WO2014112454A1 - 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置 - Google Patents

制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置 Download PDF

Info

Publication number
WO2014112454A1
WO2014112454A1 PCT/JP2014/050399 JP2014050399W WO2014112454A1 WO 2014112454 A1 WO2014112454 A1 WO 2014112454A1 JP 2014050399 W JP2014050399 W JP 2014050399W WO 2014112454 A1 WO2014112454 A1 WO 2014112454A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging rate
power generation
amount
generation device
Prior art date
Application number
PCT/JP2014/050399
Other languages
English (en)
French (fr)
Inventor
浩紀 村田
明 八杉
小林 裕
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/654,752 priority Critical patent/US20150372510A1/en
Priority to CN201480003526.3A priority patent/CN104871388A/zh
Priority to EP14740841.3A priority patent/EP2947740A4/en
Publication of WO2014112454A1 publication Critical patent/WO2014112454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J3/382
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/34Arrangements for transfer of electric power between networks of substantially different frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a control device, a method, a program, and a natural energy power generation device such as a wind power generation device or a solar power generation device including the control device.
  • the present invention has been made in view of such circumstances, and a control device, a method, and a program capable of efficiently controlling the operation of a secondary battery according to weather, and a natural energy power generation device including the same
  • the purpose is to provide.
  • 1st aspect of this invention is a control apparatus which controls charging / discharging of the secondary battery connected with the electric power generating apparatus which generate
  • the target charging rate is determined when it is determined that the difference between the estimation unit for estimation and the power amount after the lapse of the predetermined period estimated by the estimation unit and the current power amount of the power generator is larger than a predetermined value.
  • a control device that controls charging / discharging of a secondary battery connected to a power generation device that generates power using natural energy, after a predetermined period of time when power is generated by the power generation device estimated based on weather prediction. If the difference between the current power amount and the current power amount is determined to be less than or equal to the predetermined value, the set target charge rate is controlled to be maintained, and the power amount after the predetermined period has elapsed and the current power When it is determined that the difference from the amount is larger than the predetermined value, control is performed such that the changed target charging rate is maintained.
  • the influence of the power generation amount is an increase or decrease in the power generation amount. For example, it means that the power generation amount increases when it is clear and the power generation amount decreases when it is cloudy or rainy.
  • the said charge rate change means of the said control apparatus is effective discharge upper limit lower than the charge upper limit which is a charge rate lower than a full charge state, and discharge which is a charge rate higher than a discharge start state. It is preferable to change the target charging rate in a section with an effective fluctuation lower limit value higher than the lower limit value.
  • the section for changing the target charging rate is provided in the section between the charging upper limit value and the discharging lower limit value, even when the target charging rate is changed, the charging upper limit value and the discharging lower limit value are set.
  • the secondary battery can be operated without worrying about reaching this point.
  • the said charge rate change means of the said control apparatus is the said target charge rate after a change, when the electric energy after progress for a predetermined period is larger than the present electric energy of the said electric power generation device by the said predetermined value. Is preferably increased within a range of values not more than the effective variation upper limit value.
  • the charging rate changing means of the control device may change the target charging rate after the change when the amount of power after a predetermined period has elapsed is smaller than the current amount of power of the power generation device by the predetermined value. Is increased within a range of the value less than or equal to the upper limit of the effective fluctuation, and then the target charge rate after the change is changed to the lower limit of the effective fluctuation when the current power amount of the power generation device becomes smaller than a threshold value. It is preferable to make it small within the range of the value above the value.
  • the secondary battery can be efficiently operated by once increasing the target charging rate and then reducing the target charging rate.
  • the target charging rate that is set without using the weather prediction is a standard target charging rate
  • the lower limit value of the rated capacity of the power generation device is less than or equal to, the charging rate changing means. It is preferable that the target charging rate is the standard target charging rate.
  • a wind power generation system including any one of the control devices described above and a secondary battery connected to a power generation device that generates power using natural energy, wherein the power generation device is a wind power generation device. It is.
  • a third aspect of the present invention includes any of the above-described control devices and a secondary battery connected to a power generation device that generates power using natural energy, and the power generation device is a solar power generation device. It is a power generation system.
  • 4th aspect of this invention is a control method which controls charging / discharging of the secondary battery connected with the electric power generating apparatus which generate
  • the target charging rate which is the charging rate of the said secondary battery made into the target
  • a control program for controlling charging / discharging of a secondary battery connected to a power generation device that generates power using natural energy, the target charging rate being a target charging rate of the secondary battery. Based on a control process for controlling charging / discharging of the secondary battery such that the power generation amount is maintained and a weather forecast affecting the power generation amount of the power generation device, the power amount after a predetermined period of time generated by the power generation device is calculated.
  • the present invention has an effect that the secondary battery can be efficiently controlled according to the weather.
  • FIG. 1 is a block diagram showing a schematic configuration of a wind power generation system 1 according to the present embodiment.
  • a wind power generation system 1 according to this embodiment includes a wind power generation device (power generation device) 2 and a power storage device 3, and is connected to a power system 4.
  • the wind power generator 2 is an example of a power generator whose output varies depending on the natural environment, and is a power generator that generates power using wind power.
  • FIG. 1 will be described by taking as an example the case where there is one wind power generator 2, but the number of wind power generators 2 managed by the power storage device 3 is not particularly limited.
  • the power storage device 3 includes a control device 10 and a secondary battery 20.
  • the secondary battery 20 is not particularly limited, such as a lithium secondary battery, a lead secondary battery, or a nickel hydride secondary battery. However, the secondary battery 20 is preferably a lithium secondary battery because of good charge / discharge followability.
  • the control device 10 includes, for example, a CPU (Central Processing Unit) (not shown), a RAM (Random Access Memory), a computer-readable recording medium, and the like. A series of processing steps for realizing various functions to be described later are recorded in a recording medium or the like in the form of a program, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. Thus, various functions described later are realized. Specifically, as shown in FIG. 1, the control device 10 includes an estimation unit (estimation unit) 11, a charge rate change unit (charge rate change unit) 12, and a control unit (control unit) 13. ing.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • control device 10 includes, for example, a CPU (Central Processing Unit) (not shown), a RAM (Random Access Memory), a computer-readable recording medium, and the like. A series of processing steps for realizing various functions to be described later are recorded in a recording medium or the like in the form of a program, and the CPU
  • the estimation unit 11 estimates the amount of power after a predetermined period of time that is generated by the wind power generator 2 based on weather prediction that affects the amount of power generated by the power generator 2.
  • a specific method for estimating the amount of electric power will be described by taking as an example the case of a wind farm in which a plurality of wind power generators 2 are provided.
  • the estimation unit 11 is based on weather prediction information acquired from the outside, after a predetermined period of time in the wind farm area where the plurality of wind power generation devices 2 are installed (for example, 10 minutes, 1 hour, 24 hours, etc.) )
  • To predict future wind conditions and deploy the predicted wind conditions at each point where each wind power generator 2 is installed using wind condition analysis software (for example, MASCOT). From the predicted wind speed at the installation point, the output power amount after a predetermined period of time is calculated.
  • the estimation unit 11 sets the integrated value of the output power of each wind turbine generator thus calculated as the amount of power after a predetermined period.
  • the charging rate changing unit 12 determines the target charging rate when it is determined that the difference between the power amount after the predetermined period estimated by the estimating unit 11 and the current power amount of the wind turbine generator 2 is larger than a predetermined value. To change. Specifically, the charging rate changing unit 12 is higher than an effective fluctuation upper limit value that is lower than the charging upper limit value that is a charging rate lower than the fully charged state, and higher than a discharging lower limit value that is a charging rate higher than the discharge starting state. The target charging rate is changed in the section with the effective fluctuation lower limit value.
  • the charging rate changing unit 12 determines the target charging rate when it is determined that the difference between the power amount after the predetermined period estimated by the estimating unit 11 and the current power amount of the wind turbine generator 2 is equal to or less than a predetermined value.
  • the existing target charging rate is adopted without changing.
  • the charging rate changing unit 12 sets the target charging rate after the change to the effective fluctuation upper limit value when the electric energy after the predetermined period has elapsed is a predetermined value larger than the electric energy of the current wind turbine generator 2. Increase within the range of the following values. Further, the charging rate changing unit 12 sets the changed target charging rate to a value equal to or less than the effective variation upper limit value when the electric energy after the predetermined period has elapsed is smaller by a predetermined value than the current electric energy of the wind power generator 2. After that, when the current power amount of the wind turbine generator 2 becomes smaller than the threshold, the target charge rate after the change is reduced within a range of values that are equal to or greater than the effective variation lower limit value. Moreover, it is preferable that the threshold value be a threshold value obtained by calculating an average power amount necessary for smoothing the natural energy output at the system installation location by simulation and using the calculated average power amount.
  • the charging rate changing unit 12 changes the target charging rate to be smaller as a case where the current power amount of the wind turbine generator 2 becomes smaller than the threshold value, but is not limited thereto. For example, after it is detected that the amount of power after the lapse of a predetermined period is smaller than the current amount of power of the wind power generation apparatus 2, the amount of power after the lapse of the predetermined period remains The target charging rate may be reduced when a state smaller than the amount of power of the device 2 is continuously detected by a predetermined value.
  • the timing for reducing the target charging rate is, for example, a timing for comparing the amount of power after a predetermined period and the current amount of power, and a timing for the control device to update the amount of power.
  • the charging rate changing unit 12 sets the target charging rate set without using the weather prediction as the standard target charging rate, and sets the target charging rate to the standard when the rated capacity of the wind turbine generator 2 is equal to or lower than the lower limit. Set target charging rate. Thereby, when it becomes below the lower limit of the rated capacity of the wind power generator 2, the target charging rate can be reliably returned to the original target charging rate (standard target charging rate) without taking the weather into consideration.
  • the control unit 13 controls charging / discharging of the secondary battery 20 so that a target charging rate that is a target charging rate of the secondary battery 20 is maintained.
  • FIG. 2 shows a functional block diagram of the control unit 13. As shown in FIG. 2, the control unit 13 determines the SOC current value [%], which is the current charge rate SOC, and the target charge rate (SOC target value) after the change determined by the charge rate change unit 12. The charge rate SOC is corrected by multiplying the difference from the target charge rate (SOC target value) by a gain [kW /%].
  • the output power of the wind power generator 2 is subtracted from the power value smoothed by adding the output power [kW] from the wind power generator 2 and the correction control amount of the charging rate SOC, and positive (+) If there is discharge / negative (-), charge / discharge command [W] for charging is calculated as the control amount.
  • the target charging rate is fixed (for example, 50 [%]) and determined. Based on the weather prediction, the wind condition at the installation point of each wind power generator 2 is predicted, and the transition of the active power of the wind power generator 2 is calculated based on the wind condition prediction.
  • FIG. 3A shows a time series transition of the active power of the power generation apparatus calculated based on the wind condition prediction without setting a target charging rate (SOC target value), and a time series transition of the charging rate SOC corresponding thereto. Is shown.
  • the charging rate SOC increases as the active power of the power generation device increases, and when the active power decreases, the charging rate SOC also decreases and the active power becomes zero. In this case, the charging rate SOC also falls below 40%.
  • the result of having calculated the transition of the smoothed charging rate SOC by simulation is shown.
  • the transition of the charging rate SOC is obtained as an example when the target charging rate is fixed to 50 [%] in the functional block diagram of the control unit 13 of FIG.
  • the SOC maximum value (for example, 60 [%]) and the SOC minimum value (for example, 40 [%]) are calculated based on the transition of the charging rate SOC thus obtained.
  • the interval between the read maximum value and the minimum value is determined as the effective fluctuation range X.
  • the upper limit of the charging rate SOC is 60% and the lower limit is 40%, which is merely an example, and is lower than the charging upper limit value, which is a charging rate lower than the fully charged state. And it should just be higher than the discharge lower limit which is a charge rate higher than the discharge end state.
  • the solid line indicates the power of the solar power generation device
  • the dotted line indicates the hybrid power of the solar power generation device and the wind power generation device.
  • the wind condition after a predetermined period of time in the wind farm area where the wind power generation system 1 is provided is predicted based on the weather forecast information (step SA1 in FIG. 4). ).
  • the predicted wind condition is developed at a point where each wind power generator 2 is provided (step SA2 in FIG. 4).
  • the output power after the elapse of a predetermined period is calculated from the predicted wind speed at the installation point of each wind turbine generator 2 (step SA3 in FIG. 4).
  • the calculated output power of each wind turbine generator 2 is integrated to obtain an estimated power amount after a predetermined period has elapsed (step SA4 in FIG. 4).
  • step SA5 in FIG. 4 The difference between the estimated amount of power after the elapse of a predetermined period and the current amount of power of the wind power generation system 1 is calculated (step SA5 in FIG. 4). It is determined whether or not the difference between the amount of power after the lapse of a predetermined period and the current amount of power of the wind power generation system 1 is larger than a predetermined value (step SA6 in FIG. 4).
  • the target charging rate is changed (step SA7 in FIG. 4), and is prepared for charging / discharging after a predetermined period. If the difference is equal to or smaller than the predetermined value, the current (existing) target charging rate is used as it is (step SA8 in FIG. 4).
  • the secondary battery 20 connected to the wind power generator 2 that generates power by wind energy.
  • the control device 10 that controls charging / discharging that the difference between the amount of electric power generated by the wind power generation device 2 estimated based on weather prediction after the lapse of a predetermined period and the current amount of electric power is not more than a predetermined value. Is controlled so that the set target charging rate is maintained, and if the difference between the amount of power after the lapse of a predetermined period and the current amount of power is determined to be equal to or greater than a predetermined value, the target after change is changed.
  • the charging rate is controlled to be maintained.
  • charge / discharge control is efficiently performed according to the estimated power amount, as compared with the case where the target charge rate is fixedly operated although the charge amount varies due to weather fluctuations.
  • control device 10 is applied to the wind power generation device 2
  • the present invention is not limited to this.
  • control device 10 is applied to a solar power generation device. It is good as well.

Abstract

気象に応じて二次電池を効率的に運転させる。自然エネルギーによって発電する発電装置と接続される二次電池(20)の充放電を制御する制御装置(10)であって、目標とする二次電池(20)の充電率である目標充電率が維持されるように二次電池(20)の充放電を制御する制御部(13)と、前記発電装置の発電量に影響する気象予測に基づいて、発電装置により発電される所定期間経過後の電力量を推定する推定部(11)と、推定部(11)により推定された所定期間経過後の電力量と現在の発電装置の電力量との差が所定値よりも大きいと判定された場合に、目標充電率を変更する充電率変更部(12)とを具備する。

Description

制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
 本発明は、制御装置及び方法並びにプログラム、それを備えた風力発電装置や太陽光発電装置等の自然エネルギー発電装置に関するものである。
 従来、太陽光発電や風力発電等の自然エネルギーにより発電する発電装置は、次の瞬間に放電するか充電するかが天候推移に依存するので、二次電池が接続され、二次電池の電池充電率(以下「SOC」という:State Of Charge)を所定値(例えば、50%)に維持制御することで、自然エネルギーの天候推移により生じる充放電の要求に対処し、出力電力を平準化している。
 また、下記特許文献1では、過去に出力された出力電力と過去に予め設定された出力電力の予測値とに基づいて、予測値毎に出力電力の誤差の分布を算出し、誤差の分布に基づいて設定された出力電力の目標値を用いることで、発電装置から系統へ流れ込む電力を通告値と一致させ、出力電力を平準化する技術が提案されている。
特開2008-54385号公報
 ところで、例えば、晴天が長時間継続することが予測される場合には多くの充電が期待できるように、天候に依っては充電または放電のどちらかに偏ることがあるが、そうした充放電の偏りがある場合にSOCの維持制御が働いてしまうと、維持制御される所定値以上に充電ができるにも関わらず充電が制限され、結果としてSOCを低下させる方向に制御されることとなり、効率的な運転ができないという問題がある。
 これに対し、上記特許文献1の方法では、出力電力の予測値の誤差を抑制して通告値と一致させるような目標値が設定されているに過ぎず、現在から未来の充放電の変動に応じた制御はなされず、効率的な運転をすることはできなかった。
 本発明は、このような事情に鑑みてなされたものであって、気象に応じて二次電池を効率的に運転制御させることができる制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明の第1の態様は、自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御装置であって、目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御手段と、前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定手段と、前記推定手段により推定された所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更手段とを具備する制御装置である。
 このような構成によれば、自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御装置において、気象予測に基づいて推定される発電装置により発電される所定期間経過後の電力量と現在の電力量との差が所定値以下と判定される場合には、設定されている目標充電率が維持されるように制御され、所定期間経過後の電力量と現在の電力量との差が所定値よりも大きいと判定された場合には、変更後の目標充電率が維持されるように制御される。
 これにより、天候の変動により充電量が変動するにも関わらず目標充電率が固定で運用される場合と比較して、推定される電力量に応じて効率よく充放電制御がなされる。
 また、発電量の影響とは発電量の増減であり、例えば、晴れの場合には発電量が増加し、曇りや雨の場合には発電量が減少することを意味する。
 第1の態様において、上記制御装置の前記充電率変更手段は、満充電状態よりも低い充電率である充電上限値よりも低い有効変動上限値と、放電終始状態よりも高い充電率である放電下限値よりも高い有効変動下限値との区間において、前記目標充電率を変更することが好ましい。
 このように、充電上限値と放電下限値との間の区間に目標充電率を変動させる区間を設けているので、目標充電率を変動させた場合であっても、充電上限値や放電下限値とに到達する懸念なく二次電池の運用ができる。
 第1の態様において、上記制御装置の前記充電率変更手段は、所定期間経過後の電力量が、現在の前記発電装置の電力量よりも前記所定値大きい場合に、変更後の前記目標充電率を前記有効変動上限値以下の値の範囲内で大きくすることが好ましい。
 これにより、天候により多くの充電が期待できると推定される場合には、目標充電率を増大させ、充電に備えることができる。
 第1の態様において、上記制御装置の前記充電率変更手段は、所定期間経過後の電力量が、現在の前記発電装置の電力量よりも前記所定値小さい場合に、変更後の前記目標充電率を、前記有効変動上限値以下の値の範囲内で大きくし、その後、現在の前記発電装置の電力量が閾値よりも小さくなった場合に、変更後の前記目標充電率を、前記有効変動下限値以上の値の範囲内で小さくすることが好ましい。
 これにより、天候により発電装置による電力量が所定値小さくなることが推定される場合には、二次電池による放電が必要となるので、一旦目標充電率を大きくすることにより放電に備えて予め余分に充電する。その後、現在の電力量が閾値よりも小さくなった場合に、目標充電率を有効変動下限値以上の値の範囲内で小さくすることにより、目標充電率が固定で運用される場合と比較して放電させやすくなる。このように、放電方向に制御がなされる場合には、一旦目標充電率を大きくし、その後、目標充電率を小さくすることにより、二次電池を効率的に運転させることができる。
 第1の態様において、前記気象予測を用いずに設定される前記目標充電率を標準目標充電率とし、前記発電装置の定格容量の下限値以下となった場合に、前記充電率変更手段は、前記目標充電率を前記標準目標充電率にすることが好ましい。
 これにより、発電装置の定格容量の下限値以下となった場合には、目標充電率が、天候を勘案しない元の目標充電率(標準目標充電率)に確実に戻される。
 本発明の第2の態様は、上記いずれかに記載の制御装置と、自然エネルギーによって発電する発電装置と接続される二次電池とを具備し、前記発電装置は風力発電装置とする風力発電システムである。
 本発明の第3の態様は、上記いずれかに記載の制御装置と、自然エネルギーによって発電する発電装置と接続される二次電池とを具備し、前記発電装置は太陽光発電装置とする太陽光発電システムである。
 本発明の第4の態様は、自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御方法であって、目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御過程と、前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定過程と、所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更過程とを有する制御方法である。
 本発明の第5の態様は、自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御プログラムであって、目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御処理と、前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定処理と、所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更処理とをコンピュータに実行させるための制御プログラムである。
 本発明は、気象に応じて二次電池を効率的に運転制御できるという効果を奏する。
本発明に係る風力発電システムの概略構成を示した図である。 本発明に係る制御部の機能ブロック図である。 有効変動幅を説明するための図である。 本発明に係る風力発電システムの動作フローである。
 以下に、本発明に係る制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置の一実施形態について、図面を参照して説明する。
 本実施形態においては、本発明に係る制御装置を風力発電装置に適用した場合を例に挙げて説明するが、これに限定されない。
 図1は、本実施形態に係る風力発電システム1の概略構成を示したブロック図である。図1に示されるように、本実施形態に係る風力発電システム1は、風力発電装置(発電装置)2と、電力貯蔵装置3とを備えており、電力系統4と接続されている。
 風力発電装置2は、自然環境によって出力が変動する発電装置の一例であり、風力によって発電する発電装置である。簡素化のため図1は風力発電装置2が1個である場合を例に挙げて説明するが、電力貯蔵装置3で管理する風力発電装置2の個数は特に限定されない。
 電力貯蔵装置3は、制御装置10と、二次電池20とを備えている。
 二次電池20は、リチウム二次電池、鉛二次電池、ニッケル水素二次電池など特に限定されないが、充放電の追従性がよいことからリチウム二次電池であることが好ましい。
 制御装置10は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。
 具体的には、図1に示されるように、制御装置10は、推定部(推定手段)11と、充電率変更部(充電率変更手段)12と、制御部(制御手段)13とを備えている。
 推定部11は、発電装置2による発電量に影響する気象予測に基づいて、風力発電装置2により発電される所定期間経過後の電力量を推定する。具体的な電力量の推定方法について、風力発電装置2が複数設けられるウインドファームである場合を例に挙げて説明する。推定部11は、外部から取得した気象予測の情報に基づいて、複数の風力発電装置2が設置されるウインドファーム地域の所定期間経過後(例えば、10分後、1時間後、24時間後など)の未来の風況を予測し、予測した風況を風況解析ソフト(例えば、MASCOT)等を用いて各風力発電装置2が設置される地点毎に展開し、それぞれの風力発電装置2の設置地点における予測風速から、所定期間経過後の出力電力量を算出する。推定部11は、このように算出した各風力発電装置の出力電力の積算値を所定期間経過後の電力量とする。
 充電率変更部12は、推定部11により推定された所定期間経過後の電力量と現在の風力発電装置2の電力量との差が所定値よりも大きいと判定された場合に、目標充電率を変更する。具体的には、充電率変更部12は、満充電状態よりも低い充電率である充電上限値よりも低い有効変動上限値と、放電終始状態よりも高い充電率である放電下限値よりも高い有効変動下限値との区間において、目標充電率を変更する。このように、充電上限値と放電下限値との間の区間に目標充電率を変動させる区間を設けることにより、目標充電率を変動させた場合であっても、充電上限値や放電下限値とに到達する懸念なく二次電池の運用ができる。
 また、充電率変更部12は、推定部11により推定された所定期間経過後の電力量と現在の風力発電装置2の電力量との差が所定値以下と判定された場合に、目標充電率を変更せず既存の目標充電率を採用する。
 より具体的には、充電率変更部12は、所定期間経過後の電力量が、現在の風力発電装置2の電力量よりも所定値大きい場合に、変更後の目標充電率を有効変動上限値以下の値の範囲内で大きくする。また、充電率変更部12は、所定期間経過後の電力量が、現在の風力発電装置2の電力量よりも所定値小さい場合に、変更後の目標充電率を、有効変動上限値以下の値の範囲内で大きくし、その後、現在の風力発電装置2の電力量が閾値よりも小さくなった場合に、変更後の目標充電率を、有効変動下限値以上の値の範囲内で小さくする。また、閾値は、システム設置場所の自然エネルギー出力平滑化に必要な平均電力量をシミュレーションにより算出し、算出した平均電力量を使用した閾値とすることが好ましい。
 なお、本実施形態においては、充電率変更部12が目標充電率を小さく変更するのは、現在の風力発電装置2の電力量が閾値よりも小さくなった場合として説明するが、これに限定されず、例えば、所定期間経過後の電力量が、現在の風力発電装置2の電力量よりも所定値小さいことが検出された後、その後においても、所定期間経過後の電力量が現在の風力発電装置2の電力量よりも所定値小さい状態が継続して検出された場合に、目標充電率を小さくすることとしてもよい。また、目標充電率を小さくするタイミングは、例えば、所定期間経過後の電力量と現在の電力量とを比較するタイミングであり、制御装置が電力量を更新するタイミングである。
 また、充電率変更部12は、気象予測を用いずに設定される目標充電率を標準目標充電率とし、風力発電装置2の定格容量の下限値以下となった場合に、目標充電率を標準目標充電率にする。
 これにより、風力発電装置2の定格容量の下限値以下となった場合には、目標充電率が、天候を勘案しない元の目標充電率(標準目標充電率)に確実に戻すことができる。
 制御部13は、目標とする二次電池20の充電率である目標充電率が維持されるように二次電池20の充放電を制御する。図2は、制御部13の機能ブロック図を示している。
 図2に示されるように、制御部13は、現在の充電率SOCであるSOC現状値〔%〕と、充電率変更部12によって決定された変更後の目標充電率(SOC目標値)または既存の目標充電率(SOC目標値)との差にゲイン〔kW/%〕を乗算し、充電率SOCの補正制御をする。また、風力発電装置2からの出力電力〔kW〕と充電率SOCの補正制御量とが加算されて平滑化された電力値から、風力発電装置2の出力電力が減算され、正(+)であれば放電・負(-)であれば充電とする充放電指令〔W〕を制御量として算出する。
 ここで、有効変動上限値から有効変動下限値までの区間を有効変動幅とし、有効変動幅の設定方法について図3を用いて説明する。なお、有効変動幅の設定においては、目標充電率を固定(例えば、50〔%〕)して決定することとする。
 気象予測に基づいて、各風力発電装置2の設置地点における風況を予測し、風況予測に基づいて風力発電装置2の有効電力の推移を算出する。
 図3(a)は、目標充電率(SOC目標値)を設定せず、風況予測に基づいて算出される発電装置の有効電力の時系列推移と、それに応じた充電率SOCの時系列推移を示している。図3(a)に示されるように、発電装置の有効電力が大きくなるのに伴って充電率SOCが大きくなり、有効電力が低減してくると充電率SOCも低下し、有効電力が0になると充電率SOCも40〔%〕以下に落ち込んでいる。
 これに対し、図3(b)は、風況予測に基づいて算出される発電装置の有効電力の時系列推移に応じて、目標充電率を設定(例えば、目標値=50〔%〕)として平滑化した充電率SOCの推移をシミュレーションにより算出した結果を示している。充電率SOCの推移は、図2の制御部13の機能ブロック図において目標充電率=50〔%〕に固定した場合を一例として求めている。充電率SOC=50〔%〕に固定するよう制御した場合には、有効電力が0となった場合でも、電力系統4側から電力を得て、充電率SOCの低下分が補正されて50%が維持されるようになっている。
 図3(b)に示されるように、こうして求められた充電率SOCの推移に基づいて、SOC最大値(例えば、60〔%〕)と、SOC最小値(例えば、40〔%〕)とを読み取り、読み取った最大値及び最小値の間の区間を有効変動幅Xとして決定する。ここで、充電率SOCの上限は60〔%〕、下限は40〔%〕とした値は限定されるものでなく一例であり、満充電状態よりも低い充電率である充電上限値よりも低く、かつ、放電終始状態よりも高い充電率である放電下限値よりも高ければよい。
 なお、有効電力を示すグラフにおいて、実線は太陽光発電装置の電力を示し、点線は、太陽光発電装置及び風力発電装置のハイブリッド電力を示している。
 以下に本実施形態に係る制御装置10の作用について図1から図4を用いて説明する。
 気象予測の情報が制御装置10に入力されると、気象予測の情報に基づいて、風力発電システム1が設けられるウインドファーム地域の所定期間経過後の風況が予測される(図4のステップSA1)。予測された風況が、個々の風力発電装置2が設けられる地点に展開される(図4のステップSA2)。各風力発電装置2の設置地点における予測の風速から、所定期間経過後の出力電力が算出される(図4のステップSA3)。算出された各風力発電装置2の出力電力を積算し、所定期間経過後の推定電力量とされる(図4のステップSA4)。
 推定される所定期間経過後の電力量と、現在の風力発電システム1の電力量との差が、算出される(図4のステップSA5)。所定期間経過後の電力量と、現在の風力発電システム1の電力量との差が所定値よりも大きいか否かが判定され(図4のステップSA6)、差が所定値よりも大きい場合には目標充電率が変更され(図4のステップSA7)、所定期間経過後の充放電に備えられる。また、差が所定値以下の場合には現在(既存)の目標充電率がそのまま用いられる(図4のステップSA8)。
 以上説明してきたように、本実施形態に係る制御装置10及び方法並びにプログラム、それを備えた風力発電装置2によれば、風力エネルギーによって発電する風力発電装置2と接続される二次電池20の充放電を制御する制御装置10において、気象予測に基づいて推定される風力発電装置2により発電される所定期間経過後の電力量と現在の電力量との差が所定値以下と判定される場合には、設定されている目標充電率が維持されるように制御され、所定期間経過後の電力量と現在の電力量との差が所定値以上と判定された場合には、変更後の目標充電率が維持されるように制御される。
 これにより、天候の変動により充電量が変動するにも関わらず目標充電率が固定で運用される場合と比較して、推定される電力量に応じて効率よく充放電制御がなされる。
 なお、本実施形態においては、制御装置10を風力発電装置2に適用する場合を例に挙げて説明していたが、これに限定されず、例えば、制御装置10を太陽光発電装置に適用することとしてもよい。
1 風力発電システム
2 風力発電装置
3 電力貯蔵装置
4 電力系統
10 制御装置
11 推定部(推定手段)
12 充電率変更部(充電率変更手段)
13 制御部(制御手段)
20 二次電池

Claims (9)

  1.  自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御装置であって、
     目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御手段と、
     前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定手段と、
     前記推定手段により推定された所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更手段と
    を具備する制御装置。
  2.  前記充電率変更手段は、満充電状態よりも低い充電率である充電上限値よりも低い有効変動上限値と、放電終始状態よりも高い充電率である放電下限値よりも高い有効変動下限値との区間において、前記目標充電率を変更する請求項1に記載の制御装置。
  3.  前記充電率変更手段は、所定期間経過後の電力量が、現在の前記発電装置の電力量よりも前記所定値大きい場合に、変更後の前記目標充電率を前記有効変動上限値以下の値の範囲内で大きくする請求項2に記載の制御装置。
  4.  前記充電率変更手段は、所定期間経過後の電力量が、現在の前記発電装置の電力量よりも前記所定値小さい場合に、変更後の前記目標充電率を、前記有効変動上限値以下の値の範囲内で大きくし、その後、現在の前記発電装置の電力量が閾値よりも小さくなった場合に、変更後の前記目標充電率を、前記有効変動下限値以上の値の範囲内で小さくする請求項2または請求項3に記載の制御装置。
  5.  前記気象予測を用いずに設定される前記目標充電率を標準目標充電率とし、前記発電装置の定格容量の下限値以下となった場合に、前記充電率変更手段は、前記目標充電率を前記標準目標充電率にする請求項1から請求項4のいずれかに記載の制御装置。
  6.  請求項1から請求項5のいずれかに記載の制御装置と、自然エネルギーによって発電する発電装置と接続される二次電池とを具備し、前記発電装置は風力発電装置とする風力発電システム。
  7.  請求項1から請求項5のいずれかに記載の制御装置と、自然エネルギーによって発電する発電装置と接続される二次電池とを具備し、前記発電装置は太陽光発電装置とする太陽光発電システム。
  8.  自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御方法であって、
     目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御過程と、
     前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定過程と、
     所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更過程と
    を有する制御方法。
  9.  自然エネルギーによって発電する発電装置と接続される二次電池の充放電を制御する制御プログラムであって、
     目標とする前記二次電池の充電率である目標充電率が維持されるように前記二次電池の充放電を制御する制御処理と、
     前記発電装置の発電量に影響する気象予測に基づいて、前記発電装置により発電される所定期間経過後の電力量を推定する推定処理と、
     所定期間経過後の電力量と現在の前記発電装置の電力量との差が所定値よりも大きいと判定された場合に、前記目標充電率を変更する充電率変更処理と
    をコンピュータに実行させるための制御プログラム。
PCT/JP2014/050399 2013-01-21 2014-01-14 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置 WO2014112454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/654,752 US20150372510A1 (en) 2013-01-21 2014-01-14 Control apparatus, method, and program, and natural energy generation apparatus provided with control apparatus, method, and program
CN201480003526.3A CN104871388A (zh) 2013-01-21 2014-01-14 控制装置及方法和程序、以及具备该控制装置的自然能发电装置
EP14740841.3A EP2947740A4 (en) 2013-01-21 2014-01-14 CONTROL APPARATUS, METHOD AND PROGRAM AND DEVICE FOR NATURAL ENERGY PRODUCTION WITH THE CONTROL DEVICE, THE CONTROL METHOD AND THE CONTROL PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008806A JP5709910B2 (ja) 2013-01-21 2013-01-21 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
JP2013-008806 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112454A1 true WO2014112454A1 (ja) 2014-07-24

Family

ID=51209544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050399 WO2014112454A1 (ja) 2013-01-21 2014-01-14 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置

Country Status (5)

Country Link
US (1) US20150372510A1 (ja)
EP (1) EP2947740A4 (ja)
JP (1) JP5709910B2 (ja)
CN (1) CN104871388A (ja)
WO (1) WO2014112454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063355A1 (ja) * 2014-10-21 2016-04-28 東芝三菱電機産業システム株式会社 充放電管理装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091817B2 (ja) * 2012-09-11 2017-03-08 株式会社東芝 自然エネルギー発電装置の出力変動抑制装置
ES2667818T3 (es) * 2014-04-29 2018-05-14 General Electric Company Sistema y procedimiento de control de un parque eólico
JP6383301B2 (ja) * 2015-02-10 2018-08-29 株式会社東芝 電力貯蔵装置の制御装置、風力発電システムおよび電力貯蔵装置の制御方法
US10283964B2 (en) * 2015-07-01 2019-05-07 General Electric Company Predictive control for energy storage on a renewable energy system
US10118500B2 (en) * 2016-03-09 2018-11-06 Ford Global Technologies, Llc Battery capacity estimation based on open-loop and closed-loop models

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327080A (ja) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The 電力貯蔵装置及びそれを備えた分散電源システムの制御方法
JP2008054385A (ja) 2006-08-23 2008-03-06 Mitsubishi Electric Corp 系統安定化装置
JP2008154360A (ja) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd 電力貯蔵装置及びハイブリッド型分散電源システム
JP2009079559A (ja) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd 蓄電システム併設型風力発電システム
JP2012039821A (ja) * 2010-08-10 2012-02-23 Toshiba Corp 発電システムの電力変動緩和装置および電力変動緩和方法
JP2012075224A (ja) * 2010-09-28 2012-04-12 Shikoku Res Inst Inc 再生可能エネルギーの蓄電システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116825A (ja) * 2005-10-20 2007-05-10 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ電力貯蔵装置
KR101253971B1 (ko) * 2008-12-22 2013-04-11 닛폰 후료쿠카이하츠 가부시키가이샤 축전지 병설형 자연에너지 발전시스템의 전력관리 제어시스템
US20100198420A1 (en) * 2009-02-03 2010-08-05 Optisolar, Inc. Dynamic management of power production in a power system subject to weather-related factors
WO2011030380A1 (ja) * 2009-09-10 2011-03-17 株式会社日立エンジニアリング・アンド・サービス 発電システムの電力貯蔵装置およびその電力貯蔵装置の運用方法
US8892264B2 (en) * 2009-10-23 2014-11-18 Viridity Energy, Inc. Methods, apparatus and systems for managing energy assets
CN102687033B (zh) * 2009-10-30 2014-11-12 日本碍子株式会社 二次电池的控制方法和电力储藏装置
US8914158B2 (en) * 2010-03-11 2014-12-16 Aes Corporation, The Regulation of contribution of secondary energy sources to power grid
KR101092219B1 (ko) * 2010-04-21 2011-12-12 한국전기연구원 풍력 발전 설비 출력 안정화 방법 및 시스템
JP2013529051A (ja) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド 太陽光発電予測システム並びに方法
JP2012182922A (ja) * 2011-03-02 2012-09-20 Sony Corp 充電器、充電システム、および、充電方法
JP5695464B2 (ja) * 2011-03-28 2015-04-08 株式会社東芝 充放電判定装置及び充放電判定プログラム
JP5731913B2 (ja) * 2011-06-16 2015-06-10 株式会社Nttドコモ 蓄電池充放電制御装置、電力制御システムおよび蓄電池充放電制御方法
CN102355008B (zh) * 2011-09-29 2013-09-25 沈阳工业大学自控技术研究所 一种平抑风电场功率波动的控制方法
CN102545250B (zh) * 2011-11-16 2014-05-07 河海大学 锂电池储能的风电场功率平滑控制方法及装置和工作方法
CN102856930B (zh) * 2012-10-11 2014-08-27 天津市电力公司 微网经济调度控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327080A (ja) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The 電力貯蔵装置及びそれを備えた分散電源システムの制御方法
JP2008054385A (ja) 2006-08-23 2008-03-06 Mitsubishi Electric Corp 系統安定化装置
JP2008154360A (ja) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd 電力貯蔵装置及びハイブリッド型分散電源システム
JP2009079559A (ja) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd 蓄電システム併設型風力発電システム
JP2012039821A (ja) * 2010-08-10 2012-02-23 Toshiba Corp 発電システムの電力変動緩和装置および電力変動緩和方法
JP2012075224A (ja) * 2010-09-28 2012-04-12 Shikoku Res Inst Inc 再生可能エネルギーの蓄電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947740A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063355A1 (ja) * 2014-10-21 2016-04-28 東芝三菱電機産業システム株式会社 充放電管理装置
JPWO2016063355A1 (ja) * 2014-10-21 2017-07-27 東芝三菱電機産業システム株式会社 充放電管理装置
CN107005055A (zh) * 2014-10-21 2017-08-01 东芝三菱电机产业系统株式会社 充放电管理装置
US10270283B2 (en) 2014-10-21 2019-04-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Charge/discharge management device
CN107005055B (zh) * 2014-10-21 2019-11-12 东芝三菱电机产业系统株式会社 充放电管理装置

Also Published As

Publication number Publication date
EP2947740A1 (en) 2015-11-25
JP2014140281A (ja) 2014-07-31
CN104871388A (zh) 2015-08-26
JP5709910B2 (ja) 2015-04-30
EP2947740A4 (en) 2016-10-26
US20150372510A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2014112454A1 (ja) 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
JP3905692B2 (ja) 風力発電制御方法
US10283964B2 (en) Predictive control for energy storage on a renewable energy system
JP6192531B2 (ja) 電力管理システム、電力管理装置、電力管理方法及びプログラム
JP6491494B2 (ja) 給湯制御装置
CN111466064A (zh) 对储能系统的温度控制
JP2014030334A (ja) 電力管理装置、電力管理方法及びプログラム
JP2013207933A (ja) 制御装置、制御システム、及び制御方法
JP6116971B2 (ja) 制御装置及び方法並びにプログラム、それを備えたマイクログリッド
JP6548570B2 (ja) 電力供給システム、電力供給システム用の制御装置およびプログラム
CN103996075A (zh) 考虑柴蓄协调增效的微电网多目标优化调度方法
JP5413390B2 (ja) 充電制御装置および充電制御方法、並びに太陽光発電システム
EP3261210B1 (en) System and method for controlling charge of an energy storage device from a renewable energy source
JP6369065B2 (ja) 分散型電源システムの制御装置、パワーコンディショナ、分散型電源システム及び、分散型電源システムの制御方法
JPWO2011078215A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
KR102240556B1 (ko) 이종 신재생 에너지원이 결합된 발전원 운영 방법 및 장치
JP6232158B2 (ja) 需要電力予測装置、需要電力予測方法及びプログラム
WO2013097547A1 (zh) 一种发电机控制方法及装置、通信基站
KR102268723B1 (ko) 충전율 제어가 가능한 에너지 저장 시스템 및 이의 제어 방법
JP7180993B2 (ja) 発電システム
JP5995804B2 (ja) 蓄電システムの管理装置及び制御目標値決定方法
JP5738219B2 (ja) 出力平滑化装置、出力平滑化方法、及びプログラム
JP7146938B2 (ja) エネルギーマネジメントシステム、独立システム、及び独立システムの運用方法
JP2015213409A (ja) 負荷平準化装置
TWI667560B (zh) 再生能源管理系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014740841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14654752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE