WO2013125155A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2013125155A1
WO2013125155A1 PCT/JP2013/000153 JP2013000153W WO2013125155A1 WO 2013125155 A1 WO2013125155 A1 WO 2013125155A1 JP 2013000153 W JP2013000153 W JP 2013000153W WO 2013125155 A1 WO2013125155 A1 WO 2013125155A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
acquisition unit
temperature
unit
threshold value
Prior art date
Application number
PCT/JP2013/000153
Other languages
English (en)
French (fr)
Inventor
洋輔 大槻
太田垣 和久
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013125155A1 publication Critical patent/WO2013125155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to control technology, and more particularly to a control device that controls the operation of a storage battery.
  • the electric power generated in the solar battery is stored in the storage battery.
  • the generated power is lower than the power consumption required by the load, such as when it is cloudy or at night, the power consumption is satisfied by supplying the power stored in the storage battery to the load. With such a configuration, even when the power generated in the solar cell is insufficient, power is stably supplied to the load.
  • a storage battery is not installed alone, but may be installed in a casing together with other devices.
  • the heating may affect devices other than the storage battery.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for easily ensuring a discharge capacity of a storage battery even at a low temperature.
  • a control device includes a first acquisition unit that acquires a temperature in the vicinity of a storage battery that inputs at least a part of a current output from a renewable energy power generation device, and a regeneration
  • the second acquisition unit that acquires information about the predicted start time of power generation in the possible energy power generation device, and the schedule obtained by the information acquired by the second acquisition unit when the temperature acquired by the first acquisition unit is lower than the threshold value
  • Another aspect of the present invention is also a control device.
  • an instruction to rotate the fan in the first rotation direction in order to release the heat in the casing in which the storage battery for storing electric power and the inverter connected to the storage battery to be a heat source is provided outside the casing is provided.
  • an acquisition unit that acquires a temperature in the vicinity of the storage battery. The instruction unit rotates the fan in a second rotation direction opposite to the first rotation direction when the temperature acquired by the acquisition unit is lower than the threshold value.
  • Still another embodiment of the present invention is also a control device.
  • This device includes an acquisition unit that acquires a temperature in the vicinity of the storage battery, and an instruction unit that controls opening and closing of the ventilation opening of the storage battery based on the temperature acquired by the acquisition unit.
  • the instruction unit closes the vent hole when the temperature acquired by the acquisition unit is lower than the threshold value.
  • Still another embodiment of the present invention is also a control device.
  • the apparatus includes a first acquisition unit that acquires a voltage value in a storage battery that inputs at least a part of a current output from the renewable energy power generation apparatus, a second acquisition unit that acquires a temperature in the vicinity of the storage battery, When the temperature acquired in 2 acquisition part is lower than a threshold value, if the value of the voltage acquired in the 1st acquisition part reaches a target value, the instruction
  • the discharge capacity of the storage battery can be easily secured even at low temperatures.
  • FIGS. 1A to 1C are diagrams showing a configuration of a power distribution system according to an embodiment of the present invention. It is a figure which shows the structure of the power distribution system of Fig.1 (a)-(c) in detail.
  • FIGS. 3A to 3B are diagrams showing the configuration of the housing according to the embodiment of the present invention.
  • 4A and 4B are diagrams showing the data structure of the table stored in the instruction unit of FIG. It is a flowchart which shows the process sequence of the control part of FIG. It is a figure which shows the structure of the power distribution system which concerns on the modification of this invention in detail. It is a figure which shows the process outline
  • FIGS. 11A and 11B are perspective views showing the appearance of the storage battery of FIG. 12A and 12B are diagrams showing the data structure of the table stored in the instruction unit of FIG. It is a flowchart which shows the process sequence of the control part of FIG. It is a figure which shows in detail the structure of the power distribution system which concerns on another modification of this invention. It is a figure which shows the process outline
  • Embodiments of the present invention relate to a power distribution system that connects a solar cell in parallel with a commercial power system, supplies power from both the commercial power source and the solar cell to a load, and charges the storage battery.
  • the storage battery is charged by a commercial power source and a solar battery.
  • constant current charging is performed first, and constant current charging is switched to constant voltage charging when near full charge.
  • the amount of current supplied to the storage battery can be controlled.
  • the present embodiment executes the following processing.
  • the storage battery is installed in one housing together with a conversion device having an inverter function and a converter function. Since the converter generates heat by processing, it can be a heat source. In order to suppress the temperature rise in the housing due to such heat generation, the housing is provided with a fan. For example, a conversion device is installed between the fan and the storage battery. The heat generated by the conversion device is output outside the housing by the fan.
  • the fan is rotated in the reverse direction. If it does in this way, the heat generated by the converter will be outputted by the fan in the direction of the storage battery. As a result, the storage battery is warmed by the heat generated from the converter, so that the discharge capacity of the storage battery increases.
  • FIGS. 1A to 1C show a configuration of a power distribution system 100 according to an embodiment of the present invention.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a first SW 18, a second SW 20, a commercial power supply 22, a specific load 24, and a general load 26.
  • the commercial power source 22 is an AC power source for supplying power from an electric power company.
  • FIG. 1A corresponds to the configuration of the power distribution system 100 when the commercial power supply 22 is not out of power (hereinafter referred to as “normal time”).
  • the solar cell 10 is a power device that uses the photovoltaic effect to directly convert light energy into electric power.
  • a silicon solar cell a solar cell made of various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the solar cell 10 outputs the generated power.
  • the storage battery 12 is a secondary battery that can be used as a battery by storing electricity by charging and can be used repeatedly.
  • the storage battery 12 is charged with electric power generated based on a renewable energy source, that is, electric power generated in the solar battery 10 or electric power from the commercial power source 22.
  • the conversion device 14 connects the solar cell 10 to one end side.
  • route of the converter 14 and the solar cell 10 is branched on the way, and the storage battery 12 is connected to the branched path
  • the management device 16 outputs an instruction for controlling the operation of the storage battery 12 to the conversion device 14.
  • the general load 26 is an AC drive type electric device.
  • the general load 26 is connected to a path branched from the path between the converter 14 and the commercial power supply 22.
  • a reverse power flow sensor and a distribution board are connected on the path between the converter 14 and the commercial power supply 22 and from the branch point to the commercial power supply 22 to the commercial power supply 22 side.
  • the reverse power flow sensor is installed between the distribution board and the commercial power supply 22 and detects electric power from the distribution board to the commercial power supply 22. This is to prevent power from going from the distribution board to the commercial power supply 22. Since a known technique may be used for the detection process in the reverse power flow sensor, description thereof is omitted here.
  • the first SW 18 and the second SW 20 are switches for changing a route in accordance with an instruction from the management device 16. On / off and switching of the first SW 18 and the second SW 20 are instructed by the conversion device 14. It may be instructed by the management device 16. In a normal state, the first SW 18 is turned on, and the second SW 20 is connected to the Y-side terminal. As a result, the Y-side terminal of the second SW 20 and the specific load 24 are connected.
  • the specific load 24 is an AC drive type electric device, like the general load 26. According to such a form, the normal (1) charge and (2) discharge are performed as follows.
  • the electricity rate at night time is set lower than the electricity rate at daytime.
  • the daytime time zone is defined as from 7:00 to 23:00
  • the nighttime zone is defined as from 23:00 to 7:00 on the next day. Therefore, the electric power supplied from the commercial power source 22 is charged to the storage battery 12 via the first SW 18 and the converter 14 in the night time zone.
  • the converter 14 converts the AC power input from the commercial power supply 22 into DC power, and outputs the DC power to the storage battery 12.
  • the electric power generated by the solar cell 10 is output to the conversion device 14 during the daytime.
  • surplus electric power is charged in the storage battery 12.
  • the converter 14 converts the DC power input from the solar cell 10 into AC power, and outputs the AC power to the first SW 18.
  • the conversion device 14 converts AC power into DC power, or converts DC power into AC power.
  • any known technique may be used for these conversion processes. The description is omitted here.
  • FIG. 1B corresponds to the configuration of the power distribution system 100 when the commercial power source 22 has a power failure (hereinafter referred to as “at the time of a power failure”).
  • a distribution board (not shown) detects a power failure.
  • the conversion device 14 controls the first SW 18 and the second SW 20. More specifically, during a power failure, the first SW 18 is turned off and the second SW 20 is connected to the X-side terminal. As a result, the specific load 24 is connected to the conversion device 14, but the general load 26 is disconnected from the conversion device 14. Therefore, the power from the solar cell 10 is output to the conversion device 14, and the power from the conversion device 14 is supplied to the specific load 24.
  • the storage battery 12 may output electric power at the time of a power failure.
  • the discharged power is also output to the converter 14, and the power from the converter 14 is supplied to the specific load 24.
  • the specific load 24 can receive power from the solar cell 10, the storage battery 12, and the commercial power source 22 during normal times, and can also supply power from the solar cell 10 and the storage battery 12 during power outages. It is possible to receive.
  • the general load 26 can be supplied with power from the solar battery 10, the storage battery 12, and the commercial power source 22 at normal times, but cannot be supplied with power at the time of a power failure.
  • FIG. 1C corresponds to the configuration of the power distribution system 100 when the commercial power source 22 is restored from a power failure to a state where the power failure has not occurred (hereinafter referred to as “at the time of restoration”).
  • a distribution board (not shown) detects the recovery.
  • the conversion device 14 controls the second SW 20. More specifically, at the time of recovery, the first SW 18 is kept off, and the second SW 20 is connected to the Y-side terminal.
  • the specific load 24 and the general load 26 are disconnected from the conversion device 14 and connected to the commercial power supply 22.
  • the electric power from the commercial power supply 22 is supplied to the specific load 24 and the general load 26.
  • the converter 14 since the specific load 24 and the general load 26 are not connected to the converter 14, the converter 14 does not output alternating current power.
  • the electric power generated in the solar cell 10 is supplied to the storage battery 12.
  • FIG. 2 shows the configuration of the power distribution system 100 in detail.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a voltmeter 30, a thermometer 32, and a fan 34.
  • the management device 16 includes a control unit 40, and the control unit 40 includes a first acquisition unit 42, a second acquisition unit 44, and an instruction unit 46.
  • FIG. 2 shows necessary portions of the power distribution system 100 shown in FIGS. 1 (a)-(c).
  • the thermometer 32 is installed in the vicinity of the storage battery 12 and measures the temperature in the vicinity of the storage battery 12.
  • the vicinity is a distance that can detect a temperature change in the storage battery 12.
  • a known technique may be used for measuring the temperature.
  • the thermometer 32 outputs the measured temperature.
  • the first acquisition unit 42 acquires the temperature near the storage battery 12 from the thermometer 32.
  • the first acquisition unit 42 outputs the temperature to the instruction unit 46.
  • FIGS. 3A to 3B show the configuration of the housing 90 according to the embodiment of the present invention.
  • the housing 90 includes the storage battery 12, the conversion device 14, the management device 16, and the fan 34 inside. These are shown in FIGS. 1 (a)-(c) and FIG. These other components are also provided in the housing 90, but are omitted here.
  • a fan 34 is installed on the top of the housing 90. Note that the fan 34 may be installed at a location other than the upper portion of the housing 90.
  • the converter 14 is installed between the fan 34 and the storage battery 12. As shown, the fan 34 is rotated to output heat generated from the conversion device 14 to the outside of the housing 90.
  • the rotation direction of the fan 34 at this time corresponds to the first rotation direction described above. FIG. 3B will be described later, and the processing returns to FIG.
  • the instruction unit 46 receives the temperature value from the first acquisition unit 42. When the temperature is equal to or higher than the first threshold value, the instruction unit 46 maintains the first rotation direction of the fan 34. On the other hand, when the temperature is lower than the first threshold value, the instruction unit 46 rotates the fan 34 in the second rotation direction opposite to the first rotation direction.
  • FIG. 3B shows a case where the fan 34 is rotated in the second rotation direction. As shown in the figure, heat generated from the converter 14 is directed to the storage battery 12. The storage battery 12 is warmed by the heat from the conversion device 14. Returning to FIG.
  • the instruction unit 46 stores a table.
  • FIGS. 4A and 4B show the data structure of the table stored in the instruction unit 46.
  • FIG. 4A a condition column 200 and a rotation direction column 202 are included.
  • the instruction unit 46 compares the received temperature with the condition column 200 and selects the corresponding rotation direction from the rotation direction column 202.
  • FIG. 4B will be described later, and the processing returns to FIG.
  • the instruction unit 46 may select the rotation direction of the fan 34 as follows.
  • the voltmeter 30 measures the value of the voltage in the storage battery 12. A known technique may be used for measuring the voltage.
  • the voltmeter 30 outputs a voltage value.
  • the second acquisition unit 44 acquires a voltage value from the voltmeter 30.
  • the instructing unit 46 has a case where the voltage value acquired by the second acquisition unit 44 is larger than the second threshold value.
  • the fan 34 is rotated in the second rotation direction. That is, the instruction unit 46 controls the rotation direction of the fan 34 not only according to the temperature but also according to the amount of voltage. In cases other than the above, the instruction unit 46 rotates the fan 34 in the first rotation direction.
  • FIG. 4B shows the data structure of the table stored in the instruction unit 46. Similar to FIG. 4A, FIG. 4B also includes a condition column 200 and a rotation direction column 202. Even if the temperature is lower than the first threshold value, if the voltage value is equal to or lower than the second threshold value, indicator 46 maintains the first rotation direction.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
  • FIG. 5 is a flowchart showing a processing procedure of the control unit 40. If the temperature is lower than the first threshold value (Y in S10), the instruction unit 46 rotates the fan 34 in the second rotation direction (S12). On the other hand, if the temperature is not lower than the first threshold value (N in S10), the instruction unit 46 rotates the fan 34 in the first rotation direction (S14).
  • the modification also relates to the power distribution system, as in the embodiment. Also in the modified example, when the storage battery is at a low temperature and the amount of current from the solar battery is large, a phenomenon occurs in which the storage battery is not sufficiently charged even if the power generated by the solar battery is sufficiently large. In the modification, the following processing is executed.
  • the solar cell is composed of a plurality of panels, and the plurality of panels are connected in parallel. In each panel, a plurality of panels may be further connected in series. Here, a plurality of panels connected in series is simply referred to as a panel.
  • a switch is connected to each panel. When the switch is turned off, the power generated in the panel corresponding to the switch is not output. In the initial state, all switches are turned on.
  • the switch is turned off step by step so that the voltage becomes constant. As a result, when a large amount of electric power is generated in the solar battery, the current input to the storage battery is suppressed.
  • FIG. 6 shows in detail the configuration of a power distribution system 100 according to a modification of the present invention.
  • the power distribution system 100 includes a first panel 60a, a second panel 60b, an N panel 60n, a panel SW62, a first panel SW62a, a second panel SW62b, an N panel SW62n, a storage battery 12, A conversion device 14, a management device 16, a voltmeter 30, and a thermometer 32 are included.
  • the management device 16 includes a control unit 40, and the control unit 40 includes a first acquisition unit 50, a second acquisition unit 52, and an instruction unit 56.
  • the plurality of panels 60 correspond to the solar cell 10 already described. Each of the plurality of panels 60 is arranged in parallel.
  • the panel 60 is connected to the panel SW 62 on a one-to-one basis. When the panel SW 62 is turned on, the electric power generated in the panel 60 corresponding to the panel SW 62 is output to the storage battery 12 and the conversion device 14. On the other hand, when the panel SW62 is turned off, the power generated in the panel 60 corresponding to the panel SW62 is not output.
  • Each panel 60 is connected to the path
  • the 1st acquisition part 50 acquires the temperature near the storage battery 12 from the thermometer 32 similarly to the 1st acquisition part 42 shown by FIG.
  • the first acquisition unit 50 outputs the temperature to the instruction unit 56.
  • the second acquisition unit 52 also acquires the voltage value in the storage battery 12 from the voltmeter 30.
  • the second acquisition unit 52 outputs the voltage value to the instruction unit 56.
  • the instruction unit 56 controls the opening and closing of each of the plurality of panel SW 62 based on the temperature acquired by the first acquisition unit 50 and the voltage value acquired by the second acquisition unit 52.
  • all the panels SW62 are closed, that is, turned on. This is equivalent to outputting the electric power generated in all the panels 60.
  • the instruction unit 56 keeps all the panel SWs 62 closed.
  • the instruction unit 56 determines the number of panel SW 62 to be opened according to the voltage value acquired in the second acquisition unit 52. Increase. More specifically, the instruction unit 56 increases the number of opened panel SW 62 stepwise so that the voltage value acquired by the second acquisition unit 52 approaches the target value.
  • FIG. 7 is a diagram showing an outline of processing of the instruction unit 56.
  • the vertical axis indicates the voltage value, and the horizontal axis indicates time.
  • the temperature is lower than the first threshold value.
  • the above-described target value is indicated as VM.
  • the instruction unit 56 opens the first panel SW62.
  • the instruction unit 56 opens the second panel SW62.
  • the instruction unit 56 sequentially opens the panel SW62.
  • the instruction unit 56 stores a table.
  • FIG. 8 shows the data structure of the table stored in the instruction unit 56. As shown in FIG. 8, a condition column 210 and a panel SW column 212 are included. The instruction unit 46 compares the received temperature with the condition column 210 and selects the corresponding operation from the panel SW column 212. Returning to FIG. 8
  • the panel SW 62 is released and the voltage always rises to VM after a while.
  • the instruction unit 56 may decrease the number of opened panels SW 62 in a stepwise manner so that the voltage value acquired by the second acquisition unit 52 approaches the target value.
  • FIG. 9 is a flowchart illustrating a processing procedure of the control unit 40.
  • the instruction unit 56 turns off the panel SW62 (S24). If the voltage value does not reach VM (N in S22), step 24 is skipped.
  • the temperature is not lower than the first threshold value (N in S20), all the panels SW62 are turned on (S26).
  • Another modification also relates to the power distribution system as before.
  • Another modification performs the following process.
  • the storage battery is provided with a vent for outputting internal heat to the outside.
  • the temperature of the storage battery is lower than the first threshold value, the voltage of the storage battery is monitored, and the ventilation opening is closed by the lid.
  • the heat generated inside the storage battery is stored in the storage battery without escaping to the outside.
  • the vent hole is opened.
  • FIG. 10 shows in detail the configuration of a power distribution system 100 according to another modification of the present invention.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a voltmeter 30, a thermometer 32, and an opening / closing unit 64.
  • the management device 16 includes a control unit 40, and the control unit 40 includes a first acquisition unit 70, a second acquisition unit 72, and an instruction unit 74.
  • 1st acquisition part 70 acquires the temperature of the storage battery 12 vicinity from the thermometer 32 similarly to the 1st acquisition part 42 shown by FIG.
  • the first acquisition unit 70 outputs the temperature to the instruction unit 74.
  • the instruction unit 74 controls the opening / closing of the ventilation opening of the storage battery 12 based on the temperature acquired by the first acquisition unit 70. If demonstrating it concretely, the instruction
  • FIGS. 11A to 11B are perspective views showing the appearance of the storage battery 12.
  • the storage battery 12 includes a first vent 92a, a second vent 92b, a third vent 92c, and a fourth vent 92d, which are collectively referred to as the vent 92. Therefore, FIG. 11A corresponds to the case where the ventilation opening 92 is opened by the opening / closing part 64 of FIG.
  • the storage battery 12 includes a first lid 94a, a second lid 94b, a third lid 94c, and a fourth lid 94d, which are collectively referred to as a lid 94.
  • the ventilation opening 92 is blocked by the lid 94. Therefore, FIG.11 (b) is corresponded when the ventilation opening 92 is closed by the opening-and-closing part 64 of FIG.
  • the instruction unit 74 stores a table.
  • FIGS. 12A and 12B show the data structure of the table stored in the instruction unit 74.
  • FIG. 12A a condition column 220 and a vent column 222 are included.
  • the instructing unit 74 compares the received temperature with the condition column 220 and selects the corresponding operation from the air vent column 222.
  • FIG. 12B will be described later, and the processing returns to FIG.
  • the instruction unit 74 may select whether or not to close the ventilation opening 92 as follows.
  • the second acquisition unit 72 acquires the voltage value from the voltmeter 30 in the same manner as the second acquisition unit 44 of FIG.
  • the instruction unit 74 is used when the voltage value acquired by the second acquisition unit 72 is larger than the second threshold value.
  • the ventilation opening 92 is closed with respect to the opening / closing part 64.
  • the instruction unit 74 causes the opening / closing unit 64 to open the ventilation port 92.
  • FIG. 12B shows the data structure of the table stored in the instruction unit 74. Similar to FIG. 12A, FIG. 12B also includes a condition column 220 and a vent column 222. Even if the temperature is lower than the first threshold value, if the voltage value is equal to or lower than the second threshold value, instructing unit 74 opens vent hole 92.
  • FIG. 13 is a flowchart illustrating a processing procedure of the control unit 40. If the temperature is lower than the first threshold value (Y in S30), the instruction unit 74 causes the opening / closing unit 64 to close the ventilation port 92 (S32). On the other hand, if the temperature is not lower than the first threshold value (N in S30), the instruction unit 74 causes the opening / closing unit 64 to open the ventilation port 92 (S34).
  • Still another modified example relates to a power distribution system as before.
  • a phenomenon occurs in which the storage battery is not sufficiently charged even if the power generated by the solar battery is sufficiently large.
  • the following processing is executed.
  • At least one of the general loads connected to the power distribution system is a load whose operation time can be adjusted.
  • An example of this is a natural refrigerant heat pump water heater that can be controlled by a network.
  • such a load is connected to the outside of the housing in which the storage battery is installed.
  • the temperature of the storage battery is lower than the first threshold value, power is consumed by supplying power to a load whose operation time can be adjusted. As a result, the current output to the storage battery is limited. Moreover, the electric current output to a storage battery is adjusted so that it may become constant voltage charge. As a result, when a large amount of electric power is generated in the solar battery, the current input to the storage battery is suppressed.
  • FIG. 14 shows in detail the configuration of a power distribution system 100 according to yet another modification of the present invention.
  • the power distribution system 100 includes a solar cell 10, a storage battery 12, a conversion device 14, a management device 16, a general load 26, a voltmeter 30, and a thermometer 32.
  • the management device 16 includes a control unit 40, and the control unit 40 includes a first acquisition unit 80, a second acquisition unit 82, and an instruction unit 84.
  • the general load 26 is as described above. Here, it is assumed that the load is adjustable in particular, for example, a natural refrigerant heat pump water heater. Further, the general load 26 is connected to the outside of the housing in which the storage battery 12 is installed.
  • the voltmeter 30 measures the value of the voltage in the storage battery 12.
  • the storage battery 12 receives at least a part of the current output from the solar battery 10.
  • the first acquisition unit 80 acquires a voltage value from the voltmeter 30.
  • the first acquisition unit 80 outputs the voltage value to the instruction unit 84.
  • the second acquisition unit 82 acquires the temperature near the storage battery 12 from the thermometer 32.
  • at least a part of the current output from the solar battery 10 is input to the storage battery 12.
  • the second acquisition unit 82 outputs the temperature to the instruction unit 84.
  • the instruction unit 84 is consumed by the general load 26 out of the current output from the solar cell 10 based on the voltage value acquired by the first acquisition unit 80 and the temperature acquired by the second acquisition unit 82.
  • the current value to be adjusted is adjusted. Specifically, when the temperature acquired by the second acquisition unit 82 is lower than the threshold value, the instruction unit 84 is configured so that the voltage value acquired by the first acquisition unit 80 approaches the target value.
  • the value of the current to be consumed by the general load 26 is determined.
  • FIG. 15 shows a processing outline of the instruction unit 84.
  • the vertical axis indicates the current value, and the horizontal axis indicates time.
  • the generated current value 230 is a value of a current output from the solar cell 10.
  • the output current value 232 is a current value to be input to the storage battery 12. As illustrated, the output current value 232 decreases with the passage of time. This is because the storage battery 12 is charged at a constant voltage. If the value obtained by subtracting the output current value 232 from the generated current value 230 is positive, the instruction unit 84 causes the general load 26 to consume a current corresponding to the value. The current consumed by the general load 26 corresponds to the shaded portion in FIG. Returning to FIG.
  • control unit 40 may execute the following process. (1) When the temperature acquired in the second acquisition unit 82 is lower than the threshold value, the instruction unit 84 discharges the storage battery 12 if the voltage value acquired in the first acquisition unit 80 reaches a target value. Let After a certain period of time has elapsed since the storage battery 12 was discharged, the instruction unit 84 performs charging of the storage battery 12.
  • the control unit 40 in FIG. 14 may include a third acquisition unit (not shown).
  • the third acquisition unit acquires information related to the expected start time of power generation in the solar cell 10.
  • the predicted start time of power generation may be stored as a fixed time such as 7 am, or may be stored as a time that varies depending on the season.
  • the instruction unit 84 discharges the storage battery 12 before the scheduled time in the information acquired by the third acquisition unit arrives. Note that it is only necessary to be defined as a certain period before the scheduled time arrives.
  • the converter 14 may output the power from the solar cell 10 to the commercial power supply 22.
  • the fan for releasing the heat in the casing to the outside of the casing is rotated in the reverse direction, so that the heat can be held in the casing. Moreover, since heat is held in the housing, the storage battery can be warmed. Further, since the storage battery is warmed, the discharge capacity of the storage battery can be easily ensured even when the current from the solar battery is large.
  • the fan for releasing the heat in the casing to the outside of the casing is rotated in the reverse rotation, so that the storage battery can be warmed. Further, when either one is not satisfied, the fan is not rotated reversely, so that heat can be released.
  • the panel SW connected to the panel is opened step by step, so that the current input to the storage battery can be suppressed.
  • panel SW is open
  • a storage battery can be charged by constant voltage.
  • the storage battery is charged at a constant voltage, the discharge capacity of the storage battery can be easily secured.
  • the panel SW connected to the panel is opened stepwise, so that the current input to the storage battery can be suppressed.
  • the ventilation opening of the storage battery is closed, so that heat can be held in the storage battery. Moreover, since heat is held in the storage battery, the storage battery can be warmed. Moreover, when the temperature of a storage battery is low and the voltage in a storage battery is large, the ventilation opening of a storage battery is closed, Therefore A storage battery can be warmed. Further, when either one is not satisfied, the vent is not closed, so that heat can be released. In addition, when the temperature of the storage battery is low, a part of the generated power is consumed by an external general load, so that the current input to the storage battery can be suppressed. In addition, constant voltage charging can be performed because power is consumed by the general load so that the voltage in the storage battery approaches the target value.
  • the discharge capacity of a storage battery can be ensured easily. Moreover, even if the voltage of the storage battery reaches the target value, if the temperature is low, the storage battery is discharged, so that the temperature of the storage battery can be raised. Moreover, since the storage battery is discharged before the expected time to start power generation, the temperature of the storage battery can be raised.
  • control unit 40 is included in the management device 16.
  • the present invention is not limited thereto, and for example, the control unit 40 may be included in the conversion device 14. According to this modification, the degree of freedom in design can be improved.
  • a solar cell 10 is provided to generate power.
  • the present invention is not limited thereto, and for example, a device for generating electric power based on a renewable energy source may be provided in addition to the solar battery 10.
  • a wind power generator for example, a wind power generator. According to this modification, the degree of freedom of the configuration of the power distribution system 100 can be improved.
  • the discharge capacity of the storage battery can be easily secured even at low temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 温度計32は、蓄電池12近傍の温度を測定する。第1取得部42は、温度計32において測定した温度を取得する。指示部46は、電力を蓄えるための蓄電池12と、蓄電池12に接続されて熱源となりうる変換装置14とが内設された筐体内の熱を筐体外に放出するために、ファン34を第1回転方向に回転させる。指示部46は、第1取得部42において取得した温度がしきい値よりも低い場合に、第1回転方向とは逆の第2回転方向にファン34を回転させる。

Description

制御装置
 本発明は、制御技術に関し、特に蓄電池の動作を制御する制御装置に関する。
 太陽電池を用いた配電システムに蓄電池が接続される場合、太陽電池において発電された電力は、蓄電池に蓄えられる。曇りや夜間など、発電された電力が負荷の要求する消費電力を下回る場合、蓄電池に蓄えられた電力が、負荷に供給されることによって、消費電力が満たされる。このような構成によって、太陽電池において発電される電力が不足した場合にも、負荷に安定的に電力が供給される。
 このような蓄電池の温度が低くなると、蓄電池の内部抵抗が高くなることによって、蓄電池の放電容量の確保が困難になる。そのため、温度が低い状態で大電流で蓄電池を充電すると、蓄電池は、すぐに満充電電圧に到達する。これは、定電流充電可能な期間が短くなることに相当する。これにより、太陽電池が蓄電池に直接接続されている場合、太陽電池からの電流量を調節できないので、定電流充電ができなくなってしまう。その結果、温度が低い場合、発電量が十分に多いにもかかわらず、蓄電池は十分に充電されなくなる。これに対応するために、蓄電池をリボン状の電熱ヒータで加温させることが提案されている(例えば、特許文献1参照)。
特開2000-102192号公報
 蓄電池が単体で設置されるのではなく、他の機器とともに筐体内に内設されることもある。筐体内に電熱ヒータを設けた場合、加熱によって、蓄電池以外の機器に影響を与えることもあり得る。また、影響を小さくするように、筐体内の機器の設置位置を設計する必要がある。そのため、太陽電池からの電流量が多く、かつ蓄電池が低温の場合に、蓄電池の放電容量を簡易に確保することが望まれる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、低温の場合であっても、蓄電池の放電容量を簡易に確保する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の制御装置は、再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池の近傍の温度を取得する第1取得部と、再生可能エネルギー発電装置における発電開始の予想時刻に関する情報を取得する第2取得部と、第1取得部において取得した温度がしきい値よりも低い場合に、第2取得部において取得した情報での予定時刻が到来する前に、蓄電池を放電させる指示部と、を備える。
 本発明の別の態様もまた、制御装置である。この装置は、電力を蓄えるための蓄電池と、蓄電池に接続されて熱源となりうるインバータとが内設された筐体内の熱を筐体外に放出するために、ファンを第1回転方向に回転させる指示部と、蓄電池の近傍の温度を取得する取得部とを備える。指示部は、取得部において取得した温度がしきい値よりも低い場合に、第1回転方向とは逆の第2回転方向にファンを回転させる。
 本発明のさらに別の態様もまた、制御装置である。この装置は、蓄電池の近傍の温度を取得する取得部と、取得部において取得した温度をもとに、蓄電池の通風口の開閉を制御する指示部とを備える。指示部は、取得部において取得した温度がしきい値よりも低い場合に、通風口を閉じる。
 本発明のさらに別の態様もまた、制御装置である。この装置は、再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池における電圧の値を取得する第1取得部と、蓄電池の近傍の温度を取得する第2取得部と、第2取得部において取得した温度がしきい値よりも低い場合に、第1取得部において取得した電圧の値が目標の値に達すれば、蓄電池を放電させる指示部と、を備える。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、低温の場合であっても、蓄電池の放電容量を簡易に確保できる。
図1(a)-(c)は、本発明の実施例に係る配電システムの構成を示す図である。 図1(a)-(c)の配電システムの構成を詳細に示す図である。 図3(a)-(b)は、本発明の実施例に係る筐体の構成を示す図である。 図4(a)-(b)は、図2の指示部に記憶されたテーブルのデータ構造を示す図である。 図2の制御部の処理手順を示すフローチャートである。 本発明の変形例に係る配電システムの構成を詳細に示す図である。 図6の指示部の処理概要を示す図である。 図6の指示部に記憶されたテーブルのデータ構造を示す図である。 図6の制御部の処理手順を示すフローチャートである。 本発明の別の変形例に係る配電システムの構成を詳細に示す図である。 図11(a)-(b)は、図10の蓄電池の外観を示す斜視図である。 図12(a)-(b)は、図10の指示部に記憶されたテーブルのデータ構造を示す図である。 図10の制御部の処理手順を示すフローチャートである。 本発明のさらに別の変形例に係る配電システムの構成を詳細に示す図である。 図14の指示部の処理概要を示す図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池を商用電力系統と並列に接続し、商用電源および太陽電池の両方から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。このように蓄電池は、商用電源および太陽電池によって充電される。一般的に充電処理では、まず定電流充電がなされ、満充電近くになると、定電流充電が定電圧充電に切りかえられる。前述のごとく、蓄電池の温度が低い場合、蓄電池の内部抵抗が高くなるので、定電流充電がほとんどできなくなってしまう。商用電源の場合、蓄電池に供給する電流の量を制御できるが、太陽電池の場合、発電される電力を制御できないので、蓄電池に供給する電流の量も制御できない。その結果、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。これに対応するために、本実施例は、次の処理を実行する。
 蓄電池は、インバータ機能やコンバータ機能を有した変換装置とともに、ひとつの筐体内に設置される。変換装置は、処理によって発熱するので熱源となりうる。このような発熱による筐体内の温度上昇を抑制するために、筐体にはファンが設けられる。例えば、ファンと蓄電池との間に変換装置が設置される。変換装置によって生じた熱は、ファンによって筐体外に出力される。ここで、蓄電池の温度が第1しきい値よりも低い場合、ファンは逆回転に回転させられる。このようにすると、変換装置によって生じた熱は、ファンによって蓄電池の方向に出力される。その結果、変換装置から発せられる熱によって蓄電池は暖められるので、蓄電池の放電容量が増加する。
 図1(a)-(c)は、本発明の実施例に係る配電システム100の構成を示す。図1(a)において配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、第1SW18、第2SW20、商用電源22、特定負荷24、一般負荷26を含む。商用電源22は、電力会社からの電力を供給するための交流電源である。図1(a)は、商用電源22が停電していない場合(以下、「通常時」という)における配電システム100の構成に相当する。
 太陽電池10は、光起電力効果を利用し、光エネルギーを直接電力に変換する電力機器である。太陽電池10として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池10は、発電した電力を出力する。蓄電池12は、充電を行うことにより電気を蓄えて電池として使用できるようになり、繰り返し使用することができる2次電池である。蓄電池12は、再生可能エネルギー源をもとに発電した電力、つまり太陽電池10において発電した電力、あるいは商用電源22からの電力によって充電される。
 変換装置14は、一端側に太陽電池10を接続する。変換装置14と太陽電池10との経路は、途中で分岐されており、分岐された経路には、蓄電池12が接続される。つまり、変換装置14の一端側には、分岐点を介して、太陽電池10と蓄電池12とが並列に接続される。また、変換装置14は、他端側に商用電源22を接続する。変換装置14の動作は後述する。管理装置16は、蓄電池12の動作を制御するための指示を変換装置14に出力する。
 一般負荷26は、交流駆動型の電気機器である。一般負荷26は、変換装置14と商用電源22との間の経路から分岐された経路に接続される。なお、変換装置14と商用電源22との間の経路上であって、かつ商用電源22への分岐点から商用電源22側には、図示しない逆潮流センサ、分電盤が接続される。逆潮流センサは、分電盤と商用電源22との間に設置され、分電盤から商用電源22に向かう電力を検出する。これは、電力が分電盤から商用電源22に向かうことを防止するためである。逆潮流センサにおける検出処理には、公知の技術が使用されればよいので、ここでは、説明を省略する。
 第1SW18、第2SW20は、管理装置16からの指示に応じて経路を変更するためのスイッチである。第1SW18、第2SW20のオン/オフや切替は、変換装置14によって指示される。なお、管理装置16によって指示されてもよい。通常時において、第1SW18は、オンされ、第2SW20は、Y側の端子に接続される。その結果、第2SW20のY側の端子と特定負荷24とが接続される。なお、特定負荷24は、一般負荷26と同様に、交流駆動型の電気機器である。このような形態によって、通常時の(1)充電と(2)放電は、次のようになされる。
 (1)通常時の充電
 電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも低く設定される。また、一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。そのため、夜間の時間帯において、商用電源22から供給される電力は、第1SW18、変換装置14を介して蓄電池12に充電される。その際、変換装置14は、商用電源22から入力した交流電力を直流電力に変換し、直流電力を蓄電池12に出力する。また、昼間の時間帯において、太陽電池10が発電した電力は、変換装置14に出力される。太陽電池10が発電した電力が、特定負荷24、一般負荷26において消費される電力よりも多い場合、余剰の電力が蓄電池12に充電される。
 (2)通常時の放電
 特定負荷24、一般負荷26において消費される電力が多くなる時間帯において、商用電源22からの電力の消費を低減するために、蓄電池12に蓄えられた電力が放電される。放電された電力は、変換装置14、第1SW18を介して、特定負荷24、一般負荷26に供給される。その際、変換装置14は、蓄電池12から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。さらに、通常時において、商用電源22からの電力が特定負荷24、一般負荷26に供給されるとともに、太陽電池10からの電力も特定負荷24、一般負荷26に供給される。その際、変換装置14は、太陽電池10から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。以上の説明のように、変換装置14は、交流電力を直流電力に変換したり、直流電力を交流電力に変換したりするが、これらの変換処理として公知の技術が使用されればよいので、ここでは説明を省略する。
 図1(b)は、商用電源22が停電している場合(以下、「停電時」という)における配電システム100の構成に相当する。商用電源22からの電力の供給がなくなった場合、図示しない分電盤は、停電を検出する。停電を検出した場合、変換装置14は、第1SW18、第2SW20とを制御する。具体的に説明すると、停電時において、第1SW18がオフされ、第2SW20は、X側の端子に接続される。その結果、特定負荷24は、変換装置14に接続されるが、一般負荷26は、変換装置14から切り離される。そのため、太陽電池10からの電力は、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。なお、太陽電池10からの電力よりも、特定負荷24において消費される電力が少ない場合、余剰の電力が蓄電池12に充電される。なお、停電時において、蓄電池12は、電力を出力してもよい。放電した電力も、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。
 このように、特定負荷24は、通常時において、太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であり、停電時においても太陽電池10、蓄電池12から電力の供給を受けることが可能である。一方、一般負荷26は、通常時において太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であるが、停電時において電力の供給を受けることができない。
 図1(c)は、停電時から、商用電源22が停電していない状態に復旧した場合(以下、「復旧時」という)における配電システム100の構成に相当する。停電時において、商用電源22からの電力の供給が回復した場合、図示しない分電盤は、復旧を検出する。復旧を検出した場合、変換装置14は、第2SW20を制御する。具体的に説明すると、復旧時において、第1SW18のオフが維持され、第2SW20は、Y側の端子に接続される。その結果、特定負荷24および一般負荷26は、変換装置14から切り離され、商用電源22に接続される。その結果、商用電源22からの電力は、特定負荷24、一般負荷26に供給される。なお、変換装置14には、特定負荷24および一般負荷26が接続されていないので、変換装置14は、交流電力を出力しない。太陽電池10において発電された電力は、蓄電池12に供給される。
 図2は、配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32、ファン34を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部42、第2取得部44、指示部46を含む。図2では、図1(a)-(c)に示した配電システム100のうちの必要な部分を示す。
 温度計32は、蓄電池12の近傍に設置され、蓄電池12の近傍の温度を測定する。近傍とは、蓄電池12での温度変化を検出できる程度の距離である。温度の測定には公知の技術が使用されればよい。温度計32は、測定した温度を出力する。第1取得部42は、温度計32から、蓄電池12近傍の温度を取得する。第1取得部42は、温度を指示部46に出力する。
 指示部46は、電力を蓄えるための蓄電池12と、蓄電池12に接続されて熱源となりうる変換装置14とが内設された図示しない筐体内の熱を筐体外に放出するために、ファン34を第1回転方向に回転させる。図3(a)-(b)は、本発明の実施例に係る筐体90の構成を示す。図3(a)において、筐体90は、内部に蓄電池12、変換装置14、管理装置16、ファン34を備える。これらは、図1(a)-(c)、図2に示されている。また、これらの他の構成要素も筐体90に内設されているが、ここでは省略する。筐体90の上部にファン34が設置される。なお、ファン34は、筐体90の上部以外に設置されてもよい。また、ファン34と蓄電池12との間に、変換装置14が設置される。図示のごとく、変換装置14から発せられる熱を筐体90外部に出力するために、ファン34が回転させられる。このときのファン34の回転方向が前述の第1回転方向に相当する。図3(b)は後述し、図2に戻る。
 指示部46は、第1取得部42から温度の値を受けつける。温度が第1しきい値以上である場合に、指示部46は、ファン34の第1回転方向を維持させる。一方、温度が第1しきい値よりも低い場合に、指示部46は、第1回転方向とは逆の第2回転方向にファン34を回転させる。図3(b)は、第2回転方向にファン34が回転させられている場合を示す。図示のごとく、変換装置14から発せられる熱が蓄電池12に向かう。蓄電池12は、変換装置14からの熱によって暖められる。図2に戻る。
 このような処理を実現するために、指示部46は、テーブルを記憶する。図4(a)-(b)は、指示部46に記憶されたテーブルのデータ構造を示す。図4(a)において示されたように、条件欄200、回転方向欄202が含まれる。指示部46は、受けつけた温度を条件欄200と比較し、該当する方の回転方向を回転方向欄202から選択する。図4(b)は後述し、図2に戻る。
 指示部46は、次のようにファン34の回転方向を選択してもよい。電圧計30は、蓄電池12における電圧の値を測定する。電圧の測定には公知の技術が使用されればよい。電圧計30は、電圧の値を出力する。第2取得部44は、電圧計30から、電圧の値を取得する。
 指示部46は、第1取得部42において取得した温度が第1しきい値よりも低い場合に加えて、第2取得部44において取得した電圧の値が第2しきい値よりも大きい場合に、第2回転方向にファン34を回転させる。つまり、指示部46は、温度だけではなく、電圧の量にも応じて、ファン34の回転方向を制御する。上記以外の場合に、指示部46は、第1回転方向にファン34を回転させる。図4(b)は、指示部46に記憶されたテーブルのデータ構造を示す。図4(a)と同様に、図4(b)でも、条件欄200、回転方向欄202が含まれる。温度が第1しきい値よりも低くても、電圧の値が第2しきい値以下であれば、指示部46は、第1回転方向を維持させる。
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 以上の構成による配電システム100の動作を説明する。図5は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低ければ(S10のY)、指示部46は、ファン34を第2回転方向に回転させる(S12)。一方、温度が第1しきい値よりも低くなければ(S10のN)、指示部46は、ファン34を第1回転方向に回転させる(S14)。
 次に、本発明の変形例を説明する。変形例も、実施例と同様に、配電システムに関する。変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。変形例は、次の処理を実行する。
 太陽電池は複数のパネルによって構成されており、複数のパネルは並列に接続されている。なお、各パネルでは、複数のパネルがさらに直列に接続されてもよいが、ここでは、直列に接続された複数のパネルを単にパネルという。各パネルにはスイッチが接続されている。スイッチがオフされた場合、スイッチに対応したパネルにおいて発電された電力が出力されない。なお、初期状態においては、すべてのスイッチがオンされている。ここで、蓄電池の温度が第1しきい値よりも低い場合、蓄電池の電圧を監視し、電圧が一定になるように、スイッチが段階的にオフされていく。その結果、太陽電池において発電される電力が十分多い場合に、蓄電池に入力される電流が抑制される。
 図6は、本発明の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、パネル60と総称される第1パネル60a、第2パネル60b、第Nパネル60n、パネルSW62と総称される第1パネルSW62a、第2パネルSW62b、第NパネルSW62n、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部50、第2取得部52、指示部56を含む。
 複数のパネル60は、既に説明した太陽電池10に相当する。複数のパネル60のそれぞれは、並列に配置されている。また、パネル60は、パネルSW62と1対1で接続されている。パネルSW62がオンされている場合、当該パネルSW62に対応したパネル60において発電された電力は、蓄電池12や変換装置14へ出力される。一方、パネルSW62がオフされている場合、当該パネルSW62に対応したパネル60において発電された電力は出力されない。各パネル60は、パネルSW62を介して、蓄電池12と変換装置14との間の経路に接続される。前述のごとく、ひとつのパネル60は、直列に接続された複数のパネルによって構成されてもよい。ここで、パネル60には、ひとつのパネルSW62によって制御される数のパネルが含まれるものとする。
 第1取得部50は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。第1取得部50は、温度を指示部56に出力する。第2取得部52も、図2に示された第2取得部44と同様に、電圧計30から、蓄電池12における電圧の値を取得する。第2取得部52は、電圧の値を指示部56に出力する。
 指示部56は、第1取得部50において取得した温度と、第2取得部52において取得した電圧の値とをもとに、複数のパネルSW62のそれぞれの開閉を制御する。ここで、初期段階においては、すべてのパネルSW62が閉じられている、つまりオンされている。これは、すべてのパネル60において発電された電力が出力されていることに相当する。第1取得部50において取得した温度が第1しきい値以上である場合、指示部56は、すべてのパネルSW62を閉じたままに維持させる。一方、第1取得部50において取得した温度が第1しきい値よりも低い場合、指示部56は、第2取得部52において取得した電圧の値に応じて、開放するパネルSW62の数を段階的に増加させる。具体的に説明すると、指示部56は、第2取得部52において取得した電圧の値が目標値に近づくように、開放したパネルSW62の数を段階的に増加させる。
 図7は、指示部56の処理概要を示す図である。縦軸が電圧値を示し、横軸が時間を示す。また、ここでは、温度が第1しきい値よりも低いとする。また、前述の目標値がVMとして示される。前述のごとく、初期状態においては、すべてのパネルSW62が閉じられているので、時間の経過とともに、電圧値が上昇する。時間T1において、電圧値がVMになると、指示部56は、ひとつ目のパネルSW62を開放する。また、時間T2において、電圧値が再びVMになると、指示部56は、ふたつ目のパネルSW62を開放する。このように、電圧値がVMになるたびに、指示部56は、パネルSW62を順次開放する。図6に戻る。
 このような処理を実現するために、指示部56は、テーブルを記憶する。図8は、指示部56に記憶されたテーブルのデータ構造を示す。図8において示されたように、条件欄210、パネルSW欄212が含まれる。指示部46は、受けつけた温度を条件欄210と比較し、該当する方の動作をパネルSW欄212から選択する。図6に戻る。
 なお、図7では、説明を明瞭にするために、パネルSW62を解放して、しばらくすると常にVMまで電圧が上昇している。しかしながら、充電により蓄電池12が温められると充電可能容量が回復し、パネル60の数によっては、電圧が下降する場合もある。これに対応させるために、指示部56は、第2取得部52において取得した電圧の値が目標値に近づくように、開放したパネルSW62の数を段階的に減少させてもよい。
 以上の構成による配電システム100の動作を説明する。図9は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低く(S20のY)、電圧値がVMに達すると(S22のY)、指示部56は、パネルSW62をオフする(S24)。電圧値がVMに達しなければ(S22のN)、ステップ24はスキップされる。温度が第1しきい値よりも低くない場合(S20のN)、すべてのパネルSW62はオンされる(S26)。
 次に、本発明の別の変形例を説明する。別の変形例も、これまでと同様に、配電システムに関する。別の変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。別の変形例は、次の処理を実行する。蓄電池には、内部の熱を外部に出力するための通風口が設けられている。ここで、蓄電池の温度が第1しきい値よりも低い場合、蓄電池の電圧を監視し、通風口が蓋によって閉じられる。その結果、蓄電池の内部にて発せられる熱が外部に逃げずに、蓄電池内に蓄えられる。一方、蓄電池の温度が第1しきい値よりも低くなければ、通風口が開放される。
 図10は、本発明の別の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32、開閉部64を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部70、第2取得部72、指示部74を含む。
 第1取得部70は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。第1取得部70は、温度を指示部74に出力する。指示部74は、第1取得部70において取得した温度をもとに、蓄電池12の通風口の開閉を制御する。具体的に説明すると、指示部74は、第1取得部70において取得した温度が第1しきい値以上である場合、開閉部64に対して通風口を開けさせる。一方、指示部74は、第1取得部70において取得した温度が第1しきい値よりも低い場合、開閉部64に対して通風口を閉じさせる。
 図11(a)-(b)は、蓄電池12の外観を示す斜視図である。図11(a)において、蓄電池12には、通風口92と総称される第1通風口92a、第2通風口92b、第3通風口92c、第4通風口92dが含まれる。そのため、図11(a)は、図10の開閉部64によって、通風口92が開けられている場合に相当する。図11(b)において、蓄電池12には、蓋94と総称される第1蓋94a、第2蓋94b、第3蓋94c、第4蓋94dが含まれる。蓋94によって通風口92がふさがれている。そのため、図11(b)は、図10の開閉部64によって、通風口92が閉じられている場合に相当する。図10に戻る。
 このような処理を実現するために、指示部74は、テーブルを記憶する。図12(a)-(b)は、指示部74に記憶されたテーブルのデータ構造を示す。図12(a)において示されたように、条件欄220、通風口欄222が含まれる。指示部74は、受けつけた温度を条件欄220と比較し、該当する方の動作を通風口欄222から選択する。図12(b)は後述し、図10に戻る。
 指示部74は、次のように通風口92を閉じるか否かを選択してもよい。第2取得部72は、図2の第2取得部44と同様に、電圧計30から、電圧の値を取得する。指示部74は、第1取得部70において取得した温度が第1しきい値よりも低い場合に加えて、第2取得部72において取得した電圧の値が第2しきい値よりも大きい場合に、開閉部64に対して通風口92を閉じさせる。上記以外の場合に、指示部74は、開閉部64に対して通風口92を開けさせる。図12(b)は、指示部74に記憶されたテーブルのデータ構造を示す。図12(a)と同様に、図12(b)でも、条件欄220、通風口欄222が含まれる。温度が第1しきい値よりも低くても、電圧の値が第2しきい値以下であれば、指示部74は、通風口92を開けさせる。
 以上の構成による配電システム100の動作を説明する。図13は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低ければ(S30のY)、指示部74は、開閉部64に通風口92を閉じさせる(S32)。一方、温度が第1しきい値よりも低くなければ(S30のN)、指示部74は、開閉部64に通風口92を開けさせる(S34)。
 次に、本発明のさらに別の変形例を説明する。さらに別の変形例も、これまでと同様に、配電システムに関する。さらに別の変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。さらに別の変形例は、次の処理を実行する。配電システムに接続された一般負荷のうち、少なくともひとつが稼働時間を調節可能な負荷である。これの一例が、ネットワークで制御可能な自然冷媒ヒートポンプ給湯機である。また、このような負荷は、蓄電池が内設された筐体の外部に接続されている。
 ここで、蓄電池の温度が第1しきい値よりも低い場合、稼働時間を調節可能な負荷に電力が供給されることによって、電力が消費される。その結果、蓄電池へ出力される電流が制限される。また、定電圧充電となるように、蓄電池へ出力される電流が調節される。その結果、太陽電池において発電される電力が十分多い場合に、蓄電池に入力される電流が抑制される。
 図14は、本発明のさらに別の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、一般負荷26、電圧計30、温度計32を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部80、第2取得部82、指示部84を含む。
 一般負荷26は、前述のとおりであるが、ここでは特に稼働時間を調節可能な負荷、例えば、自然冷媒ヒートポンプ給湯機であるとする。また、一般負荷26は、蓄電池12が内設された筐体の外部に接続される。電圧計30は、蓄電池12における電圧の値を測定する。なお、蓄電池12は、太陽電池10から出力される電流の少なくとも一部を入力する。第1取得部80は、電圧計30から、電圧の値を取得する。第1取得部80は、電圧の値を指示部84に出力する。第2取得部82は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。ここで、蓄電池12には、太陽電池10から出力される電流の少なくとも一部が入力される。第2取得部82は、温度を指示部84に出力する。
 指示部84は、第1取得部80において取得した電圧の値と、第2取得部82において取得した温度とをもとに、太陽電池10から出力される電流のうち、一般負荷26にて消費すべき電流の値を調節する。具体的に説明すると、指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第1取得部80において取得した電圧の値が目標の値に近づくように、一般負荷26にて消費すべき電流の値を決定する。
 図15は、指示部84の処理概要を示す。縦軸が電流値を示し、横軸が時間を示す。発電電流値230は、太陽電池10から出力される電流の値である。また、出力電流値232は、蓄電池12に入力すべき電流の値である。図示のごとく、出力電流値232は、時間の経過とともに低減する。これは、蓄電池12において定電圧充電がなされるようにするためである。指示部84は、発電電流値230から出力電流値232を減算した値が正であれば、当該値に応じた電流を一般負荷26に消費させる。一般負荷26に消費させる電流は、図15の斜線部分に相当する。図14に戻る。
 さらに別の変形例に係る配電システム100において、制御部40は、次の処理を実行してもよい。(1)指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第1取得部80において取得した電圧の値が目標の値に達すれば、蓄電池12を放電させる。蓄電池12を放電させてから一定期間経過後、指示部84は、蓄電池12への充電を実行する。
 (2)図14の制御部40に、図示しない第3取得部が含まれてもよい。第3取得部は、太陽電池10における発電開始の予想時刻に関する情報を取得する。発電開始の予想時刻は、例えば、午前7時のような一定時間として記憶されてもよく、季節によって変動する時間として記憶されていてもよい。指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第3取得部において取得した情報での予定時刻が到来する前に、蓄電池12を放電させる。なお、予定時刻が到来する前は、一定の期間として規定されていればよい。(3)配電システム100に一般負荷26が接続されていない場合、変換装置14は、太陽電池10からの電力を商用電源22に出力してもよい。
 本発明の実施例によれば、蓄電池の温度が低いと、筐体内の熱を筐体外に放出するためのファンを逆回転に回転させるので、筐体内に熱を保持できる。また、筐体内に熱が保持されるので、蓄電池を暖めることができる。また、蓄電池が暖まるので、太陽電池からの電流が大きい場合であっても、蓄電池の放電容量を簡易に確保できる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、筐体内の熱を筐体外に放出するためのファンを逆回転に回転させるので、蓄電池を暖めることができる。また、いずれか一方が満たされない場合には、ファンを逆回転させないので、熱の放出を実行できる。
 また、蓄電池の温度が低いと、パネルに接続されたパネルSWを段階的に開放するので、蓄電池に入力される電流を抑制できる。また、蓄電池の電圧に応じて、パネルSWを段階的に開放するので、蓄電池を定電圧充電させることができる。また、蓄電池が定電圧充電されるので、蓄電池の放電容量を簡易に確保できる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、パネルに接続されたパネルSWを段階的に開放するので、蓄電池に入力される電流を抑制できる。また、いずれか一方が満たされない場合には、パネルSWを開放しないので、電流の低下を抑制できる。また、蓄電池の電圧が目標値に値が近づくように、開放したパネルSWの数を段階的に増加させるので、蓄電池を定電圧充電させることができる。
 また、蓄電池の温度が低いと、蓄電池の通風口を閉じるので、蓄電池内に熱を保持できる。また、蓄電池内に熱が保持されるので、蓄電池を暖めることができる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、蓄電池の通風口を閉じるので、蓄電池を暖めることができる。また、いずれか一方が満たされない場合には、通風口を閉じないので、熱の放出を実行できる。また、蓄電池の温度が低いと、発電された電力の一部を外部の一般負荷に消費させるので、蓄電池に入力される電流を抑制できる。また、蓄電池における電圧が目標の値に近づくように、一般負荷に電力を消費させるので、定電圧充電を実行できる。また、定電圧充電が実行されるので、蓄電池の放電容量を簡易に確保できる。また、蓄電池の電圧が目標値に達しても、温度が低ければ、蓄電池を放電させるので、蓄電池の温度を上昇させることができる。また、発電を開始する予想時刻の前に、蓄電池を放電させるので、蓄電池の温度を上昇させることができる。
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明の実施例において、制御部40は、管理装置16に含まれている。しかしながらこれに限らず例えば、制御部40は、変換装置14に含まれていてもよい。本変形例によれば、設計の自由度を向上できる。
 本発明の実施例において、発電するために太陽電池10が設けられている。しかしながらこれに限らず例えば、太陽電池10以外に、再生可能エネルギー源をもとした電力を生成するための装置が設けられてもよい。例えば、風力発電機である。本変形例によれば、配電システム100の構成の自由度を向上できる。
 10 太陽電池、 12 蓄電池、 14 変換装置、 16 管理装置、 18 第1SW、 20 第2SW、 22 商用電源、 24 特定負荷、 26 一般負荷、 30 電圧計、 32 温度計、 34 ファン、 40 制御部、 42 第1取得部、 44 第2取得部、 46 指示部、 50 第1取得部、 52 第2取得部、 56 指示部、 60 パネル、 62 パネルSW、 64 開閉部、 70 第1取得部、 72 第2取得部、 74 指示部、 80 第1取得部、 82 第2取得部、 84 指示部。
 本発明によれば、低温の場合であっても、蓄電池の放電容量を簡易に確保できる。

Claims (6)

  1.  再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池の近傍の温度を取得する第1取得部と、
     前記再生可能エネルギー発電装置における発電開始の予想時刻に関する情報を取得する第2取得部と、
     前記第1取得部において取得した温度がしきい値よりも低い場合に、前記第2取得部において取得した情報での予定時刻が到来する前に、前記蓄電池を放電させる指示部と、
     を備えることを特徴とする制御装置。
  2.  電力を蓄えるための蓄電池と、前記蓄電池に接続されて熱源となりうるインバータとが内設された筐体内の熱を筐体外に放出するために、ファンを第1回転方向に回転させる指示部と、
     前記蓄電池の近傍の温度を取得する取得部とを備え、
     前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に、第1回転方向とは逆の第2回転方向にファンを回転させることを特徴とする制御装置。
  3.  前記取得部は、前記蓄電池における電圧の値も取得し、
     前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に加えて、前記取得部において取得した電圧の値が別のしきい値よりも大きい場合に、第1回転方向とは逆の第2回転方向にファンを回転させることを特徴とする請求項2に記載の制御装置。
  4.  蓄電池の近傍の温度を取得する取得部と、
     前記取得部において取得した温度をもとに、前記蓄電池の通風口の開閉を制御する指示部とを備え、
     前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に、通風口を閉じることを特徴とする制御装置。
  5.  前記取得部は、前記蓄電池における電圧の値も取得し、
     前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に加えて、前記取得部において取得した電圧の値が別のしきい値よりも大きい場合に、通風口を閉じることを特徴とする請求項4に記載の制御装置。
  6.  再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池における電圧の値を取得する第1取得部と、
     前記蓄電池の近傍の温度を取得する第2取得部と、
     前記第2取得部において取得した温度がしきい値よりも低い場合に、前記第1取得部において取得した電圧の値が目標の値に達すれば、前記蓄電池を放電させる指示部と、
     を備えることを特徴とする制御装置。
PCT/JP2013/000153 2012-02-22 2013-01-16 制御装置 WO2013125155A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-036803 2012-02-22
JP2012036803A JP2015092432A (ja) 2012-02-22 2012-02-22 制御装置

Publications (1)

Publication Number Publication Date
WO2013125155A1 true WO2013125155A1 (ja) 2013-08-29

Family

ID=49005355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000153 WO2013125155A1 (ja) 2012-02-22 2013-01-16 制御装置

Country Status (2)

Country Link
JP (1) JP2015092432A (ja)
WO (1) WO2013125155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227580A1 (zh) * 2021-04-28 2022-11-03 东南大学 低温下电池储能系统高效率工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638324B (zh) * 2024-01-25 2024-04-26 东营昆宇电源科技有限公司 基于储能设备的热管理控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332777A (ja) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd バッテリのウォームアップ制御装置
JP2007330057A (ja) * 2006-06-08 2007-12-20 Kawasaki Plant Systems Ltd 二次電池付太陽光システムの充電制御方法
WO2011058806A1 (ja) * 2009-11-12 2011-05-19 シャープ株式会社 太陽電池パネル及びその蓄電池を備えた電気機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332777A (ja) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd バッテリのウォームアップ制御装置
JP2007330057A (ja) * 2006-06-08 2007-12-20 Kawasaki Plant Systems Ltd 二次電池付太陽光システムの充電制御方法
WO2011058806A1 (ja) * 2009-11-12 2011-05-19 シャープ株式会社 太陽電池パネル及びその蓄電池を備えた電気機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227580A1 (zh) * 2021-04-28 2022-11-03 东南大学 低温下电池储能系统高效率工作方法
US11611102B2 (en) 2021-04-28 2023-03-21 Southeast University High-efficiency working method for battery energy storage system at low temperature

Also Published As

Publication number Publication date
JP2015092432A (ja) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5652196B2 (ja) パワーコンディショナ
JP4856692B2 (ja) 電力供給システム及び電力切替装置
US10418820B2 (en) Power supply apparatus, power supply system, and control method of power supply apparatus
JP2012095418A (ja) 直流給電システム
JP5796189B2 (ja) 電力供給システム
JP2013161139A (ja) 電力供給システムおよび電源装置
JP5944269B2 (ja) 電力供給システム
JP2011250673A (ja) エネルギーコントローラおよび制御方法
JP2009232668A (ja) 電力供給システムおよび電力供給方法
WO2014112454A1 (ja) 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
JP6753469B2 (ja) 蓄電装置及び電源システム
WO2013125155A1 (ja) 制御装置
JP2019193317A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP5820984B2 (ja) 配電システム
JP6047929B2 (ja) バッテリ制御装置
WO2017163747A1 (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP2013172623A (ja) 制御装置
JP6713101B2 (ja) 蓄電池システム及び蓄電池の制御方法
JP2016140206A (ja) 電力供給機器、電力供給システム、および電力供給方法
JP2013198270A (ja) 制御装置
JP7165507B2 (ja) 直流給電システム
JP5879559B2 (ja) 配電システム
JP6453585B2 (ja) 電力制御装置、蓄電装置、電力制御システム及び電力制御方法
JP6351200B2 (ja) 電力供給システム
KR102469243B1 (ko) 전기차 충전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP