on the ITO content A (% by weight).
  • the blue pigment content is adjusted in accordance with the ITO content.
  • the target reduction in yellowishness can be achieved by bringing the YI value closer to ⁇ 0.
  • the ITO content and the blue pigment content in the fluororesin film may be confirmed by atomic absorption (ICP) analysis, or may be determined by weight conversion of ash.
  • the particle diameters of the ITO fine particles and the blue pigment in the fluororesin film can be measured by slicing the fluororesin film with a microtome and observing the sliced cross section with a transmission electron microscope or the like.
  • T IR 0 in view of the relationship with the near infrared transmittance from the viewpoint of the heat ray blocking effect.
  • a range represented by the following formula (A) is preferable.
  • TIR 20 ⁇ T IR ⁇ 70 (A)
  • the TIR is 20% or more, when the amount of indium tin oxide necessary for this is added, and when the blue pigment necessary for obtaining transparency close to natural light is added, a visible distance of about 30 meters ahead through the film Therefore, it is preferable that the TIR is 70% or less, so that the necessary heat ray blocking property can be exhibited.
  • the fluororesin film of the present invention may have a single layer configuration, or may be a laminated film including at least one fluororesin film of the present invention. For example, if a pattern-colored film is bonded, design properties can be imparted.
  • melt extrusion film formation In film formation, known film forming methods such as melt extrusion film formation, calendar film formation, and solution film formation can be applied, but melt extrusion film formation is preferable from the viewpoint of film thickness control, productivity, additive dispersibility, and the like.
  • the film may be any of unstretched, uniaxially stretched, and biaxially stretched, but a substantially non-oriented unstretched film is preferable from the viewpoints of dimensional stability, transparency, and ease of film formation.
  • the film thickness is not limited because it depends on the application, but is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m. If the thickness is less than 10 ⁇ m, the waist is weak and the handling property is inferior, and the strength is not sufficient. If it exceeds 500 ⁇ m, the transparency is lowered, the weight is increased, and the handling property is inferior.
  • the YI value is lower than the value of the expression (3), a blue color is strongly felt and it is generally difficult to see the transmitted light as a natural color.
  • t represents the film thickness ( ⁇ m).
  • the light transmittance T V (%) at a wavelength of 380 to 700 nm of the fluororesin film of the present invention is preferably 100% from the viewpoint of transparency, but light absorption by the film is inevitable, and the transparency close to natural light is obtained.
  • the range represented by the following formula (4) is preferable for obtaining.
  • T V 85 ⁇ T V ⁇ 98 (4) If T V is more than 85%, preferably because of its excellent light transmittance.
  • the light transmittance T IR (%) at a wavelength of 1800 to 2200 nm of the fluororesin film of the present invention has a range represented by the following formula (5) in order to achieve transparency close to natural light which is the object of the present invention. Even more preferred.
  • fluororesin film of the present invention is not particularly limited, for example, it can be applied to electronic equipment parts as agricultural house covering materials, roof membrane materials, various window materials, solar cell surface protective materials, and infrared ray shielding films. Application, vehicle ceiling materials.
  • Light transmittance T V (%) at a wavelength of 380 to 700 nm Using a spectrophotometer U-2001 (manufactured by Hitachi High-Tech Co., Ltd.), the transmittance in the wavelength range of 380 to 700 nm is continuously measured by the double beam direct ratio metering method, and the transmittance value for each wavelength of 1 nm (T V i ) T v and the ray transmittance T V (%) the percentage of divided by the number of measurement points (n) the sum of i at wavelength 380 ⁇ 700 nm. Further, the light transmittance T V (%) is sometimes referred to as a visible light transmittance because of its property, and is commonly used in the case of implementation.
  • the light transmittance T IR (%) is sometimes referred to as near-infrared transmittance because of its property, and is commonly used in the case of implementation.
  • T IR (%) is sometimes referred to as near-infrared transmittance because of its property, and is commonly used in the case of implementation.
  • Table 1 they are listed in a relationship inversely proportional to the heat ray blocking efficiency described later.
  • Haze % According to JIS K7105-1981, measurement was performed using a haze meter (HGM-2DP (for C light) manufactured by Suga Test Instruments Co., Ltd.). Considering visibility of about 30 meters ahead of the film, 25% or less is preferable.
  • HGM-2DP for C light
  • Heat ray blocking efficiency (%) Heat ray blocking evaluation with a cubic black box composed of a black panel with a side of 30 cm, a 100 W incandescent lamp at the center of the box, a temperature measuring sensor (temperature measuring element) at the center of the bottom, and a film holder at the middle height
  • the heat ray blocking efficiency was calculated using a testing machine (FIG. 1). Install the above tester in a room temperature-controlled at 23 ° C, place the measurement film horizontally on the film holder in the black box, and detect the bottom temperature Ti (° C) 20 minutes after incandescent lamp irradiation with a temperature sensor. Recorded.
  • Particle size The particle size of ITO and blue pigment was determined by cutting a fluororesin film containing particles into ultrathin sections having a thickness of 0.1 ⁇ m or less perpendicular to the film surface, and using a transmission electron microscope (for example, JEOL Ltd.) ) JEM-1200EX, etc.)) is used and observed at a measurement magnification of 200,000 times or more, and the diameter is measured as the major axis at the position where the diameter of approximately 50 individual particles is the longest in the observed visual field. was defined as the average particle size.
  • ITO master Indium tin oxide (ITO) powder having an average particle diameter of 30 nm and pre-pulverized ethylene / tetrafluoroethylene copolymer ("Neofluon” manufactured by Daikin Industries, Ltd.)
  • ITO master Indium tin oxide (ITO) powder having an average particle diameter of 30 nm and pre-pulverized ethylene / tetrafluoroethylene copolymer ("Neofluon” manufactured by Daikin Industries, Ltd.)
  • EFE EP-526 ethylene / tetrafluoroethylene copolymer
  • this composition and an ethylene-tetrafluoroethylene copolymer ("Neofluon (registered trademark)" ETFE EP-546 manufactured by Daikin Industries, Ltd.) pellets (ETFE pellets) were added so that the indium tin oxide content was 5% by weight.
  • the mixture was fed to a bent twin screw extruder, extruded into a strand shape and cut to produce a pellet-like ITO-containing ETFE resin (ITO master A1).
  • this composition and ETFE pellets were mixed so that the cobalt blue would be 2% by weight, supplied to a vent type twin screw extruder, extruded into a strand shape, cut, and pelletized cobalt blue-containing ETFE resin (blue master). B1) was produced.
  • ETFE pellets 462.5 kg, ITO master A 1: 25 kg, and blue master B 1: 12.5 kg are uniformly mixed, supplied to a single screw extruder with a screw diameter of 65 mm, filtered through a filter, and then T-die at 330 ° C.
  • the film is extruded into a film and brought into contact with a cooling roll set at 175 ° C., cooled, solidified, and wound, so that the ITO content of 100 ⁇ m thickness is 0.25 wt% and the cobalt blue content is 0.050 wt%.
  • An unstretched film was obtained.
  • the obtained film had no yellowness, was colorless and transparent, and had good transparency so that the outdoor scenery through the film looked natural.
  • the near-infrared transmittance of this film was as low as 38.7%, and the heat ray blocking efficiency by a heat ray blocking evaluation tester was 34.5%.
  • the film had a UV transmittance of 26.5% and had a UV blocking effect.
  • Table 1 The film properties are summarized in Table 1.
  • Example 2 Using the same raw materials used in Example 1, ETFE pellets: 485 kg, ITO master A 1:10 kg, and blue master B 1: 5 kg are uniformly mixed, and a single-screw extruder with 65 mm screw diameter, filter, T die The film was supplied to a film forming apparatus equipped with a cooling drum, and an unstretched film having an ITO content of 250 ⁇ m in thickness of 0.10 wt% and a cobalt blue content of 0.020 wt% was obtained by melt extrusion film forming. The obtained film had no yellowness, was colorless and transparent, and had good transparency so that the outdoor scenery through the film looked almost natural.
  • the near-infrared transmittance of this film was as low as 42.3%, and the heat ray blocking efficiency in the heat ray blocking evaluation tester was 36.1%.
  • the film had a UV transmittance significantly reduced to 6.1%, and also had a UV blocking effect.
  • the film properties are summarized in Table 1.
  • the visible light transmittance after the weather resistance test is 90.2%
  • the near-infrared transmittance is 43.0%
  • the ultraviolet transmittance is 6.3%
  • the YI is 4.3. It was a film with high weather resistance.
  • Table 2 The film properties after the weather resistance test are summarized in Table 2.
  • Examples 3 and 4 An unstretched film having a thickness of 250 ⁇ m was obtained in the same manner as in Example 2 except that the blending amount of the ITO master was variously changed.
  • the film characteristics are summarized in Table 1.
  • the ITO content in the film increases, the average light transmittance at 1800 to 2200 nm decreases, and the heat ray blocking efficiency increases in inverse proportion.
  • the ITO content was 0.003% by weight (Comparative Example 1), the near-infrared transmittance was as high as 92.4%, and the heat ray blocking efficiency was insufficient at 7.2%.
  • an ITO content of 0.30% by weight Comparative Example 2
  • Examples 5 and 6, Comparative Examples 3 and 4 An unstretched film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2 except that the blending amount of the ITO master was variously changed.
  • the film properties are summarized in Table 1.
  • the ITO content in the film increases, the near-infrared transmittance decreases and the heat ray blocking efficiency improves.
  • the ITO content was 0.10% by weight (Comparative Example 3)
  • the near-infrared transmittance was as high as 68.6%, and the heat ray blocking efficiency was 12.9%, which was insufficient.
  • the ITO content was 2.00% by weight (Comparative Example 4)
  • the heat ray blocking efficiency was 45.3% and the heat ray blocking efficiency was effective, but the haze was as high as 71.2% and the transparency was insufficient.
  • Examples 7 and 8, Comparative Examples 5 and 6 An unstretched film having a thickness of 250 ⁇ m was obtained in the same manner as in Example 2 except that the blending amount of the blue master was variously changed.
  • the film properties are summarized in Table 1. As the blue content in the film increases, the YI value (yellowness) decreases and becomes colorless, but when the content is excessive, it becomes blue (Comparative Example 6), so there is an optimal content according to the ITO content. It is shown that.
  • Example 9 Similar to Example 1 except that ITO masters A2 (average particle diameter 150 nm), A3 (5 nm), and A4 (300 nm) were prepared in the same manner as Example 1 (1) by changing the particle diameter of the ITO master. In addition, an unstretched film having a thickness of 250 ⁇ m was obtained.
  • the film properties are summarized in Table 1.
  • the average particle diameter of ITO was 5 nm, the near-infrared transmittance was as high as 81.6%, and the heat ray blocking efficiency was insufficient at 12.7%.
  • the average particle size was 300 nm, the near-infrared transmittance was 57.4% and the heat ray blocking efficiency was 26.5%, but the haze was 33.5% and the transparency was insufficient.
  • Example 10 Similar to Example 1 except that blue master B2 (average particle diameter 100 nm), B3 (5 nm) and B4 (250 nm) were prepared in the same manner as in Example 1 (2) by changing the particle diameter of the blue pigment. In addition, an unstretched film having a thickness of 250 ⁇ m was obtained.
  • Table 1 When the average particle size of the blue pigment was 5 nm, the near-infrared transmittance was as high as 69.8%, and the heat ray blocking efficiency was insufficient at 16.4%. When the average particle size was 250 nm, the near-infrared transmittance was 41.9% and the heat ray blocking efficiency was 37.2%, but the haze was as high as 28.2% and the transparency was insufficient.
  • Example 11 Copper phthalocyanine having an average particle size of 50 nm (manufactured by Dainichi Seika Kogyo Co., Ltd. and pre-pulverized ethylene / tetrafluoroethylene copolymer (“Neofluon (registered trademark)” ETFE EP-526, Daikin Industries, Ltd.)) The mixture was melt kneaded with a Banbury mixer to obtain a composition containing 20% by weight of copper phthalocyanine, and this composition was mixed with ETFE pellets so that the copper phthalocyanine was 2% by weight, followed by vent type twin screw extrusion.
  • a non-stretched film having a thickness of 250 ⁇ m was obtained in the same manner as in Example 2 except that it was fed into a machine, extruded into a strand, and cut to produce a pellet-like copper phthalocyanine-containing ETFE resin (blue master B5).
  • the resulting film has little yellowness, is colorless and transparent, and has a good transparency that allows the outdoor scenery through the film to look almost natural.
  • the near-infrared transmittance of this film was as low as 44.6%, the heat ray blocking efficiency in the heat ray blocking evaluation tester was 35.7%, and the ultraviolet transmittance was greatly reduced to 6.7%.
  • Table 1 The film characteristics are summarized in Table 1.
  • the visible light transmittance after a 500 hour weather resistance test was slightly reduced to 85.5%, but the near infrared transmittance was low. Is 45.0%, the heat ray blocking efficiency is 35.8%, the ultraviolet transmittance is 8.3%, and the YI value (yellowness) is 7.3, which is almost the same as the initial value.
  • the film characteristics before and after the weather resistance test are summarized in Table 2.
  • Example 12 to 14 Similar to Example 2, except that the weight ratio (In / Sn) of indium oxide and tin oxide contained in ITO was changed to produce an ITO master as in Example 1 (1), a thickness of 250 ⁇ m. A stretched film was obtained.
  • the film properties are summarized in Table 1. In the range of 3 to 20% by weight of tin oxide in ITO, the heat ray blocking effect is exhibited. In this range, the less the tin oxide in ITO, the more the near infrared transmittance increases, that is, the heat ray blocking efficiency is improved. It was.
  • Example 11 Extruded into a film in the same manner as in Example 1 (3) using only ETFE pellets without ITO and blue pigment, to obtain an unstretched film having a thickness of 250 ⁇ m.
  • the film properties are summarized in Table 1. Since it did not contain other particles that block transmitted light, it was a film showing the highest visible light transmittance and near infrared transmittance in the table. Therefore, the heat ray blocking efficiency shows the lowest value.
  • Example 12 instead of containing ITO and blue pigment, antimony tin compound (ATO) fine particles shown in Table 1 were mastered in the same manner as in Example 1 (1). Further, it was extruded to form a film in the same manner as in Example 1 (3) to obtain a 250 ⁇ m unstretched film. Although it shows a heat ray blocking effect as compared with Comparative Example 11, for example, compared with Example 4, the ATO content is 4 times greater than the ITO content, but the heat ray blocking efficiency was about 1/4 times. . ATO was a film having a very low effect on the content of particles compared with ITO.
  • the fluororesin film of the present invention is excellent in transparency, heat ray blocking properties, and weather resistance, and is a fluororesin molded product widely used for building roofing materials, wall materials, window materials, arcades, ceiling domes, carports, etc.
  • it is possible to amplify the utility value in that it has a heat ray blocking effect with good visible light transmittance and a heat ray blocking efficiency exceeding 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 フッ素樹脂が本来持つ高い透明性、機械特性、耐候性などの特性を損なうことなく、熱線遮断機能を有し無色透明感のある自然色を透視できるフッ素樹脂フィルムを提供すること。機械特性、透明性、長期耐候性等フッ素樹脂フィルムの特性を維持したまま、且つ熱線遮断性に優れ、並びに無色透明で自然色を透視できるフッ素樹脂フィルムを提供する。 平均粒子径が10~200nmの範囲の酸化インジウム錫および平均粒子径が10~200nmの範囲の青色顔料を含有するフッ素樹脂フィルムであり、該フィルム中の酸化インジウム錫含有量A(重量%)および青色顔料含有量B(重量%)が下記式(1)、(2)を同時に満足することを特徴とするフッ素樹脂フィルム。 10/t≦A≦60/t (1) 0.05A≦B≦0.3A (2) 上記式中、tはフィルム厚さ(μm)を示す。

Description

フッ素樹脂フィルム
 本発明は、熱線遮断性に優れたフッ素樹脂フィルムに関する。更に詳しくは、熱線遮断性に優れ、且つ無色透明で自然色に透視できるフッ素樹脂フィルムに関する。
技術背景
 フッ素樹脂フィルムはその優れた耐候性、透明性、機械特性、防湿性から、農業ハウス用被覆材、屋根膜材、窓材、太陽電池表面保護材、集光パネル表面材、表示板表面材、建材外装材等に使用されている。
 特に、屋根膜材、窓材等の建材分野において、環境への配慮から太陽光の採り入れによる昼間の室内照明の不要化、および自然光による屋内展示物の自然な色の見え方の提供、また屋内から大空が見えることによる開放感の演出などの利点から需要が拡大している。
 一方で、太陽光は紫外線光および赤外線光(熱線)を含むために、有害となることもある。例えば、紫外線を強く浴びると人は皮膚炎を起こしたり、合成物質は劣化を生じる。赤外線が大量に差し込む室内は温度の上昇をまねき、在室者の不快感やハウス栽培植物がダメージを受けることがある。
 これらの問題を解消するため、例えば、特許文献1には酸化錫等の無機微粒子を合成樹脂に分散混合した赤外線遮断性の農業用シート、特許文献2には不定形シリカで表面被覆した金属酸化物粒子を配合したフッ素樹脂フィルム、特許文献3には少なくとも片面に赤外線遮断性無機微粒子を含有する熱線遮断性フッ素樹脂複合シート及びそれを用いてなる屋根材が開示されている。
 また、特許文献4には中間層に近赤外線吸収剤を含む着色または無色の透明性に優れた窓貼り用二軸配向ポリエステルフィルム、特許文献5には熱線を含む赤外線の遮断物質でもある透明導電膜の透過色を改良した透明導電性積層体が開示されている。
しかしながら、特許文献1の農業用シートは、酸化錫主体の無機粒子を合成樹脂100重量部に対して少なくとも3重量部以上若しくは10重量部以上含有するため、熱線を含む赤外線の遮断性は有するが可視光線透過率に劣り、黒ずんで見えるため透視性に劣る問題があった。また、ベース樹脂にポリエチレンテレフタレート系樹脂、ポリ塩化ビニル系樹脂、ポリオレフィン系樹脂から選ばれる複合樹脂であるため表面に防汚層や防露層を設けても紫外線の影響で強度劣化や色あせが生じ長期耐久性を得ることは困難であった。
 特許文献2は、フッ素樹脂に粒子径の95%分布範囲が0.1~30μmの複合粒子を分散した熱線遮断性のフッ素樹脂フィルムである。使用される複合粒子は、不定形シリカで表面被覆した金属酸化物の複合粒子であるが、粒子径が大きい(平均粒子径0.5~10μm)ため、熱線遮断に必要な添加量にすると透明性が低下し、粒子色が出るため透視した際に自然色に見えにくい問題があった。
 特許文献3は、近赤外線遮断性の無機粒子を含有するフッ素樹脂の層を補強基材の少なくとも片面に設けた複合シートである。使用される補強基材がガラス繊維織布、ポリアミド系繊維織布、ポリエステル系繊維織布等の繊維織布であり、繊維織布の色模様が出るため透視性に劣る問題があった。
 特許文献4には、日射透過率を制御するため近赤外線吸収剤としてイモニウム系化合物、フタロシアニン化合物、アルミニウム化合物、ポリメチン化合物等をポリエステル樹脂に配合した中間層を有し、可視光線透過率70~90%、ヘイズ5.0%以下の範囲とする3層共押出積層ポリエステルフィルムとする提案がなされている。この方法においても、近赤外線吸収剤による透過光の色付きが避けられず、可視光線透過率が低下する問題があった。中間層に近赤外線吸収剤と可視光領域に吸収を持つ染料を添加した着色フィルムも提案されているが、着色を目的としており可視光線透過率はさらに低下する。またベース樹脂がポリエステルであるため、紫外線による劣化があり長期耐候性を得ることは困難であった。
 特許文献5には、透明基板上に特定屈折率材料、酸化インジウム錫(以下、ITOと呼ぶことがある)からなる透明導電膜をこの順に積層することにより、ITO透過色としての黄色味がないニュートラルな色味を有する透明導電性積層体が開示されている。この方法は透明導電膜(ITO)が最外層になるため屋外における長期耐候性に劣る問題や薄膜積層固有の耐折れ曲げ性、耐擦過性で劣る問題があった。さらに、真空蒸着法、スパッタリング法、CVD法などによる透明導電膜(ITO)形成では加工が煩雑で高コストとなる問題もあった。
特開平9-205898号公報 特開2002-69258号公報 特開2004-25586号公報 特開2001-171060号公報 特開2008-181838号公報
 
 本発明の目的は上記問題を解決するものであり、機械特性、透明性、長期耐候性等フッ素樹脂フィルムの特性を維持したまま、熱線遮断性に優れ、且つ、無色透明で自然色を透視できる熱線遮断性フッ素樹脂フィルムを提供することにある。また本発明で言う熱線遮断性とは、一般に赤外線に分類される光線のすべてあるいは一部を反射もしくは吸収し、完全にあるいは一部を透過させない機能性を総称する。
 上記目的を達成するため、本発明は以下の構成をとる。
(i)平均粒子径が10~200nmの酸化インジウム錫および平均粒子径が10~200nmの青色顔料を含有するフッ素樹脂フィルムであって、酸化インジウム錫の含有量A(重量%)および青色顔料の含有量B(重量%)が、フィルム厚さをt(μm)として下記式(1)、(2)を同時に満足することを特徴とするフッ素樹脂フィルム、
10/t≦A≦60/t (1)
0.05A≦B≦0.3A (2)
(ii)さらに、波長1800~2200nmにおける光線透過率TIR(%)として下記式(A)を満足する上記に記載のフッ素樹脂フィルム。
20≦TIR≦70 (A)
(iii)該フッ素樹脂フィルムのフィルム厚さtが10~500μmであって、該フッ素樹脂フィルムの黄色度YI、波長380~700nmにおける光線透過率T(%)、および、波長1800~2200nmにおける光線透過率TIR(%)が下記式(3)、(4)、(5)を同時に満足する上記フッ素樹脂フィルム、 
-0.01t≦YI≦0.03t (3)
85≦T≦98 (4) 
20≦TIR≦50 (5) 
(iv)青色顔料がコバルトブルーである上記に記載のフッ素樹脂フィルム
としたものである。
 本発明によれば、フッ素樹脂フィルムが本来持つ透明性、機械特性、耐候性などの特性を損なうことなく有害光線の透過率を制御し、酸化インジウム錫添加に起因する黄ばみのない、無色透明性と熱線遮断性を同時に優れるフッ素樹脂フィルムを得ることができる。
熱線遮断性評価試験器の概略図を示す。
 本発明のフッ素樹脂フィルムは、フルオロオレフィン単独重合体、フルオロオレフィン2種以上の共重合体、またはフルオロオレフィン1種以上とその他のモノマーとの共重合体からなる樹脂で構成されるフィルムである。
 フルオロオレフィンは重合性不飽和結合とフッ素原子とを有するモノマーであり、他に水素原子や塩素原子、酸素原子などを有していてもよい。フルオロオレフィンとしては、例えば、テトラフルオロエチレン、フッ化ビニル、フッ化ビニリデン、パーフルオロアルキルビニルエーテル、クロロトリフルオロエチレン、ヘキサフルオロプロピレンが挙げられる。その他のモノマーとしては非フッ素系モノマーが好ましく、エチレン、プロピレン、ブテン、ノルボルネンなどのオレフィン類、シクロヘキシルメチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、エチルアリルエーテルなどのアルケニルエーテル類、酢酸ビニル、ピバリン酸ビニル、ピバリン酸アリルなどのアルケニルエステル類が挙げられる。
 代表的なフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン系共重合体(FEP)、テトラフルオロエチレン・プロピレン系共重合体、エチレン・テトラフルオロエチレン系共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン・エチレン系共重合体、テトラフルオロエチレン・パーフルオロプロピルビニルエーテル共重合体(PFA)などのテトラフルオロエチレン・パーフルオロアルキルビニルエーテル系共重合体、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン・ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン系共重合体、ポリフッ化ビニル(PVF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン系共重合体(ECTFE)などが挙げられるが、これらに限定されるものではなく、これらの混合物、およびこれらを主成分にしたフッ素樹脂も含まれる。
 必要に応じてフッ素樹脂の特性を損なわない範囲で、フッ素を含まない熱可塑性樹脂、各種添加剤を配合することができる。例えば、熱可塑性樹脂としてはオレフィン系、アクリル系、エステル系、アミド系などの各種樹脂、添加剤としては各種顔料(本願発明における青色顔料とは別に)、染料、有機または無機の微粒子(本願発明における酸化インジウム錫とは別に)、充填剤、分散剤などが挙げられる。 
 農業ハウス用被覆材、屋根膜材として用いる場合は、製膜性、透明性、取り扱い性、コストなどからETFE、FEP、PVF、PVDFを主成分とする樹脂が好ましく、なかでもETFE樹脂がより好ましい。
 本発明において酸化インジウム錫(ITO)とは、酸化インジウムと酸化錫からなる無機化合物のことをいう。可視光領域に光透過性を持ち、その電荷密度から導電性を示すことが知られている。この両特性から主に透明電極として多く用いられる。例えば、液晶ディスプレイやプラズマディスプレイやタッチパネルスクリーン、電子ペーパーにおける電子インキ、有機ELの電極、太陽電池、帯電防止剤、電磁波シールド材料などで幅広く応用されている。
 ITO粉末は黄色~灰色を呈する。樹脂に分散させると透明性は有するが、光を当ててみるとうっすらと粉末色(黄色~灰色)を呈する。
 本発明でITOは微粒子として用いる。ITO微粒子の製法は特に限定しないが、例えば、酸化インジウム粉末と酸化錫粉末を加圧成形し、焼き固める粉末焼結方法、インジウム塩および錫塩を含む水溶液を中和し、得られた共沈析出物を濾過、洗浄、乾燥後、焼成する方法などを挙げることができる。工業的に微粉化が可能であり、平均粒子径が100nm以下のものが製造可能であることが知られている。
 本発明のフッ素樹脂フィルム中のITO微粒子の平均粒径は、10~200nmの範囲である。200nm超では光線透過率の低下やヘイズの上昇があり、前記視認性の観点から透明性膜材として適さない。10nm未満では熱線遮断効率が不十分となる。
 さらに、酸化インジウムと酸化錫の成分比は調節可能であり、一般流通するものとしては酸化インジウム:酸化錫=95:5(重量%比、以下同)のものが多いが、85:15から97:3の範囲で様々な比率のものがあり、透明性と熱線遮断性を両立させる観点からは適宜選択使用できるが、含有量の観点から他の成分比の酸化インジウム錫よりも少なくて前記効果を発揮する酸化インジウム:酸化錫=97:3がより好ましいが、透明な屋根膜や窓材あるいは壁材への適用を考慮すると、大容量の酸化インジウム錫が必要となる。そのため流通量の安定している、酸化インジウム:酸化錫=95:5が好ましい。
 本発明において青色顔料とは、日光を当てたときに青色を呈する無機または有機の化合物であり、コバルト系、マンガン系などの無機顔料、インディゴ系、フタロシアニン系、アントラキノン系などの有機顔料が挙げられる。フッ素樹脂に添加した際の発色性、取り扱い性などの点でコバルト系顔料、フタロシアニン系顔料が好ましく、ITO添加による黄色味の減色効果、耐熱性、耐候性などの点でコバルト系顔料がより好ましく、コバルトブルーがさらに好ましい。
 コバルトブルーはコバルト青、PIGMENT BLUE 28などとも呼ばれる。組成式はCoAl(アルミン酸コバルト)、或いはCoO・Al(酸化コバルトと酸化アルミニウムのスピネル型結晶)で表記される。耐光性・耐候性・耐酸性・耐アルカリ性に優れており、フッ素樹脂に添加する工程や添加フィルムの屋外暴露にも非常に安定した発色性を示す。
 一般的に青色顔料として多用されるフタロシアニン青と呼ばれる有機金属系青色顔料は、黄ばみ抑制効果は無機顔料とほとんど変わらないが、使用環境によりフッ素樹脂に添加するには耐熱性や耐候性の観点から、より適用範囲が広いコバルトブルーの方が好ましい。本発明のフッ素樹脂フィルム中の青色顔料の平均粒子径は、10~200nmの範囲である必要がある。10nm未満では、フッ樹脂素フィルムへの透過光(太陽光)に対して青色に呈色するに十分な光散乱性を得ることができないため、当該目的とするところの青色顔料としての機能を果たせず、本発明のフッ素樹脂フィルムとして効果を発揮しない。200nm超では光線透過率の低下やヘイズの上昇により前記視認性の観点から透明性膜材として適さない。
 フッ素樹脂フィルム中にITO微粒子および青色顔料を配合する方法は、特に限定しないが、ITOおよび青色顔料を予め別々にフッ素樹脂等に分散させた組成物(以下、各々ITOマスタ、青色マスタと呼ぶことがある)を作製しておき、製膜する際にベースとなるフッ素樹脂にITOマスタ、青色マスタを各々所定濃度となるように混合して供する方法が一般的である。ITO微粒子と青色顔料を混合してフッ素樹脂等に分散させる方法もあるが、分散条件の最適化、添加濃度の自由度などの点で、別々に分散したマスタとするのが好ましい。形状は製膜装置への搬送性などの点でペレット状が好ましく、フッ素樹脂フィルムのベース樹脂のペレットサイズと同等にするのが好ましい。
 ITO微粒子または/および青色顔料を分散させる樹脂は、フッ素樹脂フィルムのベース樹脂と同一種または上述のフッ素系樹脂が好ましい。粒子の分散性、粒子との親和性、経済性などの観点から、分子鎖中にフッ素を含まない樹脂を用いることも出来るが、透明性や表面粗さなどの観点から、フッ素樹脂フィルムのベース樹脂と相溶性を有するものがより好ましい。
 分散方法は特に限定しないが、ITO微粒子または/および青色顔料の粒子と樹脂を溶融混練する方法、ITO微粒子または/および青色顔料の分散液と樹脂を溶融混練と同時に分散媒を除去する方法、ITO微粒子または/および青色顔料を樹脂溶液に分散させたのち溶媒を除去する方法などが用いられる。いずれの方法においても、所謂バインダーとなる樹脂の混合前形状は表面積の大きい粉体状が好ましい。例えば、ITO微粒子または/および青色顔料と樹脂を溶融混練する方法は、粉末化した樹脂と該粒子粉末をタンブラー、リボンブレンダー、ナウタミキサー、ヘンシェルミキサー、プラネタリーミキサー等で混合した後、ベント付きなどの一軸または二軸押出機で溶融混練し、押出されたストランドをカッティングしてマスタペレットとする方法、または粉末化した樹脂と該粒子粉末をバンバリミキサー、ニーダー、カレンダロール、加熱ニーダー等の高剪断混練装置で一次混練した樹脂組成物を予め作製し、この樹脂組成物を上記樹脂と同種または他の樹脂と混合して上記同様にマスタペレットとする方法が知られている。必要に応じて分散剤、各種安定剤を加えることも出来るが、混練温度や製膜温度で分解しない耐熱性、耐薬品性を有するものを選ぶ必要がある。
 粒子マスタ中の粒子濃度は、フィルムへの添加濃度の2~100倍の濃度で分散させたマスタチップとするのが好ましい。マスタチップは高濃度にするほど分散加工費用などの点で有利だが、100倍以上ではベース樹脂と配合した際にマスタチップの偏在が生じて不均一なフィルムとなることがある。 
 本発明のフッ素樹脂フィルムのITO含有量A(重量%)は、下記式(1)で表され、フィルム厚さt(μm)により異なる。熱線遮断効果はフィルム単位面積あたりのITO含有量に依存するため、厚いフィルムは低濃度で効果が得られる。
 10/t≦A≦60/t (1)
 Aが10/tより小さいと熱線遮断効率が極端に悪くなる。Aが60/tよりも大きいと、ITO特有の黄色味の発色が強くなり、かつヘイズが上昇し透明性が極端に失われる。
 本発明のフッ素樹脂フィルムの青色顔料含有量B(重量%)は、下記式(2)で表され、ITO含有量A(重量%)に依存する。該フッ素樹脂フィルムの色目を無色化するにはITOの含有量に応じて青色顔料含有量を調節するが、目的とする黄色味の低減はYI値を±0に近づけることで達成できる。
 0.05A≦B≦0.3A (2)
 当該フッ素樹脂フィルム中のITO含有量および青色顔料含有量は、原子吸光(ICP)分析により確認してもよく、灰分の重量換算などで求めてもよい。
 当該フッ素樹脂フィルム中のITO微粒子および青色顔料の粒子径は、該フッ素樹脂フィルムをミクロトームでスライスし、スライスした断面を透過型電子顕微鏡などで観察測定できる。
 本発明のフッ素樹脂フィルムの波長1800~2200nmにおける光線透過率TIR(%)は、熱線遮断効果の観点からは、近赤外線透過率との関係性を考慮してもTIR=0が望ましいが、本発明の目的である自然光に近い透視性を両立させるには、下記式(A)で表される範囲が好ましい。
 20≦TIR≦70 (A) 
IRを20%以上とすれば、このために必要な酸化インジウム錫量を加え、かつ自然光に近い透視性を得るために必要な青色顔料を加えた場合、該フィルムを通して約30メートル先の視認性を得ることができるため好ましく、TIRを70%以下とすることで実用上必要な熱線遮断性を発揮することができる。
 本発明のフッ素樹脂フィルムは単層構成であってもよく、本発明のフッ素樹脂フィルムを少なくとも一層含む積層フィルムとしてもよい。例えば模様着色フィルムを貼合すれば意匠性を付与できる。
 フィルム化においては溶融押出製膜、カレンダ製膜、溶液製膜など公知の製膜方法が適用できるが、溶融押出製膜が膜厚制御、生産性、添加剤分散性などの観点で好ましい。フィルムは無延伸、一軸延伸、二軸延伸のいずれでも良いが、寸法安定性、透明性、製膜簡便性の点で、実質的に無配向の無延伸フィルムが好ましい。
 フィルム厚さは用途によるため限定されないが、10~500μmが好ましく、20~300μmがより好ましい。10μm未満では腰が弱いため取り扱い性に劣り、強度が十分でないため好ましくない。500μm超では透明性が低下し、重量が重くなり取り扱い性に劣るため好ましくない。
 本発明のフッ素樹脂フィルムの黄色度はYI=±0が光学的に無色であるが、下記式(3)で表される範囲が透過光を自然色として見ることができる好ましい範囲である。またYI値が(3)式の値を下回ると青味の呈色が強く感じられ透過光を自然色として見ることが一般には困難である。
 -0.01t≦YI≦0.03t (3)
上記式中、tはフィルム厚さ(μm)を示す。
 本発明のフッ素樹脂フィルムの波長380~700nmにおける光線透過率T(%)は、透視性の観点からは100%が望ましいが、該フィルムによる光線吸収は避けられず、自然光に近い透視性を得るには下記式(4)で表される範囲が好ましい。
 85≦T≦98 (4)
が85%以上であれば、光線透過性に優れることから好ましい。
 本発明のフッ素樹脂フィルムの波長1800~2200nmにおける光線透過率TIR(%)は、本発明の目的である自然光に近い透視性を両立させるには、下記式(5)で表される範囲がより一層好ましい。
 20≦TIR≦50 (5) 
IRを50%以下とすることで実用上必要な熱線遮断性をより一層発揮することができる。
 本発明のフッ素樹脂フィルムの用途は、特に限定はされないが、例をあげれば、農業ハウス用被覆材、屋根膜材、各種窓材、太陽電池表面保護材、および赤外線遮断膜として電子機器部品への応用、車輌用天井材などがある。
 以下、実施例に基づいて具体的に説明するが、以下の実施例に限定されるものではない。
各特性は以下の測定方法に基づいて評価したものである。
 (1)波長380~700nmにおける光線透過率T(%)
 分光光度計U-2001(日立ハイテク(株)製)を用い、ダブルビーム直接比率測光方式で380~700nmの波長範囲の透過率を連続測定し、波長1nm毎の各々透過率値(Ti)を得た。Tiの総和を測定点数(n)で除した値の百分率を波長380~700nmにおける光線透過率T(%)とした。また光線透過率T(%)は、その性質から可視光透過率とも呼称されることがあり、実施の場合に通称とした。
 (2)波長1800~2200nmにおける光線透過率TIR(%)
 分光光度計U-4100(日立ハイテク(株)製)を用い、ダブルビーム直接比率測光方式で1800~2200nmの波長範囲の透過率を連続測定し、波長1nm毎の各々透過率値(TIRi)を得た。TIRiの総和を測定点数(n)で除した値の百分率を波長1800~2200nmにおける光線透過率TIR(%)とした。また、光線透過率TIR(%)は、その性質から近赤外線透過率とも呼称されることがあり、実施の場合に通称とした。また表1記載の通り、後述の熱線遮断効率とも反比例する関係性があるもので列記する。
 (3)YI値(黄色度)
 分光測色計CM-5(コニカミノルタ(株)製)を用い、D65光源2°視野でJIS-K7105に従ってL値およびa値、b値を求め、JIS-K7373に従ってYI値を算出した。
 (4)波長200~380nmにおける光線透過率(%)
分光光度計U-2001(日立ハイテク(株)製)を用い、ダブルビーム直接比率測光方式で200~380nmの波長範囲の透過率を連続測定し、波長1nm毎の各々透過率値TUViを得た。TUViの総和を測定点数(n)で除して波長200~380nmにおける光線透過率TUV(%)とした。紫外線による10年経年劣化が2割未満という観点から50%以下が好ましい。また、その性質から紫外線透過率とも呼称されることもあり実施の場合に通称とした。 (5)ヘイズ(%)
 JIS K7105-1981に準じ、ヘイズメータ(スガ試験機(株)製HGM-2DP(C光用))を用いて測定した。該フィルムを透視して約30メートル先の視認性を考慮して25%以下が好ましい。
 (6)熱線遮断効率(%)
 1辺30cmのブラックパネルで構成した立方体のブラックボックスに、ボックス上部中央に100Wの白熱灯、底部中央に温度測定用のセンサ(測温体)、中間高さにフィルムホルダーを設置した熱線遮断評価試験機(図1)を用いて熱線遮断効率を算出した。
23℃に温調した室内に上記試験器を設置し、該ブラックボックス内のフィルムホルダーに測定フィルムを水平にセットし、白熱灯照射20分後の底部温度Ti(℃)を測温体で検出、記録した。フィルムをセットしない場合の白熱灯照射20分後の底部温度Tb(℃)との温度差の割合を熱線遮断効率として比較した。フィルムを通して人体が寒暖差を即座に感じることができるおよそ閾値となることを基準として、熱線遮断効率は20%以上であることが好ましい。
熱線遮断効率(%)=100×(Tb-Ti)/(Tb-23)。
 (7)粒子径
 ITOおよび青色顔料の粒子径は、粒子を含有したフッ素樹脂フィルムをフィルム面に垂直に厚さ0.1μm以下の超薄切片として切り出し、透過型電子顕微鏡(例えば日本電子(株)製JEM-1200EXなど)を用い、測定倍率20万倍以上で観察し、観測される視野のうち任意50個体の粒子のおよそ直径が最も長くなる位置で直径を長径として測定し、その平均値を平均粒子径とした。
 (8)耐候性試験
 スガ試験機(株)製サンシャインウェザーメーターを用いてJIS K7363に準拠して促進暴露試験を行い、試験500時間後のフィルムの各種透過率、ヘイズおよび熱線遮断評価を行った。
 (A)ITO分散フッ素樹脂(ITOマスタ)の作製
 平均粒子径30nmの酸化インジウム錫(ITO)粉末、および予め粉体化したエチレン・テトラフルオロエチレン共重合体(ダイキン工業(株)製“ネオフロン(登録商標)”ETFE EP-526)の混合物をバンバリミキサーで溶融混練し、ITOを20重量%含有する組成物を得た。次いで、この組成物とエチレン・テトラフルオロエチレン共重合体(ダイキン工業(株)製“ネオフロン(登録商標)”ETFE EP-546)のペレット(ETFEペレット)を酸化インジウム錫が5重量%となるように混合してベント式二軸押出機に供給し、ストランド状に押出してカッティングし、ペレット状のITO含有ETFE樹脂(ITOマスタA1)を作製した。
 (B)青色顔料分散フッ素樹脂(青色マスタ)の作製
 平均粒径50nmのコバルトブルー(大日精化工業(株)製、FCM H1104)、および予め粉体化したエチレン・テトラフルオロエチレン共重合体(ダイキン工業(株)製“ネオフロン(登録商標)”ETFE EP-526)の混合物をバンバリミキサーで溶融混練し、コバルトブルーを20重量%含有する組成物を得た。次いでこの組成物とETFEペレットをコバルトブルーが2重量%となるように混合してベント式二軸押出機に供給し、ストランド状に押出してカッティングし、ペレット状のコバルトブルー含有ETFE樹脂(青色マスタB1)を作製した。
 [実施例1]
 ETFEペレット:462.5kg、ITOマスタA1:25kg、及び青色マスタB1:12.5kgを均一混合して、スクリュー径65mmの単軸押出機に供給し、フィルターで濾過し、次いで330℃でTダイでフィルム状に押し出し、175℃設定の冷却ロールに接触させて冷却・固化させ巻き取ることで、厚さ100μmのITO含有量が0.25重量%、コバルトブルー含有量が0.050重量%の無延伸フィルムを得た。
得られたフィルムは黄色味がなく、無色透明で、フィルムを通した屋外景色が自然色に見える透視性の良いものであった。このフィルムの近赤外線透過率は38.7%と低く、熱線遮断評価試験機による熱線遮断効率は34.5%であった。紫外線透過率が26.5%と低下しており、紫外線遮断効果も併せ持つフィルムであった。フィルム特性は表1に纏めて示した。
 [実施例2]
 実施例1に使用したものと同じ原料を用いて、ETFEペレット:485kg、ITOマスタA1:10kg、及び青色マスタB1:5kgを均一混合して、スクリュー径65mmの単軸押出機、フィルター、Tダイ、冷却ドラムを備える製膜装置に供給し、溶融押出製膜により厚さ250μmのITO含有量が0.10重量%、コバルトブルー含有量が0.020重量%の無延伸フィルムを得た。
得られたフィルムは黄色味がなく、無色透明で、フィルムを通した屋外景色がほぼ自然色に見える透視性の良いものであった。このフィルムの近赤外線透過率は42.3%と低く、熱線遮断評価試験機における熱線遮断効率は36.1%であった。紫外線透過率が6.1%と大きく低下しており、紫外線遮断効果も併せ持つフィルムであった。フィルム特性は表1に纏めて示した。また、耐候性試験後の可視光線透過率は90.2%、近赤外線透過率は43.0%、紫外線透過率6.3%、YIは4.3と初期値を保持しており、優れた耐候性をもつフィルムであった。耐候性試験後のフィルム特性は表2に纏めて示した。
 [実施例3、4、比較例1、2]
 ITOマスタの配合量を種々変更した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。
フィルム特性は表1に纏めて示すが、フィルム中のITO含有量が多いほど1800~2200nmにおける平均光線透過率が低下し、反比例して熱線遮断効率は向上する。ITO含有量0.003重量%(比較例1)では、近赤外線透過率が92.4%と高く、さらに熱線遮断効率は7.2%と不十分であった。ITO含有量0.30重量%(比較例2)では、この場合熱線遮断効果はあると言えるが、ヘイズが27.0%と高く、透視性が不十分であった。
 [実施例5、6、比較例3、4]
 ITOマスタの配合量を種々変更した以外は実施例2と同様に、厚さ50μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。フィルム中のITO含有量が多いほど近赤外線透過率が低下し、熱線遮断効率は向上する。ITO含有量0.10重量%(比較例3)では、近赤外線透過率68.6%と高く、さらに熱線遮断効率12.9%と不十分であった。ITO含有量2.00重量%(比較例4)では、熱線遮断効率は45.3%と熱線遮断効率が有効であるがヘイズが71.2%と高く、透明性が不十分であった。
 [実施例7、8、比較例5、6]
 青色マスタの配合量を種々変更した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。フィルム中の青色含有量が多いほどYI値(黄色度)が低下し無色に近づくが、含有量が過剰になると青色になるため(比較例6)、ITO含有量に応じた最適含有量があることを示している。
 [実施例9、比較例7、8]
 ITOマスタの粒子径を種々変更して実施例1(1)と同様にITOマスタA2(平均粒子径150nm)、A3(同5nm)、A4(同300nm)を準備した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。ITOの平均粒子径が5nmでは近赤外線透過率が81.6%と高く、熱線遮断効率は12.7%と不十分であった。平均粒子径が300nmでは、近赤外線透過率が57.4%であり、熱線遮断効率が26.5%と十分であるが、ヘイズが33.5%と高く透明性が不十分であった。
 [実施例10、比較例9、10]
 青色顔料の粒子径を種々変更して実施例1(2)と同様に青色マスタB2(平均粒子径100nm)、B3(同5nm)、B4(同250nm)を準備した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。青色顔料の平均粒子径が5nmでは近赤外線透過率が69.8%と高く、熱線遮断効率は16.4%で不十分であった。平均粒子径が250nmでは、近赤外線透過率が41.9%となり、熱線遮断効率は37.2%を示すが、ヘイズが28.2%と高く透明性が不十分であった。
 [実施例11]
 平均粒径50nmの銅フタロシアニン(大日精化工業(株)製、および予め粉体化したエチレン・テトラフルオロエチレン共重合体(ダイキン工業(株)製“ネオフロン(登録商標)”ETFE EP-526)の混合物をバンバリミキサーで溶融混練し、銅フタロシアニンを20重量%含有する組成物を得た。次いでこの組成物とETFEペレットを銅フタロシアニンが2重量%となるように混合してベント式二軸押出機に供給し、ストランド状に押出してカッティングし、ペレット状の銅フタロシアニン含有ETFE樹脂(青色マスタB5)を作製した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。得られたフィルムは黄色味が少なく、無色透明で、フィルムを通した屋外景色がほぼ自然色に見える透視性の良いものであった。このフィルムの近赤外線透過率は44.6%と低く、熱線遮断評価試験機における熱線遮断効率は35.7%であった。紫外線透過率が6.7%と大きく低下しており、紫外線遮断効果も併せ持つフィルムであった。フィルム特性は表1に纏めて示す。また、500時間の耐候性試験後の可視光線透過率は85.5%と若干低下したが、近赤外線透過率は45.0%で、熱線遮断効率は35.8%、紫外線透過率は8.3%、YI値(黄色度)は7.3と初期値をほぼ保持しており、前記耐候性試験に対し耐候性を持つフィルムであった。耐候性試験前後のフィルム特性は表2に纏めて示す。
 [実施例12~14]
 ITOに含まれる酸化インジウムと酸化錫の重量比(In/Sn)を種々変更して実施例1(1)と同様にITOマスタを作製した以外は実施例2と同様に、厚さ250μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。ITO中の酸化錫が3~20重量%の範囲で熱線遮断効果を示すが、この範囲ではITO中の酸化錫が少ないほど近赤外線透過率が増大し、すなわち熱線遮断効率も向上するフィルムであった。
 [比較例11]
ITOおよび青色顔料を含まずにETFEのペレットのみで、実施例1(3)と同様に押出してフィルム化し、厚さ250μmの無延伸フィルムを得た。フィルム特性は表1に纏めて示す。透過光を遮断するその他粒子を含んでいないため表中、最も高い可視光線透過率および近赤外線透過率を示すフィルムであった。そのため熱線遮断効率も最も低い値を示す。
 [比較例12]
ITOおよび青色顔料を含まず、代わりに表1に示すアンチモン錫化合物(ATO)の微粒子を実施例1(1)と同様にマスタ化したものを使用した。さらに実施例1(3)と同様に押出してフィルム化させ、250μmの無延伸フィルムを得た。比較例11と比較すれば熱線遮断効果を示すが、例えば実施例4と比較して、ATO含有量がITO含有量の4倍多く含まれるが、熱線遮断効率はおよそ1/4倍であった。ATOはITOに比べ粒子の含有量に対して非常に効果の低いフィルムであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のフッ素樹脂フィルムは、透明性、熱線遮断性、耐候性に優れ、建造物の屋根材や壁材、窓材、アーケード、天井ドーム、カーポート等に広く利用されるフッ素樹脂成形体に係り、特に、可視光線の透過性が良好でかつ熱線遮断効率が20%を上回る熱線遮断効果を有する点でその利用価値を増幅できる。
1 ブラックボックス
2 赤外線ランプ
3 測温体
4 フィルムホルダー
5 測定フィルム
6 温度記録計

Claims (4)

  1. 平均粒子径が10~200nmの酸化インジウム錫および平均粒子径が10~200nmの青色顔料を含有するフッ素樹脂フィルムであって、酸化インジウム錫の含有量A(重量%)および青色顔料の含有量B(重量%)が、フィルム厚さをt(μm)として下記式(1)、(2)を同時に満足することを特徴とするフッ素樹脂フィルム。
    10/t≦A≦60/t (1)
    0.05A≦B≦0.3A (2)
  2. さらに、波長1800~2200nmにおける光線透過率TIR(%)として下記式(A)を満足する請求項1に記載のフッ素樹脂フィルム。
    20≦TIR≦70 (A)
  3. 該フッ素樹脂フィルムのフィルム厚さtが10~500μmであり、該フッ素樹脂フィルムの黄色度YI、波長380~700nmにおける光線透過率T(%)、および、波長1800~2200nmにおける光線透過率TIR(%)が下記式(3)、(4)、(5)を同時に満足する請求項1または2に記載のフッ素樹脂フィルム。 
    -0.01t≦YI≦0.03t (3)
    85≦T≦98 (4) 
    20≦TIR≦50 (5) 
  4. 青色顔料がコバルトブルーである請求項1~3のいずれかに記載のフッ素樹脂フィルム。
PCT/JP2013/054082 2012-02-23 2013-02-20 フッ素樹脂フィルム WO2013125548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/380,191 US20150024189A1 (en) 2012-02-23 2013-02-20 Fluorine resin film
EP13752175.3A EP2818515B1 (en) 2012-02-23 2013-02-20 Fluororesin film
JP2013509056A JP5999601B2 (ja) 2012-02-23 2013-02-20 フッ素樹脂フィルム
CN201380008082.8A CN104093781B (zh) 2012-02-23 2013-02-20 氟树脂膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037012 2012-02-23
JP2012037012 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125548A1 true WO2013125548A1 (ja) 2013-08-29

Family

ID=49005732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054082 WO2013125548A1 (ja) 2012-02-23 2013-02-20 フッ素樹脂フィルム

Country Status (5)

Country Link
US (1) US20150024189A1 (ja)
EP (1) EP2818515B1 (ja)
JP (1) JP5999601B2 (ja)
CN (1) CN104093781B (ja)
WO (1) WO2013125548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031930A1 (ja) * 2014-08-29 2016-03-03 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体シートおよびその製造方法
CN112812519A (zh) * 2020-12-31 2021-05-18 东莞市基烁实业有限公司 一种pet膜用高红外光及紫外光阻隔母粒及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201605781WA (en) * 2014-01-22 2016-09-29 Lintec Corp Protective film-forming film, sheet for forming protective film, complex sheet for forming protective film, and inspection method
EP3532866A1 (en) 2016-10-28 2019-09-04 PPG Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
KR20210087991A (ko) 2018-11-13 2021-07-13 피피지 인더스트리즈 오하이오 인코포레이티드 은닉 패턴을 검출하는 방법
CN110789213B (zh) * 2019-11-08 2021-11-02 平湖市方盛皮件股份有限公司 一种聚氨酯与聚四氟乙烯的复合工艺
KR20220155598A (ko) * 2020-04-22 2022-11-23 에이지씨 가부시키가이샤 필름 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205898A (ja) 1996-02-01 1997-08-12 Toppan Printing Co Ltd 農業用シート
JP2001171060A (ja) 1999-12-17 2001-06-26 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2002069258A (ja) 2000-08-25 2002-03-08 Asahi Glass Co Ltd フッ素樹脂フィルム
JP2004025586A (ja) 2002-06-25 2004-01-29 Asahi Glass Co Ltd 熱線遮断性フッ素樹脂複合シート及びそれを用いてなる屋根材
JP2008181838A (ja) 2007-01-26 2008-08-07 Toppan Printing Co Ltd 透明導電性積層体
JP2012021056A (ja) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd 農業用フィルム
JP2012019712A (ja) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd 農業用ハウス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673939B2 (ja) * 1987-10-05 1994-09-21 富士写真フイルム株式会社 感光物質用積層フィルム
ATE323726T1 (de) * 2000-08-29 2006-05-15 Daikin Ind Ltd Härtbares fluoropolymer, härtbare harzzusammensetzungen diese enthaltend und antireflexionsfilm
EP1666927A1 (de) * 2004-12-03 2006-06-07 Nanogate Advanced Materials GmbH Sonnenschutzfolie
US8029891B2 (en) * 2005-05-31 2011-10-04 E.I. Du Pont De Nemours And Company Nanoparticulate solar control concentrates
US20100092759A1 (en) * 2008-10-13 2010-04-15 Hua Fan Fluoropolymer/particulate filled protective sheet
EP2396367A1 (de) * 2009-02-12 2011-12-21 Basf Se Polymerzusammensetzungen enthaltend nanopartikuläre ir-absorber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205898A (ja) 1996-02-01 1997-08-12 Toppan Printing Co Ltd 農業用シート
JP2001171060A (ja) 1999-12-17 2001-06-26 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2002069258A (ja) 2000-08-25 2002-03-08 Asahi Glass Co Ltd フッ素樹脂フィルム
JP2004025586A (ja) 2002-06-25 2004-01-29 Asahi Glass Co Ltd 熱線遮断性フッ素樹脂複合シート及びそれを用いてなる屋根材
JP2008181838A (ja) 2007-01-26 2008-08-07 Toppan Printing Co Ltd 透明導電性積層体
JP2012021056A (ja) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd 農業用フィルム
JP2012019712A (ja) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd 農業用ハウス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818515A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031930A1 (ja) * 2014-08-29 2016-03-03 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体シートおよびその製造方法
US20170136673A1 (en) * 2014-08-29 2017-05-18 Asahi Glass Company, Limited Ethylene-tetrafluoroethylene copolymer sheet and method for producing same
JPWO2016031930A1 (ja) * 2014-08-29 2017-06-22 旭硝子株式会社 エチレン−テトラフルオロエチレン共重合体シートおよびその製造方法
US10252455B2 (en) 2014-08-29 2019-04-09 AGC Inc. Ethylene-tetrafluoroethylene copolymer sheet and method for producing same
CN112812519A (zh) * 2020-12-31 2021-05-18 东莞市基烁实业有限公司 一种pet膜用高红外光及紫外光阻隔母粒及其制备方法和应用

Also Published As

Publication number Publication date
CN104093781A (zh) 2014-10-08
CN104093781B (zh) 2016-06-29
US20150024189A1 (en) 2015-01-22
JPWO2013125548A1 (ja) 2015-07-30
EP2818515B1 (en) 2016-10-12
EP2818515A1 (en) 2014-12-31
JP5999601B2 (ja) 2016-09-28
EP2818515A4 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5999601B2 (ja) フッ素樹脂フィルム
US10795065B2 (en) Solar-radiation-shielding material for vehicle window and window for vehicle
JP4632094B2 (ja) 高耐熱性マスターバッチの製造方法、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
US8268460B2 (en) High heat resistant masterbatch, heat ray shielding transparent molded resin, and heat-ray shielding transparent lamination body
TWI698468B (zh) 熱射線屏蔽膜、熱射線屏蔽層合透明基材、汽車、建物、分散體、混合組成物、及分散體之製造方法、分散液、分散液之製造方法
JP5257626B2 (ja) 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP6269780B2 (ja) 混合分散液
CN103003342A (zh) 具有吸热性质和改进的颜色性质的聚合物组合物
JP2008044609A5 (ja)
JP2008044609A (ja) 車窓用日射遮蔽体及び車両用窓
JP2013501117A (ja) フルオロポリマーと酸化亜鉛をベースにしたアクリル臭の無い太陽電池用フィルム
JP5898397B2 (ja) 近赤外線遮蔽ポリエステル樹脂組成物、近赤外線遮蔽ポリエステル樹脂積層体、および、成形体とその製造方法
JP2012082326A (ja) 高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体
JP6391563B2 (ja) 熱線遮断性フッ素樹脂フィルム
JP2006199850A (ja) 熱線遮蔽成分含有マスターバッチと熱線遮蔽透明樹脂成形体および熱線遮蔽透明樹脂積層体
EP2703446A1 (en) Vinylidene fluoride-based resin film, solar cell back sheet, and solar cell module
CN103153615B (zh) 多层组件
WO2015114983A1 (ja) フッ素系樹脂組成物、樹脂フィルム、積層体及び太陽電池モジュール用バックシート
CN107446269B (zh) 一种透明隔热的聚氯乙烯胶布及其制备方法
JP2015521796A (ja) 光電池セルモジュール用バックシート及びそれを含む光電池セルモジュール
JP2011157492A (ja) フッ素樹脂フィルム
JP3190490U (ja) 採光窓
JP2019020708A (ja) 防眩性シートおよび防眩性合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509056

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752175

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013752175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013752175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14380191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE